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Free-energy derivatives and structure optimization within quasiharmonic lattice dynamics

M. B. Taylor, G. D. Barrera,* N. L. Allan,† and T. H. K. Barron
School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom

~Received 30 July 1997!

A method is presented for the calculation of the gradient of the free energy with respect to all the internal
and external degrees of freedom of a periodic crystal. This gradient can be used in conjunction with a
static-energy Hessian for efficient geometrical optimization of systems with large unit cells. The free energy is
calculated using lattice statics and lattice dynamics in the quasiharmonic approximation, and its derivatives by
means of first-order perturbation theory. In the present application of the method, particles are assumed to
interact via arbitrary short-ranged spherically-symmetric pair potentials and long-ranged Coulomb forces, and
polarizability effects are accounted for by use of the shell model. The method can be used directly as the basis
for a computer program which makes efficient use of both storage and CPU time, especially for large unit cells.
Detailed expressions for all the lattice sums are presented.@S0163-1829~97!01246-0#
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I. INTRODUCTION

Theoretical calculation of the equilibrium thermodynam
properties of crystals, over a wide range of temperatures
pressures, has been approached in a number of ways.
most popular methods in recent times have been molec
dynamics~MD! and, to a lesser extent, classical Monte Ca
~MC! simulations. These approaches rely on generating a
of system states representative of the equilibrium configu
tion and forming an average over this set. The computat
ally expensive part is then generating new configuratio
both to approach an equilibrium state from an initial config
ration, and in sampling the configuration space near the e
librium, more samples leading to greater accuracy. An al
native approach is lattice dynamics, in which the free ene
of a given configuration, as well as dependent proper
such as entropy and heat capacity, can be calculated dire

In this paper we use lattice dynamics in the quasih
monic approximation, which gives the equation of state
the first order in the anharmonicity of the potentials. The f
energy for a given crystal geometry is taken to be that res
ing from the harmonic approximation,1 but the anharmonic-
ity of the crystal potential causes the mode frequencies
obtained to be functions of the geometrical parameters, m
ing the vibrational free energy a function of these parame
as well as of temperature. We take into account ionic po
ization by using the shell model originally due to Dick an
Overhauser,2 in which each ion may consist of a massle
‘‘shell’’ and a massive core, the charge being distribut
between the two and thereby, if the two are displaced rela
to each other, giving rise to a dipole. The shell and core o
given ion are coupled typically by a springlike interaction

Lattice dynamics has been somewhat neglected in re
years, possibly due to overcaution regarding the range
validity of the quasiharmonic approximation; however it c
be remarkably robust even at elevated temperatures~ex-
amples of its successful use are Refs. 3–5; see also Re
and references therein! and has a number of characteristi
that make it a powerful alternative or complementary te
nique to MD and MC. In particular, it takes into accou
zero-point energy and other quantum effects~although it can
560163-1829/97/56~22!/14380~11!/$10.00
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easily be adapted to generate results in the classical lim!,
and hence scores significantly over the inherently class
MD and MC methods below the Debye temperature, wh
quantum effects cannot be ignored. The investigation of n
mal vibrations aids interpretation of the results, and can
veal explicitly the mechanisms operating in thermal exp
sion and phase transitions; by identifying unstab
vibrational modes it also provides a very sensitive test
interatomic potentials. Moreover, lattice dynamics does
rely on long runs for high precision, and is in fact relative
inexpensive, demanding typically an order of magnitude l
computation time than MD or MC, and moreover avoidin
the kinetic barriers and critical slowing down effects suffer
by those techniques.7

Except at rather low temperatures, when using lattice
namics the bulk of the computational effort is expended
the optimization problem of determining the equilibrium g
ometry of the crystal; given this, calculation of depende
properties is relatively straightforward. Efficient optimiz
tion is only possible if derivatives of the appropriate therm
dynamic potential with respect to the geometrical coor
nates~or strains! are available, and it is the generation a
use of these derivatives which are addressed in this pap

Kantorovich8 has previously presented results for first a
second free-energy derivatives within the model of defor
able dipoles due to Tolpygo;9,10 our choice of the related
shell model2 has been made because of the large numbe
shell parameters and interionic potentials available fo
wide range of polar solids. If the elastic constants are
quired then the free-energy Hessian~second strain deriva
tives! as calculated directly by Kantorovich is necessa
however, considerable additional processing time and s
age is required for the second derivatives, and there are
some unresolved problems regarding degeneracies in th
sociated second-order perturbation theory. As explained
Sec. III therefore we consider it efficient for the purposes
structure optimization to generate only the first derivative

The paper is organized as follows. Section II introduc
our notation for the geometry of a crystal as defined in ter
of a specific set of coordinates with respect to which fre
energy derivatives can be taken. Section III discusses
14 380 © 1997 The American Physical Society
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56 14 381FREE-ENERGY DERIVATIVES AND STRUCTURE . . .
derivatives required for structural optimization of a crys
and how they may most efficiently be utilized. Section
reviews the definition of the quasiharmonic dynamical m
trix and its use in generating the appropriate thermodyna
potentials, and first-order perturbation theory is used in S
V to give expressions for their various strain derivatives.
Sec. VI detailed expressions for the required lattice sums
Coulombic and arbitrary short-ranged spherically symme
pairwise interactions are presented, and Sec. VII conclud

II. CRYSTAL STRUCTURE AND STRAIN COORDINATES

A crystal structure is periodic, defined by its lattice a
the positions of all the atoms within a unit cell. In gener
strain can alter both the shape of the lattice, which is sp
fied by externalcoordinatesEl

ext, and the atomic positions
which are specified byinternal coordinatesEk

int . The general
method of optimization described in Sec. III requires par
derivatives of the free energy with respect to whatever co
dinates are chosen to describe the state of strain. In
present application these are obtained by first deriving
rivatives with respect to the strain rotation tensor of mac
scopic elasticity theory and a related set of internal coo
nates defined as follows.

The positions of all the particles~which in a shell model
may be cores or shells! in a macroscopically strained cryst
are given by Cartesian coordinates

r ix
a 5(

g
~dag1eag!~xg1r i

g!, ~1!

where Greek superscripts are Cartesian indices 1. . . 3 ~as
elsewhere in this paper!, x is a lattice vector of the unstraine
crystal labeling a unit cell,i 51 . . .n is an index that labels
a specific particle within a unit cell, anddab is the Kronecker
delta. Components of the tensoreab determine both the ori-
entation and the macroscopic state of strain of the cryst11

The vector componentsr i
a are internal coordinates determin

ing the positions of particles within a unit cell.
The parameterseab andr i

a have been chosen because it
convenient to obtain derivatives of the free energy with
spect to them, and because they may be simply relate
other parameters that are in common use. The Voigt ma
scopic infinitesimal strain coordinatesel are the component
of the six-element vector

e5S e11

e22

e33

e231e32

e131e31

e121e21

D . ~2!

Dimensionless ‘‘basis internal coordinates’’ui
t can be de-

fined by

r i
a5(

t
ui

tat
a5(

t
ui

tAta, ~3!
l

-
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where the matrixAta specifies a metric obtained from com
ponents of the lattice vectorsat determining the unit cell in
the unstrained lattice;t51 . . . 3 labels directions in unit-cell
space.

In many applications symmetry reduces the number
independent coordinates. For example, when optimizing
geometry of a crystal it may be useful to characterize
state of external strain in terms of the crystallographic latt
parametersca , e.g., a and c for tetragonal or hexagona
symmetry. In the same way not all theui

t can be varied
independently if the symmetry of the crystal is to be ma
tained. It is normally possible to define a set of ‘‘symmet
internal coordinates’’wm , which allows a description of the
structure with a smaller number of variables. Thewm can be
defined such that

ui
t5gi

t1(
m

wmgm,i
t , ~4!

wheregi
t is constant for a given particlei , and the directions

of the gm,i
t are determined by symmetry. Consider, for e

ample, a rigid-ion model of rutile, TiO2. The tetragonal unit
cell contains six atoms, of which the two titanium positio
are fixed by symmetry. The oxygen atoms lie
@(0, 0, 0)6w1(1, 1, 0)# and @(0.5, 0.5, 0.5)6w1~21, 1, 0!#.
Thus for optimization only three parameters,a, c, andw1 are
needed. On the other hand, general elastic distortion dest
all symmetry except inversion; and so deriving elastic co
ficients requires either the full set of ther i

a or ui
t , or else

possibly a more extended set of symmetric coordinateswm .
In general the geometry of a crystal can be characteri

by, and the free energy differentiated with respect to,
NE-element vector of generalized coordinatesEA , always in-
cluding some external coordinatesEl

ext and sometimes also
some internal onesEk

int .12 In the present application theEk
int

may be ther i
a , ui

t , or wm , and theEl
ext may be theel or ca .

III. STRUCTURE OPTIMIZATION

A. Derivatives required for structure optimization

In order to optimize a crystal structure, i.e., to find t
most stable state under a given set of thermodynamic c
straints, it is necessary to minimize the appropriate therm
dynamic potential with respect to a set ofNE structure pa-
rametersEA . At finite temperatureT under an applied
hydrostatic pressureP0 the appropriate potential is an avai
ability G̃, defined

G̃5U2TS1P0V5F1P0V5Fstat1Fvib1P0V, ~5!

where U is the internal energy,S is the entropy,V is the
volume, andF is the Helmholtz free energy which has sta
and vibrational partsFstat and Fvib , respectively; all these
quantities refer to the value per unit cell. Note thisG̃ differs
from the availability A5U2T0S1P0V defined by
Pippard,13 because here we optimize with respect only
varying strain, and not also to varying temperature.

The optimization condition is therefore to find that vect
in parameter space at which, for allA,
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S ]G̃

]EA
D
E8

50, ~6!

where the notation ()E8 indicates that all coordinatesEB for
BÞA are held fixed. An appropriate set of coordinatesEA
will be chosen as discussed in Sec. II.

To perform this minimization, it is effectively necessa
to calculate at least the first, and possibly the second, de
tives of G̃ with respect to theEA . All the derivatives can of
course be calculated numerically using a finite difference
mula. Care must be taken however in choosing the fin
difference, since if it is too large then local nonlinearity
the function will result in a poor approximation, but if it i
too small then precision may be lost. Furthermore if there
discontinuities inG̃(E), which may arise from sharp cutoff
often present in short-ranged interactions, the distortions
troduced by the finite changes in the coordinates can lea
large inaccuracies in the numerical derivatives. These d
culties can usually be overcome, but the principal probl
with numerical evaluation of derivatives is that it becom
very expensive for largeNE .

Hitherto, because of the expense of calculating the der
tives numerically, only approximations to a full dynamic r
laxation Eq.~6! have been made, as follows. The thermod
namic potentialG̃ can be defined as a sum of static a
vibrational parts

G̃5G̃stat1G̃vib ~7!

and the geometrical coordinates split into external onesEl
ext

and internal onesEk
int as explained in Sec. II. The conditio

for full dynamical relaxation is

S ]G̃

]El
extD

E8

5S ]G̃

]Ek
intD
E8

50. ~8!

However, although the derivatives ofG̃stat are quite straight-
forward to calculate analytically,14 the theory for analytic
calculation of theG̃vib derivatives within the shell model ha
not previously been available. Accordingly, for large u
cells the zero static internal stress approximation~ZSISA!
has often been used,6 in which the equilibrium condition is
taken to be

S ]G̃

]El
extD

E8

5S ]G̃stat

]Ek
int D

E8

50. ~9!

Since the number of theEl
ext derivatives never exceeds 6, an

is often 1 or 2, they can be calculated numerically witho
excessive expense~although the other considerations me
tioned above may still present problems!. An even more ex-
treme, and less computationally expensive, approximatio
the constant internal strain parameter approximat
~CISPA!, in which a set of internal coordinates is found by
full minimization of the static energy

S ]G̃stat

]El
ext D

E8

5S ]G̃stat

]Ek
int D

E8

50 ~10!
a-
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and subsequent dynamical optimizations with respect to
ternal coordinates only are then performed while holding
internal ones fixed. With CISPA the results will be depe
dent on the set of internal coordinates chosen.

ZSISA can be shown15 to yield the optimized externa
coordinates correctly to first order, but this is not so for t
internal coordinates and hence for dependent thermodyna
quantities. Such quantitiesmay be well approximated by
ZSISA and CISPA, but it is hard to assess the errors t
introduced without a full dynamical free-energy optimiz
tion.

B. Optimization methods

Methods of unconstrained minimization of a functio
~e.g., availabilityG̃) of many variables~e.g., a column vec-
tor of structure coordinatesE) may be classified into two
main groups:16,17 those which require the gradient~first de-
rivatives y5“G̃) and the Hessian~second derivatives
H5“y), and those which require only the gradient.

If the Hessian is available then the Newton method
most straightforward, and usually very successful: a q
dratic approximation toG̃ in the region of its minimum is
written

G̃~E1d!'G̃~E!1dT
•y~E!1

1

2
dT

•H~E!•d, ~11!

wheredT is the transpose ofd, andd5E82E, the step from
E to an improved valueE8. This can then be differentiate
with respect tod to give

d52H~E!21
•y~E!. ~12!

If G̃ is quadratic then solving forE8 will give its minimizing
value; otherwiseE8 should be an improved estimate and r
peated iterations of Eq.~12! should approach the minimum
Some choices of sets of variables can result in a singulaH
and therefore failure of Eq.~12!; in particular the Hessian
with respect to all 3n basis coordinatesui

a or r i
a will be

singular because of the translational invariance of the latt
This problem can be avoided by optimizing with respect
the coordinates ofn21 rather thann particles, equivalent to
fixing the position of one particle.

If only the gradient is available then a quasi-Newt
method can be used, the essence of which is to maintai
approximationJ to the inverse HessianH21 and at each step
to use a gradient evaluation to produce an improved estim
J8. Several prescriptions exist for this update, but the m
efficient is generally considered to be the Broyden-Fletch
Goldfarb-Shanno~BFGS! update17

J85J1
d•dT

dT
•g

2
~J•g!•~J•g!T

gT
•J•g

1~gT
•J•g!s•sT, ~13!

where

g5y~E1d!2y~E!, ~14!

s5
d

dT
•g

2
J•g

gT
•J•g

. ~15!
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56 14 383FREE-ENERGY DERIVATIVES AND STRUCTURE . . .
y andJ are then used as per Eq.~12! to updateE. This new
E may then be refined by performing a linear search~using

repeated evaluations ofG̃ andy) for the function minimum
in the direction indicated; ifJ is a poor approximation to
H21 the linear search will be indispensable, but if they a
close it may be omitted.

Our experience has been that if the quasi-Newton met
is started reasonably close to the optimal structure, wit
reasonable approximation to the Hessian, it provides v
satisfactory optimization without the necessity for line

searches. Using the static part]2G̃stat/]EA]EB of the Hessian
as the initial approximation to the full dynamic value tur
out to work very well in the cases we have tried, since
dynamical contributions to this are usually quite small. F
the initial configuration an optimized structure at a nea
temperature, or if that is unavailable the statically optimiz
structure, is usually adequate. If the best starting config
tion is far from its optimized state however, or the dynam
contributions to the Hessian are large, it is sometimes ne
sary to use another method, such as a conjugate gra
method, or a quasi-Newton method including linear minim
zations, to approach the free-energy minimum.

Our usual algorithm for structural optimization is ther
fore:

~1! SetE to optimized values at nearby temperature~or
static!,

~2! Calculate static HessianHstat(E),
~3! Set approximate inverse HessianJ5Hstat

21 ,
~4! Calculate dynamic gradienty(E),
~5! Stop if gradient magnitude (yT

•y)1/2 is small,
~6! UpdateJ using BFGS formula~13! with d52J•y

~except the first time round!,
~7! UpdateE usingE85E2J•y,
~8! Return to step 4.

Progress of the optimization of course varies according to
details of the problem under consideration, but typically
magnitude of the gradient decreases by about an orde
magnitude per iteration, and an optimization completes
high accuracy in fewer than 10 iterations.

An optimization therefore requires one static Hessian c
culation, and a few dynamic gradient calculations. In
subsequent sections we present a unified approach to c
lating the static Hessian and the dynamic gradient, as we
the free energy itself. The method outlined here is attrac
because these quantities can be calculated analytically,
relatively rapidly. In particular, except for very smallNE ,
this method is a great deal faster than those which req
repeated exact calculation of the dynamic Hessian, or
merical evaluation of the derivatives, or frequent linear mi
mizations.

We conclude this section by stressing that there are m
methods for multivariate optimization not discussed here
well as several subtleties and tricks which are sometim
required to ensure rapid convergence, depending on the
tails of the problem under consideration; the interes
reader is referred to the discussion in Ref. 16. Our appro
has been pragmatic, and is based on the observation tha
method outlined here is seen to be highly effective, rat
than on formal proofs of efficacy.
e

d
a
ry
r

e
r
y
d
a-

s-
ent
-

e
e
of
o

l-
e
cu-
as
e
nd

re
u-
-

ny
s
s
e-
d
ch
the
r

IV. FREE-ENERGY EVALUATION

Calculation of the static energyFstat is straightforward,
and an expression for it under the assumption of spheric
symmetric pairwise potentials appears in Sec. VI B. We g
a brief outline in this section of the method for calculatin
the vibrational contributionFvib to G̃ within the quasihar-
monic approximation and using the shell model.

Following standard lattice-dynamical practice1,10 we ob-
tain the squares of the vibrational frequenciesvqs

2 as eigen-
values of the dynamical matrixDkk8

ab (q), where the indices
k, k8 refer to atoms within the unit cell with massesmk ,
mk8. Taking plane-wave solutions to the equations of mot
leads to the following form for the atomic displacementukx

a

of an atomk in the unit cell displacedx from the origin:

ukx
a 5

1

Amk
(
qs

Aqsf qsk
a ei ~q•x1vqst !, ~16!

where f qsk
a are the normalized eigenvectors ofDkk8

ab (q) and
Aqs are the corresponding vibrational amplitudes. To obt
Dkk8

ab (q) we first define the matrices

Bi j
ab~q!5(

x
eiq•x

]2C

]ui0
a ]uj x

b
, ~17!

whereC is the static energy of the whole crystal, the indic
i , j refer to all cores and shells within the unit cell, and t
summation is over all lattice vectors,x5 l 1a11 l 2a21 l 3a3
for all integerl 1, l 2, l 3. TheB matrix is therefore compose
of the submatricesBCC , BCS, BSC, andBSS where, for ex-
ample, in@BCS# i j

ab i ranges only over the cores andj only
over the shells. The dynamical matrix is then given by10,18

Dkk8
ab

~q!5
1

Amkmk8

@BCC2BCSBSS
21BSC#kk8

ab
~q!. ~18!

Thus for models in which there are no shells, the parti
indices i , j can be identified with the atom indicesk,k8 to
give simply

Dkk8
ab

~q!5
1

Amkmk8

Bkk8
ab

~q!. ~19!

Given the mode frequenciesvqs the vibrational contribu-
tions to the quasiharmonic Helmholtz free energy can
written

Fvib5(
qs

Fqs , ~20!

where

Fqs5
1

2
\vqs1kBT ln~12e2b\vqs!, ~21!

and expressions for other thermodynamic quantities suc
entropy, internal energy, and constant strain heat capa
can similarly be derived.6,10 The q summation is over all
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14 384 56TAYLOR, BARRERA, ALLAN, AND BARRON
wave vectors in the first Brillouin zone, and may be appro
mated using a set of vectors chosen using one of the stan
schemes.19,20

V. STRAIN DERIVATIVES OF THE FREE ENERGY

As discussed in Sec. III A the availabilityG̃ is the quan-
tity to be differentiated. From Eq.~5! it follows for a general
coordinateE

]G̃

]E 5
]Fstat

]E 1
]Fvib

]E 1P0

]V

]E . ~22!

The dimensions of the unit cell depend only on the exter
coordinates, so that for any internal coordinateEint

]V

]Eint
50, ~23!

and it can be shown that, using the notation of Eq.~2!

S ]V

]eabD
0

5Vdab , ~24!

where the ( )0 notation indicates that the derivatives a
evaluated at zero external strain, i.e., when allemn50. We
therefore have

]G̃

]Eint
5

]Fstat

]Eint
1

]Fvib

]Eint
, ~25!

S ]G̃

]el
D

0

5S ]Fstat

]el
D

0

1S ]Fvib

]el
D

0

2Vsl , ~26!

wheres is the external stress vector, which for hydrosta
pressureP0 has the value

s5~2P0 ,2P0 ,2P0 ,0,0,0!T. ~27!

If anisotropic external stress is to be considered these exp
sions will remain the same, but the form ofs will be differ-
ent.

Using Eqs.~25! and ~26! therefore we can generate th
derivatives ofG̃ from derivatives ofFstat and of Fvib . The
first and secondFstat derivatives are obtained by differentia
tion of the appropriate lattice sum with respect to the str
coordinates in question, and expressions for these unde
assumption of pairwise potentials appear in Sec. VI. T
general theory of differentiatingFvib is given in Sec. V A
and conversion between different geometrical derivative
discussed in Sec. V B.

A. Vibrational free-energy derivatives

Since there is no explicit expression forFvib in terms of
the geometry of the lattice, it is not possible to determine
strain derivatives by direct differentiation of a lattice sum
with Fstat. Instead from Eqs.~20! and~21!, Fvib is known in
terms of the eigenvalues of the dynamical matrix, so
eigenvalue strain derivatives are required. Specifically,
ferentiating Eq.~21! with respect to an arbitrary strainE
gives
-
ard

al

s-

n
the
e

is

s
s

e
f-

Fqs8 [
]Fqs

]E 5
\

2vqs
S 1

2
1

1

eb\vqs21
D ]vqs

2

]E , ~28!

this can alternatively be written in terms of the mod
Grüneisen functiongqs52] lnvqs /]E and mode contribu-
tion to the internal energyUqs ,

Fqs8 52gqsUqs . ~29!

Note that the wave vectorq, like x, is a label defined to
remain invariant under the strain]E. Writing for conve-
nience

ls5vqs
2 , ~30!

and using the notationX85]X/]E, then if all eigenvalues are
distinct, standard first-order perturbation theory21 applied to
the dynamical matrix gives the following result for the e
genvalue derivatives:

ls85Dss, ~31!

where

Duv5 (
kk8ab

f quk
a * @Dkk8

ab
~q!#8 f qvk8

b . ~32!

The derivatives ofDkk8
ab (q) can be written in terms of the

derivatives ofBi j
ab(q). We can therefore differentiate Eq

~19! for rigid-ion models, giving

~Dkk8
ab

!85
1

Amkmk8

~Bkk8
ab

!8 ~33!

and Eq.~18! for shell models, giving

~Dkk8
ab

!85
1

Amkmk8

@BCC8 2BCS8 BSS
21BSC2BCS~BSS

21!8BSC

2BCSBSS
21BSC8 #kk8

ab

5
1

Amkmk8

@BCC8 2BCS8 BSS
21BSC

1BCSBSS
21BSS8 BSS

21BSC2BCSBSS
21BSC8 #kk8

ab . ~34!

Here we have used the matrix equivalence (M 21)8
52M 21M 8M 21, which can readily be obtained by differ
entiation of (M 21M ).

Note that since the theory is being used to construc
derivative, the perturbation of the matrix is infinitesimal,
that these expressions are not an approximation but are
act.

Special consideration must be given if some of the vib
tional states are degenerate. To discuss this case we re
states as state (r ,t), wherer labels a particular energy an
t51 . . .nr labels states with that energy. In order for E
~31! to be correct, the eigenvectors of the infinitesimally p
turbed state must differ only infinitesimally from the eige
vectors of the unperturbed state. If several states share
same eigenvalue~i.e.,nr.1) then diagonalizing the dynami
cal matrix does not give a unique set of eigenvectors,
rather some arbitrary linear combination of the eigenvect
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with the samer . If a perturbation lifts this degeneracy the
the eigenvectors for the perturbed states will be uniqu
determined, and unless care is taken to choose the eigen
tors of the degenerate states to be limiting cases of thos
the perturbed states then discontinuities will result and
value forl (r ,t)8 will be incorrect.

This correct choice can be ensured by diagonaliz
D (r )(r ) , being thenr3nr submatrix ofD (r ,t)(r ,t) spanning the
degenerate subspace of states all labeledr . This having been
done, the result of Eq.~31!

l~r ,t !8 5D~r ,t !~r ,t ! @ if D~r !~r ! is diagonalized# ~35!

is recovered. With theDss formed by thus diagonalizing th
degenerate submatrices therefore, all the quantities de
dent on the frequency strain derivativesvqs8 can be obtained

However, often only quantities likeFq85(sFqs8 which are
summed over all modess, and not the mode contribution
like Fqs8 , are required. In this case, summing the mode c
tributions ~28! and labeling the degenerate states explic
we have

Fq85(
rt

Fq~r ,t !8 5(
rt

\

2vq~r ,t !
S 1

2
1

1

eb\vq~r ,t !21
D lq~r ,t !8 ,

~36!

then since by the definition of degeneracyv (r ,u)[v (r ,v)
[v (r ) , this can be written

Fq85(
r

\

2vq~r !
S 1

2
1

1

eb\vq~r !21
D(

t
lq~r ,t !8 . ~37!

If the degenerate submatrixD (r )(r ) has been diagonalized a
described above then at a givenq the sum overt in Eq. ~37!
can be written

(
t

l~r ,t !8 5(
t

~D~r !~r !! tt5Tr@D~r !~r !#, ~38!

and since the trace of such a matrix is invariant with dia
nalization, then the diagonalization has no effect.

It can therefore be seen that no special treatment of
generate states is required within the first-order perturba
theory to evaluate the free-energy derivatives. This argum
applies equally to any thermodynamic quantity which
quires a sum over all modes. However, for quantities spec
to particular modes, such as the mode-Gru¨neisen functions
gqs , diagonalization of degenerate submatricesD (r )(r ) would
be required.

B. Conversion between geometrical derivatives

Using the terms defined in Sec. II, if the derivatives
free energy with respect tor i

a andemn are known, then those
with respect to all the other geometrical parameters (ui

a ,
wm , el , and ca as defined in Sec. II! can be generated
straightforwardly as follows.

Internal strain derivatives can be obtained fromr i
a deriva-

tives using Eqs.~3! and ~4!
ly
ec-
of
e

g

n-

-

-

e-
n
nt
-
c

f

]

]ui
t
5(

a
Ata

]

]r i
a

, ~39!

]

]wm
5(

ia
hm,i

a ]

]r i
a

, ~40!

where

hm,i
a 5(

t
gm,i

t Ata. ~41!

First derivatives with respect to the symmetrized exter
strainsel can be calculated fromemn derivatives using the
equivalence which follows from Eq.~2!:

S ]

]el
D

0

5
1

2F S ]

]emnD
0

1S ]

]enmD
0
G , ~42!

wherem, n for a givenl are determined as in Eq.~2! by the
Voigt mapping.

Derivatives with respect to each of the lattice paramet
ca are obtained from those with respect toel using the for-
mula

S ]

]ca
D

0

5(
l

JlaS ]

]el
D

0

, ~43!

whereJla is the transformation matrix

Jla5S ]el

]ca
D

0

. ~44!

The actual expressions forJla for a given Bravais lattice will
depend on the arbitrary choice of lattice vectors used; a t
cal choice for a tetragonal unit cell would result
J115J2151/c1 and J3251/c2 ~other elements being zero!,
wherec1 andc2 are the tetragonal lattice parametersa andc,
respectively.

VI. LATTICE SUMS FOR PAIR POTENTIALS

Sections IV and V A contained the general theory
evaluation of the Helmholtz free energy and of its deriv
tives. We present in this section the lattice sums required
implement these evaluations when the particle interacti
have the form of spherically symmetric pair potentials. The
will be a sum of Coulombic and short-ranged parts, so t
the potential between a particle of typei and a particle of
type j separated by a vectorr has the form

f i j ~r !5f i j [Coul]~r !1f i j [short]~r !. ~45!

f i j [Coul] is the usual Coulombic potential acting between
particles except the shell and core of the same ion. The sh
ranged partf i j [short] may be any smooth function which op
erates over a finite range.@Specifically, Vi j

0 (r ), Vi j
1 (r ),

Vi j
2 (r ), andVi j

3 (r ) as defined in Eqs.~46! and~47! must exist
for values ofr at which they will be evaluated.#

In practice within the framework of the shell mode
f i j [short](r ) will be a sum of two parts: the first, typically a
sum of r 2n and e2r terms, operates between different io
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~where an ion consists of a paired core and shell! and must
have a cutoff beyond which the potential is small enough
be considered zero~typically around 10 Å!. The second part
typically an r 2 ‘‘spring’’ term, operates only between she
and core of the same ion. By defining the cutoff of th
second part at some distance greater than the maxim
shell-core separation of a single ion, and less than the m
mum separation of two different ions~say 0.2 Å! no special
arrangements need to be made for identifying shell and c
of the same ion, which simplifies the formalism somewh
For rigid ions, only the former part will be present.

A. Strategy for lattice sum evaluation

In calculating the lattice sums for large unit cells, bo
computational efficiency and economy of storage must
considered. A serious conflict between these requirem
arises in construction of the dynamical matrix derivativ
Di j

ab(q)8. A naive algorithm would be to calculate eac
Di j

ab(q)8 sequentially, which requires ordern2 words of stor-
age but repeats much of the calculation work. The na
alternative would be to construct allNE of them simulta-
neously, since much of the work to be done in calculation
one can be used for the others. Unless the unit cell is hig
symmetrical however this will require storage of ordern3

words, which dramatically limits the size of the unit ce
which can reasonably be considered.

Fortunately a compromise is possible, by performing
computationally intensive part of the lattice sums once a
storing the results in a compact~i.e., n2) form. We give an
implementation of this strategy in the following section: f
each wave vectorq, the arrays defined in Eqs.~53!–~61! are
calculated first, and theDi j

ab(q)8 are constructed~without
much additional work per derivative! from these and used
one at a time. Given that theDi j

ab(q)8 are constructed in this
way, it is convenient and efficient to calculate the quantit
Di j

ab(q), Fstat, Fstat8 , and Fstat9 in a similar fashion, since
many of the required intermediate steps are common to
two sets of quantities. Alternative expressions for the l
four are available elsewhere.10,14

B. Direct space expressions for the lattice sums

It is convenient to define a set of functions related to
derivatives of the potentials, representedVi j

n (r ), which can
be defined recursively:

Vi j
0 ~r !5f i j ~r !, ~46!

Vi j
n ~r !5

1

r

d

dr
Vi j

n21~r !. ~47!

Then writing for compactness in this and subsequent sect

ra5r i j
a 5r j

a2r i
a ~48!

rx
a5r i j

a 1xa, ~49!

defining r and r x from r andrx ,

r a5r i j
a 5(

g
~dag1eag!rg, ~50!
o

m
i-

re
t.

e
ts

s

e

f
ly

e
d

s

e
t

e

ns

r x
a5(

g
~dag1eag!rx

g , ~51!

and finally writing

Vx
n5Vi j

n ~r x!, ~52!

we define the following quantities:

Si j 5( 8
x

Vx
0 , ~53!

Si j
a 5( 8

x
r x

aVx
1 , ~54!

Si j
a,m5( 8

x
r x

ar x
mVx

1 , ~55!

Si j
ab5( 8

x
@dabVx

11r x
ar x

bVx
2#, ~56!

Si j
ab,m5( 8

x
@dabVx

11r x
ar x

bVx
2#r x

m , ~57!

Si j
ab,mn5( 8

x
@dabVx

11r x
ar x

bVx
2#r x

mr x
n , ~58!

Ti j
ab~q!5( 8

x
eiq•x@dabVx

11r x
ar x

bVx
2#, ~59!

Ti j
abg~q!5( 8

x
eiq•x@~dbgr x

a1dagr x
b1dabr x

g!Vx
2

1r x
ar x

br x
gVx

3#, ~60!

Ti j
abg,m~q!5( 8

x
eiq•x@~dbgr x

a1dagr x
b1dabr x

g!Vx
2

1r x
ar x

br x
gVx

3#r x
m . ~61!

Here and subsequentlyi and j take values 1 . . .n, referring
to all particles in the unit cell. The summations are over
lattice vectorsx, the prime indicating that the termi 5 j ,x50
is omitted. There are several symmetry properties of th
values which allow a reduction in the number of lattice su
which have to be performed. In the first place, it is obvio
that any superscripts not separated by a comma~and addi-
tionally those ofSi j

a,m) can be freely permuted, e.g.,

Si j
a,m5Si j

m,a , ~62!

Ti j
ab~q!5Ti j

ba~q!, ~63!

Ti j
abg,m~q!5Ti j

agb,m~q!5Ti j
bga,m~q!5•••, ~64!

and so on. Additionally, all these matrices have some sy
metry with respect to exchange ofi and j ; Sa,m, Sab, Sab,mn,
Tab, andTabg,m are Hermitian, whileSa, Sab,m, andTabg

are anti-Hermitian.
Using Eqs.~1!, ~47!, ~49!, and ~51! the following useful

relations can be derived:
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]rx
a

]rk
a

5dk j2d ik , ~65!

]r x
a

]emn
5damrx

n , ~66!

]r x
a

]rx
b

5dab1eab, ~67!

]Vx
n

]emn
5Vx

n11r x
mrx

n , ~68!

]Vx
n

]rx
a

5Vx
n11(

g
r x

g~dga1ega!. ~69!

By using these in conjunction with the definition of the sta
energyFstatand the unscaled dynamical matrixBi j

ab(q) from
Sec. IV it is possible to construct the energy, dynamical m
trix, and the required internal and external coordinate der
tives in terms of theS andT matrices:

Fstat5
1

2(i j Si j , ~70!

S ]Fstat

]rk
a D

0

5(
i

~12d ik!Sik
a , ~71!

S ]Fstat

]emn D
0

5
1

2(i j Si j
m,n , ~72!

S ]2Fstat

]rk
a]r l

bD
0

5dkl(
i

~12d ik!Sik
ab2~12dkl!Skl

ab , ~73!

S ]2Fstat

]rk
a]emnD

0

5(
i

~12d ik!@Sik
an,m1damSik

n #, ~74!

S ]2Fstat

]emn]eglD
0

5
1

2(i j Si j
mg,nl , ~75!

Bi j
ab~q!5d i j (

k
Tik

ab~0!2Ti j
ab~q!, ~76!

S ]Bi j
ab~q!

]rk
g D

0

5d ikd jk(
l

Tlk
abg~0!1d i j Tik

abg~0!

1~d ik2d jk!Ti j
abg~q!, ~77!

S ]Bi j
ab~q!

]emn D
0

5d i j (
k

Tik
abm,n~0!2Ti j

abm,n~q!, ~78!

where the expressions are given at zero external st
(emn50) as indicated by the ()0 notation. Derivatives with
-
-

in

respect to other strains can be derived from these using
expressions in Sec. V B; in particular thewm derivatives are

S ]Fstat

]wm
D

0

5
1

2(i j ~12d i j !(
a

hm,i j
a Si j

a , ~79!

S ]2Fstat

]wm]wn
D

0

5
1

2(i j ~12d i j !(
ab

hm,i j
a hn,i j

b Si j
ab , ~80!

S ]2Fstat

]wm]emnD
0

5
1

2(i j ~12d i j !(
a

hm,i j
a @Si j

an,m1damSi j
n #,

~81!

S ]Bi j
ab~q!

]wm
D

0

5(
g

Fd i j (
l

hm,l j
g Tl j

abg~0!2hm,i j
g Ti j

abg~q!G ,
~82!

wherehm,i j
a 5hm, j

a 2hm,i
a , analogously to the definition~48!

of r i j
a .

Applying the symmetry relations, already noted, to the
expressions, and observing from Eqs.~59!–~61! that theT
matrices are real forq50, it can be seen thatBi j

ab(q) and its
derivatives are Hermitian.

We make one additional practical point here: for ve
large n calculation time can be dominated by the mat
multiplication ~32! since the number of operations require
for that step in calculating the gradient scales asNEn

3, while
no other part of the code has an execution time which sc
faster thann3 or NEn

2. In one particular case this can b
improved: if theNE53n basis internal strain derivatives of
rigid-ion system are being calculated, then the dynam
matrix derivatives required,]Di j

ab/]rk
g , are very sparse~any

element for whichi , j , andk are all different is zero!. Ex-
plicit calculation and manipulation of the 3n dynamical ma-
trix derivatives (;n4 operations! can then be avoided in fa
vor of generating the eigenvalue derivatives directly (;n3

operations! by substituting Eq.~77! with Eq. ~33! in Eqs.
~31! and ~32! to give

]ls

]rk
g

5(
l

(
ab

F S f qsk
a * f qsk

b

mk
1

f qsl
a * f qsl

b

ml
D Tlk

abg~0!

2
2

Amlmk

Re„f qsl
a * f qsk

b Tlk
abg~q!…G . ~83!

This method cannot be applied if the cell contains she
however, since thenD8 is constructed using Eq.~34! and is
no longer sparse.

C. Ewald lattice sums for the Coulomb interactions

As required in Sec. VIf i j [short](r ) acts over a finite range
so that the sums~53!–~61! can be taken directly, howeve
f i j [Coul](r ) remains significant for large values ofr and spe-
cial measures must be taken to form good approximation
the sums in a reasonable number of terms. An Ewald s
mation is therefore used for the Coulombic contribution
the T and S arrays, and this section gives detailed expr
sions for this part of the calculation.
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Using the definitions ofr andr x in Eqs.~50! and~51! and
additionally

qk5q1k, ~84!

we first define the following standard Ewald expression22

Ci j (q):

Ci j ~q!5(
x

eiq•x

r x
~12d i j x8 ! ~85!

5( 8
k

4p

V

e2 iqk•r2qk
2/4h2

qk
2

1(
x

eiq•x
erfc~hr x!2d i j x8

r x
. ~86!

Here the symbold i j x8 is zero normally, but equal to unity i
either~a! x50 andi 5 j or ~b! x50 andi , j are shell and core
of the same ion. In a rigid-ion system, only case~a! arises.
The factor (12d i j x8 ) therefore properly eliminates the Cou
lombic interaction of an ion with itself. Additionally thex
summation is over all lattice vectors, thek summation is
over all reciprocal-lattice vectors omittingq5k50 ~as indi-
cated by the prime!, V is the unit-cell volume, andh is an
arbitrary parameter, which can be chosen so that good a
racy is achieved when both sums are truncated after a s
number of terms going out from their respective origin
h5ApV21/3 is a reasonable choice.

Comparing Eq.~85! with the r 21 form of the Coulombic
pair potentialVi j [Coul]

0 (r )[f i j [Coul](r ) it can be seen that

zizj

4p«0
Ci j ~q!5(

x
eiq•xVi j [Coul]

0 ~r x!, ~87!

wherezi is the charge on particlei .By manipulating Eq.~87!
with aid of the easily obtained relations

]r

]r a
5

r a

r
, ~88!

]r b

]r a
5dab , ~89!

]Vi j
n ~r !

]r a
5r aVi j

n11~r !, ~90!

the Coulombic parts of expressions~53!–~61! can be ex-
pressed as derivatives ofCi j (q) with respect to appropriately
chosen variables, as follows:

Si j [Coul]5Zi j Ci j ~0!, ~91!

Si j [Coul]
a 5Zi j

]

]r a
Ci j ~0!, ~92!

Si j [Coul]
a,m 5Zi j F ]

]pmS 2 ieip•r
]

]r a
Ci j ~p!D G

p50

, ~93!
u-
all
.

Si j [Coul]
ab 5Zi j

]2

]r a]r b
Ci j ~0!, ~94!

Si j [Coul]
ab,m 5Zi j F ]

]pmS 2 ieip•r
]2

]r a]r b
Ci j ~p!D G

p50

, ~95!

Si j [Coul]
ab,mn 5Zi j F ]2

]pm]pnS 2eip•r
]2

]r a]r b
Ci j ~p!D G

p50

,

~96!

Ti j [Coul]
ab ~q!5Zi j

]2

]r a]r b
Ci j ~q!, ~97!

Ti j [Coul]
abg ~q!5Zi j

]3

]r a]r b]r g
Ci j ~q!, ~98!

Ti j [Coul]
abg,m ~q!5Zi j F ]

]pmS 2 ieip•r
]3

]r a]r b]r g
Ci j ~q1p!D G

p50

,

~99!

whereZi j is the Coulomb factor

Zi j 5
zizj

4p«0
. ~100!

These differentiations can then be performed term by te
on the Ewald sum expression~86! to provide computation-
ally tractable formulas for the required quantities.

The manipulations can be made easier by rewriting
~86! as

Ci j ~q!5( 8

k

4p

V
e2 iqk•rK0~qk!1(

x
eiq•xX0~r x!,

~101!

where

K0~qk!5
1

qk
2

e2qk
2/4h2

, ~102!

X0~r x!5
erfc~hr x!2d i j x8

r x
. ~103!

We also define recursively in terms ofK0 andX0 two sets of
functionsKn andXn

Kn11~qk!5
1

qk

]

]qk
Kn~qk!, ~104!

Xn11~r x!5
1

r x

]

]r x
Xn~r x!, ~105!

which definitions lead to the following expressions forKn

andXn:

K1~qk!5S 2
1

2h2
2

2

qk
2D K0~qk!, ~106!
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K2~qk!5S 2
1

2h2
2

2

qk
2D K1~qk!1

4

qk
4

K0~qk!, ~107!

Xn~r x!5
1

r x
2F ~22!nh2n21

Ap
e2h2r 2

2~2n21!Xn21~r x!G ,

~108!

and additionally imply the relations
re
n

ie
.

]

]qm
Kn~qk!5qk

mKn11~qk!, ~109!

]

]r a
Xn~r x!5r x

aXn11~r x!. ~110!

Substituting Eq.~101! in Eqs.~91!–~99! and making use
of Eqs.~109! and~110!, the expressions for the Ewald sum
are therefore given by
Si j [Coul]

Zi j
5( 8

k

4p

V
cos~k•r !K0~k!1(

x
X0~r x!, ~111!

Si j [Coul]
a

Zi j
5( 8

k

4p

V
@2sin~k•r !#kaK0~k!1(

x
r x

aX1~r x!, ~112!

Si j [Coul]
a,m

Zi j
5( 8

k

4p

V
@2cos~k•r !#@damK0~k!1kakmK1~k!#1(

x
r x

ar x
mX1~r x!, ~113!

Si j [Coul]
ab

Zi j
5( 8

k

4p

V
@2cos~k•r !#kakbK0~k!1(

x
@dabX1~r x!1r x

ar x
bX2~r x!#, ~114!

Si j [Coul]
ab,m

Zi j
5( 8

k

4p

V
sin~k•r !@~damkb1dbmka!K0~k!1kakbkmK1~k!#1(

x
@dabX1~r x!1r x

ar x
bX2~r x!#r x

m , ~115!

Si j [Coul]
ab,mn

Zi j
5( 8

k

4p

V
cos~k•r !@~damdbn1dbmdan!K0~k!1~damkbkn1dbmkakn1dankbkm1dbnkakm1dmnkakb!K1~k!

1kakbkmknK2~k!#1(
x

@dabX1~r x!1r x
ar x

bX2~r x!#r x
mr x

n , ~116!

Ti j [Coul]
ab ~q!

Zi j
5( 8

k

4p

V
@2e2 iqk•r#qk

aqk
bK0~qk!1(

x
eiq•x@dabX1~r x!1r x

ar x
bX2~r x!#, ~117!

Ti j [Coul]
abg ~q!

Zi j
5( 8

k

4p

V
ie2 iqk •rqk

aqk
bqk

gK0~qk!1(
x

eiq•x@~dbgr x
a1dagr x

b1dabr x
g!X2~r x!1r x

ar x
br x

gX3~r x!#, ~118!

Ti j [Coul]
abg,m ~q!

Zi j
5( 8

k

4p

V
e2 iqk•r@~damqk

bqk
g1dbmqk

aqk
g1dgmqk

aqk
b!K0~qk!1qk

aqk
bqk

gqk
mK1~qk!#

1(
x

eiq•x@~dbgr x
a1dagr x

b1dabr x
g!X2~r x!1r x

ar x
br x

gX3~r x!#r x
m . ~119!
tion
e-
dic
try,
ffi-
p-

es
sion
can
Care must be taken in evaluating the functionsXn(r )
whend i j x8 is unity, in which caser x5r will be small. When
r is small but nonzero it is important in practice to ensu
that the evaluation is carried out without loss of precisio
for instance by using a few terms of a polynomial ser
expansion of theXn(r ) instead of direct evaluation of Eq
~108!. In the limit r 50,

lim
r→0

Xn~r !5
~22!n11h2n11

~2n11!Ap
. ~120!
,
s

VII. CONCLUSION

A method has been presented for the analytic calcula
of the fully quasiharmonic dynamical free-energy first d
rivatives, and static energy second derivatives, for a perio
crystal with respect to various parameters of its geome
and it is shown how these derivatives can be used for e
cient structural optimization of such a crystal. Given the o
timized geometry, equilibrium thermodynamic quantiti
such as free energy, heat capacity, and thermal expan
can accurately and rapidly be generated. This procedure
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be used over a wide range of temperatures and pressur
Detailed expressions for the lattice sums required h

been given, where particles are taken to interact via a su
Coulombic and arbitrary short-ranged spherically symme
pairwise potentials. Care has been taken that the metho
presented can be directly implemented in a computer
gram making efficient use of processing time and availa
storage, and such a program has indeed been written23 and
used successfully for fully dynamical optimization of un
cells containing up to;700 ions.24

Future work will include the treatment of three- and fou
body short-ranged interactions, and a consideration of fur
anharmonic corrections. A wide range of applications incl
ing complex oxides, defective lattices, high-pressure ph
.
e
of
c
as

o-
le

er
-
se

transitions, and surface properties is currently in progr
and will be reported separately.
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