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Free-energy derivatives and structure optimization within quasiharmonic lattice dynamics
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A method is presented for the calculation of the gradient of the free energy with respect to all the internal
and external degrees of freedom of a periodic crystal. This gradient can be used in conjunction with a
static-energy Hessian for efficient geometrical optimization of systems with large unit cells. The free energy is
calculated using lattice statics and lattice dynamics in the quasiharmonic approximation, and its derivatives by
means of first-order perturbation theory. In the present application of the method, particles are assumed to
interact via arbitrary short-ranged spherically-symmetric pair potentials and long-ranged Coulomb forces, and
polarizability effects are accounted for by use of the shell model. The method can be used directly as the basis
for a computer program which makes efficient use of both storage and CPU time, especially for large unit cells.
Detailed expressions for all the lattice sums are presef8f1.63-182807)01246-0

[. INTRODUCTION easily be adapted to generate results in the classical) limit
and hence scores significantly over the inherently classical
Theoretical calculation of the equilibrium thermodynamic MD and MC methods below the Debye temperature, where
properties of crystals, over a wide range of temperatures anguantum effects cannot be ignored. The investigation of nor-
pressures, has been approached in a number of ways. Theal vibrations aids interpretation of the results, and can re-
most popular methods in recent times have been moleculareal explicitly the mechanisms operating in thermal expan-
dynamics(MD) and, to a lesser extent, classical Monte Carlosion and phase ftransitions; by identifying unstable
(MC) simulations. These approaches rely on generating a se&tbrational modes it also provides a very sensitive test for
of system states representative of the equilibrium configurainteratomic potentials. Moreover, lattice dynamics does not
tion and forming an average over this set. The computationrely on long runs for high precision, and is in fact relatively
ally expensive part is then generating new configurationsinexpensive, demanding typically an order of magnitude less
both to approach an equilibrium state from an initial configu-computation time than MD or MC, and moreover avoiding
ration, and in sampling the configuration space near the equthe kinetic barriers and critical slowing down effects suffered
librium, more samples leading to greater accuracy. An alterby those technique’s.
native approach is lattice dynamics, in which the free energy Except at rather low temperatures, when using lattice dy-
of a given configuration, as well as dependent propertiemamics the bulk of the computational effort is expended in
such as entropy and heat capacity, can be calculated directlthe optimization problem of determining the equilibrium ge-
In this paper we use lattice dynamics in the quasiharometry of the crystal; given this, calculation of dependent
monic approximation, which gives the equation of state toproperties is relatively straightforward. Efficient optimiza-
the first order in the anharmonicity of the potentials. The fredtion is only possible if derivatives of the appropriate thermo-
energy for a given crystal geometry is taken to be that resultdynamic potential with respect to the geometrical coordi-
ing from the harmonic approximatidnbut the anharmonic- nates(or straing are available, and it is the generation and
ity of the crystal potential causes the mode frequencies sase of these derivatives which are addressed in this paper.
obtained to be functions of the geometrical parameters, mak- Kantorovic has previously presented results for first and
ing the vibrational free energy a function of these parametersecond free-energy derivatives within the model of deform-
as well as of temperature. We take into account ionic polarable dipoles due to Tolpygd® our choice of the related
ization by using the shell model originally due to Dick and shell model has been made because of the large number of
Overhausef,in which each ion may consist of a masslessshell parameters and interionic potentials available for a
“shell” and a massive core, the charge being distributedwide range of polar solids. If the elastic constants are re-
between the two and thereby, if the two are displaced relativguired then the free-energy Hessiéecond strain deriva-
to each other, giving rise to a dipole. The shell and core of dives) as calculated directly by Kantorovich is necessary;
given ion are coupled typically by a springlike interaction. however, considerable additional processing time and stor-
Lattice dynamics has been somewhat neglected in receige is required for the second derivatives, and there are also
years, possibly due to overcaution regarding the range afome unresolved problems regarding degeneracies in the as-
validity of the quasiharmonic approximation; however it cansociated second-order perturbation theory. As explained in
be remarkably robust even at elevated temperatess  Sec. lll therefore we consider it efficient for the purposes of
amples of its successful use are Refs. 3-5; see also Ref. ${ructure optimization to generate only the first derivatives.
and references thergimnd has a number of characteristics The paper is organized as follows. Section Il introduces
that make it a powerful alternative or complementary tech-our notation for the geometry of a crystal as defined in terms
nique to MD and MC. In particular, it takes into account of a specific set of coordinates with respect to which free-
zero-point energy and other quantum effdetéhough it can  energy derivatives can be taken. Section Il discusses the
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derivatives required for structural optimization of a crystalwhere the matrixA'* specifies a metric obtained from com-

and how they may most efficiently be utilized. Section IV ponents of the lattice vectog determining the unit cell in

reviews the definition of the quasiharmonic dynamical ma-the unstrained latticé;=1 . . . 3labels directions in unit-cell

trix and its use in generating the appropriate thermodynamispace.

potentials, and first-order perturbation theory is used in Sec. In many applications symmetry reduces the number of

V to give expressions for their various strain derivatives. Inindependent coordinates. For example, when optimizing the

Sec. VI detailed expressions for the required lattice sums fogeometry of a crystal it may be useful to characterize the

Coulombic and arbitrary short-ranged spherically symmetricstate of external strain in terms of the crystallographic lattice

pairwise interactions are presented, and Sec. VIl concludeparametersc,, e.g.,a and ¢ for tetragonal or hexagonal
symmetry. In the same way not all thé can be varied

Il. CRYSTAL STRUCTURE AND STRAIN COORDINATES independently if the symmetry of the crystal is to be main-
tained. It is normally possible to define a set of “symmetric

A crystal structure is periodic, defined by its lattice andinternal coordinates’iv,,, which allows a description of the

the positions of all the atoms within a unit cell. In general, structure with a smaller number of variables. Wag can be

strain can alter both the shape of the lattice, which is specidefined such that

fied by external coordinatesé’?’“, and the atomic positions,

which are specified binternal coordinatesﬁ"ﬁt. The general ot .

method of optimization described in Sec. Il requires partial ui:gi+2 WmOm,i » 4

derivatives of the free energy with respect to whatever coor- "

dinates are chosen to describe the state of strain. In tr\ﬁhereg} is constant for a given particie and the directions

present ap_pllcatlon these are ol.)tamed. by first deriving deéf the ', are determined by symmetry. Consider, for ex-
rivatives with respect to the strain rotation tensor of macro- TR . . .
ample, a rigid-ion model of rutile, TiQ The tetragonal unit

scopic elasticity theory and a related set of internal coordi- . : ) o .
nates defined as follows. cell contains six atoms, of which the two titanium positions
The positions of all the particle@vhich in a shell model are fixed by symmeiry. The oxygen atoms lie at

may be cores or shejl$n a macroscopically strained crystal [I'(r? o]’, 0)* V¥.1(.1' 1t! 0)l alndtr[](o.5, 0.5, 0";3)t Wl(_ld’ 1,01
are given by Cartesian coordinates us for optimization only three parameteasc, andw; are

needed. On the other hand, general elastic distortion destroys
all symmetry except inversion; and so deriving elastic coef-
ric;:E (8,4, (X7+p]), (1) ficients requires either the full set of thg' or uf, or else
possibly a more extended set of symmetric coordinatgs
) L In general the geometry of a crystal can be characterized
where Greek superscripts are Cartesian indices.B (@S by and the free energy differentiated with respect to, an
elsewhere in this pap)erx is a lattice \'/ector. of the unstrained N-element vector of generalized coordinagas always in-
crystal labeling a unit cell,=1 .. .n is an index that labels cluding some external coordinaté8" and sometimes also

a specific particle within a unit cell, ang},; is the Kronecker some internal Onegrt 12 |n the present application thgf(nt
ﬁ . ._ .
delta. Components of the tenseft” determine both the ori may be the? , ut, or w,,, and thes™ may be thes, or c, .

entation and the macroscopic state of strain of the crystal.
The vector componenis” are internal coordinates determin-
ing the positions of particles within a unit cell. lll. STRUCTURE OPTIMIZATION
The parameters®? andp{* have been chosen because it is
convenient to obtain derivatives of the free energy with re- o ] ]
spect to them, and because they may be simply related to In order to optimize a crystal structure, i.e., to fmpl the
other parameters that are in common use. The Voigt macrd'0st stable state under a given set of thermodynamic con-
scopic infinitesimal strain coordinates are the components  Straints, it is necessary to minimize the appropriate thermo-

A. Derivatives required for structure optimization

of the six-element vector dynamic potential .vv_ith respect to a set Nf structure pa-
rameters&,. At finite temperatureT under an applied
ell hydrostatic pressurB, the appropriate potential is an avail-
22 ability G, defined
e33 ~
(2) G: U - TS+ POV: F + POV: CDstat+ Fvib+ Pov, (5)
823+ e32
el3y g3l where U is the internal energys is the entropy,V is the

T volume, andF is the Helmholtz free energy which has static
er+e and vibrational partsb,; and F,;,, respectively; all these

quantities refer to the value per unit cell. Note tBigiffers
from the availabilty A=U-T,S+PyV defined by
Pippard*® because here we optimize with respect only to
varying strain, and not also to varying temperature.
a_ tha_ tata The optimization condition is therefore to find that vector
= uia; = u; A, 3 . X
Pi Z " Z ! @ in parameter space at which, for &l|

Dimensionless “basis internal coordinatesi! can be de-
fined by
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Pre and subsequent dynamical optimizations with respect to ex-
TR =0, (6)  ternal coordinates only are then performed while holding the
IEn/ g internal ones fixed. With CISPA the results will be depen-

dent on the set of internal coordinates chosen.

ZSISA can be shown to yield the optimized external
coordinates correctly to first order, but this is not so for the
internal coordinates and hence for dependent thermodynamic

uantities. Such quantitiesiay be well approximated by

where the notation ) indicates that all coordinateg; for
B+ A are held fixed. An appropriate set of coordinatks
will be chosen as discussed in Sec. Il.

To perform this minimization, it is effectively necessary

to calculate at least the first, and possibly the second, deriv 7SISA and CISPA. but it is hard to assess the errors thus
tives of G with respect to the, . All the derivatives can of  jnyoduced without a full dynamical free-energy optimiza-
course be calculated numerically using a finite difference fory;g,
mula. Care must be taken however in choosing the finite
difference, since if it is too large then local nonlinearity of

the function will result in a poor approximation, but if it is

too small then precision may be lost. Furthermore if there are Methods of unconstrained minimization of a function

discontinuities inG(&), which may arise from sharp cutoffs (e.g., availabilityG) of many variablege.g., a column vec-
often present in short-ranged interactions, the distortions intor of structure coordinate€) may be classified into two
troduced by the finite changes in the coordinates can lead tmain groups-®*’ those which require the gradieffirst de-
large inaccuracies in the numerical derivatives. These diffirivatives y=VG) and the Hessian(second derivatives
culties can usually be overcome, but the principal problenH=Vvy), and those which require only the gradient.

with numerical evaluation of derivatives is that it becomes |f the Hessian is available then the Newton method is
very expensive for largél. most straightforward, and usually very successful: a qua-

_ Hitherto, because of the expense of calculating the derivag atic approximation tds in the region of its minimum is
tives numerically, only approximations to a full dynamic re- , iitten

laxation Eq.(6) have been made, as follows. The thermody-

namic potentialG can be defined as a sum of static and ~ ~ T 1
vibrational parts GC(E+9~C(E)+d y(&)+ 5 -H(E o, (1D

B. Optimization methods

G =Gt Guip 7) where ' is the transpose of, andé= £’ — £, the step from
£ to an improved valueE’. This can then be differentiated
and the geometrical coordinates split into external (ffé% with respect tod to give

and internal oneg}" as explained in Sec. IIl. The condition

for full dynamical relaxation is o=—H(&E)ty(&). (12
Pre Pre If G is quadratic then solving fa’ will give its minimizing
— == t) =0. (8)  value; otherwise€’ should be an improved estimate and re-
Ie* & IEY & peated iterations of Eq12) should approach the minimum.

_ Some choices of sets of variables can result in a sinddlar
However, although the derivatives G, are quite straight- and therefore failure of Eq.12); in particular the Hessian
forward to calculate analyticallff, the theory for analytic with respect to all & basis coordinates® or p* will be
calculation of theG,;, derivatives within the shell model has singular because of the translational invariance of the lattice.
not previously been available. Accordingly, for large unit This problem can be avoided by optimizing with respect to
cells the zero static internal stress approximatig®ISA)  the coordinates ofi—1 rather tham particles, equivalent to
has often been usé€dn which the equilibrium condition is fixing the position of one particle.
taken to be If only the gradient is available then a quasi-Newton

method can be used, the essence of which is to maintain an

JG ‘963tat approximation) to the inverse Hessiar ~* and at each step
ot = ot . (9 to use a gradient evaluation to produce an improved estimate
I g Ik | g J'. Several prescriptions exist for this update, but the most

. Xt g e e efficient is generally considered to be the Broyden-Fletcher-
Since the number of th&™ derivatives never exceeds 6, and Goldfarb-ShanndBFGS updaté’

is often 1 or 2, they can be calculated numerically without

excessive expens@lthough the other considerations men- 68 (3-9-Q-pT
tioned above may still present probleman even more ex- =3+ —F—- = +(9" 3 pss, (13
treme, and less computationally expensive, approximation is oy y-Jdv

the constant internal strain parameter approximationWh ere
(CISPA), in which a set of internal coordinates is found by a

full minimization of the static energy y=Y(E+ &) —y(E) (14)
Fle oG
o] =\ Zam| <O (10 =2 L7 (15
IEF & | &y Yy

&
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y andJ are then used as per Ed.2) to update€. This new IV. FREE-ENERGY EVALUATION
&€ may then be refined by performing a linear seafesing

repeated evaluations & andy) for the function minimum _ : . .

in the direction indicated; if) is a poor approximation to and an expression for it “T‘der the assumption of spherlc_ally

H~! the linear search will be indispensable, but if they aresym_metnc palr\_/wse_potent_lals appears in Sec. VI B. We give

close it may be omitted ' a brief outline in this section of the method for calculating
Our experience has been that if the quasi-Newton methol'® yibrationa] coptributiorF\,'ib to G within the quasihar-

is started reasonably close to the optimal structure, with Anhonic approximation and using the shell model.

reasonable approximation to the Hessian, it provides ver¥ irllz?rlllowmg ftandfatrg Ii?g?e&dﬁn?;?'cal F:}ra_cﬁé@ wei Obr;
satisfactory optimization without the necessity for linear a € squares ot the ationa freque C"é as egen-

: = " val f the dynamical matrio“?,(q), where the indi
searches. Using the static pafG,/ dEA0Es of the Hessian alues of the dynamical matrii, ., (q) ere the indices

as the initial approximation to the full dynamic value turns K ref_er to atoms within the unit cell with Mmasseg,
. ; : m,.,. Taking plane-wave solutions to the equations of motion
out to work very well in the cases we have tried, since th

. — : . Seads to the following form for the atomic displacemeif}
dynamical contributions to this are usually quite small. For : . . S
of an atomx in the unit cell displaced from the origin:

the initial configuration an optimized structure at a nearby
temperature, or if that is unavailable the statically optimized 1

structure, is usually adequate. If the best starting configura- ué :_2 A fo @l{axtogt) (16)
. . . .. . KX gs’ gsk '

tion is far from its optimized state however, or the dynamic m, as

contributions to the Hessian are large, it is sometimes neces-

a . . B
sary to use another method, such as a conjugate gradieWperequK are the normalized eigenvectors bf,.,(q) and

method, or a quasi-Newton method including linear minimi-A\qs are the corresponding vibrational amplitudes. To obtain

Calculation of the static energ®,; is straightforward,

zations, to approach the free-energy minimum. D3 (q) we first define the matrices
Our usual algorithm for structural optimization is there- )

fore: . B?{ﬁ(q)ZE eiq~X£ (17)
(;) Set £ to optimized values at nearby temperatioe g X (9uiao(9ujﬁx'

statig,
(2? Calculate static HessidA (), whereV is the static energy of the whole crystal, the indices
(3) Set approximate inverse Hessias H_ 2, i, ] refer_ to gll cores and s.hells within the unit cell, and the
(4) Calculate dynamic gradien( &), summation is over all lattice vectors=1,a,+1,a,+13a3

(5) Stop if gradient magnitudey( - y)*2 is small for all integerl,, 15, 13. The B matrix is therefore composed

(6) UpdateJ using BFGS formula(13) with 6=—J-y of the s_ubmatrlcescc, Bcs, Bsc, andBggswhere, _for ex-
(except the first time roung ample, m[BCS]i‘J*B i ranges only over the cores andnly

(7) Update€ using€' =£—J-y, over the shells. The dynamical matrix is then giveri®d§

(8) Return to step 4.

Progress of the optimization of course varies according to the Daﬁ’,(q) :;[BCC_ BcsBéslBsc]aﬁr(Q)- (18)
details of the problem under consideration, but typically the e ym,m, e
magnitude of the gradient decreases by about an order qj . . .
magnitude per iteration, and an optimization completes tq hL.JS fqr_models n Wh!th thgre are no sh.ells.;, the,partlcle
high accuracy in fewer than 10 iterations. |n_d|ce_3|,1 can be identified with the atom indicesk’ to

An optimization therefore requires one static Hessian cal9'Ve Simply
culation, and a few dynamic gradient calculations. In the
subsequent sections we present a unified approach to calcu- DA (q) = BB Q)
lating the static Hessian and the dynamic gradient, as well as Kk W w2
the free energy itself. The method outlined here is attractive
because these quantities can be calculated analytically, and Gjven the mode frequencies,s the vibrational contribu-

relatively rapidly. In particular, except for very small;,  tions to the quasiharmonic Helmholtz free energy can be
this method is a great deal faster than those which requir@ritten

repeated exact calculation of the dynamic Hessian, or nu-
merical evaluation of the derivatives, or frequent linear mini-
mizations. Fub=2 Fas (20)
We conclude this section by stressing that there are many *
methods for multivariate optimization not discussed here, ag/here
well as several subtleties and tricks which are sometimes
required to ensure rapid convergence, depending on the de- .
tails of the problem under consideration; the interested Fos=5fwgstkeT In(1—e” F1om), (2D
reader is referred to the discussion in Ref. 16. Our approach
has been pragmatic, and is based on the observation that thad expressions for other thermodynamic quantities such as
method outlined here is seen to be highly effective, ratheentropy, internal energy, and constant strain heat capacity
than on formal proofs of efficacy. can similarly be derive@!® The q summation is over all

(19
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wave vectors in the first Brillouin zone, and may be approxi- IF % / 1 1
mated using a set of vectors chosen using one of the standard Fos= B
schemed®?°

2
_ 1, (7qu
IE  2wqs\ 2 gbhwgs—1) IE

(28)

this can alternatively be written in terms of the mode-
V. STRAIN DERIVATIVES OF THE FREE ENERGY Gruneisen functiony,s= — dlnw,s/d€ and mode contribu-

. : S tion to the internal ener ,
As discussed in Sec. Ill A the availabilig is the quan- Was

tity to be differentiated. From Ed5) it follows for a general Fie=—YqsUqs- (29)
coordinate€ 4 ) ) ]
Note that the wave vectoy, like X, is a label defined to
G Dy IFyp oV remain invariant under the strai€. Writing for conve-
FE T (22 nience

The dimensions of the unit cell depend only on the external Ns= wés, (30

coordinates, so that for any internal coordingté and using the notatioX’ = 9X/J&, then if all eigenvalues are

distinct, standard first-order perturbation thedrgpplied to

‘9\_/ =0, (23) the dynamical matrix gives the following result for the ei-
ggm™ genvalue derivatives:
and it can be shown that, using the notation of ). A=A, (31)
oV 24 where
=Vé,3, 24
et/ b
0 L Aw= 2 o DM (@] Tl (32
where the () notation indicates that the derivatives are k' ap

evaluated at zero external strain, i.e., wheneélf=0. We

therefore have The derivatives oiD:f,(q) can be written in terms of the

derivatives ofoj“ﬁ(q). We can therefore differentiate Eq.
Pre | 0Dge IF i (19) for rigid-ion models, giving

— = — (25
agnt aglnt &glnt p 1 5 ( )
(D) ==—==(B )’ 33
~ m,m,
ﬁ _ aq)stat + aFvib —V 26 o
de, 0— ey o \de /g Oxs (26 and Eq.(18) for shell models, giving
where o is the external stress vector, which for hydrostatic ~_ ,, | 1 , R 1,
pressureP, has the value Do) = W[Bcc_ BcsBssBsc—Bes(Bss) 'Bsc
o=(—Pg,—Py,—P;,0,0,0". (27 BeBalBLI,
If anisotropic external stress is to be considered these expres-
sions will remain the same, but the form afwill be differ- _ , P
ent. R —— /[Bcc_ BcsBssBsc
Using Egs.(25) and (26) therefore we can generate the A
derivatives ofG from derivatives of®,, and of F,;,. The +BcBsaBsBsaBsc—BeBsiBad s . (39)

first and second ,; derivatives are obtained by differentia- Here we have used the matrix equivalencl ()’
tion of the appropriate lattice sum with respect to the strain:_M,lwl,M,l hich dilv b qbt ined by differ-
coordinates in question, and expressions for these under the .. . vy which can readily be obtained by difter
assumption of pairwise potentials appear in Sec. VI. TheemIatlon of N. M). : :

general theory of differentiating.;, is given in Sec. V A Note that since the theory is being used to construct a

and conversion between different geometrical derivatives i%e;vtitg’s% g;(e r[()aesrstiltj)rr?satzlaorg gfoih:nrgatrlrﬁ ;?rr;r;?iglaezﬁtqilreszx-
discussed in Sec. V B. P PP

act.

Special consideration must be given if some of the vibra-
tional states are degenerate. To discuss this case we relabel
Since there is no explicit expression By, in terms of  states as state (,t), wherer labels a particular energy and

the geometry of the lattice, it is not possible to determine itd=1...n, labels states with that energy. In order for Eq.
strain derivatives by direct differentiation of a lattice sum as(31) to be correct, the eigenvectors of the infinitesimally per-
with ®.,.. Instead from Eqs(20) and(21), F,;, is known in  turbed state must differ only infinitesimally from the eigen-
terms of the eigenvalues of the dynamical matrix, so thevectors of the unperturbed state. If several states share the
eigenvalue strain derivatives are required. Specifically, difsame eigenvalu@.e.,n,>1) then diagonalizing the dynami-
ferentiating Eq.(21) with respect to an arbitrary straifi  cal matrix does not give a unique set of eigenvectors, but
gives rather some arbitrary linear combination of the eigenvectors

A. Vibrational free-energy derivatives
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with the same . If a perturbation lifts this degeneracy then

the eigenvectors for the perturbed states will be uniquely %:2 A‘“i, (39

determined, and unless care is taken to choose the eigenvec- U« api’

tors of the degenerate states to be limiting cases of those of

the perturbed states then discontinuities will result and the d o 9

value for, ,y will be incorrect. szg N, &?* (40
This correct choice can be ensured by diagonalizing '

Ay » being then, Xn, submatrix ofA , 1 ) Spanning the where

degenerate subspace of states all labelékhis having been

done, the result of E¢31) h%,iZEI an]iAta. (41)

N;p=A if A is diagonalize 35 _ . , ,
o= Aeon LT Ao g LS First derivatives with respect to the symmetrized external
is recovered. With thé . formed by thus diagonalizing the Strainse, can be calculated frore”” derivatives using the
degenerate submatrices therefore, all the quantities depefduivalence which follows from Eq2):
dent on the frequency strain derivative§ can be obtained. P 1 P P
However, often only quantities likE,=XgF, which are <_) =2 ( ) +( )
summed over all modes, and not the mode contributions dex)y 2|\ gerr o \9e"]
like F., are required. In this case, summing the mode con- . ) .
. ; . whereuw, v for a given\ are determined as in E) by the
tributions (28) and labeling the degenerate states explicitly’" = = VT
we have Voigt mapping. .
Derivatives with respect to each of the lattice parameters

c, are obtained from those with respectdp using the for-
h / 1 1 ) y mula

; (42

Fe=2 Fon o= 5+ Nr o) s
q rEt q(r.t) th zwq(m)\z eBhogrn_1) Ar ; ;
39 ) =3 d| =] (43
. L &Ca o A (96)\ 0
then since by the definition of degeneraey; ,=w )
=, this can be written whereJ, , is the transformation matrix
&6)\

NS Ja
F'= " N . 3
q Z qu(r)\z e'Bth(f)—l)Et q(r,t) (37

(44)

9Cal o
The actual expressions fdf , for a given Bravais lattice will

If the degenerate submatriX) has been diagonalized as depend on the arbitrary choice of lattice vectors used; a typi-

described above then at a givgrthe sum ovet in Eq. (37) cal choice for a tetragonal unit cell would result in

can be written J11=J,1=1lc; and J3,=1/c, (other elements being zero

wherec, andc, are the tetragonal lattice parametarandc,

, respectively.

Z "m):Z Arm)u=TTArn], (38
VI. LATTICE SUMS FOR PAIR POTENTIALS

and since the trace of such a matrix is invariant with diago- Sections IV and V A contained the general theory of

nalization, then the diagonalization has no effect. evaluation of the Helmholtz free energy and of its deriva-

It can therefore be seen that no special treatment of dqives. We present in this section the lattice sums required to

generate states is required within the_firs't-order perturbaﬁoﬂnplement these evaluations when the particle interactions
theo_ry to evaluate the free-energy derl_vatlves. Th's argumenty e the form of spherically symmetric pair potentials. These
applies equally to any thermodynamic quantity which re-, ;, be a sum of Coulombic and short-ranged parts, so that

quires asum over all modes. However, for quantities .SpeCiﬁ‘fhe potential between a particle of typeand a particle of
to particular modes, such as the modet&isen functions type | separated by a vectorhas the form

Yqs» diagonalization of degenerate submatriggs ) would
be required. ®ii (1) = dijicoun(r) + Pijshorg(r) - (45)

dijicoun 1S the usual Coulombic potential acting between all
particles except the shell and core of the same ion. The short-
Using the terms defined in Sec. II, if the derivatives of ranged pari;;shoqp may be any smooth function which op-
free energy with respect tef ande*” are known, then those erates over a finite rangdSpecifically, Vﬂ(r), Vilj(r),
with respect to all the other geometrical parametar$, ( Vﬁ(r), andV?j(r) as defined in Eq$46) and(47) must exist
Wn, €, andc, as defined in Sec. )lcan be generated for values ofr at which they will be evaluated.
straightforwardly as follows. In practice within the framework of the shell model,
Internal strain derivatives can be obtained frpfnderiva-  ijshorg(r) Will be a sum of two parts: the first, typically a
tives using Eqs(3) and(4) sum ofr " ande™" terms, operates between different ions

B. Conversion between geometrical derivatives
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(where an ion consists of a paired core and ghaeild must

have a cutoff beyond which the potential is small enough to re=2> (8,,+e)p], (53)
be considered zerdypically around 10 A The second part, y

typically anr? “spring” term, operates only between shell and finally writing

and core of the same ion. By defining the cutoff of this

second part at some distance greater than the maximum VQ=Vi”-(rX), (52
shell-core separation of a single ion, and less than the mini-
mum separation of two different ior(say 0.2 A no special
arrangements need to be made for identifying shell and core ,
of the same ion, which simplifies the formalism somewhat. Sij =Z Ve, (53)
For rigid ions, only the former part will be present.

we define the following quantities:

A. Strategy for lattice sum evaluation Sij= Z, reve, (54)

In calculating the lattice sums for large unit cells, both
computational efficiency and economy of storage must be ,
considered. A serious conflict between these requirements S.OJ-"“=Z reriVy, (55)
arises in construction of the dynamical matrix derivatives
D{*(q)’. A naive algorithm would be to calculate each
D“B(q) sequentially, which requires ordef words of stor- Sif= Z [ SapVx+rorfVi], (56)
age but repeats much of the calculation work. The naive
alternative would be to construct al; of them simulta- }
neously, since much of the work to be done in calculation of b= Z [SapVyt+rrBVEIrE, (57)
one can be used for the others. Unless the unit cell is highly
symmetrical however this will require storage of order
words, which dramatically Iim[ts the size of the unit cell Slqﬁ,w:Z’ wwviﬂgrﬁvz]rur;, (58)
which can reasonably be considered. !

Fortunately a compromise is possible, by performing the
computationally intensive part of the lattice sums once and @ Qi X 1 2
storing the results in a compagte., n?) form. We give an Ti B(q) Z T BapVrtry rﬂV xl: (59
implementation of this strategy in the following section: for
each wave vectay, the arrays defined in Eq&63)—(61) are
calculated first, and th@f}ﬁ(q)’ are constructedwithout
much additional work per derivatiydrom these and used

TP =3 @350t By b+ Bupr ]IV

3

one at a time. Given that tH2;{”(q)" are constructed in this +rrfrivy], (60)
way, it is convenient and efficient to calculate the quantities
D“B(q) Doy Pl @and @, in @ similar fashion, since aB N ig-x @ 8 2

' Tstab © . § TPYH(q)= VX (S f g+ Oy N+ Sost DV
many of the required intermediate steps are common to the i) 2’ [(9p1 v B") Vi
two sets of quantities. Alternative expressions for the last @y By W 370 1
four are available elsewhet&!* OV (61)

Here and subsequentlyandj take values 1 . .n, referring
B. Direct space expressions for the lattice sums to all particles in the unit cell. The summations are over all

It is convenient to define a set of functions related to theattice vectors, the prime indicating that the teriw-j,x=0
derivatives of the potentials, represent\é@(r), which can is omitted. There are several symmetry properties of these
be defined recursively: values which allow a reduction in the number of lattice sums

which have to be performed. In the first place, it is obvious
Vio-(r)=¢ij(r) (46) that any superscripts not separated by a confamal addi-
tionally those ofSj*) can be freely permuted, e.g.,

1d
(r) Fav'r] 1( r). (47) S‘T’u Sﬁa, (62)
Then writing for compactness in this and subsequent sections TP (@) =TH(a), (63
pi=pij=pi—pi (48) TEPY () =T () =T @)=+, (69
po=pl+x*, (49  and so on. Additionally, all these matrices have some sym-
N J metry with respect to exchange ioéndj; S*#, S*#, S¥Buv,
definingr andr, from p and p,, T andT*A*# are Hermitian, whileS¥, S¥## and T*A”
are anti-Hermitian.
re=rg _2 (8qy+e)p?, (50) Using Egs.(1), (47), (49), and(51) the following useful

relations can be derived:
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Ipc respect to other strains can be derived from these using the
—X= 8~ Sik» (65  expressions in Sec. V B; in particular thag, derivatives are
api
ID gat
@ =2 :_E (1- 5” 2 hmlj ij (79
ory L5 v 66 oW, 0
Jemy - a,upx! ( )
P Pstan .
o (m __E (1- 5”)2 hm|] n,ij JB’ (80)
Xﬁ= Sapt e, (67)
7P PP 1
stat a v, v
vy =] 33 0o T M)
vl (68) m® o T
JeH? X X Fx» (81)
aB
aVh JB;i"(Q) Ta a
— =V 18,1 e™). (69) ( M, E 5”2 ha TP7(0) =iy T (@) |,
apy 0
pX Y (82)
By using these in conjunction with the definition of the static -
y g J wher h,‘g”—h“ i—hn;, analogously to the definitiof48)

energy®,;and the unscaled dynamical matBﬁ'B(q) from

Sec. IV it is possible to construct the energy, dynamical ma-
trix, and the required internal and external coordinate deriva-

tives in terms of theS and T matrices:

1
CDstaFE% S, (70
odb
( S;at 22 (1-6)Sik» (72
&pk 0 |
ﬁq)stat _1 w,v
ae,uv _Eg S'l ! (72)
PPD
apkdpr/ i
D
— 2 (1= 8 )[SY*+8,,Sh], (T4
ﬁpﬁ&eﬂv
PO | 1 g 75
Jerryen 0 29 N ¢
Bj(a)= 5,2 Ti(0)-Ti%(a), (76)
JBP(q)
( = Swop 2 THP0)+ 5, TEP(0)
k|,
+(5ik_5jk)TﬁBy(q), (77
JBP(q)
(—y _5112 Taﬁ'u V(O)_Tﬁﬁ'u’v(Q)y (78
Jer

Applylng the symmetry relations, already noted, to these
expressions, and observing from E@59)— (61) that theT
matrices are real fag=0, it can be seen theliiIJ (q) and its
derivatives are Hermitian.

We make one additional practical point here: for very
large n calculation time can be dominated by the matrix
multiplication (32) since the number of operations required
for that step in calculating the gradient scaledNas®, while
no other part of the code has an execution time which scales
faster thann® or N¢n?. In one particular case this can be
improved: if theNg=3n basis internal strain derivatives of a
rigid-ion system are being calculated, then the dynamical
matrix derivatives requirediDﬁ-‘[”/apg , are very sparséany
element for whichi, j, andk are all different is zerp Ex-
plicit calculation and manipulation of then3dynamical ma-
trix derivatives (~n* operations can then be avoided in fa-
vor of generating the eigenvalue derivatives directlyn®
operation$ by substituting Eq(77) with Eq. (33) in Egs.
(31) and(32) to give

* £

N
S qsl Tﬁ(ﬁy(O)

dpi T b

fe xfb, 1
gs qsk+ gsl
my m,

2 * B TaPY
WRGGQS' faskTik () |-
This method cannot be applied if the cell contains shells
however, since theb’ is constructed using E@34) and is
no longer sparse.

(83

C. Ewald lattice sums for the Coulomb interactions

As required in Sec. Vbjsnor(r) acts over a finite range
so that the sum$53)—(61) can be taken directly, however
dijcoun(r) remains significant for large values ofind spe-
cial measures must be taken to form good approximations to
the sums in a reasonable number of terms. An Ewald sum-
mation is therefore used for the Coulombic contribution to

where the expressions are given at zero external straithe T and S arrays, and this section gives detailed expres-

(e*”=0) as indicated by the §)notation. Derivatives with

sions for this part of the calculation.
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Using the definitions of andr, in Egs.(50) and(51) and
additionally

qk=q+K, (84)
we first define the following standard Ewald expression,
Cij(a):

|q X
Cij(@)=2 —— (1~ &y (85
) A7 e iqg-r— qk/47;
=2
k Ak
>y eiq_xerfc(ﬂrrx)_5ijx (86)

X X

Here the symbobj,
either(a) x=0 andi=j or (b) x=0 andi,j are shell and core
of the same ion. In a rigid-ion system, only casg arises.

The factor (- §,JX) therefore properly eliminates the Cou- T*8%:~ (q)= Zij| —

lombic interaction of an ion with itself. Additionally the
summation is over all lattice vectors, thlke summation is
over all reciprocal-lattice vectors omitting=k=0 (as indi-
cated by the prime V is the unit-cell volume, and; is an

arbitrary parameter, which can be chosen so that good accu-
racy is achieved when both sums are truncated after a small ij=
number of terms going out from their respective origins.

n=+/mV~Ris a reasonable choice.
Comparing Eq(85) with ther ~! form of the Coulombic
pair potentialVy} o (1) = ijcour(r) it can be seen that

|l(q) E eq VIJ[COUI](rX) (87)

4’778

wherez; is the charge on particieBy manipulating Eq(87)
with aid of the easily obtained relations

o r¢

T (88)
arP
e Oa (89
Vi (r)
mi =reViti(r), (90

the Coulombic parts of expressiori§3)—(61) can be ex-

pressed as derivatives Gf; (q) with respect to appropriately

chosen variables, as follows:

Sijicoun=ZijCij (0), (91

d
Siiicoun=Zij — o -Cij(0), (92

J
S {Cour=Zij o

is zero normally, but equal to unity if
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(99

S'ﬁ[BCoul]: ij a—r,BCii (O),

afp 7. J —jelpr i C. 95
Sij1oun = Zij e ij(p) , (99
p=0

apH areorP
2 2
By — 7. i /—eip‘r i Cij(p)
ij[Coul] i &p”ﬂp"\ ar"‘arﬁ ij Oy
p=
(96)
2
Tifeou(®) =2 ————5Cyj(a), (97)
(93
T ou (9 =Z;; mcij (a), (98

i "p"—as Ci.(q+
ap* T raarpar i P) o

ij[Coul]
p
(99
whereZ;; is the Coulomb factor
Zizj
daey’ (100

These differentiations can then be performed term by term
on the Ewald sum expressidB6) to provide computation-
ally tractable formulas for the required quantities.

The manipulations can be made easier by rewriting Eq.
(86) as

’ 4 . .
Ci@=3" —relwK(qy)+ D, ety
k X
(101)
where
l 2 2
KO(qy) =— e~ W7, (102
k
erfo( pr S
XO(I’X) o 7ry) — ijx . (103

I'x

We also define recursively in terms 6P andX° two sets of
functionsK" and X"

KT 1(g) = K" (104
Ok O 99 dx),

1 0
XMy == == X1, (109

O

which definitions lead to the following expressions #F
and X"

2
—- —2) KO(a), (106

Kl(CIk):(
29° i
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2 1 2 1 4 0 J n M n+1
K=(aw) = Tor @ K (qk)"_EK (aw), (107 &q—MK (i) =g K" ~(aw), (109
k k
1 -2 n_2n-1 J n _ axn+l 110
X(r,)=— (=2)"n e"’zrz—(Zn—l)X”‘l(rX) , %X (r)=ryg (ry. (110
r2 N
(108 Substituting Eq(101) in Egs.(91)—-(99) and making use
of Egs.(109 and (110, the expressions for the Ewald sums
and additionally imply the relations are therefore given by
|
. .4
S‘;"u”zg vwcos(k-r)KO(k)nLZ Xo(r,), (111)
ij
St ' 4
S =3 S L sinlken K200 + 3 rixi(), (112
ij
Sil]{’[léOUH_E, Am 0 K2kH 1 Kk 2 a1
=7 =2 Lok I8 KO HRWKI 0T D Hrexir), (113
S|Lj¥l[3C0u|]_z’ Am el B0 D 1 ay B2
z, = 4 V[—cos(k-r)]k kPK®(k) + 2 [SapX (1) +rreXa(ry], (119
Sﬁféléul] 4w
?=§k‘, ~y SNk (8, kP + 6B#k“)K°(k)+k“kﬁk“Kl(k)]+EX: [SapX () +rerBX2(rIr, (119
ij

Su'lﬁél“}| r Aar
"éi;’“] = % 7 COIK D (Byu B 85, 0 KO+ (8, KEK+ 85, KK+ 0, KPR+ 85,k + 8, KK KE(K)
+k“kﬁk“kVK2(k)]+; [SapXM(r )+ gt X3 (r)Irkry, (116
T fooun(@) 4w - -
S mE e ek a0 + 2 e X ) () (117

) 4

T2BY () T ,
S 3 e Tazafalk a0+ S V(55,0 8yt 8,5 () FTEDC)L, (119

Zj k

Tt () Y
=X e (8, 0800+ 85,007+ 8,070 K°(al) + A afayarK (g

Zjj k
+ 2 UK (S St Syt Bt 8o gt XA, ) +rErBrIX3(r ). (119
X
|
Care must be taken in evaluating the functiokr) VIl. CONCLUSION

when &/}, is unity, in which case,=r will be small. When
r is small but nonzero it is important in practice to ensure

that. the evaIuauon. is carried out without loss of PrECISION iy atives, and static energy second derivatives, for a periodic
for mstance by using a few terms_ of a polynqmlal Serlescrystal with respect to various parameters of its geometry,
expansion of.th.@(”(r) instead of direct evaluation of Eq. 54 it is shown how these derivatives can be used for effi-
(108). In the limitr =0, cient structural optimization of such a crystal. Given the op-
(—2)ntiy2ntl timized geometry, equilibrium thermodynamic quantitieg

ImX"(ry=—————. (120 such as free energy, heat capacity, and thermal expansion

r—0 (2n+1) \/; can accurately and rapidly be generated. This procedure can

A method has been presented for the analytic calculation
of the fully quasiharmonic dynamical free-energy first de-
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be used over a wide range of temperatures and pressures.transitions, and surface properties is currently in progress
Detailed expressions for the lattice sums required havand will be reported separately.
been given, where particles are taken to interact via a sum of
Coulombic and arbitrary short-ranged spherically symmetric
pairwise potentials. Care has been taken that the method as
presented can be directly implemented in a computer pro-
gram making efficient use of processing time and available This work was supported by EPSRC Grant No. GR/
storage, and such a program has indeed been wiiteerd  K05979. G.D.B. gratefully acknowledges financial support
used successfully for fully dynamical optimization of unit from la Universidad de Buenos Aires. His contribution to
cells containing up to- 700 ions?* this work was made possible by means of a grant from el
Future work will include the treatment of three- and four- Consejo Nacional de Investigaciones Cifioéis y Tenicas
body short-ranged interactions, and a consideration of furthesle la Repblica Argentina. The authors wish to acknowledge
anharmonic corrections. A wide range of applications includ-useful discussions with W. C. Mackrodt and with L. Kantor-
ing complex oxides, defective lattices, high-pressure phasevich over a long period.
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