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Low-frequency plasmons in metallic carbon nanotubes
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A metallic carbon nanotube could exhibit a low-frequency plasmon, while a semiconducting carbon nano-
tube or a graphite layer could not. This plasmon is due to the free carriers in the linear subbands intersecting
at the Fermi level. The low-frequency plasmon, which corresponds to the vanishing transferred angular mo-
mentum, belongs to an acoustic plasmon. For a smaller metallic nanotube, it could exist at larger transferred
momenta, and its frequency is higher. Such a plasmon behaves as that in a one-dimensional electron gas
(EGS. However, it is very different from ther plasmons in all carbon nanotubes. Intertube Coulomb inter-
actions in a metallic multishell nanotube and a metallic nanotube bundle have been included. They have a
strong effect on the low-frequency plasmon. The intertube coupling among coaxial nanotubes markedly modi-
fies the acoustic plasmons in separate metallic nanotubes. When metallic carbon nanotubes are packed in the
bundle form, the low-frequency plasmon would change into an optical plasmon, and behave like that in a
three-dimensional EGS. Experimental measurements could be used to distinguish metallic and semiconducting
carbon nanotube$S0163-18207)02327-9

I. INTRODUCTION is very different from ther plasmon in certain respects, e.g.,
the cause of plasmon. A detailed comparison between them
Since carbon nanotubes were discovered in 1991 bwill be discussed.
lijima,* they have stirred much attention. One of the most There are two special features about the carbon nano-
interesting properties is that the electronic properties aréubes. One is that nanotubes of different radii and chiral
closely related to their geometry. Carbon nanotubes are préngles may exist coaxially. The intertube Coulomb
dicted to be metals or semiconductdréwhich depend on interaction$*~'*> among coaxial nanotubes add unique fea-
radius ¢) and chiral angle(). The low-frequency excita- tures that distinguish carbon nanotubes from other quasi-1D
tions would directly reflect the characteristics of the elec-Systems(e.g., semiconductor quantum wires; QW They
tronic structure near the Fermi lev@;). Experimental mea- Would play an important role in the low-frequency collective
surements on them could be used to verify the predicte@Xcitations, e.g, the significant modification of the acoustic
electronic structure. The objective of this work is to investi- Plasmons in separate nanotubes. Another is that the identical
gate the low-frequency excitations of the carbon nanotubesingle-shell nanotubes could be uniformly packed in the
by means of evaluating the dielectric functiés). For com- bundle form. Thesst al.recently reported the observation of
parison, a single graphite layer is also studied. the metallic nanotube bundle in a 2D triangular latfit@he
A metallic nanotube owns the linear subbands intersectingitertube interaction in a multishell nanotube still exhibits
at the Fermi level. These subbands have a finite density dhe 1D characteristifEq. (3)], but that in a nanotube bundle
states aE¢ so that the electrons in them would behave asthanges into the 3D characteristi&q. (5)]. The low-
free carriers in normal metafsThey have been predicted to frequency plasmon in a metallic nanotube bundle is thus ex-
make a |arge contribution to the magne'sﬁé,transporﬁ and peCted to differ quite a lot from that in a metallic Single'She”
thermal propertie.Here, a new low-frequency plasmon is Or multishell nanotube. .
identified in association with them. Semiconducting nano- This paper is organized as follows. In Sec. I, the dielec-
tubes or a graphite layer, which do not have such metallidric function is calculated within the self-consistent-field
free carriers, would not exhibit such low-frequency plas-(SCP approach.” The low-frequency excitation properties
mons. Measurements on the low-frequency plasmon by thare discussed in Sec. lll. They are studied for a single-shell
reflection-electron-energy-loss spectroscSgREELS with nanotgbe, a multishell r)anotube, a nanot.ube .bundle, and a
high resolution~10 meV would be very useful in distin- 9raphite sheet. Concluding remarks are given in Sec. V.
guishing metallic and semiconducting nanotubes. The depen-
dence of the low-frequency plasmon on the transferred mo-
mentum €), the transferred angular momenturh)( the
radius (), and the intertube Coulomb interactiofsee be- The 7 band of a carbon nanotube is calculated from the
low), will be investigated. The-dependent behavior of the tight-binding modef, as done for a graphite shéeétlt is
low-frequency plasmon could help us to understand whethesimply reviewed in Appendix A. Both energy dispersions
the free carriers in a metallic nanotube behaves as a on@nd Bloch functions are analytic; therefore, they are conve-
dimensional electron g&s(1D EGS or not. Such a plasmon nient in calculating the dielectric functide). € is evaluated

II. THE DIELECTRIC FUNCTION
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FIG. 1. Thew band.(a) The bonding energy bands of tk&1,0

nanotube within the first Brillouin zone. The occupied bonding en-

ergy bands are symmetric, abdbdg=0, to the unoccupied anti-
bonding energy bandsot shown. (b) Same plot aa), but for the

(23,0 nanotube(c) The bonding energy bands of a graphite layer.
It is shown along the principal directions in the hexagonal Brillouin

zone(Fig. 1 in Ref. 3. I', K, andM points are origin, corner, and
middle point between two neighboring corners, respectively.

for a single-shell and multishell nanotube, a nanotub
bundle, and a graphite sheet. There are obvious differenc

among them.

A single-shell carbon nanotubeould be regarded as a
rolled-up graphite sheet in the cylindrical forfdetails in
Ref. 7). A cylindrical (m,n) nanotube is characterized by the
radiusr =b3(m?+mn+n?)/27 (b=1.42 A) and the chi-
ral angle =tan {—3n/(2m+n)]. Within the tight-
binding model, aifh,n) nanotube is a metéasemiconductor
when 2n+n=3Il (#3l), wherel is an integer. For ex-
ample, the(21,0 nanotube is a metdlFig. 1(a)], and the

(23,0 nanotube is semiconductor with energy gap 0.48 eV,
[Fig. 1(b)]. In addition, a single graphite layer is a zero-gap

semiconductofFig. 1(c)]. A carbon nanotube has many 1D
subbands described by discrete angular mometitg (@nd
axial wave vectors K,'s). The occupied bonding energy
bands of a carbon nanotube are symmetric, abgut 0, to
the unoccupied antibonding energy bafdis.general, all 1D
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m-band characteristics will be reflected in the electronic ex-
citations. For example, the-electronic collective excitations
with frequencyw,> 2y, (the 7 plasmongexist in all carbon
nanotubes? which are derived from the excitations of the
concave-upward bonding energy bands belowy,—
(=—3.033 eV}).* Here, whether the low-frequency plasmon
with w,<2 eV exists is mainly determined by the band
property nealEr, metal or semiconductor.

As a result of the cylindrical symmetry, the transferred
angular momentum and momentum are conserved in the
electron-electron interactior}$-1>'°That is to say, a carbon
nanotube could exhibit thie-decoupled excitations, with the
g-dependent dispersion relations. This contrasts greatly with
the complicated coupling among the interband excitations in
an ordinary QWA since the good quantum numbleris ab-
sent in the latter. AT =0, the inters-band excitations from
the bonding to the antibonding energy bands are the only
excitation channel. The dielectric function of a single-shell
nanotube, which includes all inter-band excitation$>is
expressed by

E(q,L,W):GO_V(q,L)X(q,L,W), (1a)
dk
Lw)=2 Y
x(d ) 2 1st A 2)
><|<J+L,ky+q;c|eiqye”-"5/|J,ky;v)l2
—2w,.(J,k,;q,L
c(J.ky;q,L) (1b)

" IWoeld Ky 30, L) 2= (WHIT)2"

W,e(J,ky;0,L)=E°(J+L,k,+aq)—E"(J,ky) is the intersr-
band excitation energy,=2.4 is the background dielectric
constant® V(q,L)=4me’l (qr)K_(qr) is the Coulomb in-

Seraction of a 1D EG$?1, (K,) is the first(second kind of
$Rodified Bessel function of the ordér. T is the energy

width due to various de-excitation mechanisms. Wheis
finite, the dielectric function needs to be modified according
to Mermin?! The low-frequency excitations are mainly due
to theL =0 mode. The band-structure effects included in the
response functiory(q,L,w) are found to be very important.
For example, ther plasmon hasv,> 21y, for anyL.*>

The primary difference in excitation properties between a
carbon nanotube and a graphite layer is thét absent in the
latter. However, the dielectric functiope(q,a,w)] of a
graphite layer depends on magnitudg é&nd direction«) of
the transferred momentum, owing to the anisotropy of#the
band[Fig. 1(c)]. The azimuthal angle is the angle between
the transferred momentum and tkeaxis[Fig. 1(a) in Ref.
7]. e(q,a,w) is given by’

€(g,a,W)=¢€,—V(q;2D) x(q, a,W), (2a)

subbands have parabolic profiles except that the subbands
nearest the Fermi level in a metallic nanotube are linear. Thend

dk dky.

= ’ ’ ’ r, in’X’ iq ,y, ’ r 2 s .
X(q,a,W) ZflSt BZWKKX +qx 1ky +qy ,C|e e |kX 1ky 1U>| [ch(kx’ !ky’ ,q,a)]z_(W+|F)2

2W,,(Kyr Kyr 50, @)

(2b)



1432 M. F. LIN, D. S. CHUU, AND K. W.-K. SHUNG 56

Ox=q COsy; gy =q sina.  W,c(ke Ky ;0,a) =E*(ky the transferred momentung() perpendicular to the tubular
+ 0y Ky +0y) —E°(Kyr 1K) V(q;2D)=2me?/q is the axis vanishes, the dielectric function is relatively simple. By
Coulomb interaction of a 2D EG%.in Eqg. (238 could also  the detailed analysis, the dielectric function in the absence of
be used to study the plasmon in a graphite layer. In addi- q, is expressed by
tion, the dielectric function in Ref. 22 is only suited to the
low-frequency excitationsw<3 eV). €(9,W)|q, —0= €0~ 27N,V(;3D) x(q,L=0w), (5

The dielectric functiofEq. (1)] of a single-shell nanotube
would be modified in the presence of the intertube Coulom

interactions. For a multishell nanotulipandL are still con- , .
served during the electron-electron interactithid® The (O i only related toy(g,L=0w) of an isolated nanotube.

nanotube system is assumed to be perturbed by a probir@is_ re_sult clearly illustrates that the=0 mode _is th_e only
electron via the time-dependent potent&K(q,L,w). Elec-  © citation channel, when the external electric field is parallel
trons on all shells would screen this external field, which!© the nanotube axis. Since the low-frequency plasmon in a
thus causes the induced charges. The induced potential frofjetallic nanot_ube_ only exists in the=0 mode(Fig. 4), the
all induced charges is proportional to the effective potentiaPP0Ve casé, =0 is suitable in understanding the effects due
within the linear-response approximatibhin which one of to the intertube interactions. The 3D Coulomb interaction in
the coefficients is the response function. The effective poter@ Nanotube bun_dlel IS \r’]erl?/ dlfferle_nthfrli)m the éD Cr?ulor:nb
tial v©(q,L,w) on theith shell is given by the linear relations Interaction in a single-shell or multishell nanotube. The char-
acteristics of the low-frequency plasmon are thus expected to

v (q,L,w)=vq,L,w) +ol(q,L,w) be so.

yvhereV(q;3D)=4me?/q” is the Coulomb interaction of a
3D EGS, and\, is the nanotube number per are@an Eq.

=v{(q,L,w) Ill. THE LOW-FREQUENCY PLASMON

N The dielectric function is further used to study the low-

+Z V(q,L;ri,r)x;(a,.Lwofa,Lw), frequency excitation properties, e.g., the band-structure ef-
=t fect on thee and g-dependent plasmon. The plasmon fre-
(3 quencies are evaluated for metallic single-shell and

multishell nanotubes, and metallic nanotube bundles. They

o y— 2 i -
whereV(q,L;ri,rj)=4me’l (qr-)K.(ar-)/ is the Cou could be verified from the measurements of EELS.

lomb interaction of two electrons on théh andjth shells,
with the radiir; andr;, respectivelyr _(r-) represents the
smaller(largep of r; andr;. vafﬁ is recognized to be the
induced charges on thgh shell. The external potential or The metallic(21,0 nanotube is taken as a model system
the distribution of the probing electron would affect the ef-to see the low-frequency plasmon. The dielectric function of
fective potential and thus the intensity of the loss spectrumthe L=0 excitations[Eqg. (1)] is shown in Fig. 2a) at q
However, the main characteristics of the low-frequency plas=0.1 A~! and I'=0 eV. The real[¢;(q,L,w)] and the
mon are hardly affected by it, e.g., thedependent plasmon imaginary[ e,,(q,L,w)] parts of the dielectric function are,
frequency. The probing electron here is assumed to be laespectively, shown by the solid and dashed curegdirst
cated on theath shell. The effective potential in E@3) is  exhibits a finite discontinuitythe first kind of singular struc-
obtained from the known external potential. According to theture) and then diverges in the form Jiw,—w (the second
Fermi golden rule, the transition rate(q,L,w) that the kind of singular structune These structures basically reflect
probing electron transferg)(L,w) to the nanotube system is the features of the joint density of statelsIDOS;

A. A single-shell metallic nanotube

given by D(q,L,w)], sincee,(q,L,w) is proportional to it. JDOS is
N given by
P(q,L,w)=2, —Imlx;(a,L,w)][of"(q,L,w)|? W,e(3,ky30,L)| L
=1 D(g,L,w)=——F"—— : (6)
Kk, _
_1 Wye=W
_ . ex
=vi(g.L,w)im EEH(q,L,W)}' 4) JDOS is closely related to the energy dispersion relations,

and so doeg,. For a metallic nanotube, all subbands have

3bk,

2

_[3bk,
2

nguatlon (4) defines a dimensionless quantity [lt/  parapolic profiles except the linear subbaridsnoted by

€”'(qL,w)], which could be interpreted as the EELS intensity j »s) intersecting aEr . The linearJ, subbandEq. (A4)] is

of an_N—sheII nanotube. It is alsc_) noticed that the dle_lectrlcwe” approximated by the relation

function of anN-shell nanotube is ah X N matrix, which

satisfiesEjeijvfﬁzufx. The plasmon frequency could also . 3

be determined from deg()=0. Im[ —1/e°(q,L,w)] in Eq. (4) E*(Ja ky)= 70| 24 @)

is mainly used in the calculations. It is basically similar to

the loss spectrun(iIm[—1/ €(q,L,w)]) of a single-shell The excitation energw,.(Ja K, ;d,L=0), between the two

nanotube. linear subbands is a minimum for the=0 state and a local
The identical single-shell nanotubes could further form amaximum for thek, = —q/2 state. These two critical points

2D lattice!® The dielectric response of a nanotube bundle ismay be too close to distinguish each other at smaile;

complicated Egs. (B3') and (B4); Appendix B]. But when e.g., q=0.01 A"l The ky-dependent dispersion relation
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FIG. 2. The real €&;) and the imaginaryd,) parts of the dielectric function are, respectively, shown by the solid and the dashed curves.
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are calculated at variodss. The inset shows the EELS Bt=0 eV.

near the minimum is linear, but that near the local maximum
is parabolic(the concave-downward fopmThese two kinds
of dispersion relations, as calculated from Ef), would
induce the finite discontinuity and the square-root divergency
1/\ywg—w, respectively. From the singular structures in
€,, those ine; could be obtained by using the Kramers-
Kronig relations.e;, as shown in Fig. @), exhibits the posi-
tive logarithmic divergency and then the negative square-
root divergency—1/\yw—w,. Apparently, e; must have
zeros in the neighborhood of the negative square-root diver-
gency. Zeros ok, if they are at where,—0, are associ-
ated with plasmons. Herg, could vanish ak,—0 [inset in
Fig. 2(a)], therefore, there is a sharp plasmon peak in EELS
(inset in Fig. 3. In addition, the negative square-root diver-
gency ine; is similar to that causing the plasmon®®

e of theL=1 excitations is shown in Fig.(B) to see the
L dependence. For the low-frequency inteband excita-
tions, electrons are excited from the linear to the parabolic
subbands or vice versa. The excitation energies have a mini-
mum and a local minimum in the energy-wave-vector space.
Furthermore, thé,-dependent dispersion relations near such
critical points are linear. These linear dispersion relations, as
stated above, could induce the first kind of singular structure
in ¢, the finite discontinuity ire,, and the positive logarith-
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FIG. 4. The EELS corresponding to the dielectric functions

shown in Fig. 2, but calculated &=10 meV. FIG. 5. The low-frequency plasmon of tHe=0 mode. The

g-dependent plasmon frequencies are shown for four metallic nano-
mic divergency ine;. €; does not vanish a¢,—0, so that tubes:(21,0, (30,15, (72,18, and (73,73. The inset shows the
there is no plasmon peak in EEl(®e heavy dashed curve in details at smalg’s.
Fig. 4). Similar results are obtained for other0 excita-

tions. Hence the low-frequency plasmon does not hlave —1/\lw—w, in €; and the positive square-root divergency

#0 modes. _ _ 1/J\wo—W in €,, could inducee; =0 ate,—0 and thus the
We take the semiconductin@3,0 nanotube as a model |4y.-frequency plasmon. It corresponds to the-0 excita-
system to see the dependence of the low-frequency plasm@pns in a metallic nanotube.
on band structure. The parabolic bonding energy bands con- The EELS, defined as I /€], is further calculated for a
cave downwards at the band eddg£0) for E">—1v,,  ¢loser study of the low-frequency plasmon. The 0 exci-
and vice versgFig. 1(b)]. The low-frequency excitations of (a1ions of a metallic nanotube would exhibit a very sharp
L=0 'come'fr(.)m the former., and the d|sger3|on rglanon Ofplasmon peak, becaugg vanishes ak,—0, e.g., EELS of
W, With ky is in the quadratic formwy+Ckj. Such kind of the (21,0 nanotube(inset in Fig. 3. The sharp plasmon peak
ky dependence could cause the third kind of Singular StruCypyould be broadened by the energy W|dﬂ=‘|g 3) However,
ture in e [Fig. 2(c)], the square-root divergency\Mi—wo in it remains pronounced even at larfis (e.g.,T'=50 meV),
€,, and 1§wy—w in €;. The singular structure ie; might  and the plasmon frequency is insensitive Ito The pro-
accompany the negative and the vanishingat w>wj [in- nounced peak due to the low-frequency plasmon is expected
set in Fig. Zc)]. It is also noticed that, is not vanishing at to be observable from the measurements of REELS with
smallerg’s, e.g.,q=0.01 A™1. ¢, possibly vanishes, but high resolution~10 meV!° Such a peak is shown to be
occurs at large,. Therefore, a sharp plasmon peak does notbsent in a semiconducting nanotube, a graphite layer, and
appear in EELSthe light solid curve in Fig. ¥ It means that even a metallic nanotube exhibiting the#0 excitations
a semiconducting nanotube could not exhibit the low-(Fig. 4), i.e., the low-frequency plasmon does not exist in
frequency plasmon. them. The metallic and the semiconducting nanotubes have
€(q,a,w) of a graphite layer at=30° is shown in Fig. been predicted to exhibit the different magnétit,
2(d) for comparison. The intet=band excitation from the transporf and thermal properties. Concerning the excitation
K point [Fig. 1(c)] requires the minimum excitation energy, properties studied here, the principal difference between
the threshold energy. The energy dispersion relation near thidem is the low-frequency plasmon. The measurements on
K point is linear and isotropic. By using these two charac-the low-frequency plasmon would be very useful in distin-
teristics, €, and €; are found to diverge in the forms guishing the electronic structure of a nanotube system.
1 w—wq and 1hwo—w (Wo=37y,b0/2), respectively’? The g-dependent behavior of the low-frequency plasmon
exhibits the third kind of singular structure, as seen in ais important in understanding its characteristics. The plas-
semiconducting nanotul€ig. 2(c)]. €;,#0 ande, is large, mon frequency,(q,L =0) of the(21,0 nanotube is shown
which indicates that the low-frequency plasmon does not exin Fig. 5 by the heavy solid curve. The low-frequency plas-
ist in a graphite layefthe light dashed curve in Fig)4The  mon exhibits a strong dispersion relation wih as seen in
azimuthal angler would affecte, but the conclusion reached the = plasmon'® This result directly reflects ther-band
here remains the same. In short, there are three kinds characteristic, the strong wave-vector dependence. The
singular structures i, which basically reflect ther-band  strongq dependence means that the plasma oscillation along
profiles near the Fermi level. Only the second kind of singuthe tubular axigthe L=0 mode behaves as a propagating
lar structure, the negative square-root divergencywave, with a continuous wavelengthn2q. w, increases
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quickly at smallg’s as shown in the inset. From the linear
energy band in Eq(7), one can show that/,>q|In(qr)|"/2 at

small g’s. The low-frequency plasmon should belong to a 6 P=10 meV

q=0.1; L=0

1D acoustic plasmon. Suchdependence is similar to that of 1 — (21,0

17,17)
21,0)-(17,17); || inner shell
17,17

a 1D EGS in QW's:* which implies that the free carriers in
the linear subbands of a metallic nanotube resemble a 1D
EGS. The similarity lies in the fact that the low-frequency
excitation energy is essentially linear gr—whether the en-
ergy band has a linear or a quadratic dispersion relation.

In addition to theL dependence, whether a metallic nano-
tube exhibits an acoustic plasmon relies @randr. The
low-frequency plasmon could exist gt—0, but would dis-
appear at large’s, e.g.,q.~0.3 A~ for the (21,0 nano-
tube. Whenq is sufficiently large, the certain inter-band
excitation except those from the linear subbands would make
a large contribution ta, (not shown at e;=0. The strong 0
Landau damping thus results in the destruction of the low- 0.5 1.
frequency plasmon. The other metallic nanotubes exhibit the w (eV)
similar low-frequency plasmons. But for a larger nanotube
(Fig. 5), the plasmon frequency is lower—mainly due to the FIG. 6. The EELS of the nanotubeé®1,0, (17,17, and(21,0-
weaker Coulomb interaction. Furthermore, it has more 1D17,17. They are calculated aj=0.1 A, L=0, and'=10
subbands so that the low-frequency plasmon is relativelyneV. The heavy dashed and the solid-circled curves are the EELS,
easily affected by the Landau damping, i, is smaller for with the probing electron localized in the inner and outer nanotubes.
a larger nanotube. This result suggests that a smaller metallic
nanotube is more suitable in verifying the |OW_frequenCyimportant role in the excitation properties of carbon nano-

21,0

; || outer shell

Im[-1/¢]

N

T A

0

plasmon. tubes, which, thus, needs to be taken into consideration.
The low-frequency plasmon in a metallic nanotube is very
different from the 7 plasmon in all carbon nanotubgs. B. A metallic-metallic nanotube

There are certain important differences between them. First, , L ,

the low-frequency plasmon is derived from the linear bands The intertube COUF’"”Q Ina multishell system would m'ake

intersecting aE, but the plasmon are concave-upward the Iow-freque_ncy excitations more complicated, since

bonding energy below- y,. Consequently, the former de- charge fluctuations on one she_ll influence the charges on
pends on ther-band property near, while the latter does ptheli shells. The metlalhc-metalrl]lc nanoﬁulﬁélf,f@-(l?,l?),

not. They are, respectively, confined to the frequency rangIs taken as an example to see the coupling effect. B

f4)] is shown in Fig. 6 ag=0.1 A~* andL=0. The prob-
Wp<2 eVandw,>6 eV. Second, the former only has the ing electron is supposed to be localized on the inner or the

L=0 mode, wh.ich is in great contrast to the latter with vari- o ter shell. There are two clear plasmon peaks in EELS.
ousL modes. Finally, the former belongs to an acoustic plasap, denotes the acoustic plasmon with the higher frequency,
mon, which is similar to that of a 1D EGS. However, the and AR, that with the lower frequency. The different exter-
latter is an optical plasmon, and it behaves as that of a 3[a| potentials would affect the intensity of the EELS. How-
EGS. ever, they do not alter the main characteristics of the low-
The m-electronic excitations have been studied within thefrequency plasmons. For example, the plasmon frequencies
EGS model>~****While the 7 electrons in the bonding en- remain almost the same, and ABxhibits the strongest spec-
ergy band$'**are modeled as an EGS, theplasmon of  trum at low-frequency range. The measured EELS is roughly
L=0 is predicted to belong to a 1D acoustic plasmon, i.e.gstimated to be between these two kinds of spectra. The in-
w,, approaches zero at smajfls. Such a result, understand- tensity of AR is much stronger than that of APThat AR
ably, only reflects the characteristics of a 1D EGS, but noeand AR, respectively, correspond to coherent and incoherent
those of a realr band. In fact, thde=0 & plasmon has a oscillations of free carriers on different shells could explain
finite frequencyw,~6 eV at smallg’s.'® Moreover, for the  this result. As a result the low-frequency plasmon with the
L=0 mode, a metallic nanotube could exhibit the low- highest frequency is most easily observed in the EELS.
frequency plasmon as well as the plasmon. The EGS The low-frequency plasmons in the uncoup(@d,0 and
model, which neglects the real band structure, might be in¢17,17 nanotubes, as seen in Fig. 6, are clearly affected by
appropriate for thé. =0 excitations from the bonding energy the intertube Coulomb interactions. At smalls, the cou-
bands. Metallic atoms could be further intercalated into carpling effect is appreciable, mainly due to the strong intertube
bon nanotube® so that there are additional electrons in theinteractions[V(q,L;r,r,)]. They significantly modify the
antibonding energy band$.within the EGS model? such  g-dependent plasmon frequencies as shown in Fig. 7. They
free carriers are predicted to be capable of exhibiting a 1Dnight change thg dependence from|In(gr)|*?into q, e.g.,
acoustic plasmon of. =0, as seen in a metallic nanotube AP, at smallg’s (inset in Fig. . But on the other hand, the
(without intercalation A closer investigation including the intertube interactions are negligible at largis. AP; would
real 7~ band is needed. In short, theband structure plays an become the low-frequency plasmon of the inner nanotube,
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FIG. 8. The EELS of thé€21,0 nanotube bundle is calculated at

FIG. 7. Same plot as Fig. 5, but for the nanotub€&xt,0, I'=10 meV and different's.

(17,19, and(21,0-(17,19. The light and the heavy dashed curves

are the two acoustic plasmons of t®&1,0-(17,17 nanotube. ) ) ] ) )
tishell nanotube. This feature is associated with the very

, strong intertube interaction at smajls.

and AR that of the outer nanotube. That is to say, each The plasmon in a nanotube bundle is derived from the
metallic nanotube exhibits the separate plasmon. coherent plasma oscillations of all metallic nanotubes.

There are more plasmon modes as the shell number &fhgrefore, it is similar to the optical plasmon in a 3D EGS,

metallic nanotubes increases. The plasmon with the highesf i not the acoustic plasmon in a 1D E&Sor example,
frequency, as stated above, exhibits the strongest spectrupp,, g-dependent plasmon frequency, as shown in Fig. 9, has
And then, the plasmon peaks quickly decline in the decreasy,q parabolic formwy+Ag? at smallq’s. Moreover, the

ing of pla}smon frequency. For example, the third aCOUStiCplasmon frequency af—0 is approximately antipropor-
plasmon in the21,0-(17,17-(22,22 nanotube, as compared tional to the nanotube radius, since the total free-carrier den-

with AP, and AR, might be too weak to be observed in the ;v s hroportional to the nanotube density. This optical plas-
EELS. AR and AR are thus expected to cause the mainmon a5 compared with the acoustic plasmon in an isolated

peak structures in the loss spectrum of a metallic mUI“Shelhanotube(Fig. 5, has the higher frequency owing to the

nanotube. In short, the intertube coupling would markedlygironger Coulomb interaction. The intertube interaction is

modify the acoustic plasmons in separate metallic nanotubes.
This feature is absent in semiconductor QWs.

2.0 ]
C. A metallic nanotube bundle ] Bundles
The Coulomb interaction changes from the 1D into the __________ g(l)’?%
3D form, when the same single-shell nanotubes are packer 1.5 72’18
in the lattice structure. Hence the characteristics of the low- 7 73’73

frequency plasmon would change thoroughly. The dielectric 7>

function in Eq.(5) is used to study the effects of the intertube g

interactions on the low-frequency plasmon. We mainly focus ~ 1.9

on the casey, =0. a
The metallic nanotubes are assumed to be located in ac 3

cord with a triangular lattice with the lattice constadht

(=3.15 A.® The bundle thus has one nanotube per 0.5

2/\3(2r+d)?. EELS of the (21,0 nanotube bundle is

shown in Fig. 8 at varioug’s andI'=10 meV. The sharp

peaks, as seen in an isolated nanot{fg. 4), are due to the

collective excitations of the free carriers. The plasmon fre- O'Ooio‘ T T T T et T T T 0.3
qguency clearly increases wittp. When q vanishes, EELS o _y
exhibits a prominent plasmon peak at a finite frequeftiag q (A )

light solid curve. The low-frequency plasmon in a nanotube

bundle is indicated to be an optical plasmon. It differs greatly FIG. 9. Theqg-dependent plasmon frequencies of the metallic
from the acoustic plasmon in a metallic single-shell or mul-nanotube bundleg21,0, (30,15, (72,18, and(73,73.
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getting weak in the increasing af’'s. Consequently the EGS. The reflection EELS and the optical spectrum could be
former would degenerate into the latter at lajs. used to verify such kind of plasmon.

How the metallic nanotubes are arranged do not alter the It should be noticed that metallic nanotubes could exhibit
main features of the low-frequency plasmon. The relevanthe metallic behavior even in the absence of intercalation or
nanotube density only affects the plasmon frequency. Theoping?™* e.g., the low-frequency plasmon. On the other
closest packing form, the triangular lattice studied here, haband, metallic atoms, e.g., K and Rb, have been successfully
the highest plasmon frequency. Other lattices, e.g., the tdntercalated into carbon nanotubiésMany free carriers,
tragonal lattice, have the lower plasmon frequencies. Thavhich occupy the antibonding energy bands, are predicted to
direction of the transferred momentury,,) also has an €Xist in various carbon nanotub®sSuch electrons due to
effect on the plasmon frequency. It even leads to significaniitercalation might exhibit the richer excitation spectra. For
changes in the primary features whens>q. For example, €xample, they are expected to exhibit the acoustic plasmon
the |0W_frequency p|asmon would disappearq&to (Ap_ of L=0 and the optical plasmons bt~ 0.12 These plasmons
pendix B) Hence, the optical plasmon in a metallic nanotubeWill be investigated in a further study.
bundle exhibits the most obvious loss spectrum in the ab-
sence ofg, . ACKNOWLEDGMENTS

Th ve-mention ical plasmon I verifi . . . .
oy 0 REELS or e cpc spac. 1 e 0o 151 e supporcdnp by e Haona scrc
hibit a sharp peak in EELS and a Drudelike edge in reflec- ' '
tance spectrum. The measurements ofctiiependent EELS NSC 86-2112-M-009-006 and NSC 86-2112-M-007-003.
are more useful in understanding the main features. The
bundle made up of the metallic nanotubes, as indicated from APPENDIX A

the measured resistivity, exhibits the metallic behavior. The mband structure is simply reviewed. Theband of a

The measurements on the optical plasmon could provide aRyraphite layer is calculated from the tight-binding motfel.

other kind of verification. The Bloch states are described by the two tight-binding func-
tions built from the 2, orbitals, ¢,(r'):

IV. CONCLUDING REMARKS

In this work, the low-frequency excitations in a single- Uik’(r,):CRE ek Rt g (I =Ry—7), =12
shell and multishell carbon nanotube, a nanotube bundle, and " (A1)
a graphite sheet, are studied within the SCE approach.
Whether the low-frequency plasmon exists depends on thl" is the 2D wave vectorC is the normalization factor, and
band structure. The measurements on the excitation propeRy, is the lattice vectorr; and 7, define the positions of
ties, together with the magnefic’ transporf and thermal carbon atoms in a unit cell. Diagonalizing the Hamiltonian
properties are useful in distinguishing the electronic struc- with only the nearest-neighbor interactions taken into consid-
ture of a nanotube system. A similar study could be furthereration, the energy dispersions of a graphite layer are
extended to the intercalated carbon nanotdfés.

A low-frequency plasmon is found to exist in a metallic EC'U( . [1+4 co{ 3bky, cos( \/§bkx’)
nanotube, but not a semiconducting nanotube or a graphite X/ Kyr = =70 2 2
layer. That a metallic nanotube owns free carriers in the lin-

ear subbands is the main reason. Such a plasmon, which 44 cod ﬁbkx')]m (A2)
corresponds to the =0 excitations, is a 1D acoustic plas- 2 ’

mon. It behaves as that of a 1D EGS. However, it is quite i )

different from therr plasmons in all carbon nanotub®s.g.,  and the corresponding wave functions are

the cause of plasmon and tliedependent behavior. The .

low-frequency plasmon induces a very pronounced peak in C'”(r’)zi s (r) 5 HTA(Kyr  Kyr) Uper (1)
EELS, which is expected to be observable from the measure-  ~ ¥’ N [H oKy ky)] 2 '
ments of the high-resolution REEL!8For a smaller metallic (A2")

nanotube, it could exist at larger's, and its frequency is ) ) ) )
higher. Hence, the smaller carbon nanotubes are more suit€ superscript (v) represents the antibondirigonding
able in the experimental verifications. band which is located abovébelow) the Fermi levelEg
Intertube Coulomb interactions are very important for a=0- 7,=3.033 eV is the resonance integfalH ;,=
metallic multishell nanotube and a metallic nanotube bundle— y,33_,e ' i is the nearest-neighbor Hamiltonian matrix
They strongly affect the low-frequency plasmon. The inter-element.
tube coupling among coaxial nanotubes significantly modi- A similar calculation is applied to a cylindrical carbon
fies the acoustic plasmons in separate metallic nanotubesanotube, but with the periodical boundary condition along
There are more acoustic plasmons as the shell number d¢iie rolled direction. The angle between the rolled direction
metallic nanotubes grows. The acoustic plasmons with théx axis) and thex’ axis is the chiral anglé. The relationship
higher frequencies are expected to display the primary pealietween wave vectorsk{,k,) of a carbon nanotube and
structures in the loss spectrum. When the identical metallichose k. ,k,) of a graphite layer is described by
nanotubes form a lattice, the low-frequency plasmon would
change into an optical plasmon, and behave like that in a 3D Ky =k, cost—k, sing (A3)
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and n"(q,q, ,w)=x(a,q, W)V (q,q, ,w),  (B3)
Ky =K sind+k,cos 6. (A3")

Equations(A2) and(A2'), together with the above transfor-
mation, describe ther band of a carbon nanotube. The axial

and

wave vectok, is confined within the first BZ. The transverse x(9,9. ,w)=2 E [(a’|e'e'% "] a)?

wave vector satisfying the periodic boundary condition is “a

ky=J/r, whered=1,2,...N,/2; N, is the atom number in a fOE,)—fUE,)

primitive unit cell. J serves as the subband index, which is E,—E,—(Wtil) (B3)

the angular momentum of electrons circulating a nanotube.
The energy dispersions and the Bloch functions are used if0 i5 the Fermi-Dirac functiorE,, is the energy dispersion of

the calculations of the dielectric functiofsec. I). For a each nanotube, which depends ahk(,h). The induced
zigzag (n,0) nanotube, the energy dispersions are expressgarge density is proportional to the effective potential, and

by the coefficient is the response functigr(q,q, ,w) [EQ.
3bk Im (B3)].
ESY(J,ky) =%y} 1+4 cog( —y) cos( —) The effective potential is the sum of the external potential
2 m and the induced potential. The dielectric function is given by
Jr 1/2
+4 cog eI (A4) Ve(q,q, ,W)
e(q,0, ,W)ZWZ%—V(ML)X(QYQL JW).
J,=2m/3 and 4n/3 are the linear subbands intersecting at i (B4)

E|:=0.
The square of the matrix element in the response function
APPENDIX B [Eg. (B3')] is complex, and so is the dielectric response.

The dielectric function of a nanotube bundle is evaluatec{)'owever’ the response function in the absence,otould

in this appendix. The bundle made up of the identical single- e further reduced to
shell nanotubes is packed in a periodical 2D structure. Bloch
functions have the periodicit, , of the 2D lattice and are x(9,0;, =0w)=2mNyx(q,L=0w), (BS)

expressed b
P y where x(q,L=0,w) is the response function of an isolated

la)=1k, ;J,ky ,h) nanotube. When the external electric field is parallel to the
tubular axis, the response function of a nanotube bundle is
—c’ exp(ik, ‘R, )W (r, =R, ), (Bl the superposition of the =0 excitations of all nanotubes.
2 expliki-Rym) 3 (" Rem), (BD) This case is very suitable in understanding the effects of the
h _ . . . intertube interactions on the=0 low-frequency plasmon.
where\FJ‘ky (h=c.v) is the Bloch funct|.on of an isolated 5 e other hand, the=1 excitations from all nanotubes
nanotube.L denotes the vector perpendicular to the tubulargre the principal response of a nanotube bundie agn-
axis. For examplek, is perpendicular t, . When an ex-  jshes. This result could be obtained from the smallex-
ternal potennal'v (g,q9, ,w) is applied, it yvould induce _pansion in Eq.(B3') and x(q,L=0w)xqg? at smallg’s.
charge fluctuations on all nanotubes. The induced potentiglpparently, the low-frequency plasmon does not exist under
due to the screening charges is obtained from Poisson's,ch a case. For anyandq, , the electronic excitations in
equation: a nanotube bundle are mainly related to the0 and 1
in _ in modes.q, =0 should be the case, which the effects of the
VA(Q,q0 W) =V(Q,a,)n™(g,q. W) (B2) intertube interactions on tHe=0 excitations are most obvi-
V(q,q,)=4me?(q’+ qf) is the Coulomb interaction of a ous. That is to say, the=0 excitations of an isolated nano-
3D EGS. The induced charge density within the lineartube are most strongly modified by the intertube interactions.
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