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Magnetic-field inversion in vortices in multilayers
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We present a description of very dense vortex lattices in highly anisotropic multilayers, for high fields
parallel to the layers. We show that a magnetic-field inversion can occur away from the center of a vortex,
provided the layers are sufficiently far apart.@S0163-1829~97!05745-7#
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The structure of vortices in layered superconductors p
sents a fascinating array of peculiar characteristics, dep
ing on the direction of the external magnetic field. Some
these have been studied quite some time ago, while ot
more recently.1,2 The case where the external field is paral
to the layers is an especially interesting one. It was sho
numerically,3 for example, that in layered superconducto
with inequivalent layers immersed in a magnetic field par
lel to the layers, the field around a vortex can be invert
The inversion can be achieved only when the in-plane p
etration depth of the weakly superconducting layers is m
greater than that of the strongly superconducting layers. T
work was based on the assumption of an essentially unif
order-parameter amplitude along the layers.

The present paper aims to show that the above mentio
field inversion for vortices parallel to the layers can be
really generic effect in highly anisotropic multilayers, whe
the superconducting structure undulates along thez axis, as
long as the period of undulation is large enough, and as l
as the applied magnetic field is high enough. We show
particular that if the period of undulationd of the supercon-
ducting structure is much larger than a penetration deptl
along thez axis, then the field of a vortex is inverted awa
from the center of the vortex, for sufficiently high extern
fields.

What happens essentially is that the fieldh of each vortex
can go quite fast along thez axis from a nonzero valueh(0)
at the center of the vortex to the zero value of the Meiss
state, provided the penetration depthl is small enough. In
fact, for sufficiently large values ofd/l the fieldh could go
to zero within a distance much shorter thand, whered is the
distance between layers. Indeed, it will do so for dense v
tex lattices withd@l, where there are vortex centers ha
way between the layers, because the superconducting la
expel the magnetic field, limiting it to the interlayer region
It turns out now that the valueh(0) of the field at the cente
of the vortex, which lies halfway between layers, is appro
mately equal to the valueH of the external field, for largeH.
Ideally, it would be zero on the superconducting layer due
screening, if the field can vary rapidly enough. This rap
variation is ensured ifd is much greater thanl, unlike the
case of the usual superconductors or of high-temperature
perconductors, where the field changes very slowly on
scale ofd. Thus, if d/l is large enough, the field will star
out at a high value halfway between layers and drop abru
within just a fewl’s. It will have therefore a large negativ
initial slope, which makes it shoot down very abruptly.
560163-1829/97/56~21!/14143~6!/$10.00
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will thus overshoot past zero towards negative values, be
the existence of superconductivity on the layer forces it
come back up towards zero. The field therefore will decre
very rapidly from a largeh(0) to a negative value, then go t
zero within the superconducting layer, and then rise agai
the next interlayer region, where the external field can p
etrate easily. A field inversion can occur therefore, ifd/l
andH are sufficiently large, because the large negative sl
of h makes it drop down to negative values just before
coming zero around the superconducting layer.

In order to demonstrate the above-mentioned field inv
sion, we shall use a very general model that takes into
count the existence of a nonzero order parameter betwee
layers.4 We shall assume in particular that the Gibbs fr
energy of the multilayer in an external fieldH parallel to the
x axis is

E E E dx dy dzFa~z!uCu21buCu4/21
\2

2m U2 i¹ iC

2
2e

\c
AiCU2

1
\2

2M U2 i
]C

]z
2

2e

\c
AzCU2

1
1

8p
~¹3A2H !2G . ~1!

Herez is the direction normal to the layers.
We shall measurex,y,z in terms of d, the period of the
superconducting structure along thez axis. We rendera(z)
dimensionless by taking out a dimensionful constanta, so
that a(z)/a5a(z). We measureC2 in units of a/b, the
vector potentialA in units of \c/2ed, the magnetic fields in
units of\c/2ed2, and the energies in units ofd3a2/b. Thus
the Gibbs free-energy density takes the dimensionless fo

g5Fa~z!uCu21uCu4/21nG2u2 i¹ iC2AiCu2

1nU2 i
]C

]z
2AzCU2

1nG2
l2

d2 ~¹3A2H !2G , ~2!

wheren5\2/2Mad2, G25M /m, and l25mc2b/16pe2a.
The penetration depthl should not be confused with th
experimentally measured penetration depth. Note furth
more thatl depends on the choice of the dimensionful co
stanta, which is unspecified so far, whilel2/nd2 does not.
14 143 © 1997 The American Physical Society
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In this paper we shall examine very dense vortex lattic
In such lattices the vortex cells are practically rectangu
Vortices exist in every interlayer spacing, but in a squee
triangular formation, due to vortex repulsion~see Fig. 1!.
The vortices in the vortex lattice are parallel to thex axis,
because the external field is assumed to be along that
The order parameterC becomes maximum on each layer, t
distance between successive layers beingd, but vortices will
appear only every two layers along thez axis, due to their
mutual repulsion. Thus each rectangular vortex cell will ha
a length of 2L along they axis, and 2d along thez axis. As
the field H increases, the vortex cells get more narrow;
other wordsL decreases, but the structure along thez axis
remains unchanged. Indeed, due to their mutual repulsion
distance between two vortices along thez axis cannot be
reduced below 2d. We have thus a triangular lattice, wit
vortices situated in every interlayer spacing. The spatial
riodicity of the vortex lattice results in the quantization of t
magnetic flux contained in each unit cell. We anticipa
therefore thatL}1/H.

We expect each vortex to be axisymmetric very close
its center. The vector potential and the magnetic field v
typically over distances of the order ofl along thez axis, but
of orderGl along they axis. We shall work consistently in
the limit d@l, andG→`. In other words, our results wil
hold for highly anisotropic multilayers, with the layers su
ficiently far apart.

Very close to the vortex center, the field is axisymmetr
Thus, in the vicinity of the center, we expect the lines
constant field to be ellipses centered at the vortex center,
h5h„(z21y2/G2)1/2

…. Since the magnetic field decays
zero pretty fast, within just a fewl’s along thez axis, the
various vortices do not overlap in thez direction. Note also
that a(z)'a„(z21y2/G2)1/2

… for uzu@L/G.uyu/G. Thus, if
L!G, a(z) is axisymmetric practically everywhere. It i
thus reasonable to assume that the axisymmetry of the m
netic field will be approximately true over most of the ce
as long asG is very large. We can easily verify that th
ansatz

Ay52
sinf

G
A~r!, ~3!

FIG. 1. The vortex lattice at very high fields. Each cell has sid
2L and 2.
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Az5cosfA~r!, ~4!

with Ax50, can lead to such an axisymmetric single vort
field. The anisotropic polar coordinatesr, f on they-z plane
are defined through the equations

r5Az21y2/G2, ~5!

sinf5
z

r
, ~6!

cosf5
y

Gr
, ~7!

assuming that the origin is the center of the vortex.
We shall therefore assume that thisansatzfor the vector

potential holds over the whole cell. Sincea(z) is reallya~r!
for very anisotropic multilayers (G→`), provided uyu!G,
the order parameter amplitude and the magnetic field
essentially functions ofr only, justifying thus theansatzof
Eqs.~3! and ~4!.

The magnetic field of the vortex will be along thex axis:

h~r!5
1

Gr

]Q

]r
, ~8!

with

Q~r!5211rA~r!. ~9!

The approximate axisymmetry of the magnetic field a
of a(z) imply that the magnitude of the order parameter
approximately axisymmetric as well:

C~r,f!5c~r!eif. ~10!

The Gibbs free-energy density takes the following for
in terms ofc andQ:

g5a~z!c21
1

2
c41nS ]c

]r D 2

1
n

r2 Q2c2

1
nl2

d2 S 1

r

]Q

]r
2GH D 2

. ~11!

The superconducting structure is represented bya(z). If
this structure has a periodd, then a(z) is periodic with a
period d. We expect that the vortices are situated halfw
between the layers. Thereforea(z) will have an extremum at
the center of the vortex. Combined with the periodicity, th
implies thata(z) is an even function ofz.

We repeat that sinceG→`, we can assume thata(z) is
really a(r), as long asuyu,L!G. Thusc, Q, A, andh are
essentially functions ofr.

For a very dense vortex lattice, i.e., a high external fie
the unit cell will be a truncated ellipse, withy!G within it
~see Fig. 2!, and it will resemble a rectangle with sides 2L
and 2, whereL!G. In that caseuzu<r<(z21L2/G2)1/2

'uzu, hencer'uzu. The flux in the unit cell will then be
2L2*0

1hdr52p. The field varies very little along they axis
when they coordinate is much less thanG, so whenL has
become quite small the fieldh will be varying along thez
direction only, remaining almost constant along they direc-
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56 14 145MAGNETIC-FIELD INVERSION IN VORTICES IN . . .
tion. The order parameter will also be a function ofz only,
remaining practically constant in they direction. We can say
equivalently thatc is a function ofr only.

The Gibbs free energy will be the integral ofg over the
area of the truncated cell of Fig. 2. Thus the Gibbs f
energy per unitx length will equal

E
0

L/G

dr 2pGrg1E
L/G

1

dr GrgF2p24 cos21S L

Gr D G .
~12!

The equations that minimize this functional for 0,r
,L/G are

a~z!c1c31
nQ2c

r2 5n
]2c

]r2 1
n

r

]c

]r
, ~13!

]

]r S 1

r

]Q

]r D5
d2

l2

Qc2

r
. ~14!

Indeed, these equations minimize the first integral in
~12!. Clearly, sinceL!G, these equations really hold only a
the vicinity of the vortex center. We can easily show th
thatQ(0)521 andc(0)50. Furthermore,]h/]r is zero at
r50 andc is linear inr near the origin.

Let us now look at the caseL/G,r,1. If L!G, then the
second integral of Eq.~23! can be approximated by the inte
gral *L/G

1 4Lg dr, because cos21(L/Gr)'(p/2)2(L/Gr) on
most of the interval@L/G,1#. Thus we have to find the field
equations that minimize*L/G

1 g dr. These equations are

a~r!c1c31
nQ2c

r2 5n
]2c

]r2 , ~15!

wherer'uzu within the cell, and

]

]r S Gh2GH

r D5
d2

l2

Qc2

r2 . ~16!

This last equation can be rewritten in the form

rG
]h

]r
2Gh1GH5

d2

l2 Qc2. ~17!

We stress again that Eqs.~15! and ~17! hold only in the
interval L/G,r,1.

Let us now discuss the boundary conditions. We alre
said thatQ(0)521 at the center of the vortex. Alsoc(0)

FIG. 2. A truncated elliptical cell. The distances are always
units of d.
e

.

y

50. Since the vortex is situated halfway between the lay
and sincec varies little along they axis, due to the smallL
and the largeG, the order parameter must be zero on all t
planes that are located halfway between neighboring su
conducting layers. But the edges of the cells lie also on s
planes. Hencec(1)50. The fieldh has to fit with that of the
next cell, so we must also have that]h/]r be zero at the
edge of the cell, i.e.,ḣ(1)50. Combined with the boundary
conditionc(1)50 and with Eq.~17! this implies thath(1)
5H. The boundary conditions for Eqs.~15! and ~17! are
thusc(1)50, h(1)5H at the edge of the cell.

Since the interval@0,L/G# is quite small, we can conside
the boundary conditionsc(0)50, Q(0)521 as appropriate
for Eqs.~15! and ~17! as well, even though those equatio
apply strictly to the interval@L/G,1# only.

We conclude then that Eqs.~15! and ~17! describe fully
the dense vortex lattice if they length of the cell is much
smaller thanG, subject to the boundary conditionsc(0)
5c(1)50, Q(0)521, h(1)5H.

We shall explore the qualitative consequences of this
scription through a simple variational model before condu
ing a more careful numerical study. Thus, we shall adopt
trial order parameter

c2~r!5c0
2dS r2

1

2D , ~18!

wherec0 is determined by the details ofa(z), and we shall
solve forQ.

Equation~16!, along with the boundary conditionQ(0)
521, yields

Q~r!5211GHr2/21Gkr3/3 ~19!

for 0,r,1/2, as well as

h~r!5H1mr ~20!

for 1
2 ,r,1, k andm being integration constants.

The boundary conditionh(1)5H, i.e., ḣ(1)50, gives m
50. Thus we get

h~r!5H1kr if 0 ,r, 1
2

5H if 1
2 ,r,1. ~21!

Let us now integrate Eq.~16! from 1
2 2e to 1

2 1e, e being
a positive number tending to zero. Using theansatzof Eq.
~18! we get the boundary condition atr5 1

2 :

Gh~ 1
2 1 !2Gh~ 1

2 2 !52vQ~ 1
2 !, ~22!

with v5d2c0
2/l2. We combine now Eqs.~19!, ~21!, and

~22! to get

Gk5
3v~82GH !

61v
. ~23!

Hence

Gh~ 1
2 2 !5GH1

Gk

2
5

GH~122v!124v

1212v
, ~24!
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while h( 1
2 1)5H. Henceh changes discontinuously acro

the superconducting layer. A similar change was presente
Ref. 2.

We now note thath( 1
2 2) will be negative if and only if

v.12 and GH.24v/(v212). Hence this naive mode
shows that the fieldh of the vortex will be inverted if the
external fieldH is sufficiently high, and ifd/l is sufficiently
large.

We shall now obtain further results with the aid of n
merical work done with the choice

a~z!512(
n

ae2b~z2n21/2!2
. ~25!

We shall assume that there is a vortex atz50, and an-
other atz52. The superconducting layers are atz56 1

2 , z
56 3

2 , z56 5
2 , etc. We have solved Eqs.~15! and ~17! nu-

merically along thez axis, in the interval@0,1#, assuming
solutionsc(r) andQ(r) with r'uzu andf'p/2. SinceG is
large, our solutions are valid away from thez axis as well, in
regions withy!G. The boundary conditions are, at the ce
ter of the vortex,c(0)50, Q(0)521, as mentioned earlier
while c(1)50, h(1)5H at the edge of the cell.

We repeat here that the boundary conditions at the or
are actually the boundary conditions arising from Eqs.~13!
and~14!, since Eqs.~15! and~17! are valid in@L/G,1# only.
If L is much smaller thanG though, we may consider them a
appropriate for Eqs.~15! and ~17!.

We find that for sufficiently highd/l, and for sufficiently
largeH, the field is inverted along a substantial interval, b
definitely before1

2 . This is happening because the slope oh
is very large whend/l andH are large, and henceh drops
so low that it can become negative. We see also that the
is practically zero along the superconducting layer, giv
thus an almost ideal Meissner effect there. After crossing
layer, the fieldh rises again, till it reaches the valueH. In
this final interval beyondr5 1

2 we seem to have the norma
state. The behavior described here can be seen in Figs.

The curves in Figs. 3 and 4 were obtained for the in
parametersG5100, H52, n50.0001,a52.5, b510, and
d/l540, and they correspond toL52.2, L/G50.022. The
solution holds in@L/G,1# strictly, so h has been extende
towards the origin in Figs. 3~a!, 5, and 7, using the fact tha
it has zero slope there. The curves in Figs. 5 and 6 w
obtained for the input parametersG5100, H52, n
50.0001, a52.5, b510, and d/l5200, and they corre-
spond toL52.8,L/G50.028. Finally, the curve in Fig. 7 ha
the input parametersG550, H515, n50.0001,a52.5, b
510, andd/l540, and it corresponds toL/G50.006.

Note that the field inversion and the situation described
these figures, where the vortex atz50 and the normal state
at z51 are connected through a superconducting reg
were also discussed recently5 in the context of ordinary su
perconductors in high fields. It should be noted furtherm
that the above figures were also obtained by imposing
boundary conditions c(0)5c(1)50, Q(0)521, and
Q(1)5q, finding the solution and the corresponding Gib
free energy, and then finding whichQ(1) gave the minimum
in

-

in

t

ld
g
e

–7.
t

re

y

n,

e
e

Gibbs free energy. We thus confirmed that the boundary c
dition h(1)5H arises naturally from the minimization of th
Gibbs free energy.

As H goes up,Q(1) and h(1) will increase. Thus the
normal state at the cell boundaries gradually proceeds
wards, untilQ(1) becomes sufficiently large to destroy th
superconductivity on the layers.

It should be mentioned that the above conclusions do
depend on the details ofa(z). They depend on the fact tha

FIG. 3. ~a! The field h as a function ofr, for H52, G5100,
a52.5, b510, d/l540, andn50.0001. ~b! Detail of this graph.

FIG. 4. The order parameter amplitudec as a function ofr, for
the parameters of Fig. 3.
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56 14 147MAGNETIC-FIELD INVERSION IN VORTICES IN . . .
a(z) is even and periodic, with extrema at 0 and 1, an
layer at 1

2 . Nor do they involve they distance between th
vortices, sinceG is large.

We also note that the inversion results from the combi
tion of two factors: the large negative slope ofh at the
origin, due to the large values ofd/l andH, and the expul-
sion of the field from the layer. It should be therefore qu
independent of the boundary conditions atz51. Indeed the
equation forh has an attractive fixed point ath50. This is
shown clearly in Figs. 3, 5, and 7. We see that the fi
becomes zero the moment it starts crossing into the la
maintaining this value up to the point when it starts exiti
the layer. We have thus a perfect Meissner effect inside
layer. The inversion occurs around the point where the fi
starts entering the layer. It decreases linearly near the or
with a large negative slope. This large slope makes it ov

FIG. 5. The fieldh as a function ofr, for H52, G5100, a
52.5, b510, d/l5200, andn50.0001.

FIG. 6. The order parameter amplitudec as a function ofr, for
the parameters of Fig. 5.
a

-

d
r,

e
ld
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shoot past zero, before turning upwards again, towards
zero value of the Meissner state.

We have checked that the inversion is independent of
boundary conditions atz51 by solving Eqs.~15! and ~17!
from z50 to z5 1

2 , subject to the boundary condition
Q(0)521, c(0)50, and ]h/]r50, ]c/]r50 at r5 1

2 .
We chooseG550, H550, n50.0001,a52.5, b510, and
d/l540. The result, plotted in Fig. 8, shows again the
version and the attractive fixed point ath50.

We have shown then that in highly anisotropic multila
ers, and for fields parallel to the layers, the field is inver
away from the center of a vortex, as long asd@l, i.e., as
long as the vector potential is able to perform the necess
variations within the interlayer space, and as long asH is

FIG. 7. The fieldh as a function ofr, for H515, G550, a
52.5, b510, d/l540, andn50.0001.

FIG. 8. The fieldh as a function ofr, for H550, G550, a
52.5,b510, d/l540, andn50.0001, obtained with the boundar
conditions]c/]r50 and]h/]r50 at r5

1
2 .
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14 148 56STAVROS THEODORAKIS AND EPAMEINONDAS LEONTIDIS
large. This result is insensitive to the boundary conditions
the edge.

The field inversion discussed here could be seen exp
mentally in highly anisotropic multilayers, provided the la
ers are very far apart (d@l), at high fields. Construction o
such multilayers would be especially interesting becaus
would be one of the few instances where the magnetic fi
would have ample space for varying. In all superconduct
examined so far, even the high-Tc ones, the penetration
depth is much longer than the interlayer distance.

A field inversion has already been presented in Ref
However it was derived using a discretized model. The va
tion of C along thez axis, which is essential for the inver
sion to occur, is introduced in that work by having inequiv
lent layers, with various constant order-parame
amplitudes. In our work the variation ofC arises naturally
from a(z), which creates the undulating structure. Furth
more, the result of Ref. 3 was derived nearHc1 , and it does
not assume thatd.l. Thus the inversion in Ref. 3 occur
mostly along they axis, unlike our inversion.

A field inversion has been also presented in Ref. 6
applies however to nonlayered anisotropic materials, an
tilted fields. Furthermore, thel there is large, unlike ourl.
t

ri-

it
ld
rs

.
-

-
r

-

It
to

Our field inversion occurs between the vortex and
normal state. It might occur though, for sufficiently larg
d/l, even earlier, when the elliptical cells just start touchin
Thus, as the ellipse begins its truncation along they axis, it
may be preferable for the field at the edges of the elliptic c
to become negative. Then the cell could be truncated al
the y axis without changing its flux. This field inversio
would make possible a drastic reduction of the cell, witho
affecting the flux of each cell. Indeed, the flux of the c
would increase if we were to cut out some of the cell on
right and on the left, since the field would be negative
those pieces. We would then need to cut more on the left
on the right, pieces with positiveh now, in order to bring the
flux down to its quantized value. Thus the cell would
truncated considerably without affecting its flux. If such
field inversion at the edges of the cell were to occur, then
would have neighboring vortices with an inverted field
between. In such a case though, the lattice would be an a
of parallel chains of vortices, and each chain would hav
vortex in every interlayer spacing. The existence of su
chains would require an attraction between the vortices al
the z direction, an attraction that would be made possi
precisely because of the field inversion.
.
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