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Magnetic-field inversion in vortices in multilayers
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We present a description of very dense vortex lattices in highly anisotropic multilayers, for high fields
parallel to the layers. We show that a magnetic-field inversion can occur away from the center of a vortex,
provided the layers are sufficiently far apd$0163-182807)05745-7

The structure of vortices in layered superconductors prewill thus overshoot past zero towards negative values, before
sents a fascinating array of peculiar characteristics, depenthe existence of superconductivity on the layer forces it to
ing on the direction of the external magnetic field. Some ofcome back up towards zero. The field therefore will decrease
these have been studied quite some time ago, while othekery rapidly from a largé(0) to a negative value, then go to
more recently:? The case where the external field is parallel zero within the superconducting layer, and then rise again in
to the layers is an especially interesting one. It was showithe next interlayer region, where the external field can pen-
numerically® for example, that in layered superconductorsetrate easily. A field inversion can occur thereforedii
with inequivalent layers immersed in a magnetic field paral-andH are sufficiently large, because the large negative slope
lel to the layers, the field around a vortex can be invertedof h makes it drop down to negative values just before be-
The inversion can be achieved only when the in-plane peneoming zero around the superconducting layer.
etration depth of the weakly superconducting layers is much In order to demonstrate the above-mentioned field inver-
greater than that of the strongly superconducting layers. Thision, we shall use a very general model that takes into ac-
work was based on the assumption of an essentially uniforroount the existence of a nonzero order parameter between the
order-parameter amplitude along the layers. layers* We shall assume in particular that the Gibbs free

The present paper aims to show that the above mentionashergy of the multilayer in an external fielttl parallel to the
field inversion for vortices parallel to the layers can be ax axis is
really generic effect in highly anisotropic multilayers, where

the superconducting structure undulates alongztagis, as 2

fi
long as the period of undulation is large enough, and as long j f f dx dy d%a(z)|\lf|2+ Bl |42+ >m —iv,w
/ e . m
as the applied magnetic field is high enough. We show in
particular that if the period of undulatiash of the supercon- 2¢ 2 p2 9V 2e 2
ducting structure is much larger than a penetration dapth  — e AV + M| a7 he A,

along thez axis, then the field of a vortex is inverted away
from the center of the vortex, for sufficiently high external 1
fields. = (VxA—H)Z}- @
What happens essentially is that the fibldf each vortex
can go quite fast along theaxis from a nonzero valule(0)
at the center of the vortex to the zero value of the Meissne{N
state, provided the penetration depthis small enough. In
fact, for sufficiently large values af/\ the fieldh could go : . X . -
to zero within a distance much shorter ttdirwhered is the dimensionless by taking out a d|r;16_:n5|or_1ful constanto
distance between layers. Indeed, it will do so for dense vortat a(2)/a=a(z). We measurel'* in units of o/, the
tex lattices withd>\, where there are vortex centers half- V¢t potentlazlA In units of#.c/2ed, the _magne;uc fields in
way between the layers, because the superconducting lay gits QfﬁC/Zed , and the energies in units .dﬁa /ﬁ' Thus
expel the magnetic field, limiting it to the interlayer regions. e Gibbs free-energy density takes the dimensionless form
It turns out now that the valule(0) of the field at the center
of the vortex, which lies halfway between layers, is approxi-
mately equal to the valud of the external field, for largél.
Ideally, it would be zero on the superconducting layer due to
screening, if the field can vary rapidly enough. This rapid
variation is ensured ifl is much greater thai, unlike the
case of the usual superconductors or of high-temperature su-
perconductors, where the field changes very slowly on thevhere v=%2/2M ad?, T2=M/m, and\>=mcB/16me?a.
scale ofd. Thus, ifd/\ is large enough, the field will start The penetration depthh should not be confused with the
out at a high value halfway between layers and drop abruptlgxperimentally measured penetration depth. Note further-
within just a few)’s. It will have therefore a large negative more that\ depends on the choice of the dimensionful con-
initial slope, which makes it shoot down very abruptly. It stanta, which is unspecified so far, whike?/ vd? does not.

Herez is the direction normal to the layers.
e shall measure,y,z in terms ofd, the period of the
superconducting structure along theaxis. We renden(z)

g=[a(z)|llf|2+|\lf|4/2+ 2 =iV, U —A |2
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2L A,=cospA(p), 4
[ l l I I with A,=0, can lead to such an axisymmetric single vortex
A i i
1 I ® T l o I field. The anisotropic polar coordinatps¢ on they-z plane
y i i i i I are defined through the equations
¢ r77m 8 emTo p=ETYIT?, ©
F——=1 ® F———1 @& | 2
: i ; | i sing=—, (6)
| ® F———41 @® |——— p
§ | | ) I
F———4 ® F———4 @ | -y
! | | . | cosp= 1., (7)
i o i—- _——— -i o i—- ——— -i assuming that the origin is the center of the vortex.

We shall therefore assume that tlissatzfor the vector
potential holds over the whole cell. Sina€z) is really a(p)

FIG. 1. The vortex lattice at very high fields. Each cell has sidesfor very anisotropic multilayersI{— ), provided|y|<T,
2L and 2. the order parameter amplitude and the magnetic field are

_ _ ~essentially functions op only, justifying thus theansatzof
In this paper we shall examine very dense vortex latticesggs (3) and (4).

In such lattices the vortex cells are practically rectangular. ‘The magnetic field of the vortex will be along theaxis:
Vortices exist in every interlayer spacing, but in a squeezed

triangular formation, due to vortex repulsideee Fig. L 1 9Q

The vortices in the vortex lattice are parallel to thexis, h(p)= ﬁ%’ ®
because the external field is assumed to be along that axis.

The order parameté¥ becomes maximum on each layer, the With

distance between successive layers béingut vortices will

appear only every two layers along theaxis, due to their Q(p)=—1+pA(p). ©
mutual repulsion. Thus each rectangular vortex cell will have
a length of 2. along they axis, and 2l along thez axis. As
the field H increases, the vortex cells get more narrow; in
other wordsL decreases, but the structure along thaxis
remains unchanged. Indeed, due to their mutual repulsion the W (p,d)=i(p)e'®. (10)
distance between two vortices along theaxis cannot be

reduced below @& We have thus a triangular lattice, with ~ The Gibbs free-energy density takes the following form,
vortices situated in every interlayer spacing. The spatial pein terms ofy and Q:
riodicity of the vortex lattice results in the quantization of the

The approximate axisymmetry of the magnetic field and
of «(z) imply that the magnitude of the order parameter is
approximately axisymmetric as well:

2

magnetic flux contained in each unit cell. We anticipate _ > l 4 a_lﬂ V2.9
therefore that.«1/H. g=a(2)y™+ Vv ap * p° Q%

We expect each vortex to be axisymmetric very close to ) )
its center. The vector potential and the magnetic field vary n VA E @ “TH

. : . — . (11
typically over distances of the order ®falong thez axis, but dc \p dp
of orderI'\ along they axis. We shall work consistently in ) _
the limit d>X\, andT'—<. In other words, our results will ~ The superconducting structure is represented(). If
hold for highly anisotropic multilayers, with the layers suf- this structure has a periadi, then (z) is periodic with a
ficiently far apart. periodd. We expect that the vortices are situated halfway

Very close to the vortex center, the field is axisymmetric.petween the layers. Therefos€z) will have an extremum at
Thus, in the Vicinity of the center, we expect the lines ofthe center of the vortex. Combined with the periodicity, this
constant field to be ellipses centered at the vortex center, i.dMmplies thata(z) is an even function ot.
h=h((z2+y%T?)¥?. Since the magnetic field decays to ~We repeat that sincE—, we can assume that(z) is
zero pretty fast, within just a few’s along thez axis, the  really a(p), as long agy|<L<T". Thusy, Q, A, andh are
various vortices do not overlap in tkedirection. Note also  €ssentially functions op.
that a(2) ~ a((Z2+y2/ITA)Y? for |z|>LIT>|y|/T. Thus, if For a very dense vortex lattice, i.e., a high external field,
L<F' a(z) is axisymmetric practica”y everywhere_ It is the unit cell will be a truncated ellipse, WIU’%F within it
thus reasonable to assume that the axisymmetry of the magse€ Fig. 2, and it will resemble a rectangle with sidet 2
netic field will be approximately true over most of the cell, and 2, whereL<T". In that case|z|<p=(z’+L%T?)
as long asl is very large. We can easily verify that the =|z|, hencep~|z|. The flux in the unit cell will then be
ansatz 2L2féhdp=27r. The field varies very little along thg axis
when they coordinate is much less thdh so whenL has
become quite small the field will be varying along thez

sing
B A direction only, remaining almost constant along thdirec-

Ay=—— Alp), ()
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FIG. 2. A truncated elliptical cell. The distances are always in

units ofd.

tion. The order parameter will also be a functionzobnly,
remaining practically constant in thyedirection. We can say
equivalently thaty is a function ofp only.

The Gibbs free energy will be the integral gfover the
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=0. Since the vortex is situated halfway between the layers,
and sincey varies little along they axis, due to the small

and the largd’, the order parameter must be zero on all the
planes that are located halfway between neighboring super-
conducting layers. But the edges of the cells lie also on such
planes. Hence(1)=0. The fieldh has to fit with that of the
next cell, so we must also have that/Jp be zero at the
edge of the cell, i.eh(1)=0. Combined with the boundary
condition (1)=0 and with Eq.(17) this implies thath(1)

=H. The boundary conditions for Eq$l5) and (17) are
thus(1)=0, h(1)=H at the edge of the cell.

Since the intervalO,L/T"] is quite small, we can consider
the boundary conditiong(0)=0, Q(0)=—1 as appropriate
for Egs. (15 and(17) as well, even though those equations
apply strictly to the intervalL/T",1] only.

We conclude then that Eq&l5) and (17) describe fully
the dense vortex lattice if thg length of the cell is much
smaller thanI', subject to the boundary condition(0)

area of the truncated cell of Fig. 2. Thus the Gibbs free— y(1)=0, Q(0)=—1, h(1)=H.

energy per unik length will equal

27 —4 cos‘l(i) }
I'p
(12

L/T 1
f dp 27TFpg+J dp T'pg
0 L/T

The equations that minimize this functional for<®
<L/T are

Py vy
W"‘E%, (13

vQ?y

o7

a(2)p+ P+

2 2
2 (1m)_dos »
p ap

ap A% p

Indeed, these equations minimize the first integral in Eq
(12). Clearly, sincd<TI", these equations really hold only at

We shall explore the qualitative consequences of this de-
scription through a simple variational model before conduct-
ing a more careful numerical study. Thus, we shall adopt the
trial order parameter

2 2 1
Wp) =3\ =3, (19
wherey, is determined by the details of(z), and we shall
solve forQ.

Equation(16), along with the boundary conditio@(0)
=—1, yields

Q(p)=—1+THp?2+Tkp®3 (19
for 0<p<1/2, as well as
h(p)=H+up (20)

the vicinity of the vortex center. We can easily show then

thatQ(0)=—1 and#(0)=0. Furthermoregh/dp is zero at
p=0 andy is linear inp near the origin.
Let us now look at the cade/T"<p<<1.If L<T', then the

second integral of Eq23) can be approximated by the inte-

gral [{,-4Lg dp, because cog(L/Tp)~(m/2)—(L/Tp) on

most of the interva] L/T",1]. Thus we have to find the field

equations that minimiz¢},-g dp. These equations are

alp) gt v+ VC;‘//: v f—;ﬁ (15)
wherep~|z| within the cell, and
_ 2 2
%(Fh er :%pr | 6
This last equation can be rewritten in the form
oh d?
pl’ %—FthFH:FQ://z. (17

We stress again that Eg&l5) and (17) hold only in the
interval L/T'<p<1.

Let us now discuss the boundary conditions. We already

said thatQ(0)= —1 at the center of the vortex. Alsg(0)

for $<p<1, k and u being integration constants.
The boundary conditiorh(1)=H, i.e., h(1)=0, gives u
=0. Thus we get

h(p)=H+«kp if 0<p<j3

=H if 3<p<l. (21

Let us now integrate Eq16) from 3 — € to 3 + €, € being

a positive number tending to zero. Using thesatzof Eq.

(18) we get the boundary condition at=3:

I'h(z+)-Th(z-)=20Q(3), (22)

with w=d?y3/\2. We combine now Egs(19), (21), and
(22) to get

_ 3w(8-TH) -
e =
Hence
. I'c TH(12- w)+ 24w
I'h(}—)=TH+ —= . (29

2 12+ 2w
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while h(3+)=H. Henceh changes discontinuously across 2.4 4
the superconducting layer. A similar change was presented in 20 | H=2.0
Ref. 2. :

We now note thah(3—) will be negative if and only if 167 |
w>12 and 'H>24w/(w—12). Hence this naive model e 121
shows that the fieldh of the vortex will be inverted if the £ 08
Iexternal fieldH is sufficiently high, and ifd/\ is sufficiently 04 :
arge.

We shall now obtain further results with the aid of nu- 00 "i“,_}_ _______
merical work done with the choice 0.4 T . T T

0.0 0.2 0.4 0.6 0.8 1.0
P
a(z)=1-, ae bz n-1/27 (25)
" 0.2
) 0.1 1

We shall assume that there is a vortexzatO, and an-
other atz=2. The superconducting layers arezat + 3, z @ 0.0 4
=+3 z=+3, etc. We have solved Eqél5) and(17) nu- =
merically along thez axis, in the interval[0,1], assuming 0.1
solutionsy(p) andQ(p) with p~|z| and ¢~ /2. Sincel is
large, our solutions are valid away from thaxis as well, in -0.2 T x T T ' .
regions withy<T". The boundary conditions are, at the cen- 02 03 04 05 06 07
ter of the vortex(0)=0, Q(0)= —1, as mentioned earlier, p

while (1)=0, h(1)=H at the edge of the cell.

We repeat here that the boundary conditions at the origin
are actually the boundary conditions arising from E(S) FIG. 3. (a) The fieldh as a function ofp, for H=2, I'=100,
and(14), since Eqgs(15) and(17) are valid in[L/T",1] only. a=2.5,b=10,d/A=40, andv=0.0001. (b) Detail of this graph.

If L is much smaller thak though, we may consider them as
appropriate for Eqs(15) and (17). Gibbs free energy. We thus confirmed that the boundary con-

We find that for sufficiently highi/X, and for sufficiently ~ dition h(1)=H arises naturally from the minimization of the
largeH, the field is inverted along a substantial interval, butGibbs free energy.
definitely before}. This is happening because the slopdiof ~ As H goes up,Q(1) andh(1) will increase. Thus the
is very large wherd/\ andH are large, and hende drops normal state at the cell boundaries gradually proceeds in-
so low that it can become negative. We see also that the fielards, untilQ(1) becomes sufficiently large to destroy the
is practically zero along the superconducting layer, givingsuperconductivity on the layers.
thus an almost ideal Meissner effect there. After crossing the It should be mentioned that the above conclusions do not
layer, the fieldh rises again, till it reaches the vali. In  depend on the details a@f(z). They depend on the fact that
this final interval beyong=3 we seem to have the normal
state. The behavior described here can be seen in Figs. 3-7.

The curves in Figs. 3 and 4 were obtained for the input 14
parameterd’=100, H=2, »=0.0001,a=2.5, b=10, and 12 -
d/\=40, and they correspond 10=2.2, L/T'=0.022. The '
solution holds in[L/T",1] strictly, soh has been extended 10 -
towards the origin in Figs.(d), 5, and 7, using the fact that '
it has zero slope there. The curves in Figs. 5 and 6 were 08 -
obtained for the input parameter§=100, H=2, v e
=0.0001,a=2.5, b=10, andd/A=200, and they corre- EPN
spond toL =2.8,L/T"=0.028. Finally, the curve in Fig. 7 has ‘
the input parameterf =50, H=15, »=0.0001,a=2.5, b 04
=10, andd/A =40, and it corresponds tio/I"=0.006. ‘

Note that the field inversion and the situation described by 0.2
these figures, where the vortexzt 0 and the normal state ’
at z=1 are connected through a superconducting region, 0.0 , ‘ 1 ,

were also discussed recentiy the context of ordinary su-
perconductors in high fields. It should be noted furthermore
that the above figures were also obtained by imposing the P

boundary conditions ¢(0)=¢(1)=0, Q(0)=-1, and

Q(1)=q, finding the solution and the corresponding Gibbs FIG. 4. The order parameter amplitugleas a function of, for
free energy, and then finding whi€)(1) gave the minimum the parameters of Fig. 3.

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 5. The fieldh as a function ofp, for H=2, I'=100, a

—2.5,b=10, d/\ = 200, andv=0.0001. FIG. 7. The fieldh as a function ofp, for H=15, I'="50, a

=2.5,b=10, d/x=40, andv=0.0001.

a(2) is even and periodic, with extrema at 0 and 1, and ashoot ast zero, before turning upwards again, towards the
layer at3. Nor do they involve they distance between the P ' g up gain,

. . . zero value of the Meissner state.
vortices, sincd’ is large. : L
We also note that the inversion results from the Combinabox?j;ravc?o%ré?t?gre\g git 1tht? mS\ge;\r/isrl]onEls ;n(clzlte_);azrrl]((jje(ri%of the
tion of two factors: the large negative slope lofat the y —- by g E0Os

. . "
origin, due to the large values df\x andH, and the expul- frog] _Z:(i to S__Eé SUbéeCr':/ to _tge bo/und_a(r)y conditions
sion of the field from the layer. It should be therefore quite\?\/(e )caoos,el“l/fz( 5)0_ H’:a5no (Z/=((9)p0_00’16a¢=(92p5? b=ai(l))_a5n.d

independent of the boundary conditionszat1. Indeed the d/x=40. Th ,It I ti di .F' 8 h. ’ ! the in-
equation forh has an attractive fixed point &t=0. This is - 'he result, plotted In Fig. o, Shows again the in

shown clearly in Figs. 3, 5, and 7. We see that the fieldver\'ls\;gnhzng ghh%aﬁr?ﬁgxirf:;e% I:I?](')”;]tlm;?'.sotro ic multilav-
becomes zero the moment it starts crossing into the laye v w In ighly ani pic muitiiay

r i e
maintaining this value up to the point when it starts exitingérs' and for fields parallel to the layers, the field is inverted

the layer. We have thus a perfect Meissner effect inside th way from the center of a vortex, as longa@s , i.e., as
layer. The inversion occurs around the point where the fiel ong as the vector potential Is able to perform the necessary

starts entering the layer. It decreases linearly near the origiﬁ’,arlatlons within the interlayer space, and as longHass
with a large negative slope. This large slope makes it over-
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FIG. 8. The fieldh as a function ofp, for H=50, I'=50, a
FIG. 6. The order parameter amplitugleas a function op, for =2.5,b=10,d/\ =40, andv=0.0001, obtained with the boundary
the parameters of Fig. 5. conditionsdy/dp=0 anddh/dp=0 atp=3.
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large. This result is insensitive to the boundary conditions at Our field inversion occurs between the vortex and the
the edge. normal state. It might occur though, for sufficiently large
The field inversion discussed here could be seen experd/\, even earlier, when the elliptical cells just start touching.
mentally in highly anisotropic multilayers, provided the lay- Thus, as the ellipse begins its truncation alongythexis, it
ers are very far apardé-\), at high fields. Construction of may be preferable for the field at the edges of the elliptic cell
such multilayers would be especially interesting because ito become negative. Then the cell could be truncated along
would be one of the few instances where the magnetic fielthe y axis without changing its flux. This field inversion
would have ample space for varying. In all superconductorsvould make possible a drastic reduction of the cell, without
examined so far, even the high- ones, the penetration affecting the flux of each cell. Indeed, the flux of the cell
depth is much longer than the interlayer distance. would increase if we were to cut out some of the cell on the
A field inversion has already been presented in Ref. 3right and on the left, since the field would be negative in
However it was derived using a discretized model. The variathose pieces. We would then need to cut more on the left and
tion of ¥ along thez axis, which is essential for the inver- on the right, pieces with positive now, in order to bring the
sion to occur, is introduced in that work by having inequiva-flux down to its quantized value. Thus the cell would be
lent layers, with various constant order-parametertruncated considerably without affecting its flux. If such a
amplitudes. In our work the variation oF arises naturally field inversion at the edges of the cell were to occur, then we
from «(z), which creates the undulating structure. Further-would have neighboring vortices with an inverted field in
more, the result of Ref. 3 was derived nédy;, and it does  between. In such a case though, the lattice would be an array
not assume thad>\. Thus the inversion in Ref. 3 occurs of parallel chains of vortices, and each chain would have a
mostly along they axis, unlike our inversion. vortex in every interlayer spacing. The existence of such
A field inversion has been also presented in Ref. 6. lichains would require an attraction between the vortices along
applies however to nonlayered anisotropic materials, and tthe z direction, an attraction that would be made possible

tilted fields. Furthermore, the there is large, unlike oux. precisely because of the field inversion.
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