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Magnetic breakdown in a normal-metal–superconductor proximity sandwich

Alban L. Fauche`re and Gianni Blatter
Theoretische Physik, Eidgeno¨ssische Technische Hochschule, CH-8093 Zu¨rich, Switzerland

~Received 7 July 1997!

We study the magnetic response of a clean normal-metal slab of finite thickness in proximity with a bulk
superconductor. We determine its free energy and identify two~meta!stable states, a diamagnetic one where the
applied field is effectively screened, and a second state, where the field penetrates the normal-metal layer. We
present a complete characterization of the first-order transition between the two states which occurs at the
breakdown fieldHb(T), including its spinodals, the jump in the magnetization, and the latent heat. The bistable
regime terminates at a critical temperatureTcrit above which the sharp transition is replaced by a continuous
crossover. We compare the theory with experiments on normal superconducting cylinders.
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The superconducting proximity effect in a normal me
adjacent to a superconductor has received a revived inte
in the past decade.1 Among the fundamental equilibrium
problems, the magnetic response of normal-met
superconductor~NS! structures deserves particular intere
Experiments have demonstrated the nontrivial screen
properties of these hybrid structures, exhibiting a hyster
magnetic breakdown at finite fields2–4 as well as a presently
unexplained reentrance in the magnetic susceptibility at
temperatures.5 The investigated samples have typical dime
sions comparable to the coherence lengthjN of the normal
metal, attributing a key role to the quantum coherence of
electrons coupled to the macroscopic phase of the super
ductor.

The self-consistent study of the screening currents in a
sandwich within the framework of the Ginsburg-Land
~GL! equation was carried out a long time ago by the Or
group.6 Their work has provided the first understanding
the nonlinear field phenomena such as the magnetic br
down. However, in the proximity effect, the GL equatio
are at their limit of validity and their use is restricted to t
dirty limit. The quasiclassical Green’s function techniqu7

allows one to describe the clean limit using the Eilenber
equations8 and to generalize the dirty limit results using th
Usadel equations.9 Zaikin was the first to derive the magnet
response of a normal-metal slab of finite thickness conne
to a bulk superconductor along these lines.10 Most notably,
he found a nonlocal screening behavior in the clean li
linear response which has an appealing similarity to the
found in superconductors of the Pippard type. The app
~static! magnetic field was found to be overscreened,
magnetic induction changing sign inside the normal lay
Using numerical methods, Belziget al.11 have investigated
the nonlinear field regime of these equations and found
~meta-!stable mean-field solutions in both the clean and
dirty limit. In this work, we determine theH-T ‘‘phase’’
diagram shown in Fig. 1 of the normal metal layer in t
clean limit, where the bistable regime is particularly e
tended. In thermodynamic equilibrium, we find a magne
breakdown atHb(T), which is a first-order transition sepa
rating the phase of diamagnetic screening from the phas
magnetic field penetration.
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Mota et al.12,13 have recently investigated the magne
response of metallic cylinders with a superconducting co
Their data, which are not described by the results of the
equations, were claimed to be characteristic for the balli
limit.13 This has motivated us to derive the analytic depe
dence of the clean limit expression for the breakdown fi
Hb on temperatureT and thicknessd of the normal layer and
to compare it to the experiment. From the free energy of
normal layer, which allows us to identify the tw
~meta-!stable states, we determine the spinodals, the ther
dynamic breakdown fieldHb(T) and find the jumps in mag
netization and entropy at the transition. Furthermore, we
tain a critical temperature which marks the upper limit of t
bistable regime~see Fig. 1!. Finally, we work out the signa-
tures of the nonlocality in the ballistic regime as they sh
up in the magnetic susceptibilityx and compare them with
the experimental data. The following discussion is divid
into four sections, the analysis of the constitutive relatio
~Sec. I!, the solution of the magnetostatic problem~Sec. II!,

FIG. 1. H-T phase diagram of the normal metal slab of thic
nessd. The breakdown fieldHb(T);F0 /lN(T)d marks the first-
order transition between the diamagnetic and the field penetra
phase@lN(T) denotes the penetration depth,F0 the superconduct-
ing flux unit#. The critical point at the intersection of the spinoda
Hsc(T);F0 /d2 and Hsh(T);F0 /lN

2 (T) separates the first-orde
transition forlN(T)!d from the continuous crossover at large tem
perature@lN(T)@d#.
14 102 © 1997 The American Physical Society
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56 14 103MAGNETIC BREAKDOWN IN A NORMAL- . . .
the determination of the breakdown field from the free e
ergy ~Sec. III!, and finally the comparison with experime
~Sec. IV!.

I. CONSTITUTIVE RELATIONS

The quasiclassical Green’s function technique provides
appropriate description of a metal with a nearly spheri
Fermi surface. In a finite magnetic field, the vector poten
A(x) can be included as a phase factor along unpertur
trajectories, provided the dimensions of the normal metal
smaller than the Larmor radius (r L5pFc/eH, cyclotron ra-
dius of an electron traveling at Fermi velocity!. In the ballis-
tic limit, the quasiclassical 232 matrix Green’s function
ĝvn

(x,vF) satisfies the Eilenberger equation8 (e5ueu,
\5kB5c51)

2~vF•“ !ĝvn
~x,vF!5@$vn1 ievF•A~x!%t̂3

1D~x!t̂1 ,ĝvn
~x,vF!#, ~1!

where the mean-field order parameterD provides an off-
diagonal potential @ t̂ i denote the Pauli matrices
vn5(2n11)pT are the Matsubara frequencies,@•,•# is the
commutator#. We have excluded elastic scattering proces
by assumingT@1/tel .

We consider a normal metal slab of thicknessd on top of
a bulk superconductor as shown in the inset of Fig. 2. T
vector potentialA5@0,A(x),0# describes a magnetic fiel
B5@0,0,B(x)# applied parallel to the surface, which induc
screening currentsj5@0,j (x),0#. We make the following
idealizations in the description of the NS sandwich: The
perconducting order parameter follows a step funct
D(x)5Du(2x) (D real!, no attractive interactions bein
present in the normal layer. We assume a perfect NS in
face as well as specular reflection at the normal-vacu
boundary.

In the subsequent analysis we restrict our attention to
magnetic response of the normal layer. In the proximity
fect, the macroscopic coherence of the superconducting
densate induces correlated electron-hole pairs in the no
layer through the process of Andreev reflection. The ba
process consists of an electron traveling forward and a h
traveling backward along a quasiclassical trajectory
shown in Fig. 2~at discrete energies, bound Andreev sta
are found along these trajectories!. In the presence of a mag
netic field, the area enclosed by the trajectory~see Fig. 2! is
threaded by the flux

F~a,q,w!5 R A~x!•dx52 tanq coswE
0

d

A~x!dx, ~2!
-
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which can be expressed through the integrala5*0
dA(x)dx

times a geometric factor due to the inclination of the traje
tory ~the spherical anglesq andw parametrize the direction
of the trajectory!. The current carried along a trajectory d
pends on the phase factor 2F(a,q,w)/F0 acquired by the
propagation of both the electron and the hole along the
dreev loop, and we arrive at an intrinsic nonlocal curren
field dependencej (a). The total current is determined by th
sum over the currents along the quasiclassical trajectorie

j y~x!5
iempF

p
T (

vn.0
^vyTr@ t̂3ĝvn

~x,vF!#& ~3!

~the bracketŝ•••& denote the average over the anglesq, w),
from which we reproduce the expression first derived
Zaikin10,

j ~a!5E
0

p/2

dqE
0

p/2

dw j @q,w,F~a,q,w!#, ~4!

where (an52vnd/vFcosq)

FIG. 2. MagnetizationM(H) and free energyG(T,H) at a tem-
peratureT51.5TA (TA5vF/2pd). The representation is universa
in the thicknessd. The small and large field branches represe
~meta-!stable solutions describing the diamagnetic and field p
etration phases, which overlap in the field intervalHsc,H,Hsh.
The Maxwell construction determines the first-order transition
tween the phases at the breakdown fieldHb ~dashed line!. Inset:
Cross section of the normal-metal slab in contact with the b
superconductor. The quasiclassical electron-hole trajectory
anglesq, w50 encloses a flux that enters as a phase factor in
wave function.
j @q,w,F~a,q,w!#52
2epF

2

p2
T (

vn.0
sin2qcosw

D2sin2pF/F0

~vncoshan1Avn
21D2sinhan!21D2cos2pF/F0

. ~5!
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14 104 56ALBAN L. FAUCHÈRE AND GIANNI BLATTER
Note that j is independent ofx. The induced currents fo
each trajectory depend only on the fluxF modulo the super-
conducting flux quantumF05p\c/e, reflecting gauge in-
variance. At small fields (a/F0!1), the current response i
diamagnetic for all trajectories and the proximity effect pr
duces screening currents in the normal metal. As the fi
increases toa/F0;1, some of the more extended traject
ries produce paramagnetic currents, since the reduced
FP@2F0/2,F0/2# they enclose becomes negative, and
net diamagnetic current response is reduced. As we re
large fields (a/F0@1), the Andreev levels become mutual
dephased due to a uniform distribution of the reduced fl
The associated currents are randomly dia- or paramagn
and the net current vanishes. Note that the proximity eff
i.e., the existence of the Andreev levels is not destroyed
this limit, leading to a finite kinetic energy of the curren
induced by the magnetic field.

II. MAGNETOSTATICS

Owing to the independence ofj on x, the Maxwell
equation 2]x

2A(x)54p j and the constitutive equation
~4! and ~5! combined with the boundary
conditions14 A(x50)50 and ]xA(x5d)5H can be given
a formal solution. We arrive at a parabolic dependen
for A(x)5Hx14p j (a)x(d2x/2) parametrized by
a5*0

dA(x)dx, which in turn is determined through the se
consistency condition

a5
Hd2

2
1

4p

3
j ~a!d3. ~6!

The total magnetizationM ~per unit surface! is defined by

4pM5E
0

d

dx„]xA~x!2H…52p j ~a!d2. ~7!

Equation~6! contains the essential physics of the proble
For small fields (a→0), the currentj '23H/8pd linearly
suppresses the magnetic induction on the geometric le
th
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scaled to the valueB(0)→2H/2 at the NS boundary. The
magnetic induction is thus overscreened and assumes an
posite sign at the NS interface. A closer look shows that
current is given by the linear response expression

j ~a/F0!1!'2
1

4plN
2 ~T!d

a, ~8!

which depends on penetration depthlN(T)!d to be derived
below @Eq. ~16!#. When inserted back into Eq.~6!, the vector
potential is found to be strongly suppressed
a'3HlN

2 (T)/2, and we obtain a consistent diamagnetic s
lution ~i.e., a/F0!1) for fields up toH,F0 /lN

2 . At large
fields, the current vanishes (j→0) and the magnetic field
penetrates the normal layer. From Eq.~6! we finda'Hd2/2,
consequently this metallic behavior is expected down
magnetic fieldsH.F0 /d2, as follows from the condition
a/F0@1 for the Andreev levels to be dephased. W
F0 /d2!F0 /lN

2 the diamagnetic and field penetration sol
tion coexist in the regimeF0 /d2,H,F0 /lN

2 . These
simple estimates for the limits of the bistable regime elu
date the numerical data of Belziget al.11

III. THERMODYNAMICS

In the phase diagram of Fig. 1 the upper and lower bou
of the bistable regime found from the above mean-fi
analysis are identified with the spinodals of the transition,
supercooled fieldHsc;F0 /d2 and the superheated fiel
Hsh;F0 /lN

2 (T). In the thermodynamic equilibrium, a mag
netic breakdown occurs at an intermediate field, connec
the diamagnetic regime to the field penetration regime b
first order transition. In the following, we determine th
breakdown field and the associated entropy and magne
tion jump from the free energy.

The energy ~per unit surface! of the currents
j (x)52dF/dA(x) is obtained via an integration over th
nonlinear current expression
F~a!52E
0

a

j ~a8!da85
pF

2

p2
T (

vn.0
E

0

p/2

dqE
0

p/2

dw sinqcosq ln
~vncoshan1Avn

21D2sinhan!21D2

~vncoshan1Avn
21D2sinhan!21D2cos2pF/F0

. ~9!
etic
The
t in
nd
the
ice

’s
F(a) describes the difference in free energy between
metal layer under proximity and in the normal state.F(a) is
a monotonous and strictly positive function, reflecting t
absence of condensation energy in the normal layer, and
presses the cost of the induced proximity effect lying in
kinetic energy of the currents induced by the vector pot
tial. The free energyF(T,M) is constructed by adding th
electromagnetic field energy and subtracting the vacu
field contribution,

F~T,M!5F~a!1E
0

d

dxS @]xA~x!#2

8p
2

H2

8p D . ~10!
e

x-
e
-

m

We do not include the condensation energy and the kin
energy of the screening currents in the superconductor.
field dependent term of the condensation energy migh
fact be of the order of the free energy in the normal layer a
would be expected to produce numerical corrections in
results, which are not accounted for by our idealized cho
of the order parameterD(x)5Du(2x). The kinetic energy
of the screening currents;H2l may be neglected.

After a Legendre transformation, we obtain the Gibb
free energy

G~T,H !5F~T,M!2MH5F~a!1E
0

d

dx
@]xA~x!2H#2

8p
.

~11!
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56 14 105MAGNETIC BREAKDOWN IN A NORMAL- . . .
The field term in Eq.~11! describes the work necessary
expel the magnetic field. The extrema of the free energG
with respect toa reproduce the equation of state~6!. Figure
2 shows the free energyG(H) as obtained from the param
etrization of G and H through a.15 The breakdown field
Hb(T) is determined by the intersection of the free energ
G of the two ~meta-!stable solutions. We note that this pr
cedure is equivalent to the Maxwell construction in the m
netization curveM52]G/]H of Fig. 2.

In the following, we consider the free energy~9! in the
two temperature limitsT50 and TA!T<D and obtain
(TA5vF/2pd)

FT50~a!'
pF

3

4p3dm
E

0

p/2

dqE
0

p/2

dw

3sinqcos2q$arctan@ tanpF/F0#%2, ~12!

FT@TA
~a!'

4pF
2T

p2
g2~T,D!E

0

p/2

dqE
0

p/2

dw

3sinqcosqexpS 2
2T

TAcosq D sin2pF/F0 .

~13!

The finite value of the superconducting gapD is accounted
for by the dimensionless parameter

g~T,D!5D/@AD21~pT!21pT#,1. ~14!

The free energies of the two~meta-!stable states can b
approximated by their asymptotic forms in the limitsa→0
anda→`. In the diamagnetic regime, the expansion ina/F0
up to quadratic order of Eqs.~12! and~13! provide the result

F~a!'
a2

8plN
2 ~T!d

. ~15!

Equation~15! is valid both in the low and high temperatu
limits using the penetration depth 1/lN

2 (0)
[1/lN

2 5(4pne2/m) at T50 and

1

lN
2 ~T!

'
1

lN
2

g2~T,D!
6TA

T
e22T/TA ~16!

for T@TA . Note that the derivativej 52]F/]a applied to
Eq. ~15! produces the linear response constitutive relation
Eq. ~8!. The Gibb’s free energy follows from Eqs.~10! and
~15!, using the solution of the Maxwell equations,

G~a!F0!'
3

32p
H2d. ~17!

Equation~17! is dominated by the magnetization work ne
essary to expel the field, which is parametrically larger~by
@d/l N (T)# 2) than the kinetic energy of the currents.16

In the field penetration regime we approximate the f
energy by its asymptotic value ata→`. In this limit we
s

-

f

e

replace the strongly oscillating functions ofF in Eqs. ~12!
and~13! by their average valuê(arctan tanF)2&5p2/12 and
^sin2F&51/2 and obtain

GT50~a@F0!'
1

384p

F0
2

lN
2 d

,

GT@TA
~a@F0!'

3

16p3
g2~T,D!

F0
2

lN
2 d

e22T/TA. ~18!

The magnetization energy vanishes in this limit. The corr
tions to the free energy~18! are of relative order (F0 /a)2.

The magnetic breakdown fieldHb(T) is determined by
the intersection of the two asymptotics of the free energG
given by Eqs.~17! and ~18!,

Hb~T50!'
1

6

F0

lNd
, ~19!

Hb~T@TA!'
A2

p
g~T,D!

F0

lNd
e2d/jN~T!. ~20!

We note three important features of this result: The tempe
ture dependence is a simple exponential with the expon
d/j(T)5T/TA , wherejN(T)5vF/2pT denotes the norma
metal coherence length. The amplitude of the breakdo
field scales inversely proportional to the thickness of the n
mal layer,Hb;1/d. In the limit T→0 the magnetic break
down field saturates to a value which is suppressed by
universal factorp/6A2'0.37 as compared to the extrapol
tion of the high temperature result.

We arrive at theH2T phase diagram shown in Fig. 1
The first-order transition between the diamagnetic and
field penetration regime takes place between the spino
Hsc;F0 /d2,Hb(T),Hsh;F0 /lN(T)2 which delimit the
~meta-!stable regime. Their intersection marks the critic
temperature

Tcrit'TAln~d/lN!, ~21!

where lN(Tcrit)'d. Below Tcrit the penetration depth is
small, lN(Tcrit),d, and we observe a first-order transitio
Above the critical pointTcrit , wherelN(Tcrit).d, a continu-
ous and reversible crossover between the diamagnetic
field penetration regime is expected. We note that this d
tinction is similar to the one between type I and type
superconductors with respect to the penetration depthl and
the superconducting coherence lengthj.

The latent heat~at T@TA) of the transition follows from
Eqs.~17!, ~18!, and~20! usingS52]G/]T,

TDS'
3

16p

T

TA
Hb

2~T!d, ~22!

and is related to the magnetization jump

4pDM'
3

4
Hb~T!d ~23!

via the Clausius-Clapeyron equation.
In the derivation of the breakdown field we have used

asymptotic expansions of the free energies ina/F0 and
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14 106 56ALBAN L. FAUCHÈRE AND GIANNI BLATTER
F0 /a, respectively. Their quality at the transition point
determined by the range of overlap between the diamagn
and the field penetration regimes in Fig. 2, which is govern
by the parameterlN(T)/d. In the diamagnetic phase, th
corrections are of the order of (a/F0)2;@HblN

2 (T)/
F0] 2;@lN

2 (T)/d#2, and similarly in the field penetration re
gime. The expansion thus breaks down atlN(T)'d, which
is the critical point of the transition line. We note that th
total magnetization changes from its diamagnetic va
M;Hbd to the strongly suppressed valu
M;Hbd@lN(T)/d#2 at the transition, reflecting its stron
first-order character.

IV. EXPERIMENT

Mota et al.12,13 have measured the breakdown field
Ag-Nb cylinders. The clean limit theory valid forT@vF / l el
may be used provided thatl el@d, which is claimed to be
fulfilled in the experiment. In our comparison we neglect t
influence of diffusive boundary scattering or any poten
barrier at the NS interface, and ignore the difference in
ometry, cylindrical for the sample and planar in the theor
ical model.

In Fig. 3 we show the two data sets for the breakdo
field data obtained on heating and cooling a sample
thicknessd55.5 mm exhibiting hysteresis~the theoretical
values of the supercooled and superheated fieldsHsc and
Hsh are not reached in the experiments!. The data saturate
at low temperatures, in qualitative agreement with o
theoretical analysis. Given the electron density
Ag, n55.831022 cm23 (⇒lN52.231026 cm) and
d55.5 mm, the breakdown field is determined by Eqs.~19!
and ~20!. Due to the idealization of our model, which a
sumes a step function for the order parameter, as well as

FIG. 3. Breakdown fieldHb(T) and linear susceptibility 4px
from theory and experiment~the analysis applies to a Ag-N
sample of thicknessd55.5 mm). Theory: results of Eqs.~20! and
~25! shown as solid lines;Hb(T) is rescaled to fit the zero tempera
ture valueHb(0) ~horizontal line! to the experiment. Experiment
data shown as solid dots, the dotted line is a guide to the eye~Ref.
13!. Note that the logarithmic slope of the breakdown field is
produced precisely~dashed line!, while the one of the susceptibility
is much smaller than expected.
tic
d

e

l
-

t-

n
f

r

he

difference between the planar and cylindrical geometry,
expect a numerical factor correcting the amplitude ofHb .
Making use of the scaling factor'0.56 in Eqs.~19! and
~20!, we calibrate the theoretical result to fit the zer
temperature valueHb(0), asshown in Fig. 3. The theoretica
prediction for the high temperature behavior then follo
from Eq. ~20! and is shown as a solid line in Fig. 3. Mo
importantly, Eq.~20! accurately reproduces the logarithm
slope21/TA of the experimental data, thus correctly tracin
the signature of the Andreev levels. The amplitude ofHb(T)
deviates from the data by the constant ratio'0.64, which
can be attributed to the presence of a barrier at the NS in
face, see below.

An important further agreement between theory and
periment is found in the scaling of the breakdown field w
sample thicknessd, which was reported to be}1/d, in ac-
cordance with Eq.~20! @the experimental study involved 1
samples~Refs. 13 and 17! with thicknesses ranging from
d52.9 mm to d528 mm#. Similarly, the critical tempera-
ture determined in the experiment12 exhibits the same scaling
}1/d, in agreement with Eq.~21! (TA}1/d).

The only result in the literature on the breakdown fie6

was derived from the GL equations in the dirty lim
l el!jD5AvFl el/6pT,d, with the coherence lengthjD lim-
ited by lD(d)!jD,d @lD(x) is a space and temperatu
dependent penetration depth, see Ref. 6#. The breakdown
field

HD~T!'1.9
F0

lD~0!jD
exp~2d/jD! ~24!

exhibits a simple exponential dependence ond/jD}AT, the
amplitude being temperature independent. Furthermore
dependence of the amplitude on the thickness is pres
Clearly, the experimental data deviates significantly from
predictions made by the GL theory.

The good agreement between the clean limit theory
experiment for the breakdown field does not trivially gen
alize to other physical quantities, however. In particular,
temperature dependence of the linear susceptibilityx5M/H
sensitively depends on the nonlocality of the constitutive
lation j (a). From Eqs.~7! and~8! we obtain the susceptibil
ity

4px5
4pM

H
52

3

4

1

113lN
2 ~T!/d2

, ~25!

which exhibits a temperature dependence much like a Fe
Dirac distribution: 4px decays exponentially}1/lN

2 (T) at
large temperatures, twice as fast as the breakdown field.
susceptibility takes half its maximal value a
3lN

2 (T1/2)/d
2;1, which roughly coincides with the critica

temperatureTcrit ~see Fig. 3!. Below the critical point, the
susceptibility saturates as the penetration depth decrease
low the sample thickness@lN(T),d#. Due to the nonlocal-
ity, the penetration depth drops out of the expression
4px'23/4 and we are in the regime of overscreening. T
logarithmic derivative at T5T1/2 is predicted to be
x8(T1/2)/x(T1/2)51/TA . In Fig. 3 we show the linear sus
ceptibility according to the clean limit predictions~25! ~there
is no fitting parameter!. The experimental data fail to show
the typical saturation of the susceptibility expected below

-
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critical temperature. At low temperature the experimen
value clearly exceeds the maximal diamagnetic value23/4
found in the clean limit~note that we do not consider th
anomalous reentrance effect of these samples at very
temperatures here!. Most strikingly, the decay at large tem
perature is slower than the decay of the breakdown fi
while Eq. ~25! predicts a decay with twice the logarithm
slope, see Fig. 3. This discrepancy finds a natural expla
tion in the different sensitivity ofHb andx to the degree of
nonlocality in the constitutive relation~5!: Nonlocality on a
scalel el @typically l el.lN(T)# will affect the screening be
havior on a much smaller length@lN(T)2l el#

1/3. Thus ford
, l el,d@d/lN(T)#2 deviations from the clean limit result fo
x are to be expected, while the expression~20! for Hb re-
mains valid, see Ref. 16. Hence the susceptibility emerge
a very sensitive indicator of the nonlocality of the consti
tive relations.

Let us consider the influence of an insulating barrier at
NS interface. The consequences of a finite reflectivity at
NS interface on the linear current response has been
lyzed by Higashitani and Nagai.18 Their results allow for the
reflection coefficientR to be included in the penetratio
depth lN(T) by redefining the factor
gR(TA!T!D)5(12R)/(11R), in Eq. ~16!; lN(0)[lN
remains unchanged.18 Inserting the modified penetratio
depth into Eq.~25! we obtain the linear susceptibility. Th
additional factorg does not change the characteristic sha
of the susceptibility~saturation, logarithmic slope atT1/2,
exponential decay!, but only lowers the position of the half
value ofx to T1/2' ln@d(12R)/lN(11R)#. Thus the finite re-
flection does not remedy the qualitative discrepancy betw
the susceptibility in theory and experiment, in consisten
with the above considerations. Considering the structure
the equations we may expect the dependence on the re
tion R to enter in a similar fashion into the breakdown fie
o

l

w

d,

a-

as
-

e
e
a-

e

n
y
of
ec-

Hb(T), although we note that this has not been shown rig
ously. Equation~25! inserted in Eq.~20! gives the high tem-
perature behavior, while the zero temperature result of
~19! remains unchanged. We fit the breakdown field data
using first an overall scaling factor needed to adjustHb(0)
and second, a finite reflectivity, which only enters at hi
temperatures. The fit of the high temperature behavior p
vides us with an estimate of the reflectivityR'0.21, and is
represented by the dashed line in Fig. 3.

In conclusion, we have calculated the clean limit expr
sion for the breakdown field separating the diamagne
phase and the field penetration phase by a first-order tra
tion. We have determined the spinodals, the critical tempe
ture, as well as the latent heat of the transition. In comp
son with the experimental data on quasiballistic samples,
have found good agreement with respect to the depende
on temperature and thickness ofHb(T,d) and Tcrit(d). The
inclusion of a finite reflection at the NS interface permits
accurate fit of the breakdown field and gives an estimate
the quality of the NS interface. However, with regard to t
linear susceptibility, the experiments disagree with the cle
limit theory, showing the need to include additional scatt
ing processes. The susceptibility thus emerges as a qua
which is very sensitive to the nonlocality of the constituti
relations.
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