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Magnetic breakdown in a normal-metal-superconductor proximity sandwich
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We study the magnetic response of a clean normal-metal slab of finite thickness in proximity with a bulk
superconductor. We determine its free energy and identify(tmatgstable states, a diamagnetic one where the
applied field is effectively screened, and a second state, where the field penetrates the normal-metal layer. We
present a complete characterization of the first-order transition between the two states which occurs at the
breakdown fieldH,(T), including its spinodals, the jump in the magnetization, and the latent heat. The bistable
regime terminates at a critical temperatirg, above which the sharp transition is replaced by a continuous
crossover. We compare the theory with experiments on normal superconducting cylinders.
[S0163-18207)00145-9

The superconducting proximity effect in a normal metal Mota et al1?!® have recently investigated the magnetic
adjacent to a superconductor has received a revived interesgsponse of metallic cylinders with a superconducting core.
in the past decade.Among the fundamental equilibrium Their data, which are not described by the results of the GL
problems, the magnetic response of normal-metal-equations, were claimed to be characteristic for the ballistic
superconductofNS) structures deserves particular interest.limit.** This has motivated us to derive the analytic depen-
Experiments have demonstrated the nontrivial screeningence of the clean limit expression for the breakdown field
properties of these hybrid structures, exhibiting a hystereti¢l, on temperatur& and thicknessl of the normal layer and
magnetic breakdown at finite fiefdd as well as a presently to compare it to the experiment. From the free energy of the
unexplained reentrance in the magnetic susceptibility at lowpormal layer, which allows us to identify the two
temperatures The investigated samples have typical dimen-(metajstable states, we determine the spinodals, the thermo-
sions comparable to the coherence lenggthof the normal ~ dynamic breakdown fielth,(T) and find the jumps in mag-
metal, attributing a key role to the quantum coherence of th@€tization and entropy at the transition. Furthermore, we ob-
electrons coupled to the macroscopic phase of the supercof®in a critical temperature which marks the upper limit of the
ductor. bistable regimdsee Fig. 1 Finally, we work out the signa-

The self-consistent study of the screening currents in a NgIres of the nonlocality in the ballistic regime as they show
sandwich within the framework of the Ginsburg-Landauup in the magnetic susceptibility and compare them with
(GL) equation was carried out a long time ago by the Orsayhe experimental data. The following discussion is divided
group® Their work has provided the first understanding of into four sections, the analysis of the constitutive relations
the nonlinear field phenomena such as the magnetic breakSec. ), the solution of the magnetostatic problé8ec. 1),
down. However, in the proximity effect, the GL equations
are at their limit of validity and their use is restricted to the
dirty limit. The quasiclassical Green’s function technifue
allows one to describe the clean limit using the Eilenberger
equation8 and to generalize the dirty limit results using the
Usadel equation$Zaikin was the first to derive the magnetic
response of a normal-metal slab of finite thickness connected
to a bulk superconductor along these lin®84ost notably,

he found a nonlocal screening behavior in the clean limit // >
linear response which has an appegling similarity to the one , e ////////// )
found in superconductors of the Pippard type. The applied 7

(statio magnetic field was found to be overscreened, the iamagne hase’ )
magnetic induction changing sign inside the normal layer. i )

tic p!
Using numerical methods, Belzigt al!! have investigated Ta T
the nonlinear field regime of these equations and found two
(metajstable mean-field solutions in both the clean and the g 1 H.T phase diagram of the normal metal slab of thick-

dirty limit. In this work, we determine thed-T “phase”  nessd. The breakdown fieldH,(T)~®o/Ay(T)d marks the first-
diagram shown in Fig. 1 of the normal metal layer in theorger transition between the diamagnetic and the field penetration
Clean I|m|t, Where the biStable regime iS particularly ex- phasq:)\N(T) denotes the penetration dep(hEJ the Superconduct_
tended. In thermodynamic equilibrium, we find a magneticing flux unif]. The critical point at the intersection of the spinodals
breakdown aH(T), which is a first-order transition sepa- H (T)~®,/d? and Hg,(T)~®,/\%(T) separates the first-order
rating the phase of diamagnetic screening from the phase afansition for\ \(T)<d from the continuous crossover at large tem-
magnetic field penetration. perature[ \y(T)>d].
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the determination of the breakdown field from the free en- 0.04
ergy (Sec. lll), and finally the comparison with experiment g ty N
(Sec. V. ° .

0.02 +

-M d/®

I. CONSTITUTIVE RELATIONS

The quasiclassical Green’s function technique provides an 0.00
appropriate description of a metal with a nearly spherical w b -
Fermi surface. In a finite magnetic field, the vector potential 0.06 ¢ r"},
A(x) can be included as a phase factor along unperturbed ] I
trajectories, provided the dimensions of the normal metal are Q° 0.04 1
smaller than the Larmor radius (= pec/eH, cyclotron ra- >
dius of an electron traveling at Fermi velogityn the ballis- o
tic limit, the quasiclassical 2 matrix Green’s function 000

@wn(x,vp) satisfies the Eilenberger equaffor(e=|e|, 0.0
hi=kg=c=1)

0.02

., ‘ 3.0
Hd /D,
FIG. 2. Magnetization\I(H) and free energg(T,H) at a tem-
peratureT=1.5T, (To=vg/27d). The representation is universal

_(VF'V)éwn(xivF):[{wn+ieVF'A(X)};3 in the thicknessd. The small and large field branches represent
o (metajstable solutions describing the diamagnetic and field pen-
+A(X) Tl,gwn(x,vF)], 1 etration phases, which overlap in the field interthl<H<Hg,.

The Maxwell construction determines the first-order transition be-
where the mean-field order parametkrprovides an off-  tween the phases at the breakdown fielgl (dashed ling Inset:
diagonal potential [}i denote the Pauli matrices, Cross section of the normal-metal slab in contact with the bulk
w,=(2n+1)7T are the Matsubara frequencigs, - ] is the ~ superconductor. The quasiclassical electron-hole trajectory at
commutatol. We have excluded elastic scattering processegngles?, ¢=0 encloses a flux that enters as a phase factor in the
by assumingr'> 1/r,. wave function.

We consider a normal metal slab of thicknelsen top of
a bulk superconductor as shown in the inset of Fig. 2. Thavhich can be expressed through the integrazing(x)dx
vector potentialA=[0,A(x),0] describes a magnetic field times a geometric factor due to the inclination of the trajec-
B=[0,0B(x)] applied parallel to the surface, which inducestory (the spherical angle and ¢ parametrize the direction
screening current$=[0,j(x),0]. We make the following of the trajectory. The current carried along a trajectory de-
idealizations in the description of the NS sandwich: The supends on the phase factob2a,?,¢)/®, acquired by the
perconducting order parameter follows a step functiorpropagation of both the electron and the hole along the An-
A(X)=A60(—x) (A rea), no attractive interactions being dreev loop, and we arrive at an intrinsic nonlocal current—
present in the normal layer. We assume a perfect NS inteffield dependencg(a). The total current is determined by the
face as well as specular reflection at the normal-vacuunsum over the currents along the quasiclassical trajectories,
boundary.

In the subsequent analysis we restrict our attention to the
magnetic response of the normal layer. In the proximity ef- .
fect, the macroscopic coherence of the superconducting con- i _lemp =0
ect, the macroscop perconducting jy(%) T2 (0,70, (xVE)])  (3)
densate induces correlated electron-hole pairs in the normal T 0p>0 "
layer through the process of Andreev reflection. The basic
process consists of an electron traveling forward and a holg¢he bracketg- - - ) denote the average over the anglesp),
traveling backward along a quasiclassical trajectory agrom which we reproduce the expression first derived by
shown in Fig. 2(at discrete energies, bound Andreev statesZaikin®,
are found along these trajectonieB the presence of a mag-
netic field, the area enclosed by the trajectge Fig. 2is
threaded by the flux

w2 w2
K@=L mﬁ;dwn&@¢mﬁmn, @

d
P(a,d,¢0)= O A(x)-dx=2tand co fA dx, (2
(a.9.¢) 3§ (x)-dx 5 0 (xdx, (2) where (@,=2w,d/vECcos))

2ep? AZSin27® /D
*r > sirtdcosp 0

i[9,¢,®(a,9,¢)]=— 2 '
J[ ¢ ( QD)] 772 wn>0 (wnCOSrUn+ (“)n—i_Azsml‘un)z—i_AZCOS"ZWCI)/(I)O

®
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Note thatj is independent ok. The induced currents for scaled to the valueB(0)— —H/2 at the NS boundary. The
each trajectory depend only on the fldxmodulo the super- magnetic induction is thus overscreened and assumes an op-
conducting flux quantun®,= m#c/e, reflecting gauge in- posite sign at the NS interface. A closer look shows that the
variance. At small fieldsd/®,<<1), the current response is current is given by the linear response expression
diamagnetic for all trajectories and the proximity effect pro-
duces screening currents in the normal metal. As the field
increases t@a/®dy~1, some of the more extended trajecto- j(a/®p<1l)~— ————a,
: : : 4y (T)d
ries produce paramagnetic currents, since the reduced flux N
® e[ —Dy/2,D(/2] they enclose becomes negative, and thewhich depends on penetration depti(T)<d to be derived
net diamagnetic current response is reduced. As we readielow[Eq.(16)]. When inserted back into E¢p), the vector
large fields &/®,>1), the Andreev levels become mutually potential is found to be strongly suppressed to
dephased due to a uniform distribution of the reduced quxamgHy\ﬁ(T)/z, and we obtain a consistent diamagnetic so-
The associated currents are randomly dia- or paramagneligtion (i.e., a/®,<1) for fields up toH<d4/\5. At large
and the net current vanishes. Note that the proximity effectﬁe|d5’ the current vanisheg0) and the magnetic field
i.e., the existence of the Andreev levels is not destroyed "benetrates the normal layer. From E@). we finda~Hd?/2,
this limit, leading to a finite kinetic energy of the currents consequently this metallic behavior is expected down to
induced by the magnetic field. magnetic fieldsH>d,/d?, as follows from the condition
a/®y>1 for the Andreev levels to be dephased. With
®,/d?><dy/\Z the diamagnetic and field penetration solu-
Owing to the independence df on x, the Maxwell tion coexist in the regime®,/d><H<®d,/ . These
equation —af(A(x)=47rj and the constitutive equations simple estimates for the limits of the bistable regime eluci-
(4 and (5) combined with the boundary date the numerical data of Belzég al*
conditiond* A(x=0)=0 and d,A(x=d)=H can be given
a formal solution. We arrive at a parabolic dependence Ill. THERMODYNAMICS
for A(X)=Hx+4mj(a)x(d—x/2) parametrized by
azng(x)dx, which in turn is determined through the self-
consistency condition

®

Il. MAGNETOSTATICS

In the phase diagram of Fig. 1 the upper and lower bounds
of the bistable regime found from the above mean-field
analysis are identified with the spinodals of the transition, the

Hd? 4x . supercooled fieldH ~®,/d? and the superheated field
a=——+3i@d. ®)  Hg~do/NZ(T). In the thermodynamic equilibrium, a mag-
netic breakdown occurs at an intermediate field, connecting
the diamagnetic regime to the field penetration regime by a

d first order transition. In the following, we determine this
477/\/!=f dx(d,A(x) —H)=27j(a)d?. (7)  breakdown field and the associated entropy and magnetiza-
0 tion jump from the free energy.
Equation(6) contains the essential physics of the problem: The energy (per unit surface of the currents
For small fields &—0), the currentj~—3H/8xd linearly  j(xX)=— 6F/SA(X) is obtained via an integration over the
suppresses the magnetic induction on the geometric lengthonlinear current expression

The total magnetizatiotM (per unit surfacgis defined by

(wncoshu,+ w2+ A2sinha,,)?+ A2
(wncoshuy+ w2+ Asinha,,) 2+ A2coS7®/ Dy

a 2 w2 w2
F(a):—J j(a')da’=p—zT > dﬂJ de sindcosdin (9)
0 T 0 0

wn>0

F(a) describes the difference in free energy between thdVe do not include the condensation energy and the kinetic
metal layer under proximity and in the normal st#¢a) is energy of the screening currents in the superconductor. The
a monotonous and strictly positive function, reflecting thefield dependent term of the condensation energy might in
absence of condensation energy in the normal layer, and efact be of the order of the free energy in the normal layer and

presses the cost of the induced proximity effect lying in thewould be expected to produce numerical corrections in the

kinetic energy of the currents induced by the vector poten_results, which are not accounted for by our idealized choice

tial. The free energyF(T, M) is constructed by adding the of the order parametek(x) =A6(—x). The kinetic energy

P 2
electromagnetic field energy and subtracting the vacuurr(i)f the screening currents H"\ may be neglectgd. I
field contribution After a Legendre transformation, we obtain the Gibb’s

free energy

e 500~ HP?
F(T,M)=F(a)+f0dx<%—g). (10) 87

G(TH)=F(T,M)- MH=F(a)+ fodd
1D
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The field term in Eq(11) describes the work necessary to replace the strongly oscillating functions @f in Egs. (12)
expel the magnetic field. The extrema of the free engfgy and(13) by their average valugarctan tai)?)= 7%/12 and
with respect taa reproduce the equation of sta@®. Figure  (sir’®)=1/2 and obtain

2 shows the free energy(H) as obtained from the param-

etrization of G and H through a.!® The breakdown field 1 P2

Hy(T) is determined by the intersection of the free energies Gr-o(a>®Po)~7o7 \2d’
. . N

G of the two (metajstable solutions. We note that this pro-

cedure is equivalent to the Maxwell construction in the mag- 2

netization curveM = —9dgG/gH of Fig. 2.
In the following, we consider the free ener¢§) in the

imitsT = <T=< i N . C
E\{vri\):tir':r;gi:ja)ture limitsT=0 and Ty<T<A and obtain The magnetization energy vanishes in this limit. The correc-

tions to the free energ§l8) are of relative order®,/a)?.
3 The magnetic breakdown field,(T) is determined by
Fro(a)~ PF fﬂlzdﬁfﬂmmp the intersection of the two asymptotics of the free enafgy
0 0

b
YT, A)—>e 27T (19

Grs1.(a>Py)~
T>TA( O) 16 )\Iz\ld

’7T3

Am3dm given by Eqs(17) and(18),
x sindcog ¥ arctaftanmd/dy]}2, (12 1 ®
{arctar )% (12 Hy(Tooy~ = P0 19
6 \\d
4p|2:T w2 w2
Fra1,(8)~ 2(T,A)f dﬁf do 2 ®
P T e o Mo T 2 ym) 2 a0
r )\Nd
Xsinﬂcosgex;{ - )Sinzﬂ'(I)/CDo. We note three important features of this result: The tempera-
Tacosy ture dependence is a simple exponential with the exponent

(13 d/&(T)=T/T,, whereéy(T)=ve/27T denotes the normal
metal coherence length. The amplitude of the breakdown
The finite value of the superconducting gApis accounted field scales inversely proportional to the thickness of the nor-

for by the dimensionless parameter mal layer,H,~1/d. In the limit T—0 the magnetic break-
down field saturates to a value which is suppressed by the
YT,A)=AI[JA?+(7T)?+ 7 T]<1. (14)  universal factorr/6y2~0.37 as compared to the extrapola-

tion of the high temperature result.

The free energies of the twanetajstable states can be ~ We arrive at theH—T phase diagram shown in Fig. 1.
approximated by their asymptotic forms in the limi#s-0  The first-order transition between the diamagnetic and the
anda— . In the diamagnetic regime, the expansiomid, field penetration regime takes place between the spinodals
up to quadratic order of EqéL2) and(13) provide the result  Hse~®o/d?<Hy(T) <Hg~Po/\y(T)? which delimit the

(metajstable regime. Their intersection marks the critical
a2 temperature

(19

Fla)~ ———.
(@) 8mAL(T)d Tei=Taln(d/\y), (21)

Equation(15) is valid both in the low and high temperature WNer® An(Tei) ~d. Below T the penetration depth is
limits  using the  penetration  depth  AE/(0) small, \y(Tqip) <d, and we observe a first-order transition.

— 1/)\§: (47ne?/m) at T=0 and Above the critical point .;; , Where)\N(Tcm)>d,_a continu_-
ous and reversible crossover between the diamagnetic and
field penetration regime is expected. We note that this dis-
1 mi Z(T,A)%e*ZT’TA (16) tinction is similar to the one between type_l and type Il
)\IZ\I(T) )\ﬁ T superconductors with respect to the penetration deptind
the superconducting coherence length
for T>T,. Note that the derivativg= —dF/da applied to The latent heatat T>T,) of the transition follows from
Eq. (15) produces the linear response constitutive relation oEgs.(17), (18), and(20) using S= —dG/JT,
Eq. (8). The Gibb’s free energy follows from Eq€L0) and

(15), using the solution of the Maxwell equations, TAS~ —Hﬁ(T)d, 22)
167 Tp
g(a<®o)%%H2d. (17)  and is related to the magnetization jump
ar
3

Equation(17) is dominated by the magnetization work nec- 4mAM~ 7Hy(T)d (23
essary to expel the field, which is parametrically larger

[d/\ y(T)]?) than the kinetic energy of the currerfs. via the Clausius-Clapeyron equation.

In the field penetration regime we approximate the free In the derivation of the breakdown field we have used the
energy by its asymptotic value at—oo. In this limit we  asymptotic expansions of the free energiesaitb, and
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difference between the planar and cylindrical geometry, we
expect a numerical factor correcting the amplitudeHgf.
Making use of the scaling factor0.56 in Eqgs.(19) and

e 10 i (20), we calibrate the theoretical result to fit the zero-
:g temperature valukl,(0), asshown in Fig. 3. The theoretical

= prediction for the high temperature behavior then follows
o from Eq. (20) and is shown as a solid line in Fig. 3. Most

importantly, Eq.(20) accurately reproduces the logarithmic
slope —1/T, of the experimental data, thus correctly tracing
the signature of the Andreev levels. The amplitudélgfT)
deviates from the data by the constant rati®.64, which
can be attributed to the presence of a barrier at the NS inter-
face, see below.
An important further agreement between theory and ex-
%8 20 4060 80 100 periment is found in the scaling of the breakdown field with
/T, sample thicknessd, which was reported to be1/d, in ac-
cordance with Eq(20) [the experimental study involved 10
FIG. 3. Breakdown fieldH,(T) and linear susceptibility #y ~ samples(Refs. 13 and 17 with thicknesses ranging from
from theory and experimentthe analysis applies to a Ag-Nb d=2.9 um to d=28 um]. Similarly, the critical tempera-
sample of thicknesd=5.5 um). Theory: results of Eq$20) and  ture determined in the experiméhexhibits the same scaling
(25) shown as solid linedd,(T) is rescaled to fit the zero tempera- «1/d, in agreement with Eq.21) (T 1/d).
ture valueH(0) (horizontal ling to the experiment. Experiment: The only result in the literature on the breakdown field
data shown as solid dots, the dotted line is a guide to theRge  \was derived from the GL equations in the dirty limit
13). Note that _the Iogarlthmlc slope of the breakdown flelq |s re-|el< &p= W<d, with the coherence lengtty, lim-
produced preciselydashed ling while the one of the susceptibility ited by Ap(d)<&p<d [Ap(X) is a space and temperature
is much smaller than expected. dependent penetration depth, see Réf. Bhe breakdown

field
dg/a, respectively. Their quality at the transition point is

0.01
0.00

-0.50

dny

determined by the range of overlap between the diamagnetic ~10 @, B
and the field penetration regimes in Fig. 2, which is governed Ho(T)~1. Ap(0)ép exp(—d/éo) @9

by the parameteiy(T)/d. In the diamagnetic phase, the
corrections are of the order ofa(®y)2~[H\Z(T)/
®,]%~[\Z(T)/d]?, and similarly in the field penetration re-

exhibits a simple exponential dependencedds, =T, the
amplitude being temperature independent. Furthermore, no

: h ion thus breaks d ~d. which dependence of the amplitude on the thickness is present.
gime. The expansion thus breaks down\g{T)~d, which  cjaany the experimental data deviates significantly from the
is the critical point of the transition line. We note that the

| s h f its i . | éaredictions made by the GL theory.
total magnetization changes from its diamagnetic value  rpq good agreement between the clean limit theory and
M~Hpd to the strongly  suppressed value

2 Y o= experiment for the breakdown field does not trivially gener-
M~Hpd[Ay(T)/d]” at the transition, reflecting its strong g)ize to other physical quantities, however. In particular, the
first-order character. temperature dependence of the linear susceptibikgyM/H
sensitively depends on the nonlocality of the constitutive re-

IV. EXPERIMENT lation j(a). From Egs(7) and(8) we obtain the susceptibil-
ity
Mota et al'**® have measured the breakdown field in
Ag-Nb cylinders. The clean limit theory valid far>vg /1 47 M 3 1
dy= = (25

may be used provided thag>d, which is claimed to be H 4 1+3\3(T)/d?’
fulfilled in the experiment. In our comparison we neglect the N
influence of diffusive boundary scattering or any potentialwhich exhibits a temperature dependence much like a Fermi-
barrier at the NS interface, and ignore the difference in geDirac distribution: 47y decays exponentially- IAJ(T) at
ometry, cylindrical for the sample and planar in the theoretlarge temperatures, twice as fast as the breakdown field. The
ical model. susceptibility takes half its maximal value at

In Fig. 3 we show the two data sets for the breakdown3A3(T1,,)/d?~ 1, which roughly coincides with the critical
field data obtained on heating and cooling a sample ofemperatureTl;; (see Fig. 3. Below the critical point, the
thicknessd=5.5 um exhibiting hysteresigthe theoretical susceptibility saturates as the penetration depth decreases be-
values of the supercooled and superheated fieldsand low the sample thicknegs\\(T)<d]. Due to the nonlocal-
Hg, are not reached in the experimentShe data saturates ity, the penetration depth drops out of the expression for
at low temperatures, in qualitative agreement with ourdsy~ —3/4 and we are in the regime of overscreening. The
theoretical analysis. Given the electron density inlogarithmic derivative atT=T,, is predicted to be
Ag, n=5.8x10?% cm 3 (=\y=2.2x10"°% cm) and  x'(Ty)/x(T12)=1/T. In Fig. 3 we show the linear sus-
d=5.5 um, the breakdown field is determined by E{k9) ceptibility according to the clean limit predictiof®5) (there
and (20). Due to the idealization of our model, which as- is no fitting parametgr The experimental data fail to show
sumes a step function for the order parameter, as well as thle typical saturation of the susceptibility expected below the
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critical temperature. At low temperature the experimentaH(T), although we note that this has not been shown rigor-
value clearly exceeds the maximal diamagnetic vah&4  ously. Equatior(25) inserted in Eq(20) gives the high tem-
found in the clean limit(note that we do not consider the perature behavior, while the zero temperature result of Eq.
anomalous reentrance effect of these samples at very logl9) remains unchanged. We fit the breakdown field data by
temperatures hereMost strikingly, the decay at large tem- using first an overall scaling factor needed to adjdg(0)
perature is slower than the decay of the breakdown fieldand second, a finite reflectivity, which only enters at high
while Eq. (25) predicts a decay with twice the logarithmic temperatures. The fit of the high temperature behavior pro-
slope, see Fig. 3. This discrepancy finds a natural explanasddes us with an estimate of the reflectiviR~0.21, and is
tion in the different sensitivity oH, and y to the degree of represented by the dashed line in Fig. 3.
nonlocality in the constitutive relatio(b): Nonlocality on a In conclusion, we have calculated the clean limit expres-
scalel g [typically 1> \n(T)] will affect the screening be- sion for the breakdown field separating the diamagnetic
havior on a much smaller lengftx \(T)?l ]*'3. Thus ford phase and the field penetration phase by a first-order transi-
<lg<d[d/\y(T)]? deviations from the clean limit result for tion. We have determined the spinodals, the critical tempera-
x are to be expected, while the expressi@0) for H, re- ture, as well as the latent heat of the transition. In compari-
mains valid, see Ref. 16. Hence the susceptibility emerges aon with the experimental data on quasiballistic samples, we
a very sensitive indicator of the nonlocality of the constitu-have found good agreement with respect to the dependences
tive relations. on temperature and thickness [@f(T,d) and T;(d). The

Let us consider the influence of an insulating barrier at thenclusion of a finite reflection at the NS interface permits an
NS interface. The consequences of a finite reflectivity at theccurate fit of the breakdown field and gives an estimate for
NS interface on the linear current response has been anthie quality of the NS interface. However, with regard to the
lyzed by Higashitani and Nag&f.Their results allow for the linear susceptibility, the experiments disagree with the clean
reflection coefficientR to be included in the penetration limit theory, showing the need to include additional scatter-
depth An(T) by redefining the factor ing processes. The susceptibility thus emerges as a quantity
Yr(Ta<T<A)=(1-R)/(1+R), in Eqg. (16); A\y(0)=\y  Which is very sensitive to the nonlocality of the constitutive
remains unchanged. Inserting the modified penetration relations.
depth into Eq.(25) we obtain the linear susceptibility. The
additional facto.rq_/.does not .change tr_]e characteristic shape ACKNOWLEDGMENTS
of the susceptibility(saturation, logarithmic slope &ty,,
exponential decagy but only lowers the position of the half- We are indebted to V. Geshkenbein for the frequent, elu-
value of y to Ty,~In[d(1—R)/A\y(1+R)]. Thus the finite re- cidating discussions throughout this work. We gratefully ac-
flection does not remedy the qualitative discrepancy betweeknowledge A. C. Mota and B. Mier for the discussion of
the susceptibility in theory and experiment, in consistencytheir experimental data. We have also benefited from a
with the above considerations. Considering the structure oftimulating exchange with W. Belzig, C. Bruder, G. Lesovik,
the equations we may expect the dependence on the refledt. Sigrist, and A. Zaikin. We thank W. Belzig for an in-
tion R to enter in a similar fashion into the breakdown field sightful discussion of the effects of nonlocality on screening.
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