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Exact solution of the open Heisenberg chain with two impurities

Yupeng Wang
Cryogenic Laboratory, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

~Received 19 May 1997!

We propose an integrable model of the spin-1/2 Heisenberg chain coupled to two impurity moments. With
the open boundary conditions at the impurity sites, the model can be exactly solved for arbitrary impurity spin
and arbitrary exchange constants between the bulk and the impurities. The absence of redundant terms in the
Hamiltonian makes the model very reasonable. The Hamiltonian is diagonalized via algebraic Bethe ansatz. It
is found that the impurity spins can only be screened~partially for S.1/2) for antiferromagnetic coupling
between the impurity and the bulk. Otherwise the impurity spins cannot be screened. The residual entropy of
the ground state and the Kondo temperature are also derived explicitly based on the Bethe ansatz and the local
Fermi-liquid theory.@S0163-1829~97!00345-7#
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I. INTRODUCTION

Recently, considerable attention has been focused on
problem of impurities embedded in a quantum chain. Us
simpler bosonization and renormalization-group techniqu
Kane and Fisher have shown that a potential scattering ce
in a Luttinger liquid is driven to a strong-coupling fixe
point by the repulsive interaction in the bulk.1 This work
showed that a single impurity in a one-dimensional quant
system behaves rather different from that in a Fermi liqu
and directly stimulated the study on the problem of lo
perturbations to a Luttinger liquid and especially on t
Kondo problem in a Luttinger liquid.2–5 It is well known
now that the spin dynamics of the Kondo problem is equi
lent to that of a spin chain with an impurity.6

The integrable impurity problem of the Heisenberg ch
with periodic boundary condition was first considered
Andrei and Johannesson.7 They studied the integrable case
a spinS.1/2 embedded in a spin-1/2 Heisenberg chain. S
sequently, the problem was generalized to arbitrary spins
Lee, Schlottmann, and Schlottmann.8 Now the quantum in-
verse scattering method becomes a standard method to
struct integrable impurity models.9 A recent example is the
integrable impurity problem in the supersymmetrict-J
model.10 In the QISM, the Hamiltonian of the model is usu
ally written as the logarithmic derivative of a homogeneo
transfer matrix at a special value of the spectral parame
Inputting some inhomogeneous vertex matrices~provided
these matrices satisfy the same Yang-Baxter relation of
homogeneous ones!, then we obtain an inhomogeneou
transfer matrix. Its logarithmic derivative at some spec
value of the spectral parameter thus gives a Hamiltonian w
local interactions. However, to construct an integrable im
rity model with periodic boundary condition, there is a pri
to pay, namely some unphysical terms must be present in
Hamiltonian, though they may be irrelevant. Their prese
is required by the integrablility.

On the other hand, the open boundary problem for
quantum chain has been renewed due to Kane and Fis
observation.1 It is found that the open boundary theory
very useful to formulate both the thermodynamics and
transport properties of the quantum chains w
560163-1829/97/56~21!/14045~5!/$10.00
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impurity.11–13 The open boundary problem of the integrab
models was first considered by Gaudin,14 who studied the
nonlinear Schro¨dinger model and the spin-1/2 Heisenbe
chain with simple open boundaries. Subsequently,
method was generalized to the Hubbard model by Schu15

and the spin chain with boundary fields by Alcarazet al.16 In
addition, Sklyannin formulated the same result based on
QISM. In his theory, a new relation which now is called
the reflecting Yang-Baxter relation17 was used.

In this paper, we study the problem of an open spin-
Heisenberg chain coupled with two impurity spins sited
the ends of the system. The Hamiltonian we shall consi
reads

H5
1

2
J (

j 51

N21

sW j•sW j 111JRsW N•SW R1JLsW 1•SW L , ~1!

wheresW j are the Pauli matrices;SW R,L are the impurity mo-
ments with an arbitrary spinS; N is the site number of the
bulk; J is a positive constant andJR,L are two arbitrary real
constants which describe the coupling between the bulk
the impurities. We remark that the present model is v
reasonable for the absence of redundant terms which ca
be justified on physical grounds.

The structure of the present paper is the following: In t
subsequent section, we construct the transfer matrix co
sponding to the Hamiltonian~1!, thus the integrability of the
present model can be directly justified. Based on the QIS
the Bethe ansatz equation and the eigenvalue of the Ha
tonian will be derived. In Sec. III, the ground state propert
for different regions of parameterJR,L will be discussed.
Section IV is attributed to the residual entropy of the grou
state and the low temperature specific heat. Concluding
marks will be given in Sec. V.

II. ALGEBRAIC BETHE ANSATZ

In the framework of QISM, the integrable Hamiltonia
with the open boundary condition is usually obtained from
monodromy matrix17

U~l!5K2~l!T~l!K1~l!T21~2l!, ~2!
14 045 © 1997 The American Physical Society
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14 046 56YUBENG WANG
where K6(l) are the reflecting matrices which satisfy th
reflecting Yang-Baxter relation

S12~l2m!K6
1 ~l!S12~l1m!K6

2 ~m!

5K6
2 ~m!S12~l1m!K6

1 ~l!S12~l2m!, ~3!

with K6
1,2 and S12 acting on the spaceV1,2 and V1^ V2, re-

spectively.S12 is the scattering matrix which satisfy the tr
ditional Yang-Baxter relation.18 T(l) is the monodromy ma-
trix for the periodic system which satisfies the Yang-Bax
relation

S12~l2m!T1~l!T2~m!5T2~m!T1~l!S12~l2m!. ~4!

As demonstrated by Sklyannin,17 U(l) satisfies the same
reflecting Yang-Baxter relation~3! as K6 does. Thus the
trace ofU(l) gives an infinite number of conserved quan
ties. We remark that Sklyannin and many other authors u
c numberK6(l) to construct their models, whereK6(l)
only induce the boundary fields. The operator ones were
used by the present author and co-workers5 to study the
Kondo problem in one-dimensional strongly correlated el
tron systems.

To construct the algebraic Bethe ansatz of the pres
model, we define

Tt~l!5LRt
1 ~l!LNt~l!LN21t~l!•••L1t~l!,

T̃t~l!5L1t~l!L2t~l!•••LNt~l!LRt
2 ~l!, ~5!

where L j t(l)5 il11/2(11sW j•tW ), and LRt
6 (l)5 il6cR

1 1
2 1tW•SW R with tW an auxiliary Pauli matrix. Furthermore

we put

K2~l!51,

K1~l!5S il1cL1
1

2
1tW•SW LD S il2cL1

1

2
1tW•SW LD ,

~6!

wherecR,L are two constants. Obviously,K6(l) defined in
Eq. ~6! satisfy the reflecting relation~3!. The monodromy
matrix U(l) is defined for our model as

Ut~l!5K2~l!Tt~l!K1~l! T̃t~l!, ~7!

which satisfy the reflecting equation

S12~l2m!Ut1
~l!S12~l1m!Ut2

~m!

5Ut2
~m!S12~l1m!Ut1

~l!S12~l2m!, ~8!

with S12(l6m)5Lt1t2
(l6m). The Hamiltonian~1! is ob-

tained by the following relation

H5
2 iJ

4 )
r 5R,L

@~S11/2!22cr
2#

dX~l!

dl U
l50

2
N

2
J

2
1

2 (
r 5R,L

J

~S11/2!22cr
2

, ~9!
r

ed

st

-

nt

whereX(l)5tr tUt(l) andJR,L are parametrized bycR,L as
JR,L5J/@(S11/2)22cR,L

2 #.
Although the model can be solved for arbitraryJR,L , we

consider only thecR5cL5c (JR5JL5Ji) case in this paper
The general case can be formulated following the same
cedure without any difficulty. We introduce the notation

Ut~l!5S A~l! B~l!

C~l! D~l!
D .

Some useful commutation relation can be formulated fr
Eq. ~8! as

@A~l!,A~m!#5@A~l!,D~m!#5@B~l!,B~m!#50,

A~l!B~m!5
~l1m!~l2m1 i !

~l2m!~l1m2 i !
B~m!A~l!

2
2im

~l2m!~2m2 i !
B~l!A~m!

1
i

~l1m2 i !~2m2 i !
B~l!D̄~m!, ~10!

D̄~l!B~m!5
~l2m2 i !~l1m22i !

~l2m!~l1m2 i !
B~m!D̄~l!

1
2i ~l2 i !

~l2m!~2m2 i !
B~l!D̄~m!

2
4i ~l2 i !m

~2m2 i !~l1m2 i !
B~l!A~m!,

where D̄(l) is defined asD̄(l)5(2l2 i )D(l)1 iA(l).
Therefore, the trace ofUt(l) can be expressed as

X~l![ TrtUt~l!5
1

2l2 i
D̄~l!1

2l22i

2l2 i
A~l!. ~11!

Define the pseudovacuum stateu0& as

s j
1u0&5S1u0&50. ~12!

The elements ofUt(l) acting on the pseudovacuum sta
behave as

C~l!u0&50,

A~l!u0&5a~l!u0&5F S il1S1
1

2D 2

2c2G2

~ il11!2Nu0&,

~13!

D̄~l!u0&5 d̄~l!u0&5~ il!2NF S il2S1
1

2D 2

2c2G2

u0&.

Therefore,X(l) can be treated as the generating functio
of an infinite number of conserved quantities~including the
Hamiltonian! and B(l) is the creation operator of thei
eigenstates. An eigenstate ofX(l) with M spins down can
be constructed as

uV&5)
j 51

M

B~l j !u0&. ~14!
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With the relations~10! and~13!, we obtain the eigenvalue o
X(l) acting on the stateuV& as

X~l!uV&5L~l;l1 , . . . ,lM !uV&,

L~l;l1 , . . . ,lM !5
d̄~l!

2l2 i )j 51

M
~l2l j2 i !~l1l j22i !

~l2l j !~l1l j2 i !
~15!

1
2~l2 i !a~l!

2l2 i )
j 51

M

3
~l1l j !~l2l j1 i !

~l1l j2 i !~l2l j !
.

However, the spectral parametersl j are not independent o
each other but satisfy the following Bethe ansatz equatio

S l j1 i /2

l j2 i /2D 2NS l j2 ic1 iS

l j2 ic2 iSD 2S l j1 ic1 iS

l j1 ic2 iSD 2

5 )
r 561

)
lÞ j

M
l j2rl l1 i

l j2rl l2 i
. ~16!

The eigenvalue of the Hamiltonian~1! acting on the state
uV& can be obtained from Eqs.~9! and ~15! as

E~l1 , . . . ,lM !52(
j 51

M
J

l j
211/4

1
1

2
~N21!J12SJi .

~17!

III. GROUND STATE

Since the parameterJi depends only onc2, c may take
either real or imaginary values. In this section, we discuss
ground state properties of differentc values.

~i! c.S11/2 case. In this case, the coupling between
bulk and the impurity is ferromagnetic. All thel modes take
real values in the ground state to minimize the energy. T
ing the logarithm of Eq.~16! we obtain
:

e

e

k-

I j

N
5

1

pFu1~l j !1
1

2NS f~l j !2 (
l 52M

M

u2~l j2l l !D G ,

~18!

where un(l)52tan21(2l/n), f(l)52u2(S1ucu)(l)
22u2(ucu2S)(l)1u2(l)1u1(l), I j are some integers. Not
above we have included the negative modes by put
l j52l2 j (l050). Define

ZN~l!5
1

pFu1~l!1
1

2NS f~l!2 (
l 52M

M

u2~l2l l !D G .

~19!

Then ZN(l j )5I j /N gives the Bethe ansatz equation~18!.
For the ground state,I j must take consecutive numbe
around zero symmetrically. A density function for th
ground state in the thermodynamic limit can be defined a

rN~l!5
dZN~l!

dl
, ~20!

with the condition*2L
L rN(l)dl5(2M11)/N, whereL is

the cutoff ofl modes. As discussed in many earlier papers19

the eigenenergy is minimized atL5` up to the order
O(N22). With this condition, we obtain thatM5N/2, which
gives the self-magnetization of the ground state as

Mg5
1

2
N2M12S52S. ~21!

Such a result indicates that the impurity moments canno
screened due to the ferromagnetic coupling between the
and the impurity.

~ii ! S,ucu,S11/2. In this case,Ji.0 and thus the ex-
change interaction between the impurity and the bulk fa
into the antiferromagnetic regime. Two imaginary modes
l at l5 i (ucu2S) can exist in the ground state. Note th
mode carries energye i521/@1/42(ucu2S)2#, which is
smaller than those carried by any real modes. The real mo
thus satisfy the following Bethe ansatz equation:
ate
oblem.
S l j1 i /2

l j2 i /2D 2NS l j2 ic1 iS

l j2 ic2 iSD 2S l j1 ic1 iS

l j1 ic2 iSD 2

5S l j2 i ucu1 iS1 i

l j2 i ucu1 iS2 i D
2S l j1 i ucu2 iS1 i

l j1 i ucu2 iS2 i D
2

)
r 561

)
lÞ j

M22
l j2rl l1 i

l j2rl l2 i
. ~22!

With the same procedure discussed in case~i!, we obtainM5(N12)/2 or the residual magnetization of the ground st
Mg52S21 as expected. This means the impurity moment is partially screened, a similar result to that of the Kondo pr6

~iii ! 0,ucu,S. In this case, the system also falls into the regime of antiferromagnetic coupling (Ji.0). No bound state can
exist in the ground state. The functionZN(l) can be defined in a similar way to case~i! but with a different
f(l)52u2(S1c)(l)12u2(S2c)(l)1u2(l)1u1(l). With the condition ZN(6`)56(M11/2)/N we have again
M5(N12)/2 and the residual magnetizationMg52S21.

~iv! Whenc takes an imaginary value,Ji is always positive. Supposec5 ib. The Bethe ansatz equation~15! then becomes

S l j1 i /2

l j2 i /2D
2NS l j2b1 iS

l j2b2 iSD 2S l j1b1 iS

l j1b2 iSD 2

5 )
r 561

)
lÞ j

M
l j2rl l1 i

l j2rl l2 i
. ~23!
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14 048 56YUBENG WANG
For the ground state, alll take real values and their cutoffL
still tends to infinity in the thermodynamic limit. As dis
cussed in case~i!, a similar functionZN(l) can be defined
but with a different f(l)52u2S(l2b)12u2S(l1b)
1u2(l)1u1(l). Therefore M5(N12)/2 for the ground
state, which still leaves a residual magnetization of 2S21.

From the above discussion we conclude that the imp
ties can be screened~partially for S.1/2) only in the case
where Ji.0. The impurity moments cannot be screen
whenJi,0, unlike the situation for the Kondo problem in
Luttinger liquid predicted by Furusaki and Nagaosa.3

IV. RESIDUAL ENTROPY
AND LOW-TEMPERATURE SPECIFIC HEAT

The thermodynamics of the present model can be c
structed with the standard method proposed by Yang
Yang20 based on the string hypothesis.21 Here we omit the
details which can be found in some nice reviews.22 An inter-
esting feature of our model is that the residual entropySg
may take different values depending on the bond defor
tion between the bulk and the impurities:

Sg55
ln

@2ucu#12S

@2ucu#22S
if ucu.S1

1

2
,

ln
~2S1@2ucu# !~21@2ucu#22S!

~@2ucu#22S!~22@2ucu#12S!
if S1

1

2
.ucu.S,

2 lnA4S22@2ucu#2 if S.ucu.0,

2 ln~2S! if c is imaginary,

where@2ucu# is the maximum integer equal or less than 2ucu.
For ucu,1/2 or imaginary andS51/2, Sg50, which means
the impurity spin can be completely screened in the gro
state and thus the system flows to a local Fermi-liquid fix
point at low energy scales. The low temperature thermo
namics can be formulated based on the local Fermi liq
theory for the Kondo problem.23 Since the spectrum are de
scribed by the quantum numbersI j , pN(l j )5pZN(l j ) can
be treated as the momenta of the quasiparticles in
Luttinger-Fermi liquid picture for the integrable models.24 In
the thermodynamic limit, the ground state energy can be
pressed as

Eg5
1

2
NE e0~l!rN~l!dl1const, ~24!

up to the order ofO(N22), where e0(l)52J/(l211/4).
From the definition ofrN(l) in Eq. ~20!, we can rewrite Eq.
~24! as

Eg5
N

4pE e~l!rN
~0!~l!dl1const, ~25!

wheree(l)52pJ/cosh(pl) is the dressed energy function
which can be treated as the energy of the ‘‘quasiparticle
Note that rN(l) for c imaginary can be solved up t
O(N21) as

rN~l!5r0~l!1
1

N
r i~l!1

1

N
rb~l!,
i-

d

n-
d

a-

d
d
y-
d

e

x-

’’

r0~l!5
1

cosh~pl!
, ~26!

rb~l!5
1

2 cosh~pl!
1E e2~1/2!uvue2 ilv

4p cosh@~1/2!v#
dv,

r i~l!5
1

cosh~l2b!
1

1

cosh~l1b!
,

wherer0(l), r i(l)/N, andrb(l)/N are the contributions of
the bulk, the impurity, and the open boundary to the dens
respectively. The density of states at the Fermi surface
be determined in the Fermi-liquid picture as

N~0!5
1

p

dpN~l!

de~l!
U

l5`

5
rN~l!

e8~l!
U

l5`

. ~27!

Therefore, the impurity contribution to the low temperatu
specific heat reads

Ci5
2p

3NJ
cosh~pb!T, ~28!

while for ucu,1/2, r i(l) can be solved by a similar way a

r i~l!5
1

cosh~l2 ic !
1

1

cosh~l1 ic !
. ~29!

Thus the impurity specific heat reads

Ci5
2p

3NJ
cos~pc!T. ~30!

Notice that the Kondo temperature is nothing but the eff
tive Fermi temperature in the local Fermi-liquid theor
Therefore, we conclude that the Kondo temperature for
cases discussed above is given by

Tk5pJcos21~pc!. ~31!

Such a result directly shows the crossover from an expon
tial law to an algebraic one whenc goes from imaginary to
real as pointed out earlier by Lee and Toner.2 Notice that
c5A12J/Ji and for the Kondo problem in a Hubbard chai
the bandwidth of the spinons~proportional toJ) is about
4t2/U. Where 2t is the bandwidth of the fermions,U is the
on-site Coulomb repulsion. For the strong correlation lim
U@t, J<Ji , the Kondo temperature shows a power law
t2/(UJi). While for the weak correlation limitU!t, J>Ji ,
the Kondo temperature shows a exponential law oft2/UJi .

V. CONCLUDING REMARKS

In conclusion, we establish an exactly solvable model
Heisenberg chain coupled with two impurity moments. Th
model is relevant to the Kondo problem in a Luttinger liqui
With the algebraic Bethe ansatz method, the Hamiltonian
exactly diagonalized. It is found that the local moments c
be screened~partially for S.1/2) only in the case where th
coupling between the bulk and the impurities is antifer
magnetic (Ji.0). Such a result strongly contradicts that
the classical system~Ising model!, where the ground state i
a pure Ne´el state with total magnetization of zero~provided
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N even! for both Ji.0 and Ji,0 and arbitraryS. The
present result shows that the quantum fluctuation play
crucial role in the one-dimensional quantum system. The
sidual entropy of the ground state is derived from the ther
Bethe ansatz. It strongly depends on the parameterc, a simi-
lar result to that of the Kondo problem.5 Based on the loca
Fermi-liquid theory23 and the Landau-Luttinger descriptio
for the integrable models,24 we derive the low temperatur
specific heat for some special cases. The Kondo tempera
are exactly carried out for these cases. The exact result
a
e-
al

res
es

show the crossover of the Kondo temperature from an ex
nential law to a power law when the parameterc goes from
imaginary to real, a phenomenon obtained by Lee a
Toner.2
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