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Exact solution of the open Heisenberg chain with two impurities

Yupeng Wang
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(Received 19 May 1997

We propose an integrable model of the spin-1/2 Heisenberg chain coupled to two impurity moments. With
the open boundary conditions at the impurity sites, the model can be exactly solved for arbitrary impurity spin
and arbitrary exchange constants between the bulk and the impurities. The absence of redundant terms in the
Hamiltonian makes the model very reasonable. The Hamiltonian is diagonalized via algebraic Bethe ansatz. It
is found that the impurity spins can only be screeffgdlrtially for S>1/2) for antiferromagnetic coupling
between the impurity and the bulk. Otherwise the impurity spins cannot be screened. The residual entropy of
the ground state and the Kondo temperature are also derived explicitly based on the Bethe ansatz and the local
Fermi-liquid theory[S0163-1827)00345-7

. INTRODUCTION impurity.12=3The open boundary problem of the integrable
models was first considered by Gaudfnwho studied the

Recently, considerable attention has been focused on thenlinear Schidinger model and the spin-1/2 Heisenberg
problem of impurities embedded in a quantum chain. Usingghain with simple open boundaries. Subsequently, his
simpler bosonization and renormalization-group techniquegnethod was generalized to the Hubbard model by Schulz
Kane and Fisher have shown that a potential scattering centénd the spin chain with boundary fields by Alcasizal*® In
in a Luttinger liquid is driven to a strong-coupling fixed addition, Sklyannin formulated the same result based on the
point by the repulsive interaction in the buikThis work ~ QISM. In his theory, a new relation which now is called as
showed that a single impurity in a one-dimensional quantunihe reflecting Yang-Baxter relatibhwas used.
system behaves rather different from that in a Fermi liquid, In this paper, we study the problem of an open spin-1/2
and directly stimulated the study on the problem of localHeisenberg chain coupled with two impurity spins sited at
perturbations to a Luttinger liquid and especially on thethe ends of the system. The Hamiltonian we shall consider
Kondo problem in a Luttinger liquid=® It is well known reads
now that the spin dynamics of the Kondo ?pyroblem is equiva-
lent to that of a spin chain with an impurity. 1 - - - 2 - 2

The integrable impurity problem of the Heisenberg chain H= Eng i 0jr1+Igon-Setdior S, (D
with periodic boundary condition was first considered by
Andrei and JohannessSrT.hey studied the integrable case of Wherec;j are the Pauli matrice§TR,L are the impurity mo-

a spinS>1/2 embedded in a spin-1/2 Heisenberg chain. Subments with an arbitrary spi§; N is the site number of the
sequently, the problem was generalized to arbitrary spins biulk; J is a positive constant antk, are two arbitrary real
Lee, Schiottmann, and Schiottmafiflow the quantum in-  constants which describe the coupling between the bulk and
verse scattering method becomes a standard method to caire impurities. We remark that the present model is very
struct integrable impurity modefsA recent example is the reasonable for the absence of redundant terms which cannot
integrable impurity problem in the supersymmetrie] be justified on physical grounds.

model’® In the QISM, the Hamiltonian of the model is usu-  The structure of the present paper is the following: In the
ally written as the logarithmic derivative of a homogeneoussubsequent section, we construct the transfer matrix corre-
transfer matrix at a special value of the spectral parametesponding to the Hamiltoniafl), thus the integrability of the
Inputting some inhomogeneous vertex matri¢psovided  present model can be directly justified. Based on the QISM,
these matrices satisfy the same Yang-Baxter relation of ththe Bethe ansatz equation and the eigenvalue of the Hamil-
homogeneous ongsthen we obtain an inhomogeneous tonian will be derived. In Sec. Ill, the ground state properties
transfer matrix. Its logarithmic derivative at some specialfor different regions of parametely | will be discussed.
value of the spectral parameter thus gives a Hamiltonian witfSection IV is attributed to the residual entropy of the ground
local interactions. However, to construct an integrable impustate and the low temperature specific heat. Concluding re-
rity model with periodic boundary condition, there is a prize marks will be given in Sec. V.

to pay, namely some unphysical terms must be present in the

Hamiltqnian, though they may be irrelevant. Their presence Il. ALGEBRAIC BETHE ANSATZ

is required by the integrablility.

On the other hand, the open boundary problem for the In the framework of QISM, the integrable Hamiltonian
guantum chain has been renewed due to Kane and Fishength the open boundary condition is usually obtained from a
observatiort. It is found that the open boundary theory is monodromy matriX’
very useful to formulate both the thermodynamics and the
transport properties of the quantum chains with UN)=K_(MTMKL(MTEH(=N), 2

N—-1
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whereK . (\) are the reflecting matrices which satisfy the whereX(\)=tr U (\) andJgr | are parametrized by | as

reflecting Yang-Baxter relation JrL=J/[(S+ 1/2)2—c§',_].
1 ) Although the model can be solved for arbitraly, , we
S1aAN = )KL (N) SN+ u)KE (1) consider only theg=c,=c (Jg=J,_=J;) case in this paper.

2 1 The general case can be formulated following the same pro-
=Ke (WS K (WS = ), @ cedugr]e without any difficulty. We introduce tr?e notation P
with K12 and S;, acting on the spac¥; , andV;®V,, re-

spectively.S;, is the scattering matrix which satisfy the tra- U.( :(
ditional Yang-Baxter relatior® T(\) is the monodromy ma- 7

trix for the periodic system which satisfies the Yang-Baxter

A(N) B(M\)
C(\) D(\)

. Some useful commutation relation can be formulated from
relation Eq. (8) as
SiAN =) TN To() =To( ) Te(N) SN — ). (4 [AN),A(w)]=[AN),D(x)]=[B(\),B(1)]=0,

As demonstrated by Sklyannth,U(\) satisfies the same _
reflecting Yang-Baxter relatiori3) as K. does. Thus the AOVB(p) = A+ )N —pti)
trace ofU(\) gives an infinite number of conserved quanti- - AN=pm)(A+pu—i)
ties. We remark that Sklyannin and many other authors used .
¢ numberK. (M) to construct their models, whete_(\) _ 2ip BOMA(u)
only induce the boundary fields. The operator ones were first (A=p)(2u—1)
used by the present author and co-workers study the
Kondo problem in one-dimensional strongly correlated elec- + : :
tron systems. N+ p—=1)(2u—i)
To construct the algebraic Bethe ansatz of the present ] ]
model, we define A—p—D(A+p—2i)

B(1)ANN)

B(MD(u), (10

D(\)B(u)= —~B(u)D(A
] (B === s ah) BWDOY
TT()\):LRT()\)LNT()\)LN—lT()\)" .L:LT()\)! 2|()\—|)
- +——"—B(\)D(
T.00=L1(MLo (V) LML (M), (9) = w2a—i DR
where L, (\)=i\+1/2(1+;-7), and Lg(\)=iA*cg __ A0 BOVA()
+1+7.S; with 7 an auxiliary Pauli matrix. Furthermore, (2u=D(+p=i)
we put where D(\) is defined asD(M\)=(2\—i)D(\)+iA(N).
B Therefore, the trace dfi (\) can be expressed as
K_(AM)=1,
1 —2i
1 .. 1 .. X(\)= Tr,U.(\)==——D(\)+ —A(N). (1)
Ki)=|ix+ei+ 5+ 78 || iNn—co+5+78 |, 2N —i 2N —i
(6)  Define the pseudovacuum sta® as
wherecg | are two constants. Obviousli£ . (\) defined in gj*|0>=s+|o):o, (12
Eq. (6) satisfy the reflecting relatiof3). The monodromy )
matrix U()\) is defined for our model as The elements ofJ (\) acting on the pseudovacuum state
behave as
U () =K_ (M) T )KL ()T, Y cv|0y=0,
which satisfy the reflecting equation 102 )
_ || | A2 2N
Sialh = ), (VSN + ) U () A<M|O>—a<”|°>—{ A+St3) —e] (DT,
(13
=U_ () SN+ p)U; (M) Sp(h— ), 8
- _ 1 2 2
with Sjp(A+u)=L, . (A= u). The Hamiltonian(1) is ob- D(N)[0)y=d(N\)[0)=(in)ZN (”‘_S“LE —c?| |0).

tained by the following relation
Therefore,X(\) can be treated as the generating functional

—iJ dX(\) N of an infinite number of conserved quantitiéscluding the
H= dn _53 Hamiltonian and B(\) is the creation operator of their
4 H [(S+ 1/2)2—cr2] eigenstates. An eigenstate X{\) with M spins down can
r=RL A=0 be constructed as
1 J

M
2 5L (S+1/2)%-c?’ ® |Q>:J.Hl B(A)[0). (14)

r
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With the relationg10) and(13), we obtain the eigenvalue of |

. 1 1 .
X(\) acting on the stati)) as N A AT 5y ¢(>\j)—I:ZM ﬂz(hj—)w)”,
18
X()\)|Q>:A()\1)\lv 1)\M)|Q>1 _1 ( )
where  6,(\)=2tarm *(2\/n), d(N) =205+ (c)y(N)
dn) M (N=Xj— ) (A= 20) —260;(c|-g(N) T 02(N)+ 01(N), |; are some integers. Note

AN, )=

T TN ) -] above we have included the negative modes by putting

Nj=—\N_j (Ao=0). Define

(15
2(A—i)a(n M 1
- 20 —hal) ZN(N) = —| 010+ 5| (M) = E B2(A =)
-
“ (19
O“""j)(?‘_)‘ﬁ')_ Then Zy(N;)=1;/N gives the Bethe ansatz equati(ls).
(N+Nj=1)(A=N)) For the ground statel; must take consecutive numbers

However, the spectral parametarsare not independent of around Zero. sy;nmﬁtrically. A Qer.\siyy function for the
each other but satisfy the following Bethe ansatz equation: 9round state in the thermodynamic limit can be defined as

N+ i/2\ NI\ j—ic+iS\ 3 \j+ic+iS|? dZy(\)
- — — pn(N) = : (20
Nj—il2 Nj—ic—iS] | \j+ic—iS d\
M N =N i with the conditionfﬁApN()\)d)F(ZM+1)/N, whereA is
LN L e (16)  the cutoff ofA modes. As discussed in many earlier papérs,
=% j

the eigenenergy is minimized at =« up to the order
The eigenvalue of the Hamiltoniafl) acting on the state O(N™2). With this condition, we obtain tha#l = N/2, which

|Q)) can be obtained from Eq$9) and (15) as gives the self-magnetization of the ground state as
M
== 1
17 o . .
Such a result indicates that the impurity moments cannot be
Ill. GROUND STATE screeneq due 'to the ferromagnetic coupling between the bulk
and the impurity.
Since the parametel; depends only or?, ¢ may take (i) S<|c|<S+1/2. In this case);>0 and thus the ex-
either real or imaginary values. In this section, we discuss thehange interaction between the impurity and the bulk falls
ground state properties of differeatvalues. into the antiferromagnetic regime. Two imaginary modes of

(i) c>S+1/2 case. In this case, the coupling between the\ at A\=i(|c|—S) can exist in the ground state. Note this
bulk and the impurity is ferromagnetic. All themodes take mode carries energy; = — 1[1/4—(|c|—S)?], which is
real values in the ground state to minimize the energy. Taksmaller than those carried by any real modes. The real modes

ing the logarithm of Eq(16) we obtain thus satisfy the following Bethe ansatz equation:
N+ P72\ 2N N j—ic+iS| 2 N +ic+iS| 2 [ Nj—ilc|+iS+i\Z NjFile|—iS+i\2 o TN TN+ -
Nj—il2 Nj—ic—iS) \Nj+ic—iS) \N\j—i[c[+iS—i) | Nj+ilc|=iS—i]) (221 1] )\j—r)\|—| 22

With the same procedure discussed in cagewe obtainM=(N+2)/2 or the residual magnetization of the ground state
M,=2S—1 as expected. This means the impurity moment is partially screened, a similar result to that of the Kondo broblem.
(iii) 0<|c|<S. In this case, the system also falls into the regime of antiferromagnetic coug|ir@). No bound state can
exist in the ground state. The functiohy(\) can be defined in a similar way to cas® but with a different
d(N)=20551)(N) +2055-¢)(N) + 0(N) + 6,(N). With the condition Zy(£x>)=*(M+1/2)/N we have again
M=(N+2)/2 and the residual magnetizatithy,=2S—-1.
(iv) Whenc takes an imaginary valug; is always positive. Suppose=ib. The Bethe ansatz equati¢h5) then becomes

N Hil2
N —il2

N +b+iS|?
N, +b—iS

M
A=)\ +i
=11 Il +——

23
r==1 [#j )\j_r)\l_I ( )

N[\ ~b+iS)|2
)\j—b—IS
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For the ground state, all take real values and their cutoff

still tends to infinity in the thermodynamic limit. As dis- Po()\)Zm, (26)
cussed in casé), a similar functionZy(\) can be defined
but with a different ¢(\)=26,5(A—b)+26,5(\+Db) 1 e~ (12]olg=irw
+ 6,(\)+ 61(N\). ThereforeM=(N+2)/2 for the ground pp(N)= +j do,
state, which still leaves a residual magnetization 8f-2L. ’ 2 coslimr) 4m cosh(1/2)o]
From the above discussion we conclude that the impuri- 1 1
ties can be screenggartially for S>1/2) only in the case pi(\)= + ,
where J;>0. The impurity moments cannot be screened cosiA—b) ~ coshiA+b)
whenJ;<0, unlike the situation for the Kondo problem in a \wherepy()), p;i(\)/N, andpy(\)/N are the contributions of
Luttinger liquid predicted by Furusaki and Nagadsa. the bulk, the impurity, and the open boundary to the density,
respectively. The density of states at the Fermi surface can
IV. RESIDUAL ENTROPY be determined in the Fermi-liquid picture as
AND LOW-TEMPERATURE SPECIFIC HEAT
. 1dpuN)| (V)]
The thermodynamics of the present model can be con- N(0)= — = . (27)
structed with the standard method proposed by Yang and 7 de(N) |)\:oo 6'()\)‘>\:x

Yang® based on the string hypothe$isHere we omit the
details which can be found in some nice reviéw#n inter-
esting feature of our model is that the residual entr&y

Therefore, the impurity contribution to the low temperature
specific heat reads

may take different values depending on the bond deforma- o0
tion between the bulk and the impurities: Cizm cosi7h)T, (29
[ [2|c|]]+2S _ 1 while for |c|<1/2, pi(\) can be solved by a similar way as
e R T if |c|>S+ =,
[2|c|]—-2S 2 1
(2S+[2[c[])(2+[2[c|]]-2S) 1 pi(N)= — + — - (29
—{In Z cosii\A—ic) cosh\+ic)
S=) "2ldi-29) 22129 ' ST27IO7S o "
5 5 . Thus the impurity specific heat reads
21Iny4S°—[2|c|] if S>|c|>0,
L 2In(2S) if ¢ is imaginary, cs%co ()T, 30

where[ 2|c|] is the maximum integer equal or less thde|2 _ _ _
For |c|<1/2 or imaginary and=1/2, S,=0, which means Notice that the Kondo temperature is nothing but the effec-

the impurity spin can be completely screened in the grouné’l‘Ve Fermi temperature in the local Fermi-liquid theory.
state and thus the system flows to a local Fermi-liquid fixed! herefore, we conclude that the Kondo temperature for the
point at low energy scales. The low temperature thermody¢@ses discussed above is given by

namics can be formulated based on the local Fermi liquid T = mcos Y mc) 31)
theory for the Kondo problerf? Since the spectrum are de- k=T e

scribed by the quantum numbers py(Nj)=7Zy(Nj) can  Such a result directly shows the crossover from an exponen-
be treated as the momenta of the quasiparticles in th#al law to an algebraic one whemgoes from imaginary to
Luttinger-Fermi liquid picture for the integrable modétdn real as pointed out earlier by Lee and ToheMotice that

the thermodynamic limit, the ground state energy can be exc= \/1—J/J; and for the Kondo problem in a Hubbard chain,
pressed as the bandwidth of the spinongroportional toJ) is about
4t2/U. Where 2 is the bandwidth of the fermiong] is the
on-site Coulomb repulsion. For the strong correlation limit
U>t, J<J;, the Kondo temperature shows a power law of
t2/(UJ;). While for the weak correlation limit <t, J=1J;,

up to the order ofO(N~?), ‘where eo(A) = _J/()‘2+_1/4)- the Kondo temperature shows a exponential law?6f J; .
From the definition opy(M\) in Eg. (20), we can rewrite Eq.

(24) as

1
EQZENJ €o(N) pn(N)dN + const, (24

V. CONCLUDING REMARKS

In conclusion, we establish an exactly solvable model of
Heisenberg chain coupled with two impurity moments. This
model is relevant to the Kondo problem in a Luttinger liquid.
wheree(\) = — mJ/coshg\) is the dressed energy function, Wwith the algebraic Bethe ansatz method, the Hamiltonian is
which can be treated as the energy of the “quasiparticles.’exactly diagonalized. It is found that the local moments can
Note that py(A) for ¢ imaginary can be solved up to be screenedpartially for S>1/2) only in the case where the
O(N7%) as coupling between the bulk and the impurities is antiferro-
magnetic §;>0). Such a result strongly contradicts that of
the classical systerfising mode], where the ground state is
a pure Nel state with total magnetization of ze¢provided

N
E9=EJ e(\)p(N)d\ + const, (25)

1 1
PN()\)ZPOO\)"’NPi()\)_" pro\),
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N even for both J;>0 and J;<0 and arbitraryS. The  show the crossover of the Kondo temperature from an expo-
present result shows that the quantum fluctuation plays aential law to a power law when the parametegoes from
crucial role in the one-dimensional quantum system. The reimaginary to real, a phenomenon obtained by Lee and
sidual entropy of the ground state is derived from the thermaloner?
Bethe ansatz. It strongly depends on the parantetarsimi-

lar result to that of the Kondo problefrBased on the local
Fermi-liquid theory® and the Landau-Luttinger description

for the integrable modefé, we derive the low temperature This work was partially supported by the National Natural
specific heat for some special cases. The Kondo temperatur&sience Foundation of China and the Natural Science Foun-
are exactly carried out for these cases. The exact result dodation for Young Scientists, Chinese Academy of Sciences.
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