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Monte Carlo studies of the dynamics of an interacting monodispersive magnetic-particle system
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The influence of the dipole-dipole interaction on the dynamics of monodispersive ensembles of magnetic
nanoparticles have been studied by Monte Carlo simulations. An increased interaction strength drives the
system from a state with only individual particle relaxation at all temperatures to a state where collective
phenomena govern the dynamics at low temperatures. The collective nature of the dynamics is reflected in the
appearance of magnetic ageing and a dramatically broadened relaxation furfib63-182807)06145-9

I. INTRODUCTION ticles of different concentrations. We have chosen to study
monodispersive ensembles, in order to be able to most easily
An ensemble of single domain magnetic particles forms alistinguish between collective dynamics and individual par-
superparamagnetic state at high temperature. On |oweri[f¢f:|e relaxation. It is found that strongly interacting systems
the temperature the particles become blocked at specific ter§ive rise to collective dynamic behavior, manifested in the
peratures which depend on the size and magnetic anisotro@pPearance of an ageing behavior and an ac susceptibility
of the particles and the time scale of the experintebe- istinctly different from that of the noninteracting system.
pending on the size distribution of the particles, the macro- In Sec. Il, a description of the model and the methods is
scopic blocking temperature appears as a more or less shapfesented together with the details of the simulation, and in
maximum in the ac susceptibility. If the concentration of Sec. lll, the ac susceptibility and magnetic relaxation results
particles is high, the dipole-dipole interaction affects the dy-2ré presented and discussed.
namics of the system. A concentrated ferrofluid offers a sys-
tem where the dipole-dipole interaction strength can be con- Il. MODEL AND METHOD
tinuously tuned by changing the particle concentration.

Experiments on such systems show that the Iow—temperatuﬁaTuztgoi?:iggz(wi?ﬁ?ai drgfngEﬁilﬁostyos\i:?acoi?]sISthtic:)fns
dynamics is dramatically altered with increasing interaction 9 P pping p

strength. The blocking temperature on time scales of the orff.md with the anisotropy axes dlstrlbuteq n ran(_jom dlre_c-
der of seconds increaséthe maximum in the in-phase com- tions. '_I'he magnetic paf?'.c'es are placeq in a cubic box with
ponent of the ac susceptibility is broadened, and the freperIOdIC poundary condmgns. The p_artlcles are assumed to
quency dependence of the out-of phase component Re _sphenc:_;tl and monodispersive, i.e., having one single-
strikingly flattened at lower temperaturésidditionally a pa:/t\l/cele rsélslggétandard Monte Carlo method for dvnamical
spin-glass-like ageing phenomenon appears in the relaxation g ; o ynami

of the magnetizatiofi-° These results show that an increasedSyStem ’V\t/h'c.?hhas be.en sftlolwn tolteXh'g't good lqudal'l[tatlvg

interaction strength drives the system from a state where th%?reerzer:]dv\\:\llhi fe;xrp])e\:\lln;en;\ rte?jut St\r/:? enr ?)Fl)pr;le o Or Spln
dynamics is governed only by individual particle relaxation 9'35565@ ch now 1S adapted 1o this problem. Lur de-

at all temperatures to a state where collective phenomen criptior! ofa partigle in the dipolar_ fields from the surr(_)ur_1d-

dominate the dynamics at low temperatures. g‘gvgzrtféets) agg;gtrigtiftsemal field follows a description
The random and competing interparticle interactions ex- f.p' )_' b o | he directi f th

isting in a concentrated system may influence the dynamic De m_mgul to ¢ a unit _vec.tor_ along the |rf>ct|on OA the

properties in two different waysi) by affecting the barrier Magnetic momeng; of particlei, i.e., ui=MgViu;, andn;

heights and hence the relaxation time of the individual par& unit vector along the easy magnetization axis, the energy of

ticles and(ii) by giving rise to a collective behavior. One of Particlei can be written

the problems when trying to interpret the dynamic behavior A L

of interacting particle systems is to determine whether one Ei=—KVi(fi-1)?—MgVif-B;, (2.9)

only observes the dynamic behavior of individually relaxing,ynerek is the anisotropy constar¥ is the particle volume,

articles or if also dynamics governed by collective behavior : . o -
ips present y g y and Mg is the saturation magnetization. The fidsg is the

The interpretation of results from experiments on ferro->uM of the applied field and the dipolar fields from the sur-

fluids is somewhat complicated by the inevitable particle sizeroundlng particles,

distribution that any real particle system is associated with.

In this paper we use Monte CarftC) simulations to inves- B, = uoH 2+ ﬂMS v,
tigate ensembles consisting of monodispersive magnetic par- S
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FIG. 1. The cutoff radius dependence of the ac susceptibility |G, 2. The concentration dependence of the ac susceptibility

x=x'—ix" for rl/r—30 4.0, 5.0, 6.0, 7.0, and 8.@=7%,  y—,'_jy" for e=0.1, 1.0, 3.0, 5.0, and 7.0=1/1024 (mcs)*,
f=1/1024 (mcs)~, Nime=16 384 mcs and,=10. (8 x" and(b) N ~16 384 mcs andN,=10. The solid lines are the calculated

X - results for a noninteracting syste@) x' and(b) x".

whererIJ is a vector connecting the magnetic momenasd

2 to 0, in the plane of i, and B; is found, §=[B;
jr =t rl, andr; |r,J| The potential energy is thus a A 2 A2 A 2o _ o
funct|on of the d|rect|on of the magnetic momeant, the _(ni’Bi)”i]”Bi_(ni'Bi)nil‘ Since the new direction of the
d the field. . If th le bet di magnetic moment should be in the same plane with an angle
easy axis;, and the fields, eange eAweeni andui 4 tofy, itis given by &= N;cos)+ §;sin(a).
is denotedw; and the angle betwee; and u; denotedp; , The transition rates between the two minima are given by
the expression for the energy can be written as vi=751pt and v2= 5 'p?, respectively, wherey, is a mi-

. croscopic flip t|me The unit of time in our simulation is one
Ei=—KV;cos'(a;)— MVj|Bi|cog p;). (2.3)  Monte Carlo Sweepmcs, which corresponds to updating all
particles in the system one after the other. This implies that
It can be shown that the minimum energy is found when;~ which for an experimental system is of the order

all three vectorspy;, B;, andz;, lie in the same plane In 10 °-10 s, corresponds to 1 mcs in the simulations.

this casep; = i);— a;, Wherey; is the angle betweeB; and Although in reality every particle interacts with every
n;, and the energy can be expressed as other particle, to include all interactions in the computation
would be unnecessary and time consuming. Therefore the
Ei=—KVi[co§(ai)+(MS/K)léilcos{z/fi—ai)]. sum in Eg.(2.2) is truncated, only including neighbors
(2.4) within a cutoff radiug ¢, i.e., particles andj are included if
rj<<fre.

The two minima and the saddle point of the energy are We perform two kinds of dynamical simulations, ac sus-
found using the Newton-Raphson technique. We require thaeptibility and zero-field-cooledZFC) relaxation simula-
the magnetic moment of a particle always stays in the directions. In the ac simulations, the apphed field varies as
tion of one of the two energy minima. The “flipping” prob- Hac Sin(@t)z. The ac susceptibility = x’ —ix” can then be
abilites for going between two minima are Calculated as
pi=ex —(E-EN/(ksD] and p’=ex—(E—E)/(ksT)],
respectively, wher&! and E? are the energies of the two Nipe
energy minima an&? is the saddle-point energy. In order to X'= 2 2 m(t)sin(wt) (2.5
update the direction of a moment, a unit vector perpendicular NmcHac {=1 ’ '
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FIG. 3. Frequency dependence of the ac susceptihility’ —ix” for f=1/256, 1/1024, and 1/4096 (mcs). (a) x' and(b) x” for the
interacting systeme=7%, N, =16 384 mcs andN,=10. (c) x’ and(d) x” for the noninteracting system.

N 2
n Emc ' _MS 1+ KV 1 (2 8)
X =~ chHact:l m(t)COS(wt), (26) X ((.l))— 3K kBT m ’ .
_ N A s\ N : . Mg V T

wherem(t) =ML, Vi{ui(t) - 2)/=;_,V; is the magnetiza- Y (0)=—= —=—— 2.9
tion due to the ac field. It should be noted that for this to 3 kgT 1+(w7)
make sense\,.f has to be an integer, whefe= /2w isthe  {or the ac susceptibility.
frequency. Since we are interested in zero-field dynamics, care has to

~ In the ZFC simulations the system is quenched in zergye taken to ensure that,. and h are small enough for a
field to a relatively low temperaturd, followed by an jinear response but large enough to give as good an accuracy
equilibration of the particle system for a timig. After the 45 possible of the calculated quantity. We have found
equilibration, a weak magnetic field is applied and the _—240 A/m andh=240 A/m to be appropriate choices.
magnetizationm..(t), for both positive and negativh is The simulation procedure is repeated fy statistically
studied as a function of time(measured in mgsThe mag-  jndependent trajectories using different initial conditions,
netizationm..(t) is then used to calculate the susceptibility j e | different particle positions, easy axes and initial particle
according toy(t) =[m, (t) —m_(t)]/2h. The results at each magnetization directions, for each trajectory. The value of
mcs are used to get average values at logarithmically spacegl, used in the different runs is given in the figure captions.
times. o _ _ The number of particles in the system lis=1000 in all

In our model, the directions of the particle magnetic mo-cases. In all our simulations, the saturation magnetization is
ment corresponding to the two energy minima are shifted,q¢ toM=4.2x 10° A/m and the anisotropy constant used is
towards the direction of the applied field as soon as the fielgk — 1 g% 10* Jin®, values that are similar to those of the
is applied. This gives rise to a net magnetizatienen when g o, particles studied in Ref. 9. The particle radius was

no flips have occurred which leads to a temperature- chosen to be =3.5 nm. The ac and ZFC susceptibility re-
independent nonzero contribution to the susceptibility. They ;s presented below are given in S units.

results of calculations for the noninteracting case, shown in

the Appendix, are Ill. RESULTS AND DISCUSSION

M2 KV As was mentioned in Sec. Il it is necessary to limit the
x(t)= S 1+ —(1—-e7 )|, 2.7 range of the dipole-dipole interactions in the simulations. It
3K kgT is not a priori known where to put the cutoff. We have

simply chosen to use the value of where, within the sta-
for the ZFC susceptibility and tistical accuracy of the simulation, a further increaser of
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LA I e o e AL strongly interacting case is more complex. In Fig. 3, the in-
50 | IS e ‘ ‘ , phase(a) and the out-of-phasé) components for the most

4 concentrated system, 7%, are plotted versus temperature for
4 three different frequencies, 1/256, 1/1024, and

J 1/4096 (mcs)®. In Figs. 3c) and 3d), the analytically cal-
culated in-phase and out-of-phase components of the suscep-

t_ =100 mcs

40

=) . 3%_ tibility for a noninteracting system at the same frequencies
= 20 are plotted. Comparing the susceptibility of the strongly in-
) teracting system to that of the noninteracting ensemble strik-
0 ing differences are evident: a strong suppression and broad-

ening of the maxima in the out-of-phase component, a less
S 7 pronounced frequency dependence of the maxima in both
0 bl bl susceptibility components and a shift of the maxima in the
susceptibility towards higher temperatures. At temperatures
above 80 K for the displayed frequencies, the in-phase com-
(b) ponent of the noninteracting system is essentially frequency
independent and decays with temperature according to a
modified Curie law. The interacting system shows a fre-
quency dependence @f up to higher temperatures than the
noninteracting system and consequently also the out-of-
phase component sustains to higher temperatures. It is also
noticeable that at temperatures below the maxima in the out-
of-phase component of the interacting systghiw,T) be-
comes almost frequency independent whergdso,T) for
the noninteracting system shows a stronger frequency depen-
dence. Similar differences between noninteracting and inter-
10° 10' 10° 10° 10* 10° acting ensembles have also been observed in recent experi-
' t [mes] mental studie$:>1%13
, Magnetic relaxation, and in particular the ageing phenom-

FIG. 4. ZFC relaxation fore=3% and 7% and,, =100 and  &n6n provides a unique tool to reveal dynamics governed by
1000 mes. The_ calculated relaxation and relaxation rate curves foéorrelations between the particles. In a typical ageing experi-
the noninteracting system are also showr:20 K, Ny=200. (&) ent the sample is cooled in zero field to the measurement
x(0), () S(t.)_‘?X(t)/a In(). The insets show the behavior of the temperature, where it is kept for a timg before applying
7% sample in an enlarged scale. X . . o

the field. If correlations evolve during the wait time the mag-

netic relaxation will depend on the wait timg(t,t,). This
does not change the results. In Fig. 1 the ac susceptibility irocedure is applicable also to our MC simulations. In Fig.
plotted for increasing cutoff radius for the high€8%) con-  4(a) the magnetic relaxation is plotted for two different wait
centration. A strong dependence gnis seen for the lower times,t,, =100 mcs and 1000 mcs, for different concentra-
ro values(r./r=3, 4, and %. Forr./r=8 there is no mea- tions at the temperature=20 K. In the dilute, noninteract-
surable change of the susceptibility. The same limiting valuéng systems no dependence gncan be detected, while on
ro/r==8 was found to apply also for the systems with lowerincreasing the concentration ageing appears. To further illus-
particle concentration. trate the differences it is useful to plot the relaxation rate,

The complex ac susceptibilityy=x'—ix”, has experi- S(t,t,)=dx(t,t,)/d In(t) as in Fig. 4b). A wait time depen-
mentally been shown to be a property sensitive to the dipoledence is characteristic of collective spin-glass-like dynamics.
dipole interparticle interactiofr>*°In Fig. 2 the in-phaséa) It is seen from Fig. 4 that not only does the dipole-dipole
and the out-of-phas@d) components of the susceptibility at a interaction give rise to a pronounced ageing behavior, but the
frequency of 1/1024 (mcs) are plotted versus temperature relaxation is altered on all time scales studied. For observa-
for particle concentrationée) ranging from 0.1 to 7%. The tion times much shorter than the relaxation timeof the
susceptibility shows a remarkable concentration dependencaoninteracting system, the magnetization and the relaxation
manifested by a substantial suppression of the magnitude aate are higher for the concentrated systems than for the non-
well as a broadening of the maxima in both components. Ainteracting system. This indicates that the dipole-dipole in-
low temperatures the in-phase component approaches a caeraction lowers some of the energy barriers and enhances
stant nonzero value intrinsic to the model as discussethe flipping probabilities at times close to the microscopic
above. flip time. At observation times of the order ofthe relax-

The ac susceptibility of the two most diluted systems, 0.lation rate is substantially suppressed for the concentrated
and 1%, almost coincide with the analytically calculatedsystems and hence the relaxation will prevail to logarithmi-
curve (solid lines in Fig. 2. This indicates that these two- cally much longer times than for the noninteracting system.
particle systems, at the time scales and temperatures consid- The magnetic relaxation is strongly dependent on tem-
ered, may be regarded as essentially noninteracting emperature, and the dependence differs significantly for inter-
sembles. acting and noninteracting systems. In Fig. 5 the relaxation

In a noninteracting system the dynamics is well describednd relaxation rate are plotted for the concentrations 0.1 and
by an ensemble of individually relaxing particfe$!*2The 7% in the temperature interval 20 to 80 K. For the 7% sys-
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FIG. 5. ZFC susceptibility (t) and relaxation rat&(t) = dx(t)/d In(t) for the concentrations=0.1 and 7% at different temperatures.
tw=100 and 1000 mcsN,=200. (a) x(t;T=20K) (b) S(t;T=20 K), (c) x(t;T=45 K), (d) S(t;T=45 K), (e) x(t;T=80 K), (f)
S(t; T=80 K).

tem, the results using two different wait times, 100 and 100Qicle sizes vary according to a log-normal distributi4he
mcs, are plotted. On increasing the temperature it is observadain effect of the size distribution is to broaden the suscep-
that the wait time effect gradually vanishes. A&80 K the tibility maxima and the peaks are moved to higher tempera-
magnetization almost reaches equilibrium in the time win-tures as compared to the results shown in Fig. 3 for the
dow of the simulation and consequently the relaxation rateanonodispersive system. Still, the overall concentration de-
approaches zero at long time. pendence remains rather similar. Moreover, magnetic relax-
An often studied quantity in simulations on random sys-ation simulations showed that the ageing behavior also exists
tems is the spin-spin autocorrelation functigft), here de- in the concentrated systems with a particle-size distribution.
fined asq(t)=3;VZi(t+ty) - &i(ty)/=;V?. In Fig. 6 the
autocorrelation function for the most concentrated system is
plotted for different temperatures and two different wait
times. A wait time effect is clearly observed, showing that We have investigated dynamic magnetic properties of en-
the autocorrelation functioq(t;t,,) represents an alternative sembles of monodispersive small magnetic particles of dif-
for investigating the ageing behavior in magnetic particleferent concentrations using a relatively simple MC model. It
systemsq(t) also has the advantage of being calculated ins found that collective behavior to a large extent governs the
zero external field. dynamics at low temperatures in a concentrated system. The
All results presented above have been obtained for monceollective behavior of the concentrated system is manifested
dispersive systems. On fabricating particles one always ends the appearance of magnetic ageing and in a remarkable
up with a distribution of particle sizes, often well describedbroadening of the relaxation function compared to the nar-
by a log-normal distribution. To check the influence of a sizerow Debye relaxation of a noninteracting system. The results
distribution, we have also studied ensembles where the pashow a qualitative agreement with corresponding experimen-

IV. CONCLUSIONS
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In an ensemble of independent particles, all with the same

M T easy axis, with an angl¢ between the easy axis and the
applied field, the fraction of magnetic moments in ting
0.8 * ] direction is n*(t) =nee+(0.5-ne)e ", where 7=/
R (e*B(Esf E1)+ e*IB(E37 EZ)) and neq: 1/(1+ e*B(E27E1))_
06 - - In the lowx limit, 7~0.57,eXV and
%: neqw%[lvt,BKVx cos@)]. The ZFC magnetization is then
04 - 4 given by
m(t)=n"(t)m;+[1—n"(t)]m;
02 - .
=M (2neq—1)(1—e"Y")cog ¢) +x sirP(¢)].
0 Lol L et (Al)
10° 10' 10* : - ,
Using the fact that 8,,—1=BKVx cos) and averaging
over ¢ in a system with random patrticle easy axes give
FIG. 6. The particle autocorrelation function, M2 KV
q(t)==V2i(t+ty) - &i(t,)/=V? at different temperatures and YO =pome |1+ —=(1—e" V7). (A2)
wait times: T=20, 45, and 80 K and,=100, 1000, and 10 000 3K ™ keT

mcs. €=7%, Ny=200. The appearance of a nonzero valug=aD is due to the fact

that the locations of the minima change for the particle mag-
tal results obtained from studies on interacting magnetiGetic moments as soon as the field is appliet=ad

nanoparticle systenis 113 The ac susceptibility is given by

ACKNOWLEDGMENT X(w):f“(dxldt)e—iwtdt
0
Financial support from the Swedish Natural Science Re-
search Council is gratefully acknowledged. o0 M§ KV el
f o =—| O(t)+ ——= e 'eldt
0 3K kgT

APPENDIX: NONINTERACTING PARTICLE ENSEMBLE

2

For the monodispersive noninteracting case, the calcula- = o %[14‘ % 1; (A3)
tions can be performed analytically. In the low-field limit, sl 1Hlor
i.e., for smallx=ugM¢H, /K, Eq. (2.4 yields to first order or
in X the minimaa,;=x sin(¥)/2 anda,= 7—Xx sin(y)/2 and M2 KV 1
the saddle pointag=7/2+x cos@)/2. The corresponding reoN— ., S oV
energies are E;=—KV[1l+xcos@)], E,=—-KV[1 X' (@)= ko 3K {14_ kgT 1+(wr)?| (A4)
—x cos())] and Eq= —KVx sin(). Thez component of the )
particle magnetizations ama;=Mg cos@/—aq)~MJ cos@) neoN %i wT A5
+x sird()/2] andmy~M J — cos@)+x sirf(14)/2]. X'(@)= 1o 3} F 13 (on)?” (AS5)
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