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Monte Carlo studies of the dynamics of an interacting monodispersive magnetic-particle system
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~Received 7 July 1997!

The influence of the dipole-dipole interaction on the dynamics of monodispersive ensembles of magnetic
nanoparticles have been studied by Monte Carlo simulations. An increased interaction strength drives the
system from a state with only individual particle relaxation at all temperatures to a state where collective
phenomena govern the dynamics at low temperatures. The collective nature of the dynamics is reflected in the
appearance of magnetic ageing and a dramatically broadened relaxation function.@S0163-1829~97!06145-6#
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I. INTRODUCTION

An ensemble of single domain magnetic particles form
superparamagnetic state at high temperature. On lowe
the temperature the particles become blocked at specific
peratures which depend on the size and magnetic anisot
of the particles and the time scale of the experiment.1 De-
pending on the size distribution of the particles, the mac
scopic blocking temperature appears as a more or less s
maximum in the ac susceptibility. If the concentration
particles is high, the dipole-dipole interaction affects the d
namics of the system. A concentrated ferrofluid offers a s
tem where the dipole-dipole interaction strength can be c
tinuously tuned by changing the particle concentrati
Experiments on such systems show that the low-tempera
dynamics is dramatically altered with increasing interact
strength. The blocking temperature on time scales of the
der of seconds increases,2 the maximum in the in-phase com
ponent of the ac susceptibility is broadened, and the
quency dependence of the out-of phase componen
strikingly flattened at lower temperatures.3 Additionally a
spin-glass-like ageing phenomenon appears in the relaxa
of the magnetization.3–5 These results show that an increas
interaction strength drives the system from a state where
dynamics is governed only by individual particle relaxati
at all temperatures to a state where collective phenom
dominate the dynamics at low temperatures.

The random and competing interparticle interactions
isting in a concentrated system may influence the dyna
properties in two different ways:~i! by affecting the barrier
heights and hence the relaxation time of the individual p
ticles and~ii ! by giving rise to a collective behavior. One o
the problems when trying to interpret the dynamic behav
of interacting particle systems is to determine whether
only observes the dynamic behavior of individually relaxi
particles or if also dynamics governed by collective behav
is present.

The interpretation of results from experiments on fer
fluids is somewhat complicated by the inevitable particle s
distribution that any real particle system is associated w
In this paper we use Monte Carlo~MC! simulations to inves-
tigate ensembles consisting of monodispersive magnetic
560163-1829/97/56~21!/13983~6!/$10.00
a
ng
m-
py

-
arp
f
-
s-
n-
.
re

n
r-

-
is

on

he

na

-
ic

r-

r
e

r

-
e
.

r-

ticles of different concentrations. We have chosen to stu
monodispersive ensembles, in order to be able to most ea
distinguish between collective dynamics and individual p
ticle relaxation. It is found that strongly interacting system
give rise to collective dynamic behavior, manifested in t
appearance of an ageing behavior and an ac susceptib
distinctly different from that of the noninteracting system.

In Sec. II, a description of the model and the methods
presented together with the details of the simulation, and
Sec. III, the ac susceptibility and magnetic relaxation res
are presented and discussed.

II. MODEL AND METHOD

The model describes a magnetic system consisting oN
magnetic particles with random but not overlapping positio
and with the anisotropy axes distributed in random dir
tions. The magnetic particles are placed in a cubic box w
periodic boundary conditions. The particles are assume
be spherical and monodispersive, i.e., having one sin
particle radiusr .

We use a standard Monte Carlo method for dynami
systems,6 which has been shown to exhibit good qualitati
agreement with experimental results when applied to s
glasses7 and which now is adapted to this problem. Our d
scription of a particle in the dipolar fields from the surroun
ing particles and in an external field follows a descripti
developed by Chantrellet al.8

Defining m̂ i to be a unit vector along the direction of th
magnetic momentmW i of particle i , i.e., mW i5MsVim̂ i , andn̂i
a unit vector along the easy magnetization axis, the energ
particle i can be written

Ei52KVi~m̂ i•n̂i !
22MsVim̂ i•BW i , ~2.1!

whereK is the anisotropy constant,Vi is the particle volume,
and Ms is the saturation magnetization. The fieldBW i is the
sum of the applied field and the dipolar fields from the s
rounding particles,

BW i5m0Haẑ1
m0

4p
Ms(

j Þ i
VjF3~m̂ j•rW i j !rW i j

r i j
5 2

m̂ j

r i j
3 G , ~2.2!
13 983 © 1997 The American Physical Society
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13 984 56J.-O. ANDERSSONet al.
whererW i j is a vector connecting the magnetic momentsi and
j , rW i j 5rW i2rW j , andr i j 5urW i j u. The potential energy is thus
function of the direction of the magnetic momentm̂ i , the
easy axisn̂i , and the fieldBW i . If the angle betweenn̂i andm̂ i

is denoteda i and the angle betweenBW i and m̂ i denotedr i ,
the expression for the energy can be written as

Ei52KVicos2~a i !2MsVi uBW i ucos~r i !. ~2.3!

It can be shown that the minimum energy is found wh
all three vectors,n̂i , BW i , and m̂ i , lie in the same plane. In
this caser i5c i2a i , wherec i is the angle betweenBW i and
n̂i , and the energy can be expressed as

Ei52KVi@cos2~a i !1~Ms /K !uBW i ucos~c i2a i !#.
~2.4!

The two minima and the saddle point of the energy
found using the Newton-Raphson technique. We require
the magnetic moment of a particle always stays in the dir
tion of one of the two energy minima. The ‘‘flipping’’ prob
abilities for going between two minima ar
pi

15exp@2(Ei
s2Ei

1)/(kBT)# and pi
25exp@2(Ei

s2Ei
2)/(kBT)#,

respectively, whereEi
1 and Ei

2 are the energies of the tw
energy minima andEi

s is the saddle-point energy. In order
update the direction of a moment, a unit vector perpendic

FIG. 1. The cutoff radius dependence of the ac susceptib
x5x82 ix9 for r c /r 53.0, 4.0, 5.0, 6.0, 7.0, and 8.0.e57%,
f 51/1024 (mcs)21, Nmc516 384 mcs andNtr510. ~a! x8 and ~b!
x9.
n

e
at
c-

ar

to n̂i in the plane of n̂i and BW i is found, q̂i5@BW i

2(n̂i•BW i)n̂i ]/ uBW i2(n̂i•BW i)n̂i u. Since the new direction of the
magnetic moment should be in the same plane with an a
a i to n̂i , it is given bym̂ i5n̂icos(ai)1q̂isin(ai).

The transition rates between the two minima are given
n i

15t0
21pi

1 andn i
25t0

21pi
2 , respectively, wheret0 is a mi-

croscopic flip time. The unit of time in our simulation is on
Monte Carlo Sweep~mcs!, which corresponds to updating a
particles in the system one after the other. This implies t
t0 , which for an experimental system is of the ord
1029– 10211 s, corresponds to 1 mcs in the simulations.

Although in reality every particle interacts with ever
other particle, to include all interactions in the computati
would be unnecessary and time consuming. Therefore
sum in Eq. ~2.2! is truncated, only including neighbor
within a cutoff radiusr c , i.e., particlesi and j are included if
r i j ,r c .

We perform two kinds of dynamical simulations, ac su
ceptibility and zero-field-cooled~ZFC! relaxation simula-
tions. In the ac simulations, the applied field varies
Hac sin(vt)ẑ. The ac susceptibilityx5x82 ix9 can then be
calculated as

x85
2

NmcHac
(
t51

Nmc

m~ t !sin~vt !, ~2.5!

y FIG. 2. The concentration dependence of the ac susceptib
x5x82 ix9 for e50.1, 1.0, 3.0, 5.0, and 7.0.f 51/1024 (mcs)21,
Nmc516 384 mcs andNtr510. The solid lines are the calculate
results for a noninteracting system.~a! x8 and ~b! x9.
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FIG. 3. Frequency dependence of the ac susceptibilityx5x82 ix9 for f 51/256, 1/1024, and 1/4096 (mcs)21. ~a! x8 and~b! x9 for the
interacting system.e57%, Nmc516 384 mcs andNtr510. ~c! x8 and ~d! x9 for the noninteracting system.
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NmcHac
(
t51

Nmc

m~ t !cos~vt !, ~2.6!

wherem(t)5Ms( i 51
N Vi^m̂ i(t)• ẑ&/( i 51

N Vi is the magnetiza-
tion due to the ac field. It should be noted that for this
make sense,Nmcf has to be an integer, wheref 5v/2p is the
frequency.

In the ZFC simulations the system is quenched in ze
field to a relatively low temperatureT, followed by an
equilibration of the particle system for a timetw . After the
equilibration, a weak magnetic fieldh is applied and the
magnetizationm6(t), for both positive and negativeh is
studied as a function of timet ~measured in mcs!. The mag-
netizationm6(t) is then used to calculate the susceptibili
according tox(t)5@m1(t)2m2(t)#/2h. The results at each
mcs are used to get average values at logarithmically spa
times.

In our model, the directions of the particle magnetic m
ment corresponding to the two energy minima are shift
towards the direction of the applied field as soon as the fi
is applied. This gives rise to a net magnetization~even when
no flips have occurred!, which leads to a temperature
independent nonzero contribution to the susceptibility. T
results of calculations for the noninteracting case, shown
the Appendix, are

x~ t !5
Ms

2

3K F11
KV

kBT
~12e2t/t!G . ~2.7!

for the ZFC susceptibility and
o

ed

-
d
ld

e
in

x8~v!5
Ms

2

3K F11
KV

kBT

1

11~vt!2G , ~2.8!

x9~v!5
Ms

2

3

V

kBT

vt

11~vt!2 ~2.9!

for the ac susceptibility.
Since we are interested in zero-field dynamics, care ha

be taken to ensure thatHac and h are small enough for a
linear response but large enough to give as good an accu
as possible of the calculated quantity. We have fou
Hac5240 A/m andh5240 A/m to be appropriate choices.

The simulation procedure is repeated forNtr statistically
independent trajectories using different initial condition
i.e., different particle positions, easy axes and initial partic
magnetization directions, for each trajectory. The value
Ntr used in the different runs is given in the figure caption
The number of particles in the system isN51000 in all
cases. In all our simulations, the saturation magnetization
set toMs54.23105 A/m and the anisotropy constant used
K51.63104 J/m3, values that are similar to those of theg-
Fe2O3 particles studied in Ref. 9. The particle radius wa
chosen to ber 53.5 nm. The ac and ZFC susceptibility re
sults presented below are given in SI units.

III. RESULTS AND DISCUSSION

As was mentioned in Sec. II, it is necessary to limit th
range of the dipole-dipole interactions in the simulations.
is not a priori known where to put the cutoff. We have
simply chosen to use the value ofr c where, within the sta-
tistical accuracy of the simulation, a further increase ofr c
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13 986 56J.-O. ANDERSSONet al.
does not change the results. In Fig. 1 the ac susceptibility
plotted for increasing cutoff radius for the highest~7%! con-
centration. A strong dependence onr c is seen for the lower
r c values~r c /r 53, 4, and 5!. For r c /r>8 there is no mea-
surable change of the susceptibility. The same limiting valu
r c /r 58 was found to apply also for the systems with lowe
particle concentration.

The complex ac susceptibility,x5x82 ix9, has experi-
mentally been shown to be a property sensitive to the dipo
dipole interparticle interaction.3,5,10 In Fig. 2 the in-phase~a!
and the out-of-phase~b! components of the susceptibility at a
frequency of 1/1024 (mcs)21 are plotted versus temperature
for particle concentrations~e! ranging from 0.1 to 7%. The
susceptibility shows a remarkable concentration dependen
manifested by a substantial suppression of the magnitude
well as a broadening of the maxima in both components.
low temperatures the in-phase component approaches a c
stant nonzero value intrinsic to the model as discuss
above.

The ac susceptibility of the two most diluted systems, 0
and 1%, almost coincide with the analytically calculate
curve ~solid lines in Fig. 2!. This indicates that these two-
particle systems, at the time scales and temperatures con
ered, may be regarded as essentially noninteracting e
sembles.

In a noninteracting system the dynamics is well describe
by an ensemble of individually relaxing particles.3,9,11,12The

FIG. 4. ZFC relaxation fore53% and 7% andtw5100 and
1000 mcs. The calculated relaxation and relaxation rate curves
the noninteracting system are also shown.T520 K, Ntr5200. ~a!
x(t), ~b! S(t)5]x(t)/] ln(t). The insets show the behavior of the
7% sample in an enlarged scale.
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strongly interacting case is more complex. In Fig. 3, the
phase~a! and the out-of-phase~b! components for the mos
concentrated system, 7%, are plotted versus temperatur
three different frequencies, 1/256, 1/1024, a
1/4096 (mcs)21. In Figs. 3~c! and 3~d!, the analytically cal-
culated in-phase and out-of-phase components of the sus
tibility for a noninteracting system at the same frequenc
are plotted. Comparing the susceptibility of the strongly
teracting system to that of the noninteracting ensemble s
ing differences are evident: a strong suppression and br
ening of the maxima in the out-of-phase component, a l
pronounced frequency dependence of the maxima in b
susceptibility components and a shift of the maxima in
susceptibility towards higher temperatures. At temperatu
above 80 K for the displayed frequencies, the in-phase c
ponent of the noninteracting system is essentially freque
independent and decays with temperature according t
modified Curie law. The interacting system shows a f
quency dependence ofx8 up to higher temperatures than th
noninteracting system and consequently also the out
phase component sustains to higher temperatures. It is
noticeable that at temperatures below the maxima in the
of-phase component of the interacting systemx9(v,T) be-
comes almost frequency independent whereasx9(v,T) for
the noninteracting system shows a stronger frequency de
dence. Similar differences between noninteracting and in
acting ensembles have also been observed in recent ex
mental studies.3,5,10,13

Magnetic relaxation, and in particular the ageing pheno
enon, provides a unique tool to reveal dynamics governed
correlations between the particles. In a typical ageing exp
ment the sample is cooled in zero field to the measurem
temperature, where it is kept for a timetw before applying
the field. If correlations evolve during the wait time the ma
netic relaxation will depend on the wait time;x(t,tw). This
procedure is applicable also to our MC simulations. In F
4~a! the magnetic relaxation is plotted for two different wa
times, tw5100 mcs and 1000 mcs, for different concentr
tions at the temperatureT520 K. In the dilute, noninteract-
ing systems no dependence ontw can be detected, while on
increasing the concentration ageing appears. To further il
trate the differences it is useful to plot the relaxation ra
S(t,tw)5]x(t,tw)/] ln(t) as in Fig. 4~b!. A wait time depen-
dence is characteristic of collective spin-glass-like dynam
It is seen from Fig. 4 that not only does the dipole-dipo
interaction give rise to a pronounced ageing behavior, but
relaxation is altered on all time scales studied. For obse
tion times much shorter than the relaxation timet of the
noninteracting system, the magnetization and the relaxa
rate are higher for the concentrated systems than for the
interacting system. This indicates that the dipole-dipole
teraction lowers some of the energy barriers and enhan
the flipping probabilities at times close to the microscop
flip time. At observation times of the order oft the relax-
ation rate is substantially suppressed for the concentr
systems and hence the relaxation will prevail to logarithm
cally much longer times than for the noninteracting syste

The magnetic relaxation is strongly dependent on te
perature, and the dependence differs significantly for in
acting and noninteracting systems. In Fig. 5 the relaxat
and relaxation rate are plotted for the concentrations 0.1
7% in the temperature interval 20 to 80 K. For the 7% s

or
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FIG. 5. ZFC susceptibilityx(t) and relaxation rateS(t)5]x(t)/] ln(t) for the concentrationse50.1 and 7% at different temperature
tw5100 and 1000 mcs.Ntr5200. ~a! x(t;T520 K) ~b! S(t;T520 K), ~c! x(t;T545 K), ~d! S(t;T545 K), ~e! x(t;T580 K), ~f!
S(t;T580 K).
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tem, the results using two different wait times, 100 and 10
mcs, are plotted. On increasing the temperature it is obse
that the wait time effect gradually vanishes. AtT580 K the
magnetization almost reaches equilibrium in the time w
dow of the simulation and consequently the relaxation r
approaches zero at long time.

An often studied quantity in simulations on random sy
tems is the spin-spin autocorrelation functionq(t), here de-
fined asq(t)5( iVi

2m̂ i(t1tw)•m̂ i(tw)/( iVi
2 . In Fig. 6 the

autocorrelation function for the most concentrated system
plotted for different temperatures and two different w
times. A wait time effect is clearly observed, showing th
the autocorrelation functionq(t;tw) represents an alternativ
for investigating the ageing behavior in magnetic parti
systems.q(t) also has the advantage of being calculated
zero external field.

All results presented above have been obtained for mo
dispersive systems. On fabricating particles one always e
up with a distribution of particle sizes, often well describ
by a log-normal distribution. To check the influence of a s
distribution, we have also studied ensembles where the
0
ed
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e
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is
t
t
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o-
ds

e
r-

ticle sizes vary according to a log-normal distribution.14 The
main effect of the size distribution is to broaden the susc
tibility maxima and the peaks are moved to higher tempe
tures as compared to the results shown in Fig. 3 for
monodispersive system. Still, the overall concentration
pendence remains rather similar. Moreover, magnetic re
ation simulations showed that the ageing behavior also ex
in the concentrated systems with a particle-size distributi

IV. CONCLUSIONS

We have investigated dynamic magnetic properties of
sembles of monodispersive small magnetic particles of
ferent concentrations using a relatively simple MC model
is found that collective behavior to a large extent governs
dynamics at low temperatures in a concentrated system.
collective behavior of the concentrated system is manifes
in the appearance of magnetic ageing and in a remark
broadening of the relaxation function compared to the n
row Debye relaxation of a noninteracting system. The res
show a qualitative agreement with corresponding experim
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tal results obtained from studies on interacting magn
nanoparticle systems.3,9,11,13
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APPENDIX: NONINTERACTING PARTICLE ENSEMBLE

For the monodispersive noninteracting case, the calc
tions can be performed analytically. In the low-field lim
i.e., for smallx[m0MsHa /K, Eq. ~2.4! yields to first order
in x the minimaa15x sin(c)/2 anda25p2x sin(c)/2 and
the saddle pointas5p/21x cos(c)/2. The corresponding
energies are E152KV@11x cos(c)#, E252KV@1
2x cos(c)] andEs52KVx sin(c). The ẑ component of the
particle magnetizations arem15Ms cos(c2a1)'Ms@cos(c)
1x sin2(c)/2] andm2'Ms@2cos(c)1x sin2(c)/2#.

FIG. 6. The particle autocorrelation function
q(t)5( iVi

2m̂ i(t1tw)•m̂ i(tw)/( iVi
2 at different temperatures an

wait times:T520, 45, and 80 K andtw5100, 1000, and 10 000
mcs.e57%, Ntr5200.
n
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In an ensemble of independent particles, all with the sa
easy axis, with an anglec between the easy axis and th
applied field, the fraction of magnetic moments in them1
direction is n1(t)5neq1(0.52neq)e

2t/t, where t5t0 /
(e2b(Es2E1)1e2b(Es2E2)) and neq51/(11e2b(E22E1)).
In the low-x limit, t'0.5t0ebKV and

neq'
1
2 @11bKVx cos(c)#. The ZFC magnetization is the

given by

m~ t !5n1~ t !m11@12n1~ t !#m2

5Ms@~2neq21!~12e2t/t!cos~c!1x sin2~c!#.

~A1!

Using the fact that 2neq215bKVx cos(c) and averaging
over c in a system with random particle easy axes give

x~ t !5m0

Ms
2

3K F11
KV

kBT
~12e2t/t!G . ~A2!

The appearance of a nonzero value att50 is due to the fact
that the locations of the minima change for the particle m
netic moments as soon as the field is applied att50

The ac susceptibility is given by

x~v!5E
0

`

~dx/dt!e2 ivtdt

5E
0

`

m0

Ms
2

3K Fd~ t !1
KV

kBT

e2t/t

t Ge2 ivtdt

5m0

Ms
2

3K F11
KV

kBT

1

11 ivt G ~A3!

or

x8~v!5m0

Ms
2

3K F11
KV

kBT

1

11~vt!2G , ~A4!

x9~v!5m0

Ms
2

3

V

kBT

vt

11~vt!2 . ~A5!
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