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Lattice dependence of saturated ferromagnetism in the Hubbard model

Thoralf Hanisch, Go¨tz S. Uhrig, and Erwin Mu¨ller-Hartmann
Institut für Theoretische Physik, Universita¨t zu Köln, D-50937 Köln, Germany

~Received 10 July 1997!

We investigate the instability of the saturated ferromagnetic ground state~Nagaoka state! in the Hubbard
model on various lattices in dimensionsd52 andd53. A variational resolvent approach is developed for the
Nagaoka instability both forU5` and forU,` which can easily be evaluated in the thermodynamic limit on
all common lattices. Our results significantly improve former variational bounds for a possible Nagaoka regime
in the ground-state phase diagram of the Hubbard model. We show that a pronounced particle-hole asymmetry
in the density of states and a diverging density of states at the lower band edge are the most important features
in order to stabilize Nagaoka ferromagnetism, particularly in the low-density limit.@S0163-1829~97!08345-8#
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I. INTRODUCTION

It is by now an often repeated fact that the so-cal
~single-band! Hubbard model was originally introduced t
explain ferromagnetism.1–3 In what followed, however, it
turned out to be rather a generic model for antiferrom
netism. Ferromagnetism seemed to require additional in
dients, for instance, the existence of degenerate bands w
favor ferromagnetism based on Hund’s rule or in the insu
ing case certain additional ferromagnetic couplings and
correlated hopping terms. Both scenarios were proven rig
ously in recent years~see Ref. 4 and references therein f
the former and Ref. 5 and references therein for the latte!.

The Hubbard model and its possible ferromagne
ground state are of renewed interest.6,7 There are many
works in the field based on quasi-one-dimensional (d51)
systems triggered by the prediction of ferromagnetism
double minima systems at low particle density8 and by the
numerous possibilities of analytical and numeric
calculations9–12 in d51. Exact calculations are possible
infinite dimensions (d5`).13,14For intermediate dimension
(1,d,`) numerical and approximate methods a
employed.15–17

An important milestone in the research of ferromagneti
in Hubbard models is the work of Nagaoka.18,19 It showed
that at infinite local repulsion a single electron above h
filling favors the saturated ferromagnetic ground st
~henceforth: Nagaoka state! if the underlying lattice has
loops which allow interference. For bipartite lattices partic
hole symmetry extends these results to hole doping. T
result reveals the beauty and the difficulty of the question
which lattices and for which fillings the Nagaoka state is
ground state. AtU5`,T50 there is only the hopping left a
a global energy scale. Thus there is no expansion param
no adiabatic limit, and no competition of energy scales. T
issue is solely a question of the lattice structure, i.e.,
possible paths on the lattice, and of the filling.

Unfortunately, there are no extensions of Nagaoka’s re
to macroscopic dopings. Only nonmacroscopic numbers
holes could be treated.20,21 Therefore, we choose anothe
route in the present work and investigate the stability of
Nagaoka state towards a single spin flip. If such a flip low
the energy then the Nagaoka state is not the ground s
560163-1829/97/56~21!/13960~23!/$10.00
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Otherwise it is locally stable. The drawback that we tre
only local stability in this way is not very serious. There
no indication that the transition away from saturation sho
not be continuous atT50, see e.g., Ref. 22.

A more serious drawback is the fact that even the sin
spin flip is too difficult a problem to be solved completely o
finite-dimensional lattices. In the limit of infinite dimen
sional lattices, however, it was solved.13 Thereby it was
shown that relatively simple variational ansatzes provide
ready a qualitative insight in the tendency of a certain latt
to have a Nagaoka state as ground state. Wurthet al.showed
that only an extremely sophisticated variational ansa23

yields a further reduction of the region of possible Nagao
state stability in comparison to simpler ansatzes.24

It is the aim of the present paper to extend previous w
on variational ansatzes decisively,25 both in the completenes
of the ansatzes and in the types of the lattices considered
far, variational ansatzes considered a finite vicinity of t
flipped spin and treated a finite number of parameters lead
to matrix eigenvalue problems. Here we will show that
resolvent approach is capable to deal implicitly with aninfi-
nite number of variational parameters. No explicit know
edge of the variational wave function is required. A simil
approach was used recently by Okabe26 for the square lattice
and the simple cubic lattice, too. In his work, however, t
reduction of the resolvent to simple integrals over the den
of states~DOS!, which we succeeded to achieve in mo
cases, is lacking.

We will present elegant simple expressions for the N
gaoka instability lineUcr(n) which apply to most common
lattices. These results make it possible for everyone to ch
easily whether or not one can expect a ferromagnetic gro
state for a given lattice. We will show that two main featur
favor the occurrence of a saturated ferromagnetic gro
state:

~1! A highly asymmetric density of states with large va
ues at the lower band edge~after particle-hole transforma
tion!.

~2! Nonbipartiteness of the lattice, i.e., frustration due
loops of three sites.
Of course, the two points are intimately related.

The setup of our article is as follows. In the rest of t
Introduction we will present certain variational ansatzes u
13 960 © 1997 The American Physical Society
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56 13 961LATTICE DEPENDENCE OF SATURATED . . .
so far to investigate the Nagaoka state stability. In Sec. II
develop the resolvent approach which yields simple formu
for the stability lines on homogeneous, isotropic lattices w
nearest-neighbor hopping. In Sec. III we present our res
for various lattices in dimensionsd52 andd53, namely the
square, the simple cubic, the bcc, the honeycomb, the tr
gular, thekagome´, and the fcc~hcp! lattice. For thet-t8
Hubbard model on the square lattice a perturbative appro
for small utu is employed as well. Section IV contains a sum
mary and a final discussion of the lattice dependence of s
rated ferromagnetism in the Hubbard model. The append
contain technical details in the derivation for the various l
tices.

Preliminary approaches

We consider the conventional single-band Hubbard mo

H52t (
^ i , j &s

ais
1 aj s1U(

i
ai↑

1ai↑ai↓
1ai↓ ~1!

and calculate the spin-flip energy

De5^CuH2ENuC&/^CuC&, ~2!

whereEN is the energy of the Nagaoka state anduC& is a
variational wave function. WheneverDe,0 the Nagaoka
state is definitely not the ground state due to the variatio
nature of our approach. AtU5`, the zero of De`(d)
:5De(U5`,d) gives the critical hole densitydcr above
which the Nagaoka state is unstable. For finiteU,
De(U,d)80 leads to the Nagaoka instability lineUcr(d)
which separates a region of guaranteed instability of the
gaoka state@U,Ucr(d)# in the phase diagram of the Hub
bard model from a region of possible stability of the N
gaoka state@U.Ucr(d)#. In the phase diagrams displayed
this paper we will always represent the on-site repulsionU in
terms of U red5U/(U1UBR) where UBR5216e0 denotes
the Brinkman-Rice critical coupling.27 e0 is the energy per
particle of the saturated ferromagnetic state for the quar
filled band and depends on the underlying lattice. This r
resentation is chosen to render comparisons between d
ent lattices possible.

A common starting point28–30,24,25is defined by the ansat

uC&:5uLu21/2(
i

exp~ i kbi !Fai↑S ai↑
11 f •(

^ i , j &
aj↑

1 D
1g•ai↑

1ai↑Gai↓
1uN8&. ~3!

For f 50 this is the Gutzwiller single spin-flip wave functio
~Gw!. The parameterg controls the probability of double
occupancy. The system size is denoted byuLu. We use the
operatorsa(a1) for site-diagonal fermion annihilation~cre-
ation! andc(c1) for momentum diagonal fermion annihila
tion ~creation!. Furthermore, we usen for the particle den-
sity, d512n for the doping per site,z for the coordination
number, ande15EN /uLu for the expectation value of th
kinetic energy. The ketuN8&5ckF↑uN& is the fully polarized

Fermi sea of↑ electrons from which onee↑
2 at the Fermi
e
s
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level «F is removed. The energy balance of Eq.~3! with f
50 reads at infiniteU (g50) ~see Refs. 28 and 24!

De52e1 /d2«F1«kd@12~e1 /dzt!2#, ~4!

where«k is the dispersion. The maximum energy lowering
obviously obtained fork belonging to the lower band egd
«b , i.e., herekb50.

For finite f majority-spin hopping processes from the p
sition of the flipped spin to nearest-neighbor sites are ta
into account. This ansatz will be denoted NN. The amp
tudes of these hopping processes are assumed to reflec
lattice symmetry. Basile and Elser investigated an ans
similar to NN which includes↑-hopping processes from th
position of the↓ electron toall other lattice sites.31 Since the
number of variational parameters increases with the lat
size they only studied a finite square lattice. The resolv
method developed in Sec. II allows us to investigate a va
tional ansatz equivalent to the full Basile-Elser wave fun
tion in the thermodynamic limiton all common lattices. We
also derive improved variational criteria for the Nagaoka
stability atU,` by extending the Hilbert subspace furthe

II. RESOLVENT APPROACH

Generally, a resolvent is an operator-valued expressio
the type

R~v!51/@v2~H2EN!#, ~5!

whereH2EN is the Hamilton operator with respect to th
ground-state energyEN ~here: the Nagaoka state energy!.
From Eq.~5! it is clear that the existence of any state atv
5v0 implies a pole or at least a singularity in the resolve
For this reason, we will investigate in the following the r
solventR applied tockb↓

1 uN8& and comparev0 to «F .

It is not possible to computeR for the whole Hilbert space
except under simplifying conditions like infinite coordinatio
number.32 Hence we will restrict the inversion to certain su
spaces which still allow an analytical treatment. The resu
obtained in this way for the lower band edge are variation
This means that excitation energies found are upper bou
to the true ones and that specific interaction valuesU come
out too small compared to those of the full solution.

A. CaseU5`: Ansatz RES0

For infinite on-site repulsion no double occupancy is
lowed. Thus at the site of the↓-e2 no ↑-e2 is allowed. We
investigate therefore the variational subspace spanned
ai↑aj↑

1 ai↓
1uN8& with arbitrary i and j . We define

uFk&:5AkuN8&, ~6a!

Ak :5uLu21/2(
i

exp„i ~kb2k!i …ai↑ck↑
1 ai↓

1 , ~6b!

where the admissible values ofk are outside the Ferm
sphere ~FS!, but inside the Brillouin zone~BZ!, i.e., k
PBZ\FS. The Hamiltonian does not mix states~6! for dif-
ferent total momentakb . States~6! for different total mo-
mentakb are orthogonal. Ansatz~6! contains in particular the
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13 962 56HANISCH, UHRIG, AND MÜLLER-HARTMANN
NN ansatz~3! and of course the simple Gutzwiller ansatz.
comprises↑-hopping processes of arbitrary distance, i.e., i
the thermodynamic extension of the ansatz investigated
viously by Basile and Elser.31

For the computation of the resolventR(v) one can use
the Mori/Zwanzig projection formalism~see, e.g., Appendix
C in Ref. 33! with the scalar product (AuB):
5^N8u@A1,B#1uN8& for the operatorsA andB. The resol-
vent ~5! then becomes

Rk1 ,k2
~v!5^Fk1

uR~v!uFk2
&5„Ak1

u~v2L!21Ak2
….

~7!

Here the Liouville operatorL is used which is defined a
LA:5@H,A# for all operatorsA.33 The resolvent can be
expressed in matrix notation33 by

R~v!5P@vP2L2M ~v!#21P ~8!

with the norm matrixP and the frequency matrixL

Pk1 ,k2
:5^Fk1

uFk2
&, ~9a!

L k1 ,k2
:5^Fk1

uH2ENuFk2
&. ~9b!

The frequency matrixL encodes the effect ofH in the sub-
space considered. The deviation ofP from unity accounts for
the nonorthonormality of the basis. The so-called mem
matrix M (v) describes the effect of all processes which i
ply excursions outside the subspace considered. If the gro
state is known exactly~which holds in the present case! the
approximation M (v)50 is variational in nature for the
lower band edge.

It is the aim of the subsequent calculation to obtain
simple condition for the singularity of (vP2L ). This singu-
larity then signals thatv corresponds to an eigenenergy. T
this end, we first need the matrix elements

Pk1 ,k2
5ndk1 ,k2

1uLu21, ~10a!

L k1 ,k2↑5dk1 ,k2
~n•«k2

2e1!, ~10b!

L k1 ,k2↓5uLu21«b2dk1 ,k2
~zt!21e1«k22kb

. ~10c!

We use the notationei :5^Q(«F2«k)«k
i &BZ @Q(«) is the

Heaviside function#. The elements in Eq.~10! are obtained
with the help of Wick’s theorem sinceuN8& is a simple Slater
determinant. In Eqs.~10b! and~10c!, we distinguish the par
coming from the motion of the↑ electrons and the part com
ing from the motion of the↓ electron. The expressio
(zt)21e1«k22kb

in Eq. ~10c! is obtained from

~11!

This relation holds for all homogeneous, isotropic lattic
with NN hopping only, e.g., square lattice, triangular lattic
s
e-

y
-
nd

a

s
,

kagome´ lattice, and so on. The result~11! can be found easi-
est by interpreting the left-hand side as convolution of«k22kb

and of Q(«F2«k1
), i.e., as a multiplication in real spac

which concerns only the NN terms. Thus it is the multip

cation with a constant̂ajai
1&52e1 /(zt). The sitesi and j

are arbitrary adjacent sites since all bonds are equal du
the required homogeneity and spatial isotropy.

On the basis of Eq.~10! the matrix inversion can be re
phrased as

~vP2L !215@d211~v2«b!vv1#21 ~12!

with the constant vectorv5uLu21/2 and the diagonal matrix
dk1k2

5dk1k2
f (k2) with

f ~k!:5@n~v2«k!1e1~11~zt!21«k2kb
!#21. ~13!

Note that the dyadic productvv1 provides aduLu3duLu
matrix with the constant matrix elementuLu21.

Expanding the right-hand side of Eq.~12! in terms ofvv1

and resummation in terms of

h~v!:5v1dv5~2p!2dE
kPBZ\FS

f ~k!ddk

5^Q~«k2«F! f ~k!&BZ , ~14a!

yields

~vP2L !215@d211~v2«b!vv1#21

5d@11~v2«b!vv1d#21

5d@12~v2«b!vv1d

1~v2«b!
2vv1dvv1d1 . . . #

5d2~v2«b!dvv1d@11~v2«b!h~v!#21.

~14b!

The matrix elements thus read

@~vP2L !21#k1 ,k2
5dk1 ,k2

f ~k1!

2
v2«b

11~v2«b!h~v!
•

f ~k1! f ~k2!

uLu
.

~14c!

From Eq.~14c! we read off that (vP2L ) is singular for

0511~v2«b!h~v!. ~15!

The trick to reduce dyadic perturbations to simple divisio
is commonly known under the name ‘‘householder metho
in the numerics of matrices. This extremely simple resul
derived here for all Bravais lattices, e.g., the square latt
the triangular lattice, but not for the honeycomb lattice or t
kagome´ lattice. The restriction to Bravais lattices enters sin
we implicitly assume that there is one eigenstate for e
value of k in the one-particle Hamiltonian. But it will be
shown in Appendix B that identical formulas apply for ge
eral unfrustrated lattices. Similar formulas can be found
frustrated non-Bravais lattices, for instance, thekagome´ lat-
tice in Appendix D.
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In Appendix C it is explained that computingh(v) for
nonbipartite lattices requires explicit integration over the m
menta. For lattices where the band minimum«b is reached at
kb50 further simplification is possible. The band minimu
is found atkb50 in particular for bipartite lattices where on
may chooset.0 without loss of generality. Then the term
«k2kb

in Eq. ~13! reduces to the unshifted dispersion and
whole integration in Eq.~14a! can be written as integratio
over the density of states~DOS! r(«):

h~v!5E
«F

« t r~«!d«

nv1eN2g«
5

1

g
G~V!, ~16a!

G~y!:5E
«F

« tr~«!d«

y2«
, ~16b!

g:5n2e1 /zt, ~16c!

V:5~nv1e1!/g. ~16d!

We will call the ansatz deduced from the subspace gi
in Eq. ~6! RES0. It leads to the singularity condition~15! or
to its generalizations for non-Bravais lattices.

Once the energyv is found from Eq.~15! for a given
Fermi energy«F the spin flip energy for the whole process
taking one↑-e2 out at the Fermi level and inserting it as↓-
e2 at the lowest possible energy is given by

De`5v2«F . ~17!

A critical doping dcr is found where this spin-flip energ
vanishes.

B. CaseU<`: Ansatzes RES1, RES2, and RES3

Besides the calculation of variational upper bounds
spin-flip energies and resulting critical dopings it is our a
to determine critical interaction valuesU. ForU,` we have
to include states with double occupancy. The easiest wa
do so is to include a local double occupancy.34,28 This is
done in the ansatz RES1 by adding to the states define
Eq. ~6! the state

uC1&:5uLu21/2(
i

exp~ i kbi !ai↑
1ai↑ai↓

1uN8&. ~18!

This ansatz contains the nearest-neighbor ansatz NN~3! ~and
the Gutzwiller ansatz! for U,`. Again we want to compute
the resolvent~8!. To do so the parts computed in the prev
ous subsection can be used again. The matrices for R
have the block structure

P5S P1 01

0 P2
D , vP2L5S D1 N

N1 D2
D , ~19a!

~vP2L !215S B1 M

M 1 B2
D . ~19b!

The matricesP1 and D1 are the same as in Eq.~14c! at U
5`. The null vector0 in P comes from the fact that the sta
with double occupancyuC1& is orthogonal to the states with
-

e

n

r

to

in

S1

out double occupancyuFk&. The other matrix elements ar
again found by Wick’s theorem

P25n, ~20a!

D25n~v2U !1e12«b@n22„e1 /~zt!…2#, ~20b!

Nk52uLu21/2@n~«b2«k!1e1„11«k2kb
/~zt!…#.

~20c!

Since we are at present only interested in the singula
condition it is sufficient to compute one of the elements
vP2L . The easiest isB2, for which an argument similar to
the one leading to Eq.~14b!, yields

B25~D22N1D1
21N!21. ~21!

Thus the singularity condition simply reads

08D22N1D1
21N. ~22!

Now it is advantageous thatD1
21 is already given in Eq.

~14c!. Inserting Eq.~20! one obtains after some cancellatio

v2«b2nU@11~v2«b!h~v!#80. ~23!

Equation ~23! is as simple as Eq.~15! and enables us to
calculate criticalU values explicitly. Settingv5«F in Eq.
~23!, which according to Eq.~17! corresponds to vanishing
spin-flip energy, rendersUcr directly accessible:

Ucr
RES1~d!5

«F2«b

~12d!@11~«F2«b!h~«F!#
. ~24!

It turns out, however, that the values forUcr from Eq.~24!
are not very good close to half-fillingn51 where antiferro-
magnetic exchange processes are important. These are
accounted for in Eq.~18!. They are considered, at least to
certain extent, in the ansatz RES2 by using

uC2&:5uLu21/2(̂
i j &

exp~ i kbi !ai↑
1aj↑ai↓

1uN8&, ~25!

instead ofuC1& as an extension of the RES0 subspace.
The block structure~19! remains the same and so does t

singularity condition ~22!. Only the matrix elements are
modified

P25~e1
21de2!/t2, ~26a!

D25$~e1
21de2!~v2U !1e1e21de3

2«b@e1
22e1e3 /~zt!2#%/t2, ~26b!

Nk5uLu21/2$e1~«b2«k!1e2@11«k2kb
/~zt!#%/t.

~26c!

The explicit expression resulting now from Eq.~22! is less
transparent than Eq.~23! since no cancellations occur. W
focus here on the most important casekb50. In addition to
the definitions~16! we use

g8:5e12e2 /~zt!, ~27a!

Vb :5~e1«b1e2!/g8, ~27b!
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y:5~g8/g!@d1~Vb2V!G~V!#, ~27c!

and obtain from Eq.~22!

D28 (
k1 ,k2PBZ\FS

Nk1

1 ~D1
21!k1 ,k2

Nk2

5g8F ~Vb2V!y1
g8

g
~dVb1e1!G

2y2
v2«b

11~v2«b!h~v!
, ~28!

from which Ucr can easily be determined. The valueUcr
appears only inD2, see Eq.~26b!. The results of RES2~28!
generically lead toUcr}1/d on vanishing doping. In this
sense it represents an important improvement over R
~23!. For explicit results we refer the reader to the next s
tion.

At last in RES3, we generalize the variational states w
double occupancy like Eqs.~18! and~25! in the same manne
as we generalized the states without double occupancy in
~6!

uCk&:5BkuN8&, ~29a!

Bk :5uLu21/2(
i

exp„i ~kb1k!i …ai↑
1ck↑ai↓

1 , ~29b!

where now the admissible values ofk are all vectors inside
the Fermi sphere~FS!. Note that the extension RES3 co
tains both RES1 and RES2. The block structure of the res
ing problem is similar to the one in Eq.~19!. The difference
is that all blocks are now macroscopically large

P5S P1 01

0 P2
D , vP2L5S D1 N

N1 D2
D , ~30a!

~vP2L !215S B1 M

M1 B2
D . ~30b!

The matrix elements and details of the evaluation are gi
in Appendix A. The main problem is that one has to find
tractable condition for

B2
215D22N1D1

21N ~31!

to be singular. But with expansion tricks similar to the on
used above this obstacle can be overcome. For bipartite
tices a relatively simple final formula is found~A22!. An
evaluation for the triangular lattice~Appendix C! and the
kagome´ lattice ~Appendix D! is possible as well.

III. RESULTS FOR VARIOUS LATTICES

A. Square lattice

The square lattice represents the simplest bipartite la
structure in two space dimensions and has therefore bee
the center of interest in most of the publications deal
with the variational investigation of Nagaok
stability.23,24,28,31,35–37The energy band is given by

«h~k!522t~coskx1cosky!, ~32!
1
-

h

q.

lt-

n

s
at-

e
at

g

with the lattice spacing set to 1. The DOSrh(«) which is
depicted in Fig. 1~a! can be expressed by a complete ellip
integral of the first kind~see Appendix E!. For positive hop-
ping matrix elementt the lower band edge is reached atkb
50, while the maxima of the band structure are located
the corners of the square-shaped first Brillouin zone@kt5
(6p,6p)#. The logarithmic van Hove singularity at«50
corresponds to the saddle points of the dispersion~32!. The
symmetric shape of the DOS with respect to«50 reflects
the particle-hole symmetry of the Hubbard model on t
square lattice. In the following we make use of this symm
try and consider only the case of a less than half-filled latt
(0<n<1) andt.0.

Figure 1~b! shows the spin-flip energies atU5` result-
ing from the variational criteria discussed in the previo
sections as a function ofd. The Gutzwiller wave function
@Eq. ~3! with f 50# gives a critical hole densitydcr
50.4905 for the instability of the Nagaoka state.28 For the
variational ansatz~3! including nearest-neighbor hoppin
processes of the majority spins~finite f ), the spin-flip energy
is considerably lowered and the critical hole density d
creases todcr50.4155. The evaluation of the variational sta

FIG. 1. ~a! DOS for the square lattice (t51), ~b! spin-flip en-
ergy atU5` as a function of the hole density for Gw, NN, an
RES0 on the square lattice (t51).
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56 13 965LATTICE DEPENDENCE OF SATURATED . . .
RES0, which containsall spin-up hopping terms of the
Basile-Elser type, leads todcr50.4045. Thereby we repro
duce up to the fifth digit our result obtained in Ref. 24, whe
we took into account hopping processes over a distance o
to four lattice spacings.

The fact that the reduction of the spin-flip energy in F
1~b! is mainly due to the nearest-neighbor term demonstr
the overwhelming importance oflocal polarizations of the
spin-up Fermi sea for the instability of the Nagaoka sta
The resolvent method treats implicitly aninfinite number of
variational parameters and makes it possible to investig
the full Basile-Elser ansatz in the thermodynamic lim
Compared to the iterative method used in Ref. 24 it has
remarkable advantage that the lowest possible spin-flip
ergy in a given subspace can be calculatedwithout explicit
knowledge of the corresponding state. As we will see in S
III E, it is not generally true that the best value fordcr within
the Basile-Elser subspace can be obtained by restricting
spin-up hopping processes to a small cluster centered a
position of the flipped spin.

Figure 2~a! shows the Nagaoka instability lines in th
phase diagram for the Gutzwiller single spin flip~Gw!, the
nearest-neighbor ansatz~NN! ~3! as well as for the wave
functions RES1, RES2, and RES3 evaluated by means o
resolvent method. The↑-hopping terms appear to be muc
less efficient in suppressing the Nagaoka state if the h
density is small~because most of the sites near the flipp
spin are already occupied by a↑ electron! and the on-site
repulsionU is finite ~because the terms all exclude doub
occupancies at the down spin position!. Since the Gutzwiller
projector~with g.0) represents the only term contained
RES1 which is relevant forU,`, the critical on-site repul-
sion near half filling is only slightly increased andUcr re-
mains finite ford50. A remarkable improvement is obtaine
by allowing for nearest-neighbor exchange processes
thereby taking into account the antiferromagnetic tende
of the nearly half-filled Hubbard model. This is embodied
the ansatz RES2. For a constant nonzero value of the DO
the upper band edge it leads to the asymptotic beha
Ucr, red(d)512O(d) for d→0. This implies the instability
of the Nagaoka state for all finite values ofU in this limit.
Figure 2~b! shows that the optimum spin-flip energy fo
RES2 plotted as a function of the hole density for a fix
finite value ofU approaches a finite negative value of t
ordert2/U at half filling while it vanishes for all wave func
tions containing only the Gutzwiller projector.

The asymptotic behavior ford→0 of the spin-flip energy
and of the Nagaoka instability lineUcr(d) is not affected by
the extension of the Hilbert subspace to the full resolv
ansatz RES3. As forU5` the local terms play the mos
important role in destabilizing Nagaoka ferromagnetis
With increasing hole density exchange processes bec
less important and the Nagaoka instability lines for RE
and RES3 approach the one obtained for RES1. Sinceall
RES wave functions differ only in the subspace with dou
occupancies the corresponding instability lines end up wi
diverging on-site repulsionUcr at the critical hole density
dcr50.4045 obtained for RES0.

Figure 2~a! displays also the best known variation
bound for the Nagaoka stability regime on the square lat
computed by Wurthet al.23 The corresponding state contain
up
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1100 terms, most of them describing excitations of t
spin-up Fermi sea with up to two particle-hole pairs loca
within a 939 plaquette around the down-spin position. T
critical hole density obtained with this variational wave fun
tion is dcr50.2514 and the minimum critical on-site repu
sion is Ucr

min/t577.74 ~RES3: Ucr
min/t536.21). Comparing

these results one should keep in mind that the resolv
method allows us to derive analytic expressions for the N
gaoka instability lineUcr(d), at least for RES1 and RES2
while the calculation of the phase boundary for the 11
parameter state requires an immense numerical effort.

B. Square lattice with next-nearest-neighbor hopping

Extending the Hamiltonian~1! by taking next-nearest
neighbor hopping processes of the electrons into account
introducing a corresponding hopping amplitudet8 allows us
to createa particle-hole asymmetry of the DOS. Variation
the ratio t8/t makes it possible to simulate a continuo

FIG. 2. ~a! Phase diagram (n,1): Nagaoka instability lines on
the square lattice for Gw~dashed-dotted!, NN ~long-dashed!, RES1,
RES2, RES3~full lines, from bottom to top!, and the 1100 param
eter ansatz of Wurthet al. ~Ref. 23! ~short-dashed!, ~b! spin-flip
energy forU red50.8 andt51 as a function of the hole density fo
Gw ~dashed-dotted!, NN ~dashed!, RES1, RES2, and RES3~full
lines, from top to bottom!.
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‘‘transition’’ between a bipartite and a nonbipartite lattice.
this subsection we investigate how this transition affects
stability of the Nagaoka state with respect to a Gutzwil
single spin flip on the square lattice. Furthermore we w
give a perturbation argument forutu!ut8u.

The band dispersion of the so-calledt-t8-U model on the
square lattice is given by

« t2t8~k!522t~coskx1cosky!24t8coskxcosky . ~33!

For t,t8.0 the lower band edge«b524(t1t8) is reached
at kb50. The maxima of the band structure are located at
corners of the Brillouin square fort8,t/2 and at the edge
centers for t8.t/2, respectively. Exactly fort85t/2 the
maximum single-particle energy« t52t is reached at the
whole border of the Brillouin zone. This leads to a nesti
situation and to the largest possible particle-hole aymm
with a diverging DOS at the upper band edge. Fort8.t/2
local minima of the band structure develop at the corners
the Brillouin zone leading to a step in the DOS. In the lim
t/t8→0 the single-particle energy at thesek points reaches
the lower band edge. The calculation of the DOSr t2t8(«)
requires in general a numericalk integration. Only fort8
5t/2 is it possible to mapr t2t8(«) on the DOS fort50 and
hence on a complete elliptic integral~see Appendix E!:

r t2t8~«!5S 12
«

2t D
21/2

rhS 2tA12
«

2t D . ~34!

The symmetry of the Nagaoka stability regime with r
spect to half-filling found in the ‘‘pure’’ Hubbard model i
destroyed if the next-nearest-neighbor hoppingt8 is switched
on. In analogy to the nonbipartite triangular andkagome´
lattices~see Ref. 25 and Sec. III F in this paper! one should
expect that the tendency towards saturated ferromagne
increases for more than half filling and decreases forn,1.
The RES ansatzes with the reduction to DOS integ
cannot be used for thet-t8 model since thet8 hops go be-
yond nearest-neighbor hopping.

The calculation of the optimum spin-flip energy for th
Gutzwiller ansatz@Eq. ~3! with f 50# requires additional ef-
fort for the t-t8-U model due to the more complicated stru
ture of the band dispersion Eq.~33!. The kinetic energy of
the flipped spin no longer depends only on«b but also on the
correspondingmomentumkb . For t,t8.0 ~i.e., for less than
half filling! we find kb50 as for t850, whereas fort,t8
,0 ~i.e. for more than half filling! we choosekb5(p,p) for
t8/t<1/2 andkb5(p,0) for t8/t.1/2.

Figure 3 shows the DOS for thet-t8-U model on the
square lattice and the corresponding Nagaoka instab
lines in the phase diagram for various ratiost8/t<1/2. We
set utu1ut8u51 so that the lower band edge is always at«b
524. Increasingt8/t leads to a lower DOS at«b and a
higher DOS at« t , while the logarithmic singularity at«
54t8 approaches the upper band edge. The maximum
ticle hole asymmetry is reached atut8/tu51/2 ~i.e., ut8u
51/3) where the DOS Eq.~34! diverges like (A« t2«
•u ln(« t2«)u)21 for «'« t . The Nagaoka stability region fo
less than half filling shrinks ast8/t is increased and disap
pears att8/t51/2 @Figs. 3~b!, 5#. On the other hand, it ex
pands rapidly forn.1, especially in the limitn52. At
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t8/t51/2 the Nagaoka state is stable towards a Gutzwi
single spin flip for allU.0 in this limit. Even the slope of
the Nagaoka instability lineUcr(n) vanishes atn52.

If one increases the ratiot8/t beyond 1/2, the logarithmic
singularity in the DOS is gradually shifted back towards«
50 and the shape ofr t2t8(«) becomes more and more sym
metric @Fig. 4~a!#. Nevertheless the step at«54t8(12t/t8)
remains present for allt/t8.0. The DOS att50 is identical
to rh(«), which reminds us that thet8-U model with sup-
pressed nearest-neighbor hopping consists oftwo completely
decoupled square lattices.

At t85t the Nagaoka stability region in the phase diagra
is found to be still very asymmetric with respect ton51
@Fig. 4~b!#. A further increase oft8/t makes the phase bound
aries above and below half filling approach the ones obtai
at t50. Within our variational calculations, the local stab
ity of the saturated ferromagnetic state is identical in b
limiting casest850 andt50, but see the perturbative argu
ment below. The step in the DOS, however, leads to a c
in the Nagaoka stability lineUcr(n) for all ut/t8u,2. For

FIG. 3. t-t8-U model on the square lattice forut8u<utu/2: ut8u
512utu50, 0.1, 0.2, 0.3, 1/3: ~a! DOS r t2t8(«) for t,t8.0
@r t2t8(«) for t,t8,0 is obtained by«↔2«], ~b! Nagaoka insta-
bility lines for a Gutzwiller single spin flip~the curves forn,1
correspond tot,t8.0 whereas the curves forn.1 correspond to
t,t8,0).
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56 13 967LATTICE DEPENDENCE OF SATURATED . . .
t→0, this cusp approachesn51 anddUcr /dnun511 is dis-
continuous att50. This represents a qualitative difference
the limit t8→0.

In Fig. 5 the upper and lower critical densities for th
Nagaoka instability atU5` are plotted as functions ofut8u
512utu. Thereby we once again demonstrate the shift of
Nagaoka stability region towards more than half filling wi
increasing particle-hole asymmetry in the DOS. The regim
of complete Nagaoka stability forn.1 (20.21<t8<
20.39) and of complete Nagaoka instability forn,1 (1/3
<t8<0.45) arenot symmetric with respect tout8u51/3.
There are two different reasons for this asymmetry. Fi
since the increase of the DOS at the lower band edge is m
pronounced fort8↘21/3 ~that is, on the left-hand side o
the dashed-dotted line in Fig. 5! than fort8↗21/3, also the
tendency towards saturated ferromagnetism in the l
density limit ~corresponding ton→2 in Fig. 5! is stronger in
the former case. Second, the Nagaoka instability condi
near half filling is essentially determined by the ratio« t /(zt),
i.e., by the asymmetry of the band edges with respect t«
50. The fact that the latter asymmetry is more pronoun
for ut8u.1/3 than forut8u,1/3 is responsible for the instabi
ity of the Nagaoka state for less than half filling on the rig
hand side of the dashed-dotted line in Fig. 5.

In the limit t→0, a perturbative argument gives furth
insight in the stability of saturated ferromagnetism. Start

FIG. 4. t-t8-U model on the square lattice forut8u>utu/2: ut8u
512utu51/3, 0.4, 0.5, 2/3, 1: ~a! DOS r t2t8(«) for t,t8.0
@r t2t8(«) for t,t8,0 is obtained by«↔2«], ~b! Nagaoka insta-
bility lines for a Gutzwiller single spin flip~the curves forn,1
correspond tot,t8.0 whereas the curves forn.1 correspond to
t,t8,0).
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point is the observation that att50 the square lattice decom
poses into two independent square lattices tilted by 45° w
hopping elementt8. Without anyt the two independent Na
gaoka states on each sublattice can be oriented arbitr
without influencing the energy. Thus we deal with a dege
erate situation and investigate byE(2) ~second-order pertur
bation coefficient int) whether the parallel or the antiparalle
orientation is favored. The linear orderE(1) vanishes for
particle-hole symmetry reasons and does not lift the deg
eracy.

For the parallel configuration it is straightforward to ca
culateE(2). Without loss of generality we chooset851/4 and
consider «(k)5«0(k)22t@cos(kx)6cos(ky)# with «0(k)5
2cos(kx)cos(ky) as dispersion. The plus sign refers ton
,1, t8.0 and the minus sign ton.1, t8.0. This can be
seen by means of a particle-hole transformation and a
transformationci→2ci on all sites with aneven xcoordi-
nate. One obtains at constant fillingE(2)52uLu/
(2t8)A6(«F) with

A6~«F!5E
2p

p d2k

~2p!2
@cos~kx!6cos~ky!#2

3d„«F1cos~kx!cos~ky!…

52
4

p2
@6«FK~12«F

2!2E~12«F
2!# ~35!

yielding the dotted curves in Fig. 6. The relation~35! is
found with the help of the quantitiesI n in Appendix A of
Hanisch/Müller-Hartmann;24 K and E are complete elliptic
integrals. Note that the coefficientE(2) is not continuous
acrossn51.

Next we assess the energy of two antiparallel Naga
states on each of the sublattices. Let us useak,s

1 for the
fermions on theA sublattice andbk,s

1 for the fermions on the
B sublattice. The perturbation reads then

FIG. 5. Critical densities for the Nagaoka instability atU5`
for a Gutzwiller single spin flip on the square lattice as a function
ut8u512utu. Between the two full lines the Nagaoka state is fou
to be possibly stable. The dashed-dotted line marks the sing
case ut8/tu51/2 where the particle-hole asymmetry reaches
maximum.
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H1522t (
kPMBZ

@cos~kx!6cos~ky!#~ak,s
1 bk,s1bk,s

1 ak,s!,

~36!

where MBZ is the magnetic Brillouin zone. The secon
order energy lowering is

E~2!t2uLu52^A↑,B↓uH1~H02E0!21H1uA↑,B↓&.
~37!

The acronymsA↑ and B↓ stand for the respective Ferm
seas. There are two processes which contribute equall
Eq. ~37!. Either a fermion is shifted fromA to B and back or
a fermion is shifted fromB to A and back. The latter yields
explicitly

E~2!52
8

uLu (
kPMBZ

@cos~kx!6cos~ky!#2Q„«F2«0~k!…

3^A↑uak,↑@H0,A2E0,A2«~k!#21ak,↑
1 uA↑&

54E d2k

~2p!2
@cos~kx!6cos~ky!#2

3gk„«0~k!…Q„«F2«0~k!…, ~38!

wheregk is the one-particle Green function. Now we spec
that we work atU5` and weassumethat the Nagaoka stat
is stable fort50 at the filling considered. If the Nagaok
state is not stable we do not need to make the present c
parison anyway. Based on our assumption, the Green f
tion is purely real and negative. It obeys the inequality

gk~«0~k!!,~«0~k!2ek!
21,0 ~39a!

ek :5^ak,↑uH0,A2E0,Auak,↑
1 &

52e1 /d1«0~k!d@12~e1 /d!2#. ~39b!

The estimate~39a! corresponds to a simple Gutzwille
ansatz28 and yields Eq.~39b! @see Eqs.~4! and ~5! with t
5t851/4 andz54 in Ref. 24#. Thus we obtain

FIG. 6. Second-order perturbation coefficientE(2) in t in units
of 4t8N. Dotted line: for parallel Nagaoka states~or global ferro-
magnetic state, see text!; dashed line: upper bound toE(2) for anti-
parallel Nagaoka states~or global antiferromagnetic state!.
-

to

m-
c-

E~2!,
4d

f E21

«F
d«

A6~«!

l2«
, ~40!

where f 5d(d21)2e1
2, l5e1 / f , and A6 from Eq. ~35!.

The evaluation of the right-hand side of Eq.~40! yields the
dashed curves in Fig. 6. The essence of Fig. 6 is that
saturated ferromagnetic state is unstable in the limitt→0 for
all fillings. The small region whereEFM

(2) lies below the upper
bound forEAFM

(2) does not count since we know that at the
dopings~and for larger dopings! already the pure square la
tice at t50 has no saturated ferromagnetic ground state,
e.g., Refs. 24 and 23.

We wish to draw the reader’s attention to the fact that
comparison in Fig. 6 is quite different from the main them
of this paper which is based on single spin-flip energi
Here the global stability is tested with a completely differe
antiferromagnetic state. We learn from the perturbative ar
ment that in Fig. 5 the true linesn(t8) comprising theglobal
Nagaoka stability region have to converge both to the po
t851, n51.

C. Simple cubic lattice

The energy dispersion of the simple cubic lattice is

«sc~k!522t@cos~kx!1cos~ky!1cos~kz!#. ~41!

The calculation ofrsc(«) can be performed by an integratio
over the known DOS of the square lattice~see Appendix E!.
The maxima and minima of the energy dispersion~41! are
« t5zutu and «b52zutu, respectively, with the coordination
numberz56. At the band edges the DOS~Fig. 7! shows the
square-root behavior which is characteristic ford53. The
van Hove singularities at«562t correspond to the saddl
points of the dispersion~41!.

Figure 8~a! shows the spin-flip energy atU5` for Gw,
NN, and RES0. For small hole doping the loss of spin-
kinetic energy due to the spin flip is sufficiently strong
keep the Nagaoka state stable. With increasingd the spin-flip
energy decreases due to the gain of kinetic energy for
flipped spin which grows linear withd in leading order. The
upper bound for the critical hole density is reduced fro
dcr50.323 for Gw~Refs. 28 and 29! to dcr50.247 for NN
and finally to dcr50.237 for RES0. As ind52, the NN

FIG. 7. DOS for the simple cubic lattice (t51).
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hopping term gives the dominant contribution to the decre
of dcr , while the extension of the spin-up hopping proces
to the whole lattice has only a small effect.

Roth38 investigated the Nagaoka instability with respect
a single spin flip on the sc lattice already in 1969, mak
use of the so-called two pole approximation instead of
projection method. It was shown later39,40 that the Hilbert
subspace considered in Ref. 38 is equivalent to the Ba
Elser subspace in the limitU→`. Roth obtained numerically
a critical hole density of 0.24 which is consistent with o
variational result for RES0.

The phase diagram@Fig. 8~b!# for the simple cubic lattice
shows a qualitative difference to the square lattice: The c
cal U at half filling obtained for the Gutzwiller single spi
flip is not at all improved by including NN hopping term
Even for RES1Ucr(d50) is still given by the bandwidth
12utu. This is due to the fact that for the sc lattice the DOS
the upper band edge vanishes, while it is nonzero for
square lattice.

As in d52, the ansatz RES2 leads toUcr(d50)5` and
to a considerable reduction of the Nagaoka stability reg
near half filling. For the full resolvent ansatz RES3 we
nally achieve a minimum critical coupling ofUcr

min548.9utu

FIG. 8. ~a! Spin-flip energy atU5` as a function of the hole
density on the sc lattice (t51) for Gw, NN, and RES0,~b! phase
diagram (n,1): Nagaoka instability lines on the sc lattice for G
~dashed-dotted!, NN ~long-dashed!, RES1~lower full line!, RES2
~short-dashed!, and RES3~upper full line!.
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~corresponding toU red50.753) below which the Nagaok
state is proven to be unstable for alld. The region left for a
possible Nagaoka ground state on the sc lattice is there
substantially smaller than on the square lattice~RES3 for the
square lattice:dcr50.405,Ucr

min536.2utu). Generally the ten-
dency of the Hubbard model towards a saturated ferrom
netic ground state on ad-dimensional hypercubic lattice be
comes weaker with increasingd. Müller-Hartmann30 showed
that the critical hole density atU5` with respect to a
Gutzwiller single spin flip decreases asymptotically asdcr

}1/Adlnd for d@1. In the limiting case of infinite dimen-
sions the ground state of the Hubbard model is never fu
polarized.41

D. bcc lattice

The bcc lattice is another interesting example of a thr
dimensional bipartite lattice. It has a slightly higher coord
nation numberz58 compared to the simple cubic lattice. I
dispersion reads

«bcc~k!528tcos~kx!cos~ky!cos~kz!. ~42!

The calculation of the DOSrbcc(«) can again be performed
by an integration over the known DOS of the square latt
~see Appendix E!. The bipartiteness is obvious since«bcc(k
1Q)1«bcc(k)50 with Q5(p,p,p)†. For this reason we
consider onlyn<1.

The DOS is shown in Fig. 9~a!. The square-root singulari
ties at the band edges are generic for three dimensions.
least common feature for a three-dimensional lattice is
squared logarithmic singularity at zero energyrbcc(«)
' ln2(«)/(4p3) which results from the points in momentum
space where all cosines in Eq.~42! vanish, e.g.,«bcc(k)'
28t(kx2p/2)(ky2p/2)(kz2p/2).

Evaluating Eq.~4! for the bcc lattice, we find the critica
densitydcr50.324 in the Gutzwiller approach. This is almo
the same result as for the simple cubic lattice. The re
dcr50.239 for the full ansatz RES0 is also only a tiny b
higher than the RES0 critical doping for the sc lattice.
appears that the essential ingredients are indeed the dim
sionality and the bipartiteness as we will see below.

The results for finite interaction are shown in Fig. 9~b!.
The value ofUBR is 16.413. The reduced interaction valu
are very similar to the ones for the simple cubic lattice. T
ansatz RES1 does not capture the diverging interaction
n→1 but RES2 yields already the asymptotic behavior
RES3 for n→1. The critical interaction isU red, cr50.7438
for RES3.

As far as the local stability of the Nagaoka state is co
cerned we do not find any indication that the bcc lattice
more favorable than the simple cubic lattice. Herrmann a
Nolting16,17 found in the framework of the spectral densi
approach an enhanced tendency towards ferromagnetism
the bcc lattice. They investigated the divergence of the s
ceptibility in the paramagnetic phase which is enhanced
the large DOS at zero energy. Combining their result w
ours one might come to the conclusion that the bcc lat
favors a nonsaturated ferromagnetism for intermediate c
pling and doping.



te
a
o

u
l
o

w
se
Th
h
er

un
ca

he

y
the
od
he
l
ka

ts
fer-

-
f a

sible

m-
ar
ka
nd

half
m,
t
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E. Honeycomb lattice

Besides the square lattice the honeycomb lattice~see Fig.
9 in Ref. 25! is another prominent example of a biparti
lattice in d52. In contrast to the square lattice it is not
Bravais lattice, however, but a triangular lattice with a tw
site basis. The coordination number isz53 and the band
dispersion reads

«hon~k!56At@3t2«n~k!#, ~43!

where«n(k) stands for the energy dispersion of the triang
lar lattice to be described in Eq.~44!. Despite this additiona
complication the formulas developed in Sec. II via the res
vent method hold here as well~see Appendix B!.

The instability of the Nagaoka state with respect to G
and NN was already discussed in Ref. 25. Here we pre
the improvements obtained by the resolvent method.
evaluation of RES0 shows that hopping processes wit
larger distance from the down-spin position have only a v
small influence on the optimum spin-flip energy atU5`
~Fig. 10!.

The instability gap (0.379<d<0.481) between the two
possible Nagaoka stability regions remains almost
changed compared to the result for NN. The upper criti
hole density is only slightly improved todcr50.643 from
0.662~NN! and 0.802~Gw!.25

FIG. 9. ~a! DOS for the bcc lattice (t51). ~b! Phase diagram
(n,1): Nagaoka instability lines on the bcc lattice for RES1~dot-
ted line!, RES2~dashed!, and RES3~full line!.
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As explained in Ref. 25 the Nagaoka stability island in t
phase diagram around quarter filling~Fig. 11! is mainly due
to the zero in the DOS at«50, i.e., between the two energ
bands. Since the lattice structure enters the calculation of
optimum spin-flip energy by means of the resolvent meth
only via the DOS the stability island is present even for t
full resolvent ansatz RES3. On the other hand, the criticaU
at half filling diverges for RES2 and RES3 and the Nagao
stability region for smalld shrinks compared to the resul
for NN and RES1. These results and the pronounced dif
ence between the two minimum values ofU (41.2utu for the
low doping regime and 17.25utu for the stability island! cor-
roborate the previous conjecture25 that a saturated ferromag
netic ground state exists around quarter filling. The lack o
Nagaoka theorem for the honeycomb lattice19,25 indicates a
degeneracy between the Nagaoka state and other pos
states near half filling even atU5`.

F. Triangular lattice

The triangular lattice is nonbipartite. It can be deco
posed intothree sublattices, each of them having triangul
structure. Investigating the local instability of the Nagao
state towards a Gutzwiller single spin flip a Nagaoka grou
state was excluded on the triangular lattice for less than
filling.29,25 This is in agreement with the Nagaoka theore
which predicts a saturated ferromagnetic ground state aU
5` only for the half-filled latticeplusan additional electron.

FIG. 10. Spin-flip energy atU5` as a function of the hole
density on the honeycomb lattice (t51) for Gw, NN, and RES0.

FIG. 11. Phase diagram (n,1): Nagaoka instability lines on the
honeycomb lattice for Gw~dashed-dotted!, NN ~long-dashed, al-
most identical with RES1!, RES2 ~short-dashed!, and RES3~full
line!.
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Thus we consider henceforth the electron doped case ft
51 or, equivalently,t521 andn,1.

Each lattice site hasz56 nearest neighbors located at t
corners of a hexagon. The band dispersion is given by

«n~k!52 cos~kx!14 cosS kx

2 D cosSA3ky

2 D , ~44!

wherek belongs to the likewise hexagon-shaped first B
louin zone. The upper band edge (« t56) is found at the
center of the Brillouin zone, whereas the lower band ed
«b523 is reached at the corners of the hexagon. The D
~see Appendix E and Fig. 1 in Ref. 25!, which can be ex-
pressed by a complete elliptic integral, displays a logarithm
van Hove singularity at«522. For«F522 the Fermi sur-
face forms a hexagon with an area of 3/4 of the whole B
louin zone. As usual ind52 the DOS at the band edges
nonzero@rb54r t5(A3p)21#.

In contrast to the square lattice, the Nagaoka state rem
stable towards Gw for all fillingsn.1 at U5`.28,29 The
corresponding spin-flip energy as a function ofd is depicted
in Fig. 12~a!. Evaluating NN, however, a negative spin-fl
energy is found abovedcr50.912 proving the instability of
the Nagaoka state in the low-density limit. The resolve
ansatz RES0 lowers the spin-flip energy further and imp

FIG. 12. ~a! Spin-flip energy atU5` as a function of the hole
density on the triangular lattice (t521) for Gw, NN, and RES0,
~b! spin-flip energy atU red50.4 as a function of the hole density o
the triangular lattice (t521) for RES1~dashed-dotted line!, RES2
~upper full line!, and RES3~lower full line!.
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dcr50.824 @Fig. 12~a!#. The differenceDd50.088 between
the results obtained for NN and RES0 is eight times lar
than the one for the square lattice (Dd50.011). This dem-
onstrates the importance of the spin-up hopping proce
for the instability of Nagaoka ferromagnetism on the tria
gular lattice. The reason is that due to the large hole dens
under consideration, the probability to find unoccupied si
near the flipped spin is quite high. The same line of reas
ing applies also forU,`, see Fig. 13.

Previously we investigated a variational state which
stricts the hopping processes to a 31-site cluster around
position of the flipped spin25 and obtaineddcr50.887. Al-
though the nearest-neighbor processes once again are
most important ones, the number of relevant hopping p
cesses on the triangular lattice turns out to be much la
than on the square lattice. Hence the critical hole den
dcr50.824 found by the resolvent method is essentia
lower than the one found from the finite cluster calculatio
Moreover, the evaluation of RES0 requires much less a
lytical and numerical effort than the iterative extension of t
variational ansatz by additional hopping processes. For
tails on the application of the resolvent method to the tria
gular lattice see Appendix C.

Near half filling the influence of the majority spin hop
ping processes contained in NN and RES1~which suppress
double occupancies! on the Nagaoka stability is negligible
as expected~Fig. 13!. In contrast to this the resolvent ansa
RES2 with nearest-neighbor hopping processescreating
double occupancies leads to a negative spin-flip energy
half filling for all U,` and hence to a divergence o
Ucr(n51) ~Fig. 13!. It turns out, however, that for large
hole densities, when the exchange effect loses its imp
tance, RES2 is somewhatless successful than RES1. Th
plot of the spin-flip energy as a function ofd for the com-
paratively small on-site repulsionU red50.4 in Fig. 12~b!
demonstrates that aboved.0.12 the creation of extra hole
near the flipped spin as described by RES2 is energetic
unfavorable. The full resolvent ansatz RES3, compris
RES1 and RES2, gives of course the best lower bound
the Nagaoka instability lineUcr(d). The minimum critical
coupling obtained for RES3 isUcr

min59.62utu (U red50.378),
the critical hole density atU5` is given by the RES0 value

FIG. 13. Phase diagram (n.1): Nagaoka instability lines on the
triangular lattice for Gw~dashed-dotted!, NN ~lower full line!,
RES1 ~short-dashed!, RES2 ~long-dashed!, and RES3~upper full
line!.
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dcr50.824. Hence the region for a possible Nagaoka gro
state on the triangular lattice appears to be much larger
on the bipartite square and honeycomb lattices.

G. Kagomé lattice

Taking thekagome´ lattice as an example of a frustrate
non-Bravais lattice we want to demonstrate that the resolv
method works also for this class of lattices. Representing
line graph42 of the honeycomb lattice thekagome´ lattice ~for
t,0) shows a flat, i.e., dispersionless band with spec
weight 1/3 at the lower band edge«b522utu ~Fig. 14!. All
line graphs display such a flat band.43 The kagome´ lattice is
the first and the most prominent example of so-called fl
band ferromagnetism.44,45 A macroscopic degeneracy of th
lowest single-particle energy leads for certain band fillings
a unique saturated ferromagnetic ground state. Mielk43

proved that the Nagaoka state is the unique ground stat
the Hubbard model on thekagome´ lattice for all U.0 at n
51/3. Although in the flat-band regime every ground state
the Hamiltonian~1! is a simultaneous eigenstate ofHkin and
Hpot, the uniqueness of the ground state is not trivial. F
n,1/3 the fully polarized ground state is not unique.4

The kagome´ lattice can be considered as a triangular l
tice with a basis of three lattice points,25 see also Appendix
D. Besides the flat band«(k)52t the diagonalization ofHkin
leads to the two dispersive bands

«K~k!52t@16A32«n~k!/t#, ~45!

where«n(k) stands for the dispersion~44! of the triangular
lattice. For thekagome´ lattice the resolvent method require
less effort than for the triangular lattice witht,0 since the
lower band edge«b522utu is reached atkb50 for one dis-
persive band and for the flat band of course. Thusq50 is the
optimum momentum as for bipartite lattices. Hence
lattice-dependent quantities appearing in our formulas ca
calculated as integrals over the DOSrK(«). For t521 one
finds the DOS of thekagome´ lattice ~see Fig. 14 and Appen
dix E! as

rK~«!5
1

3
d~«12!1

2

3
u«21u•rn@~«21!223#; ~46!

FIG. 14. DOS for thekagome´ lattice (t521).
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rn(«) is the DOS of the triangular lattice. Nevertheless, t
fact that thekagome´ lattice is not a Bravais lattice induces
some changes in the analytic expressions for the spin
energy~Appendix D!.

Figure 15~b! shows the spin-flip energy forU5` and t
521 as a function ofd for RES0 compared to the Gw an
NN results obtained in Ref. 25. As for the honeycomb latt
the enhancement of the Nagaoka stability ford→1/3 is due
to the zero in the DOS. The effect of the additional spin-
hopping processes contained in RES0 is most pronoun
for d.1/3. But the spin-flip energy remains positive for a
band fillings. Note that the exact result in the flat-band
gime is a zero spin-flip energy.4,25 The phase diagram forn
.1 in Fig. 16 shows a strong tendency towards Naga
ferromagnetism also beyond the flat-band regime, where
find the Nagaoka state to be stable for allU.0. There is
only a marginal difference between the Nagaoka instabi
lines for NN and for RES1, since the values ofU under
consideration are too small to allow a significant reduction
the spin-flip energy by Basile-Elser hopping processes. N
half filling, however, we are able to restrict the Nagao
stability region by RES2, i.e., by taking antiferromagne
exchange processes into account. As for the triangular lat
for a certain range of filling aroundn53/2 away from half
filling RES2 gives a weaker bound forUcr(d) than RES1.

For positive hopping matrix elementt the flat band is
found at theupper band edge. The flat-band regime forn
,1 corresponds to hole densities 0<d<1/3. Sincekb50
and«b52zt the resolvent method formulas are those of t
bipartite lattices~see Appendix B!. Figures 15~a! and 16

FIG. 15. Spin-flip energy atU5` as a function of the hole
density on thekagome´ lattice for Gw~dashed-dotted!, NN ~dashed!,
and RES0~a! for t51, ~b! for t521.
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show that the small Nagaoka stability island fou
previously25 for very largeU around quarter filling is still
present for RES0– RES3. The upper critical hole densit
reduced from 0.727~NN! to 0.715~RES0! andUcr

min reaches
191.5utu ~RES3! instead of 129.5utu ~NN!. These results may
indicate that this stability island really provides an exam
of a saturated ferromagnetic ground state on a nonbipa
lattice for less than half filling. Its origin25 is the zero in the
DOS enhancing the stability of the Nagaoka state around
52/3.

H. fcc and hcp lattices

The fcc and hcp lattices as the most prominent clo
packed lattices ind53 are found in numerous real sub
stances among them the ferromagnetic transition metal
~fcc! and Co~hcp!. The face-centered-cubic lattice is a Br
vais lattice with coordination numberz512. Its band disper-
sion

« fcc~k!524t„cos~kx!cos~ky!1cos~kx!cos~kz!

1cos~ky!cos~kz!… ~47!

is related to the dispersion~41! of the simple cubic~sc! lat-
tice via29

« fcc~k!52
«sc

2 ~k!

2t
2

«sc~2k!

2
13t. ~48!

The hexagonal close-packed lattice~also withz512) is not a
Bravais lattice but a hexagonal lattice with basis. Within t
hexagonal planes, which we assume to be parallel to thexy
plane, thek dependence of the two energy bands reduce
the energy dispersion~44! of the triangular lattice:29

«hcp~k!5«n~kx ,ky!62tcos~A2/3kz!•A32«n~kx ,ky!/t.
~49!

Hence it is possible to compute the DOS of the hcp lattice
integration overrn(«) ~see Appendix E!.

Modeling the fcc and hcp structures with close-pack
spheres, the sequence of layers with different positions of
sphere centers is known to be ABABAB . . . for the hcp and
ABCABC . . . for the fcclattice. Diagonalizing the kinetic

FIG. 16. Phase diagram: Nagaoka instability lines on
kagome´ lattice for Gw, NN, RES1~lower full line!, RES2, and
RES3 ~upper full line!. For n,1 the difference between RES1
RES2, and RES3 is less than the linewidth.
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part of the Hamiltonian~1! in each of the hexagonal planes
turns out that the terms reflecting the different arrangem
of the planes disappear if one chooses the Fourier trans
mation in a convenient way. Thedensities of statesfor the
fcc and for the hcp lattices are thereforeidentical as well as
our variational results on the stability of the Nagaoka st
with respect to Gw and NN.

For less than half filling a saturated ferromagnetic grou
state was already excluded due to the complete instabilit
the Nagaoka state towards Gw atU5`.29 Therefore we only
investigate the case of more than half filling which corr
sponds tot,0. The DOS@Fig. 17~a!# displays thed53
square-root behaviorr(«)}A« t2« at the upper band edg
« t5zutu. For the fcc lattice the lower band edge«b524utu is
reached on differentlines in k space which intersect in sev
eral critical points located on the border of the Brillou
zone. This reduces the ‘‘effective dimensionality’’ of the va
Hove singularity by one and leads to alogarithmic singular-
ity in the DOS. As a consequence, the Nagaoka state rem
stable in the low-density limit~corresponding ton→2 for t
.0) for all U.0 with respect to Gw and NN@Fig. 17~b!#.
This result indicates the strong tendency towards Naga
ferromagnetism on the fcc lattice, especially in comparis
with the triangular lattice where we proved theinstability of
the Nagaoka state even forU5` in the low-density limit.

e

FIG. 17. ~a! Identical DOS for the fcc and hcp lattices (t5
21) and DOS for the fcc lattice with additional next-neare
neighbor hopping (t85t/2), ~b! phase diagram (n.1): Nagaoka
instability lines on the fcc lattice for Gw and NN and on thet-t8-fcc
lattice with t85t/2 for Gw.
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Also for low and intermediate hole doping the extension
the Gutzwiller wave function by nearest-neighbor hopp
processes yields only a slight reduction of the Nagaoka
bility region in the phase diagram. This is in sharp contra
for example, to the situation on the sc lattice. The resolv
method was not applied to the fcc and hcp lattices si
three-dimensional momentum integrals would have to
performed in order to calculateh(v) and h̄ (v) ~see Appen-
dix C!.

As for the square lattice~see Sec. III B! the particle-hole
asymmetry of the DOS is even enhanced if one extendsHkin
by electron hopping betweennext-nearest-neighbor site
with a hopping amplitudet8. On the fcc lattice, these site
form a simple cubic structure such that the additional con
bution to the dispersion exactly compensates the second
on the right-hand side of Eq.~48! if t85t/2. In this case the
DOS for thet-t8-fcc lattice is connected to the DOS of the
lattice via

r t2t8~«!5A 2

3~12«/3t !
•rsc@A6~12«/3t !t#, ~50!

and therefore finally simplifies to an integral overrh(«) ~see
Appendix E!. The next-nearest-neighbor hopping with am
plitude t85t/2 creates asquare-rootdivergence of the DOS
at the lower band edge~for t,t8,0) in contrast to theloga-
rithmic singularity obtained fort850 @see Fig. 17~a!#.

The Nagaoka instability line for a Gutzwiller single sp
flip on the fcc lattice witht85t/2 is compared with the resu
for the simple fcc lattice (t850) in Fig. 17~b!. The more
pronounced singularity of the DOS at the lower band ed
leads to an even more pronounced stability of the Naga
state in the low-density limit. We findUcr(d)}12d instead
of Ucr(d)}1/ln(12d) for t850. The slight increase of the
critical U at half filling is due to the different bandwidth o
the t-t8-U model (18utu instead of 16utu).

IV. CONCLUSIONS

In summary, we investigated the stability of the Nagao
state for a series of two- and three-dimensional lattices:
squaret-, the squaret-t8-, the simple cubic, the bcc, th
honeycomb, the triangular, thekagome´, and the fcc~hcp!
lattice. The results were mostly variational in nature and c
cerned the energy change due to a single spin flip. By
resolvent approach the eigenvalue problem in the variatio
subspace was reduced to a matrix inversion problem.
relatively simple structure of the matrices under consid
ation permits us to convert the matrix inversion into a sca
inversion ~or the inversion of a 232 matrix!. For the t-t8
square lattice a perturbative approach int was used as wel
for investigating thet/t8→0 limit.

The ansatzes RES0–RES3 are particularly simple for
frustrated, isotropic, homogeneous lattices with near
neighbor hopping~Sec. II, Appendix B!. For frustrated, non-
bipartite lattices our approach is still tractable, though m
cumbersome. To demonstrate its tractability we derived
mulas for the triangular lattice~nonbipartite, Bravais lattice!
and for thekagome´ lattice ~nonbipartite, non-Bravais lattice!.

We believe that our variational criteria are well suited
order to investigate the lattice dependence of saturated fe
f
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magnetism in the Hubbard model since they cover the m
relevant local excitations in the spin-up Fermi sea but
still simple enough to be evaluated routinely on various l
tices in various dimensions. Local and nonlocal band n
rowing effects are present in these approaches. Since this
is not obvious in the complete approaches we resort to
previous result~4!. The factord@12(e1 /dzt)2# clearly de-
scribes the band narrowing of the flipped spin. It compris
two factors, one of which is local (d) and thus survives also
in the limit d→`. The other factor@12(e1 /dzt)2# is very
important as well since it vanishes equally ond→0. But in
the limit z→` on scaling46 t}1/Az the latter factor degen
erates to unity. This clearly shows its nonlocal charac
Note the importance of the sequence of limits. The m
sophisticated variational approaches discussed in the pre
work ~RES0–RES3! comprise the ansatz~3!. Thus they con-
tain also local and nonlocal band narrowing effects. T
other main effect is a direct energy lifting of the minori
electron due to the infinite~or large! on-site repulsion. Since
the minority electron blocks a site, the majority electro
lose the kinetic energy related to hopping onto or from t
site, namelye1. This is seen best in the kinetic matrix ele
ments in Eq.~10b! or in the energy denominator~13!. Fur-
thermore, we like to draw the reader’s attention to the n
orthogonality as it can be discerned in Eq.~10a!. It is very
difficult to comprehend its effect intuitively. But we know
from the extensive efforts to reduce the critical doping
including more and more correlations23 that this nonorthogo-
nality hinders the spin flip to gain enough energy to desta
lize the Nagaoka state. The added states do not reduce
critical doping any further since they do not really enhan
the accessible Hilbert space.

Besides the achievement of easily evaluated ansatze
comparison of the phase diagrams presented here yield
following main results. For bipartite lattices the possible N
gaoka region shrinks rapidly with increasing coordinati
numberz ~cf. square and simple cubic lattice!. Herrmann and
Nolting did not investigate low-dimensional lattices becau
they suppose that ferromagnetism is excluded ind51 and 2
by the Mermin-Wagner theorem.16,17 Note, however, that
neither the Mermin-Wagner theorem makes any statemen
ground states47 nor any extended theorem can exclude a f
romagnetic ground state since the total spin asconserved
quantity is not affected by quantum fluctuations. The shrin
ing of the Nagaoka region on increasing coordination nu
ber can be understood from the lowering of the DOS at
band edges or, equivalently, as the effect of a lower a
lower band edge«b .

For the above reasons we investigated low-dimensio
nonbipartite lattices where low DOS at the lower band ed
can be avoided. Indeed, we found that the possible Naga
regions are enlarged considerably. This is true for elect
doping for conventional hopping (t.0,n.1) whereas satu-
rated ferromagnetism in the hole-doped region (t.0,n,1)
can be excluded by our results. Treating the electron dop
also as hole doping after a particle-hole transformation,
t.0, n.1→t,0, n,1, this phenomenon is easily unde
stood: «b(t,0),«b(t.0). The ratio of the lower band
edges is 2 for the triangular and thekagome´ lattice, and 3 for
the fcc and hcp lattice. In infinite dimensions it becom
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even` for the generalizations of the fcc lattice.29,13,14 For
these generalizations one has«b(t.0)/«b(t,0)}Ad.

The above observations concern already the asymmet
the density of states. Our results clearly show that a la
asymmetry favors ferromagnetism. It is most useful to hav
large DOS at the lower band edgein the hole-doping picture
to stabilize the Nagaoka state. Note that this isnot equivalent
to the well-known Stoner criterionUr(«F).1 which con-
cerns only the DOS at the Fermi level.7 The best situation is
to have a strongly diverging singularity at the lower ba
edge or close to it as we found in the investigation of thet-
t8 model with tunable DOS and as was also observed pr
ously for fcc-type lattices.13,14,17

Our results concerning thet-t8 model extend previous
ones15 since we treat all ratios oft and t8 and all fillingsn.
Hlubina et al. focused on the Fermi levels at the van Ho
singularity. Thus the Stoner criterion is at the basis of th
investigation albeit it goes technically beyond this mean-fi
criterion.

Herrmann and Nolting used a two-pole method~SDA:
self-consistent spectral density approach! to investigate fer-
romagnetism for the simple cubic, thed5` hypercubic, the
d5` fcc, and the bcc lattice16,17 at zero and at finite tem
perature. Their qualitative findings for zero temperature
similar to ours. We would like, however, to point out that t
two-pole method they employ is indeed a generalization
the Gutzwiller ansatz in Eq.~3! with f 50 to finite tempera-
tures and nonsaturated magnetizations. ForT50 and satura-
tion it reduces to Eq.~3! with f 50. Thus it is not astounding
that they found a good agreement with the results of Sha
et al.28 Our approaches go far beyond Eq.~3! ~barring the
question of the extendability to finite temperatures!. This can
be seen, for instance, for the simple cubic lattice where
found dcr50.237 well belowdcr50.32.28,17 Already Roth
found by numerical calculation in the variational subspace
RES0 the numberdcr50.24.38 For the bcc lattice one find
again that the SDA method17 reproduces the Gutzwiller re
sult dcr50.324 for saturated ferromagnetism whereas RE
yields a considerably lower value ofdcr50.239. Thus one is
led to the conclusion that the SDA two-pole method can
be exact as claimed in the strong-coupling limit.16
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APPENDIX A: THE FULL RESOLVENT ANSATZ RES3

Computing the elements of the matrixvP2L @see Eq.
~12!# using Wick’s theorem we obtain

~P1!k1k2
5n•dk1k2

1uLu21, ~A1a!

~D1!k1k2
5$n@v2«~k2!#1e1@11«~k22kb!/~zt!#%•dk1k2

1uLu21~v2«b!, ~A1b!
of
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Nk1k2
52uLu21@«~k1!2«~k2!2«~k12k22kb!1«b!].

~A1c!

Since only the positions of the creation and the annihilat
operator are interchanged between the statesuFk& and uCk&
one getsP2 andD2 from P1 andD1 substitutingn by d, v by
v2U and «(k) by 2«(k). As for D1 ~12!, D2 contains a
diagonal matrix and ak-independent part:

D25d2
211~v2U2«b!uu1 ~A2!

with

~d2
21!k1k2

5dk1k2
•$d@v2U1«~k2!#

1e1@12«~k22kb!/~zt!#%,

~u!k5uLu21/2 ~A3!

for k,k1 ,k2PFS.D1
21 is known already from RES0~15! and

we obtain the matrix elements ofN1D1
21N for k1 ,k2PFS,

q1 ,q2PBZ\FS as

~N1D1
21N!k1k2

5uLu22 (
q1q2

S f ~q1!dq1q2

2
v2«b

11~v2«b!h~v!
•

f ~q1! f ~q2!

uLu D
3@«b2«~k12q12kb!1«~k1!2«~q1!#

3@«b2«~k22q22kb!1«~k2!2«~q2!#.

~A4!

A remarkable simplification occurs if terms like«(k
2q) factorize to2«(k)«(q)/(zt). This happens if, as for
hypercubic lattices, every component gives the same co
bution to the sum overqi due to the symmetry of the Bril-
louin zone. In this case the corresponding matrix elemen
the one-particle Green’s function is invariant under permu
tion of the components. Of course the bound state we
looking for has to display the same permutation symme
Making use of this argument and assumingkb50, «b52zt
the product in the second line of Eq.~A4! simplifies to

~zt!2S «~k1!

zt
21D S «~k2!

zt
21D S «~q1!

zt
11D S «~q2!

zt
11D .

~A5!

Carrying out the summation overq1 andq2 we obtain

~N1D1
21N!k1k2

5uLu21S «~k1!

zt
21D S «~k2!

zt
21Da

~A6!

with

a:5g21S e112dzt2dV1~V1zt!2G~V!

2
~V1zt!@~V1zt!G~V!2d#2

n1~V1zt!G~V! D , ~A7!
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depending only onv and«F , but not on the indicesk1 and
k2. We define the vectorw by (w)k :5uLu21/2«(k)/(zt) for
kPFS. Making use of this definition, Eqs.~31!, ~A2!, and
~A6! the matrixB2

21 reads

B2
215d2

211~v1zt2U !uu1

2a~uu12uw12wu11ww1!. ~A8!

The off-diagonal elements ofB2
21 do not depend explicitly

on k1 andk2. In contrast to RES0~12!, however, they are no
overall constant but take specific values for each block
B2

21 . To overcome this additional complication we introdu
the 232 matrix

A5Fa1 a3

a3 a2
G5Fa2v2zt2U 2a

2a a G ~A9!

and write B2
21 as B2

215d2
212y1Ay with y1:5(u,w). In

order to obtainB2 we use an expansion trick similar to E
~14b!:

B25d2~12y1Ayd2!
21

5d2~12y1Ayd21y1Ayd2y
1Ayd21••• !

5d21d2y
1A~12BA!21yd2 , ~A10!

with B:5yd2y
1 representing the 232 matrix

B5Fb1 b3

b3 b2
G5F u1d2u u1d2w

u1d2w w1d2w
G . ~A11!

While inverting the matrix

12BA5Fc1 c3

c4 c2
G5F12a1b12a3b3 2a3b12a2b3

2a1b32a3b2 12a2b22a3b3
G

~A12!

represents a simple algebraic task, the elements ofB have to
be computed by numerical integration. In analogy toh(v)
5v1d1v @see Eq.~16a!# we introduce

h̄~v!:5u1d2u5uLu21 (
kPFS

@d~v2U !1 ḡ «~k!1e1#21

~A13!

with ḡ :5d2e1 /(zt). Just ash(v), h̄ (v) reduces to an in-
tegral over the DOS:

h̄~v!5E
«b

«F r~«!d«

d~v2U !1e11 ḡ «
5 ḡ 21Ḡ~V̄ !, ~A14!

with

Ḡ~y!:5E
«b

«Fr~«!d«

y1«
, V̄:5

d~v2U !1e1

ḡ
. ~A15!

The symmetry of the DOS with respect to«50 allows us to
mapḠ(y) to the integralG(y) already defined in Eq.~16d!.
Following Eq.~A11!, the elements of the matrixB are given
by b15 ḡ 21Ḡ(V̄), b25 ḡ 21(zt)22@e12nV̄1V̄2Ḡ(V̄)#,
andb35( ḡzt)21@n2V̄Ḡ(V̄)#.
f

To find the energy of the bound state we have to solve
equation (u1B2u)2180. Starting from Eq.~A10! and writ-
ing u formally asu5y1e1 we obtain

u1B2u5e1
1y@d21d2yA~12BA!21yd2#y

1e1

5e1
1@11BA~12BA!21#Be1

5e1
1~12BA!21Be1 ~A16!

and, using Eq.~A12!, we finally obtain the equation

c4c32c1c280 ~A17!

for the lower edge of the spectrum ofgkb
(v). After inserting

all terms Eq.~A17! takes the form

p1•Ḡ~V̄ !2p280 ~A18!

with

p15a ḡ ~V̄1zt!22~v1zt2U !@ ḡ ~zt!22a~e11nV̄!#

p25a ḡ @n~V̄12xt1e1!1n2~v1zt2U !#1 ḡ 2~zt!2.

Making use of the identitiesv1zt2U5 ḡ d21(V̄1zt), e1

5zt(n2g) and introducingx:5ag1ztḡ , Eq. ~A18! sim-
plifies to

1

d1~V̄1zt!Ḡ~V̄ !
812

ztx

a~V̄1zt!
. ~A19!

From the definition ofa Eq. ~A7! we derive the expression

x5~V1zt!S 12
1

n1~V1zt!G~V! D ~A20!

for x. We definein analogy

x̄ :5~V̄1zt!S 12
1

d1~V̄1zt!Ḡ~V̄ !
D ~A21!

and write Eq.~A19! as x̄ 8ztx/a. The eliminination ofa
finally leads to the simple result

1

zt
8

g

x̄
1

ḡ

x
. ~A22!

The Nagaoka instability lineUcr(d) is obtained by assum
ing v5«F for a given Fermi energy, calculatingg, ḡ , andx

and solve Eq.~A22! numerically with respect tox̄ . Note that
U enters Eq.~A22! solely viaV̄ and hence viax̄ . To com-
pute theoptimum spin-flip energyfor RES3 for fixed values
U andd, we solve Eq.~A22! with respect tov and subtract
the Fermi energy«F from the solutionv0(U,d).

APPENDIX B: GENERAL UNFRUSTRATED LATTICE

In this appendix it will be shown that the formulas derive
in Sec. II and the formulas~A20!–~A22! apply to all unfrus-
trated, isotropic, homogeneous lattices with nearest-neigh
hopping. In this context, ‘‘homogeneous’’ means that
sites are equivalent; ‘‘isotropic’’ means that all bonds in
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directions are equivalent. ‘‘Unfrustrated’’ means that t
statec0 :5uLu21/2( iai is an eigenstate of the kinetic Hami
tonian with eigenenergy«b52zutu where t is the hopping
element as in Eq.~1! andz is the coordination number. Thi
requirest.0, hence the absence of frustration. Note that
lattice does not need to be a Bravais lattice. The Bethe
tice, however, is not unfrustrated forz.1 in the above sens
since its lower band edge is«b522Az21utu,48 and not«b
52zutu.

Let us denote byca
1 the creation operators which diago

nalize the kinetic energy

«aca
15@Hkin ,ca

1# ~B1!

and byaj
1 the site-diagonal creation operators. The unita

transformation between these two bases has the matrix
mentsf a, j

ca
15(

j
f a, jaj

1 , ~B2!

which implies the expectation values with respect to the N
gaoka stateuN8&

^ca↑aj↑
1 &5 f a; j

1 for «a.«F , ~B3a!

^aj↑
1 cb↑&5 f b; j

1 for «b,«F . ~B3b!

The homogeneity required implies that

(
a

u f a, j u2d~v2«a!5const ~B4!

on the lattice, i.e., it does not depend onj . Unitarity yields
furthermore

(
a

u f a, j u251. ~B5!

First we address RES0 with the ansatz («a.«F)

Fa :5(
j

aj↑ca↑
1 aj↓

1 uN8& f a, j
1 . ~B6!

The resulting matrix elements are obtained by Wick’s th
rem and re-expressed with the help of Eqs.~B3a!–~B5!

Pa8,a5nda8,a1(
j

u f a8, j u2u f a, j u2, ~B7a!

L ↑a8,a5~n«a2e1!da8,a , ~B7b!

L ↓a8,a52
e1«a

zt
da8,a2t(

^ i , j &
u f a8,i u2u f a, j u2. ~B7c!

The matrix inversion to be solved is

~vP2L !215~D211N!21, ~B8a!

Da8,a5da8,a@n~v2«a!1e11~e1 /zt!«a#21, ~B8b!
e
t-

y
le-

-

-

Na8,a5v(
j

u f a8, j u2u f a, j u21t(
^ i , j &

u f a8,i u2u f a, j u2.

~B8c!

It can be re-expressed with the help of the matricesM , A,
andV

M i , j :5(
a

u f a,i u2u f a, j u2

n~v2«a!1e11~e1 /zt!«a
, ~B9a!

A i , j :5vd i , j1t(
d

d i 1d, j , ~B9b!

Va, j :5u f a, j u2, ~B9c!

where thed are all spatial vectors connecting nearest nei
bors. One obtains

~vP2L !215D2DVA S (
n50

`

~2MA !nDV1D. ~B10!

The key observation at this stage is that the vectoru with
uj5uLu21/2 is an eigenvector both of the matricesM andA.
The corresponding eigenvalue forM is found with the help
of Eq. ~B4!

h~v!5
1

L (
a,i , j

u f a,i u2u f a, j u2

n~v2«a!1e11~e1 /zt!«a
, ~B11!

which simplifies due to Eq.~B5! in the end to the form~16a!.
The corresponding eigenvalue ofA is v1zt5v2«b . So the
series in Eq.~B10! yields a vanishing denominator for 0
511(v2«b)h(v). Thus we derived Eq.~15! for a much
broader class of lattices.

The equations for RES1 and RES2 follow in analogy
the derivation in Sec. II B. The ansatz RES1 is identical
Eq. ~18! for kb50 and the additional matrix elements are t
same as in Eq.~20! once«k is replaced by«a . An important
point to note is that the homogeneity~B4! ensures thatNa
couples indeed to the constant eigenvectoru

~V1DN! j5@d2h~v!n~v2«b!#uj ~B12!

for which the series summation in Eq.~B10! was achieved.
For the ansatz RES2 we work with Eq.~25! for kb50 and

find the matrix elements~26! after replacing«k by «a . Using

~V1DN! j5yuj ~B13!

with y as in Eq.~27c!, we obtain again Eq.~28! as condition
for the variational spin-flip energy.

Let us now turn to RES3. We use («b,«F)

Cb5(
j

aj↑
1 cb↑aj↓

1 uN8& f b, j ~B14!

in analogy to Eq.~29! for the doubly occupied states. Th
matricesD1 for Fa andD2 for Cb as in Eq.~30! are given
by
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~D1!a8,a5da8,a@n~v2«a!1e11e1«a /~zt!#

1v(
j

u f a8, j u2u f a, j u21t(
^ j , j &

u f a8,i u2u f a, j u2,

~B15a!

~D2!b8,b5db8,b@d~v2U1«b!1e12e1«b /~zt!#

1v(
j

u f b8, j u2u f b, j u21t(
^ j , j &

u f b8,i u2u f b, j u2,

~B15b!

whereD1 can be read off from Eqs.~B8b! and~B8c! andD2
is analogous for the statesCb .

The matrixN, which couples the doubly and the nondo
bly occupied subspaces@see Eq.~30!#, is obtained again via
Wick’s theorem and with Eqs.~B3b! and ~B4!

Na,b5t(
^ i , j &

~ f a, j
1 f a,i u f b,i u22u f a,i u2f b, j

1 f b,i !

1t(
^ i , j &

~ f a,i
1 f a, j f b, j

1 f b,i2u f a, j u2u f b,i u2!. ~B16!

In order to re-express the inverse matrixB25(D2
2N1D1

21N)21 we define

~C1! i ,d8; j ,d :5 (
a8,a

f a8,i 1d8
1 f a8,i~D1!a8,a f a8, j 1d j

1 f a, j ,

~B17a!

~C2! i ,d8; j ,d :5 (
b8,b

f b8,i 1d8
1 f b8,i~D2!b8,b f b8, j 1d j

1 f b, j ,

~B17b!

Ei ,d8; j ,d :52td i , j~dd8,02dd,0!1td i 2d8, jdd,2d8~12dd,0!

2t(
d9

d i 1d9, jdd8,0dd,0 , ~B17c!

V j ,d;b :5 f b, j 1d
1 f b, j , ~B17d!

where the spatial vectorsd, d8, andd9 link nearest neighbors
or equal0. The result is

B25D2
211 (

n50

`

D2
21V1E1C1E~C2E

1C1E!nVD2
21,

~B18!

where we once again focus on the geometric series. In s
extension of the situation for RES0-2 we do not guess
common eigenvector ofE, C1, andC2 but a two-dimensiona
subspace spanned byu and v. The vectors are defined b
ui ,0 :5uLu21/2 and zero otherwise, and byv i ,dÞ0

:5(zuLu)21/2 and zero otherwise.
Straightforward calculation shows

Eu52ztu1Aztv, ~B19a!

Ev52Aztu1tv ~B19b!
ht
e

which can be summarized in

E52ztab1 ~B20!

with a:5u2v/Az and b:5u1v/Az. The matrix elements
of C1 with respect tou andv in obvious notation are

C1
uu5

1

uLu (a8,a
~D1!a8,a5

h0

11~v2«b!h0
, ~B21a!

C1
vv5

1

zt2uLu
(
a8,a

«a8~D1!a8,a«a

5
1

zt2
S h22

h1
2~v2«b!

11~v2«b!h0
D , ~B21b!

C1
uv5C1

vu5
21

AztuLu
(
a8,a

«a8~D1!a8,a5
21

Azt

h1

11~v2«b!h0
,

~B21c!

where we use the generalization of Eq.~16a! (h05h)

hn :5E
«F

« t «nr~«!d«

V2g«
. ~B22!

It is useful to keep the following relations in mind:

h15@2d1~nv1e1!h0#/g, ~B23a!

h25@e11~nv1e1!h1#/g. ~B23b!

For C2 very similar equations are derived after replacinga
by b, i.e., by changing the summation over the unoccup
levels to a summation over the occupied levels

C2
uu5

h̄0

11~v2U2«b! h̄0

, ~B24a!

C2
vv5

1

zt2
S h̄22

h̄1
2~v2U2«b!

11~v2U2«b! h̄0
D , ~B24b!

C2
uv5C2

vu5
21

Azt

h̄1

11~v2U2«b! h̄0

, ~B24c!

where the generalization of Eq.~A13! ( h̄05 h̄ )

h̄ n :5E
«b

«F «nr~«!d«

V̄1 ḡ «
~B25!

is used. The following relations hold:

h̄15$n2@d~v2U !1e1# h̄0%/ ḡ , ~B26a!

h̄25$e12@d~v2U !1e1# h̄1%/ ḡ . ~B26b!

Due to the particularly simple form ofE in Eq. ~B20! all
we need to do is to calculate
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c1 :5a1C1a5
zt

11~v2«b!h0

3S h01
2h1

zt
1

1

zt
@h21~v2«b!~h2h02h1

2!# D ,

~B27a!

c2 :5b1C2b5
zt

11~v2U2«b! h̄0

3S h̄02
2 h̄1

zt
1

1

zt
@ h̄21~v2U2«b!~ h̄2 h̄02 h̄1

2!# D .

~B27b!

The condition for the singularity of Eq.~B18! reads now

18c1c2 , ~B28!

which is equivalent to Eq.~A22! as can be shown by som
tedious, but straightforward calculation. Thus we have co
pleted the proof that the equations for RES0–3 derived in
main text for hypercubic lattices hold for all unfrustrate
isotropic, homogeneous lattices with nearest-neighbor h
ping. Only the coordination number and the DOS enter
evaluation of the RES ansatzes.

APPENDIX C: TRIANGULAR LATTICE

For the triangular lattice witht,0 the lower band edge
«b523utu is reached atkb5(4p/3,0). SincekbÞ0, the in-
tegral

h~v!5K 1

n@v2«~k!#1e1@12«~k2kb!/~zt!#L
kPBZ\FS

~C1!

cannot be mapped onto a one-dimensional integral over
DOS but has to be evaluated explicitly in momentum spa

The optimum spin-flip energy for RES0 for a given ho
density d follows from the solutionv0 of the equation
11(v2«b)h(v)80 asDe`(d)5v02«F ~see Sec. II!. To
obtain the Fermi energy corresponding to the critical h
density dcr the equation 11(«F2«b)h(«F)80 has to be
solved numerically.

For RES1, Eq. ~23! holds also for kbÞ0, since
uLu21(k«(k2kb)5«be1 /(zt) due to the symmetry of the
lattice. CalculatingN1D1

21N for RES2, however, the inte
grals

hn5K «n~k!

n@v2«~k!#1e1@12«~k2kb!/~zt!#L
kPBZ\FS

,

~C2!

which for kb50 simplify to Eq.~B22! have to be computed
for n51,2. Although the outline of the derivation remain
unchanged, this causes some differences in the analytic
pressions for the optimum spin-flip energy and the Naga
instability line compared with the casekb50 ~see Sec. II!.

Evaluating the full resolvent ansatz RES3, the produc
the second line of Eq.~A4! can be written as
-
e

,
p-
e

he
e.

e

x-
a

n

«b
2F11

«~k1!

«b
2

«~q1!

«b
S 11

«~k1!

4«b
D G

3F11
«~k2!

«b
2

«~q2!

«b
S 11

«~k2!

4«b
D G , ~C3!

making use of«b52zutu/2. The permutation symmetry with
respect to the primitive lattice vectors which is essential
the factorization«(k2q)52«(k)«(q)/(zt) holds also for
the triangular lattice. The matrixN1D1

21N is calculated to be

N1D1
21N5a1uu11a2~uw11wu1!1a2ww1 ~C4!

with

a15«b
222«bh11h25H@«bh2h1#2, ~C5a!

a25«b
2h2

5

4
«bh11

1

4
h22HF«b

2h22
5

4
«bhh11

1

4
h1

2G ,
~C5b!

a35«b
2h5

1

2
«bh11

1

16
h22HF«b

2h22
1

2
«bhh11

1

16
h1

2G .
~C5c!

In Eqs. ~C5a!–~C5c!, H is a short-hand notation for (v
2«b)/@11(v2«b)h(v)#. The method developed in Appen
dix A to calculateu1B2u is applicable also for the triangula
lattice up to Eq.~A17! which yields the optimum spin-flip
energy for RES3.

The elements of the 232 matricesA andB are given by
a15a12(v2«b2U), a25a3, a35a2, b15 h̄ (v), b2

5 h̄2(v)/«b
2 , b35 h̄1(v)/«b with h̄1(v) and h̄2(v) defined

in analogy to Eq.~C2! as integrals over the Fermi sphere.

APPENDIX D: KAGOME´ LATTICE

To prepare the derivation of the ansatzes RES0–RES3
the frustratedkagome´ lattice we diagonalize the one-partic
problem explicitly. Since we deal with a non-Bravais latti
with three sites per unit cell we have to solve a 333 eigen-
value problem with

f a, j5exp~ i kj !fa,t~ j ! , ~D1!

where t( j )P$1,2,3% denotes the sublattice to which sitej
belongs. The one-particle Hamiltonian acting onfa,t be-
comes

h~k!52t

33
0 cos~kn1/2! cosS kn2

2 D
cosS kn1

2 D 0 cosS k~n22n1!

2 D
cosS kn2

2 D cosS k~n22n1!

2 D 0
4 ,

~D2!

where we used the unit vectorsn1 andn2 as shown in Fig.
18. The secular equation of Eq.~D2! is
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05~22t1l!@l212tl22t21t«n~k!#, ~D3!

where«n(k) is the triangular dispersion~44!. From the secu-
lar equation one deduces Eq.~45! easily. More important for
the following is the observation thath(k) can be diagonal-
ized by an orthogonal, i.e., real, transformation since it is r
symmetric. Thus the phase off a, j is completely given by the
plane-wave factor exp(ikj) in Eq. ~D1!.

Since we wish to treat the frustrated case (t,0) we
modify the ansatz~B6! by introducing an additional phas
factorl j depending only on the sublattice and being unity
sublattice 1, exp(2pi/3) on sublattice 2, and exp(22pi/3) on
sublattice 3

Fa :5(
j

aj↑ca↑
1 aj↓

1 uN8& f a, j
1 l j

1 . ~D4!

The resulting matrix elementsPa8,a andL ↑a8,a are the same
as in Eqs.~B7a,B7b! since the phase factor cancels at ea
site. ButL ↓a8,a does change into

L ↓a8,a5
e1«a

2zt
da8,a2t(

^ i , j &
u f a8,i u2u f a, j u2l i

1l j . ~D5!

The change in the second term is obvious. The change in
first termA1 is less trivial. In a first step one obtains

A152
e1

zt
da8,a(

k,d
f a, j

1 f a, j 1dl j
1l j 1d . ~D6!

Transforming the terms of the sum liked→2d and j→ j
1d leads to

FIG. 18. Segment of thekagome´ lattice. The vectors are used i
the main text. The numbers refer to the three sites in each unit
of this non-Bravais lattice.
al

h

he

f a, j
1 f a, j 1dl j

1l j 1d → f a, j 1d
1 f a, j 12dl jl j 1d

1

5 f a, j
1 f a, j 1dl jl j 1d

1 . ~D7!

The last equality holds sincefa,t( j ) in Eq. ~D1! is real.
Hence only the real part ofl j

1l j 1d in Eq. ~D6! matters. It is
21/2 leading thus to the first term in Eq.~D5!.

From the matrix elements~B7a!,~B7b!,~D5! we find the
relations which are analogous to Eq
~B8b!,~B8c!,~B9a!,~B9b!

Da8,a5da8,a@n~v2«a!1e12~e1/2zt!«a#21, ~D8a!

Na8,a5v(
j

u f a8, j u2u f a, j u21t(
^ i , j &

u f a8,i u2u f a, j u2l i
1l j ,

~D8b!

M i , j :5(
a

u f a,i u2u f a, j u2

n~v2«a!1e12~e1/2zt!«a
, ~D8c!

A i , j :5vd i , j1t(
d

d i 1d, jl i
1l j . ~D8d!

The vectoru is again an eigenvector of the matricesM and
A. Its eigenvalue forM is in analogy to Eq.~B11! identical
to Eq. ~16a! with the adapted definition

gK5n1e1 /~2zt!. ~D9!

The eigenvalue forA is v2zt/25v2«b as before. So the
series in Eq.~B10! yields a vanishing denominator for 0
511(v2«b)h(v) with h(v) as in Eq.~16a! with g @Eq.
~16c!# replaced bygK @Eq. ~D9!#. So the DOS, the lower
band edge«b , andgK are the only quantities to be change
so that RES0~15! applies to the frustratedkagome´ lattice.

For RES1 the ansatz reads

uC1&:5uLu21/2(
i

exp~ i kbi !ai↑
1ai↑ai↓

1uN8&l i
1 ~D10!

in extension of Eq.~18!. The resulting condition is identica
to Eq. ~23! with the adaptedgK in Eq. ~D9! and, of course,
«b5zt/2.

For RES2 the ansatz reads

uC2&:5uLu21/2(̂
i j &

exp~ i kbi !ai↑
1aj↑ai↓

1uN8&l i
1 ~D11!

yielding again condition~28! with the adapted quantities, in
particulargK8 :5e11e2 /(2zt).

The ansatz for the doubly occupied states in RES3 is
extension of Eq.~B14!

Cb5(
j

aj↑
1 cb↑aj↓

1 uN8& f b, jl j
1 . ~D12!

The relations analogous to Eqs.~B15a!,~B15b!,~B16!,~B17c!
read

ell
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~D1!a8,a5da8,a@n~v2«a!1e12e1«a /~2zt!#

1v(
j

u f a8, j u2u f a, j u21t(
^ i , j &

u f a8,i u2u f a, j u2l i
1l j ,

~D13a!

~D2!b8,b5db8,b@d~v2U1«b!1e11e1«b /~2zt!#

1v(
j

u f b8, j u2u f b, j u21t(
^ i , j &

u f b8,i u2u f b, j u2l i
1l j ,

~D13b!

Na,b5t(
i , j

~ f a, j
1 f a,i u f b,i u22u f a,i u2f b, j

1 f b,i !

1t(
i , j

S 21

2
f a,i

1 f a, j f b, j
1 f b,i2u f a, j u2u f b,i u2l i

1l j D ,

~D13c!

Ei ,d8; j ,d52td i , j~dd8,02dd,0!2
t

2
d i 2d8, jdd,2d8~12dd,0!

2t(
d9

d i 1d9, jdd8,0dd,0l i
1l j . ~D13d!

So far the analogy to the treatment of unfrustrated latti
is perfect once the different form of«b , gK , and of ḡ K5d
1e1 /(2zt) is taken into account. In particular the formula
~B21!,~B24! for the matricesC1 andC2 carry over. But due
to the different form of Eq.~D13d! the matrixE is changed
compared to Eq.~B19!

Eu5zt/2u1Aztv, ~D14a!

Ev52Aztu2t/2v, ~D14b!

⇒Ẽ5tFz/2 2Az

Az 21/2G ~D14c!

acting on (u,v). This matrix is no longer singular as wasE
in Eq. ~B20!. Thus we stay on the 232 matrix level. The
singularity condition based on Eq.~B18! is

05det~12C2Ẽ
1C1Ẽ!, ~D15!

which can be evaluated easily. This concludes the deriva
for the RES3 ansatz on the frustratedkagome´ lattice.

APPENDIX E: DOS FOR THE LATTICES CONSIDERED

In this appendix we give the explicit formulas for th
densities of states for the lattices discussed in Sec. III.K@m#
stands for the complete elliptic integral of the first kind~see,
e.g., Ref. 49!.

Square lattice

rh~«!5~2utup2!21
•KF12S «

4t D
2G . ~E1!
s

n

Simple cubic lattice

rsc~«!5p21E
u1

u2 du

A12u2
•rh~«12tu!, ~E2a!

u15max„21,222«/~2t !…, ~E2b!

u25min„1,22«/~2t !…. ~E2c!

bcc lattice

rbcc~«!5
2

pEu«u/2

4utu du

A4u22«2
•rh~u!. ~E3!

Triangular lattice

rn~«!5~Az0tp2!21
•K@z1 /z0#. ~E4a!

For t.0, z0 andz1 are given by

z05H 312A32«/t2„«/~2t !…2 for 2t<«<3t

4A32«/t for 26t<«<2t,
~E4b!

z15H 4A32«/t for 2t<«<3t

312A32«/t2„«/~2t !…2 for 26t<«<2t.
~E4c!

For t,0, the upper and lower intervals in Eqs.~E4b! and
~E4c! have to be replaced by23utu<«<22utu and 22utu
<«<6utu, respectively.

Honeycomb lattice

rH~«!5u«/tu•rn~3t2«2/t !. ~E5!

Kagomé lattice

rK~«!5
1

3
d~«22t !1

2

3
u11«/tu•rn„3t2~«1t !2/t….

~E6!

Hcp lattice „t521…

rhcp~«!5
2

pE0

1

dyJ~y!, ~E7a!

with the integrand

J~y!55
A222«2

rn@«22~21«2!y2#

A«12«21~21«2!y2

1A21«1

rn@«12~21«1!y2#

«12~21«1!y22«2

for «<0

A62«2

rn@«21~62«2!y2#

A«12«22~62«2!y2
for «>0

,

~E7b!

and

«65«12~16A«14!. ~E7c!
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