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Lattice dependence of saturated ferromagnetism in the Hubbard model
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We investigate the instability of the saturated ferromagnetic ground @taigaoka stajein the Hubbard
model on various lattices in dimensiods-2 andd= 3. A variational resolvent approach is developed for the
Nagaoka instability both fold = and forU < which can easily be evaluated in the thermodynamic limit on
all common lattices. Our results significantly improve former variational bounds for a possible Nagaoka regime
in the ground-state phase diagram of the Hubbard model. We show that a pronounced particle-hole asymmetry
in the density of states and a diverging density of states at the lower band edge are the most important features
in order to stabilize Nagaoka ferromagnetism, particularly in the low-density [[®@163-18207)08345-§

[. INTRODUCTION Otherwise it is locally stable. The drawback that we treat
only local stability in this way is not very serious. There is
It is by now an often repeated fact that the so-calledno indication that the transition away from saturation should
(single-bandl Hubbard model was originally introduced to not be continuous at=0, see e.g., Ref. 22.
explain ferromagnetisti.® In what followed, however, it A more serious drawback is the fact that even the single
turned out to be rather a generic model for antiferromagspin flip is too difficult a problem to be solved completely on
netism. Ferromagnetism seemed to require additional ingrdinite-dimensional lattices. In the limit of infinite dimen-
dients, for instance, the existence of degenerate bands whiafional lattices, however, it was solvéti Thereby it was
favor ferromagnetism based on Hund’s rule or in the insulatshown that relatively simple variational ansatzes provide al-
ing case certain additional ferromagnetic couplings and/oready a qualitative insight in the tendency of a certain lattice
correlated hopping terms. Both scenarios were proven rigoito have a Nagaoka state as ground state. Wairtl. showed
ously in recent year¢see Ref. 4 and references therein forthat only an extremely sophisticated variational arfSatz
the former and Ref. 5 and references therein for the Jatter yields a further reduction of the region of possible Nagaoka
The Hubbard model and its possible ferromagneticstate stability in comparison to simpler ansatZes.
ground state are of renewed inter§tThere are many It is the aim of the present paper to extend previous work
works in the field based on quasi-one-dimensiords- () on variational ansatzes decisivéRboth in the completeness
systems triggered by the prediction of ferromagnetism inof the ansatzes and in the types of the lattices considered. So
double minima systems at low particle den$ignd by the far, variational ansatzes considered a finite vicinity of the
numerous possibilities of analytical and numericalflipped spin and treated a finite number of parameters leading
calculations™?in d=1. Exact calculations are possible in to matrix eigenvalue problems. Here we will show that a
infinite dimensions @= ) .13 For intermediate dimensions resolvent approach is capable to deal implicitly withiafi-
(1<d<) numerical and approximate methods arenite number of variational parameters. No explicit knowl-
employed:>~*/ edge of the variational wave function is required. A similar
An important milestone in the research of ferromagnetismapproach was used recently by Ok#Her the square lattice
in Hubbard models is the work of Nagaotat® It showed and the simple cubic lattice, too. In his work, however, the
that at infinite local repulsion a single electron above halfreduction of the resolvent to simple integrals over the density
filling favors the saturated ferromagnetic ground stateof states(DOS), which we succeeded to achieve in most
(henceforth: Nagaoka statéf the underlying lattice has cases, is lacking.
loops which allow interference. For bipartite lattices particle- We will present elegant simple expressions for the Na-
hole symmetry extends these results to hole doping. Thigaoka instability lineU(n) which apply to most common
result reveals the beauty and the difficulty of the question foltattices. These results make it possible for everyone to check
which lattices and for which fillings the Nagaoka state is theeasily whether or not one can expect a ferromagnetic ground
ground state. A=<, T=0 there is only the hopping left as state for a given lattice. We will show that two main features
a global energy scale. Thus there is no expansion parametdavor the occurrence of a saturated ferromagnetic ground
no adiabatic limit, and no competition of energy scales. Thestate:
issue is solely a question of the lattice structure, i.e., the (1) A highly asymmetric density of states with large val-
possible paths on the lattice, and of the filling. ues at the lower band eddafter particle-hole transforma-
Unfortunately, there are no extensions of Nagaoka’s resulion).
to macroscopic dopings. Only nonmacroscopic numbers of (2) Nonbipartiteness of the lattice, i.e., frustration due to
holes could be treated:?* Therefore, we choose another loops of three sites.
route in the present work and investigate the stability of theOf course, the two points are intimately related.
Nagaoka state towards a single spin flip. If such a flip lowers The setup of our article is as follows. In the rest of the
the energy then the Nagaoka state is not the ground statiitroduction we will present certain variational ansatzes used
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so far to investigate the Nagaoka state stability. In Sec. Il wgevel ¢ is removed. The energy balance of E8) with f

develop the resolvent approach which yields simple formulas=0 reads at infinitdJ (g=0) (see Refs. 28 and 24
for the stability lines on homogeneous, isotropic lattices with

nearest-neighbor hopping. In Sec. Ill we present our results Ae=—e;/6—epted[1—(e,/62t)?], 4

for various lattices in dimensiors=2 andd= 3, namely the ) ] ] - ) o
square, the simple cubic, the bce, the honeycomb, the triaffvheree is the dispersion. The maximum energy lowering is
gular, thekagonie and the fcc(hcp) lattice. For thet-t’ obviously obtained fok belonging to the lower band egde
Hubbard model on the square lattice a perturbative approacty. i.€., herek,=0.

for small|t| is employed as well. Section IV contains a sum-  For finite f majority-spin hopping processes from the po-
mary and a final discussion of the lattice dependence of satition of the flipped spin to nearest-neighbor sites are taken
rated ferromagnetism in the Hubbard model. The appendixei§to account. This ansatz will be denoted NN. The ampli-

contain technical details in the derivation for the various lat-tudes of these hopping processes are assumed to reflect the
tices. lattice symmetry. Basile and Elser investigated an ansatz

similar to NN which includes -hopping processes from the
position of the| electron toall other lattice sites! Since the
number of variational parameters increases with the lattice
We consider the conventional single-band Hubbard modedijze they only studied a finite square lattice. The resolvent
method developed in Sec. Il allows us to investigate a varia-
(1) tional ansatz equivalent to the full Basile-Elser wave func-
tion in the thermodynamic limibn all common lattices. We
also derive improved variational criteria for the Nagaoka in-

Preliminary approaches

Hz—t(% aifrajgvtuEi ajaiaa;,
LYo - = - - - -

and calculate the spin-flip energy stability atU <« by extending the Hilbert subspace further.
Ae=(V[H-EMW)(V|V), 2 Il. RESOLVENT APPROACH
whereE ), is the energy of the Nagaoka state dfid) is a Generally, a resolvent is an operator-valued expression of

variational wave function. Whenevexe<0 the Nagaoka the type
state is definitely not the ground state due to the variational
nature of our approach. AU=x, the zero ofAe.(d) R(w)=1[w—(H-Eu)], )

:=Ae(U=c,5) gives the critical hole density, above whereH—E, is the Hamilton operator with respect to the

which the Nagaoka state is unstable. For finit, ground-state energg,, (here: the Nagaoka state energy

Ae(U,6)=0 leads to the Nagaoka instability lind.(5) L .
which separates a region of guaranteed instability of the Nal_:rom Eq.(5) itis clear that the existence of any statecat

. X _=wg implies a pole or at least a singularity in the resolvent.

gg:’dkamsotgg?r;#%( ‘2] n thi phasildlagrar_n_ of the Hub _For this reason, we will investigate in the following the re-
gion of possible stability of the Na solventR applied toc, |A”) and comparen, to

gaoka stateU>U,(d)]. In the phase diagrams displayed in _ bp i Kpl parevo _‘SF'
this paper we will always represent the on-site repulsicn Itis not possible to compute for the whole Hilbert space
terms of U,oq=U/(U+Ugg) Where Ugg= —16€° denotes €xcept under simplifying conditions like infinite coordination
the Brinkman-Rice critical coupling. € is the energy per number®? Hence we will restrict the inversion to certain sub-
particle of the saturated ferromagnetic state for the quarte§Paces which still allow an analytical treatment. The results
filled band and depends on the underlying lattice. This repob';alned in this way for_the Iower_band edge are variational.
resentation is chosen to render comparisons between diffef-Nis means that excitation energies found are upper bounds
ent lattices possible. to the true ones and that specific interaction valuesome

A. CaseU=w: Ansatz RESO

For infinite on-site repulsion no double occupancy is al-
lowed. Thus at the site of the-e™ no 7-e” is allowed. We
aﬂ IA7). 3) inveitig+ate therefore the variational subspace spanned by
- ajja;;a;||) with arbitraryi andj. We define

[W):=|A|"¥2>) expliksi)

am

ai_*TJrf-UEj> aj)

+
+g~aiTai_T

For f =0 this is the Gutzwiller single spin-flip wave function |®):= AN, (6a)
(Gw). The parameteg controls the probability of double - -

occupancy. The system size is denoted| Ay. We use the

operatorsa(a™) for site-diagonal fermion annihilatiofcre- A=A 7YY expli(kp—k)i)aicias, . (6b)
ation) andc(c*) for momentum diagonal fermion annihila- - ! - T 0 T -

tion (creation. Furthermore, we usa for the particle den-  \yhere the admissible values d&f are outside the Fermi
sity, 6=1—n for the doping per sitez for the coordination  sphere (FS), but inside the Brillouin zoneBZ), i.e., k
number, ande,=E,/|A| for the expectation value of the cBz\FS. The Hamiltonian does not mix stat® for dif-
kinetic energy. The ket\")=cy;|\} is the fully polarized  ferent total momentak,,. States(6) for different total mo-
Fermi sea off electrons from which one; at the Fermi mentak, are orthogonal. Ansat6) contains in particular the
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NN ansatz(3) and of course the simple Gutzwiller ansatz. It
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kagomdattice, and so on. The result1) can be found easi-

comprises -hopping processes of arbitrary distance, i.e., it isest by interpreting the left-hand side as convolutions,gtkb

the thermodynamic extension of the ansatz investigated pr
viously by Basile and Elsett

For the computation of the resolveR(w) one can use
the Mori/Zwanzig projection formalisr(see, e.g., Appendix
C in Ref. 33 with the scalar product A|B):
=(N'|[A*,B].|N") for the operators4 and B. The resol-
vent (5) then becomes

Ri, k(@) =(D [R(0) |y )= (A |[(0— L)1 A).
o - B - -

Here the Liouville operatol is used which is defined as
LA:=[H,A] for all operators.A.3® The resolvent can be

&md Of@)(SF_SKl)’ i.e., as a multiplication in real space
which concerns only the NN terms. Thus it is the multipli-
cation with a constanta; ai_*)z —e,/(zt). The sites andj
are arbitrary adjacent sites since all bonds are equal due to
the required homogeneity and spatial isotropy.

On the basis of Eq(10) the matrix inversion can be re-
phrased as

(P=L) *=[d *+(0—epuo’]t (12

with the constant vectar=|A| 2 and the diagonal matrix

d|§152 = 551521: (52) with

expressed in matrix notatidhby

f(:=[n(0—s)+er(l+(@) e i)l ™h  (13)

— N -1
R(w)=PloP—L—-M(w)]""P ®  Note that the dyadic produatv* provides as|A|X §|A]
with the norm matrixP and the frequency matrik matrix with the constant matrix elemeht|™*.
Expanding the right-hand side of E.2) in terms ofvv *
Pi, ks =(Pi, | Py, (98  and resummation in terms of
Lyt =(Pig[H=EMPi)- (9b) h(w):=v+dv=(27r)_df F(k)d%
- = keBZ\FS —
The frequency matridk encodes the effect dfl in the sub- -
space considered. The deviationPofrom unity accounts for =(0(e—ep)f(K))pz, (149
the nonorthonormality of the basis. The so-called memor)g/iems
matrix M (w) describes the effect of all processes which im-
ply excursions outside the subspace considered. If the ground(wP—L) " 1=[d 1+ (w—sep)vv ] ?
state is known exactlywhich holds in the present cgsie —
approximationM(w)=0 is variational in nature for the =d[1+(0—epvv d]™?
lower band edge. .
It is the aim of the subsequent calculation to obtain a :d[l_(“’_sb)ﬂ d
simple condition for the singularity ofo{P—L). This singu- N2+ +
larity then signals thab corresponds to an eigenenergy. To T(0=2p) ve dﬂ d+...]
this end, we first need the matrix elements =d—(w—ep)dvv d[1+(w—ep)h(w)] %
PE1'52:n551’52+ |A|7l, (10@ (14b)
The matrix elements thus read
LEl'EZT: 551’52“1' 852_81), (10b)
[(@P—=L) " i, k= i, i, f (K2)
L =|A|"Yep— i, k. (zt) terey . (100 -0 T
el A " 51'52( ) ) T 109 _ W~ &p f(k) (ko)
We use the notatiom, Z:<®(8F—8K)8L>BZ [B(e) is the 1+(w—eph(w) |A]
Heaviside functioh The elements in Eq.10) are obtained (140

with the help of Wick’s theorem sindé\” ) is a simple Slater
determinant. In Eqg10b) and(10¢), we distinguish the part
coming from the motion of thé electrons and the part com-
ing from the motion of the| electron. The expression
(zt) 'ewer,, in EQ. (100 is obtained from

From Eq.(140 we read off that §P—L) is singular for
0=1+(w—¢p)h(w). (15

The trick to reduce dyadic perturbations to simple divisions

_(2,n_)—d €r ko dky = is commonly known under the name “householder method"
227 TR in the numerics of matrices. This extremely simple result is

k) EBZ\FS derived here for all Bravais lattices, e.g., the square lattice,

1 4 4 the tria}ngular lattice, but not for the honeycomb lattice or the
25&2 —k, (2m) %ld ky . kagomdattice. The restriction to Bravais lattices enters since

we implicitly assume that there is one eigenstate for each

value ofk in the one-particle Hamiltonian. But it will be

shown in Appendix B that identical formulas apply for gen-
(11) eral unfrustrated lattices. Similar formulas can be found for
This relation holds for all homogeneous, isotropic latticesfrustrated non-Bravais lattices, for instance, kagomelat-
with NN hopping only, e.g., square lattice, triangular lattice,tice in Appendix D.

k, €BZ\FS

e):=
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In Appendix C it is explained that computing ) for  out double occupancybk). The other matrix elements are

nonbipartite lattices requires explicit integration over the mo-again found by Wick’s theorem

menta. For lattices where the band minimugis reached at

kp=0 further simplification is possible. The band minimum P2=n, (209
is found atk,=0 in particular for bipartite lattices where one ) )
may choose >0 without loss of generality. Then the term D,=n(w—U)+e;—en°—(e;/(z1)7], (20D

Ek—k, in Eq. (13) reduces to the unshifted dispersion and the Al vy Ve (14 I(21)
whole integration in Eq(14a can be written as integration N(ep— k ! Ek—kp (z)].

over the density of statg®OS) p(e): (200
Since we are at present only interested in the singularity
)= f _ ple)de EG(Q) (169  condition it is sufficient to compute one of the elements of
nw+eN— ve vy ' wP—L. The easiest i8,, for which an argument similar to
the one leading to Eq14b), yields
ep(e)de i
G- [ EEE (a6b B,= (D, N'Dy'N) 2 @
] Thus the singularity condition simply reads
i=n-—eq/zt, 169
Y 1 ( ) OiDZ_N+DIlN' (22)
Q:=(nw+ey)ly. (16 Now it is advantageous thdd, ! is already given in Eq.

We will call the ansatz deduced from the subspace giverglA'C)' Inserting Eq{(20) one obtains after some cancellations

in I_Eq. (6) RE_SO. 'It leads to the sing_ularity conditigh5) or w—ep—NU[1+(0—ep)h(w)]=0. (23)
to its generalizations for non-Bravais lattices.

Once the energy is found from Eq.(15) for a given Equation(23) is as simple as Eq(15) and enables us to
Fermi energy the spin flip energy for the whole process of calculate criticalU values explicitly. Settingo=ef in Eq.
taking onel-e~ out at the Fermi level and inserting it as  (23), which according to Eq(17) corresponds to vanishing

e~ at the lowest possible energy is given by spin-flip energy, renders, directly accessible:
= (w— Eg—E&
fe-murer o Uar™10)= (1—5)[1-1—;8 —bs Yh(ep) ] 29
A critical doping &, is found where this spin-flip energy Foob F
vanishes. It turns out, however, that the values fdg, from Eq.(24)
are not very good close to half-filling=1 where antiferro-
B. CaseU<x: Ansatzes RES1, RES2, and RES3 magnetic exchange processes are important. These are not

@accounted for in Eq(18). They are considered, at least to a

Besides the calculation of variational upper bounds fo X . ;
certain extent, in the ansatz RES2 by using

spin-flip energies and resulting critical dopings it is our aim
to determine critical interaction valuék ForU < we have

to include states with double occupancy. The easiest way to W) =| A7V explikpi)ajaia) |N'), (29
do so is to include a local double occuparity® This is (i) - - = -

done in the ansatz RES1 by adding to the states defined ifsteaq of ¥,) as an extension of the RESO subspace.

Eq. (6) the state The block structuré19) remains the same and so does the
singularity condition(22). Only the matrix elements are

[W1):=|A|"Y2Y explikyi)aiaia|A7). (18  modified
: foleindine

_ T _ P,=(e3+ de,)/t?, (269
This ansatz contains the nearest-neighbor ansatz3a)\fand
the Gutzwiller ansadzfor U <<«. Again we want to compute: D2={(ef+ 8e,)(w—U)+ee,+ deg
the resolvent8). To do so the parts computed in the previ-
ous subsection can be used again. The matrices for RES1 —sye?—e e;/(zt)2]}/t?, (26b)

have the block structure
|A| Yei(ep— Sk)+ez[1+8k K,/ (ZO1HT.

P, 0 D, N -
P=< b= ) wP—L:( : —), (19a (269)

+
0 P N" Dy The explicit expression resulting now from E@?2) is less
transparent than Eq23) since no cancellations occur. We

(wP—L) 1= B, M (19b) focus here on the most important cdge=0. In addition to
¢ M* B,/ the definitions(16) we use
The matricesP; and D, are the same as in E¢l4c at U v i=e,—e/(zt), (273

=00, The null vectoil0 in P comes from the fact that the state
with double occupanci¥’,) is orthogonal to the states with- Qp:=(e1epten)ly’, (27b)
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y:=(y1y)[6+(Qp—Q)G(Q)], (279
and obtain from Eq(22)

- +0p.-1
D= > N, (D1, kN,
ki kscBZFS 2%t

, Y
=7'| (o= Q)y+ (80ptey)

PD.(e)

2 w—sb
Y IF (w—eph(w)’

from which U can easily be determined. The valug,
appears only iD,, see Eq(26b). The results of RES228)
generically lead toU.1/6 on vanishing doping. In this
sense it represents an important improvement over RES:
(23). For explicit results we refer the reader to the next sec-
tion.

At last in RES3, we generalize the variational states with
double occupancy like EgéL8) and(25) in the same manner
as we generalized the states without double occupancy in Ec

(6)

(28)

W) =B, (293

Ae,,

Be:=|A|7¥23 expli(ky+K)i)ajical, (29D
- ot Sk

where now the admissible values lofare all vectors inside -,
the Fermi sphergFS). Note that the extension RES3 con-

tains both RES1 and RES2. The block structure of the result:

ing problem is similar to the one in E¢L9). The difference -
is that all blocks are now macroscopically large

6=1-n

P, O D, N
P 0 PRJ’ oP-L N* D,/’ (303 FIG. 1. (a) DOS for the square latticet€ 1), (b) spin-flip en-
ergy atU= as a function of the hole density for Gw, NN, and
( B, M ) RESO on the square lattice=£1).
(wP—L)"t=| (30D
M* B,

. . ) . with the lattice spacing set to 1. The DQg(e) which is
_The maitrix elements and details of_ the evaluation are giVeepicted in Fig. (a) can be expressed by a complete elliptic
in Appendix A_. _The main problem is that one has to find Aintegral of the first kindsee Appendix [E For positive hop-
tractable condition for ping matrix element the lower band edge is reachedkgt
—1_ +py -1 =0, while the maxima of the band structure are located at
By "=Dp~N"D, N S the corners of the square-shaped first Brillouin zoke=
to be singular. But with expansion tricks similar to the ones(+ 7, + 77)]. The logarithmic van Hove singularity at=0
used above this obstacle can be overcome. For bipartite lagorresponds to the saddle points of the disper$&®). The
tices a relatively simple final formula is foun@22). An  symmetric shape of the DOS with respectste0 reflects
evaluation for the triangular latticeAppendix O and the the particle-hole symmetry of the Hubbard model on the

kagomelattice (Appendix D) is possible as well. square lattice. In the following we make use of this symme-
try and consider only the case of a less than half-filled lattice
lll. RESULTS FOR VARIOUS LATTICES (0=n=<1) andt>0.

Figure ib) shows the spin-flip energies Bt= result-
ing from the variational criteria discussed in the previous
The square lattice represents the simplest bipartite latticeections as a function of. The Gutzwiller wave function
structure in two space dimensions and has therefore been [®q. (3) with f=0] gives a critical hole densitys,,
the center of interest in most of the publications dealing=0.4905 for the instability of the Nagaoka stafeFor the
with  the variational investigation of Nagaoka variational ansatz3) including nearest-neighbor hopping
stability 23242831353 he energy band is given by processes of the majority spiffinite f), the spin-flip energy
is considerably lowered and the critical hole density de-
en(k) = —2t(cosk,+coky), (32 creases tdé,=0.4155. The evaluation of the variational state

A. Square lattice



56 LATTICE DEPENDENCE OF SATURATED ... 13 965

RESO, which containgall spin-up hopping terms of the (a)
Basile-Elser type, leads té6,,=0.4045. Thereby we repro- 1.0 T . L T - V2
duce up to the fifth digit our result obtained in Ref. 24, where . Nagaoka )’ S
we took into account hopping processes over a distance of uj 9\ // S
to four lattice spacings. r S ) 7 R
The fact that the reduction of the spin-flip energy in Fig. -8 7z R 7
1(b) is mainly due to the nearest-neighbor term demonstrate: § - < PR 1
the overwhelming importance décal polarizations of the o LTk sl 7 .
spin-up Fermi sea for the instability of the Nagaoka state. - — T 8
The resolvent method treats implicitly @mfinite number of BET - - -
variational parameters and makes it possible to investigate - .
the full Basile-Elser ansatz in the thermodynamic limit. B -
Compared to the iterative method used in Ref. 24 it has the L .
remarkable advantage that the lowest possible spin-flip en .4 ! ' ! ' ! ' L ' !
ergy in a given subspace can be calculatethout explicit 0 -1 2 3 4 5
knowledge of the corresponding state. As we will see in Sec. d=1-n
[l E, it is not generally true that the best value 8y, within
the Basile-Elser subspace can be obtained by restricting th (b)
spin-up hopping processes to a small cluster centered at th 6
position of the flipped spin. L ' ' ' ' ' ' ' ' |
Figure Za) shows the Nagaoka instability lines in the o |
phase diagram for the Gutzwiller single spin f(i@w), the ~ Tl e - O |
nearest-neighbor ansatiN) (3) as well as for the wave o 2| 7 mmman o i
functions RES1, RES2, and RES3 evaluated by means of th | 7| RN o |
resolvent method. Thé-hopping terms appear to be much o - \\x\ ___________ |
less efficient in suppressing the Nagaoka state if the hole g | N N 1
density is smalllbecause most of the sites near the flipped > e N
spin are already occupied by faelectron and the on-site —Rp NG
repulsionU is finite (because the terms all exclude double < N |
occupancies at the down spin positioSince the Gutzwiller T4 \\‘
projector(with g>0) represents the only term contained in | | . | . L . \{
RES1 which is relevant fod <<, the critical on-site repul- _'60 1 2 3 4 5
sion near half filling is only slightly increased arndi,, re- S§=1—-n

mains finite for6=0. A remarkable improvement is obtained
by allowing for nearest-neighbor exchange processes and FIG. 2. (a) Phase diagramn(<1): Nagaoka instability lines on
thereby taking into account the antiferromagnetic tendencyhe square lattice for Gidashed-dotted NN (long-dashel RES1,
of the nearly half-filled Hubbard model. This is embodied in RES2, RES3full lines, from bottom to top and the 1100 param-
the ansatz RES2. For a constant nonzero value of the DOS giter ansatz of Wurttet al. (Ref. 23 (short-dashex (b) spin-flip
the upper band edge it leads to the asymptotic behavig?nergy forU..s=0.8 andt=1 as a function of the hole density for
Uer red 8)=1—0O(8) for §—0. This implies the instability GW (dashed-dotted NN (dashed RES1, RES2, and RES3ull
of the Nagaoka state for all finite values 0fin this limit.  !ines, from top to bottom
Figure 2Zb) shows that the optimum spin-flip energy for
RES2 plotted as a function of the hole density for a fixed1100 terms, most of them describing excitations of the
finite value of U approaches a finite negative value of thespin-up Fermi sea with up to two particle-hole pairs located
ordert?/U at half filling while it vanishes for all wave func- within a 9x9 plaquette around the down-spin position. The
tions containing only the Gutzwiller projector. critical hole density obtained with this variational wave func-
The asymptotic behavior faf— 0 of the spin-flip energy tion is 6,=0.2514 and the minimum critical on-site repul-
and of the Nagaoka instability lind (&) is not affected by  sion is Ug"/t=77.74 (RES3: UZ"/t=36.21). Comparing
the extension of the Hilbert subspace to the full resolventhese results one should keep in mind that the resolvent
ansatz RES3. As foJ=< the local terms play the most method allows us to derive analytic expressions for the Na-
important role in destabilizing Nagaoka ferromagnetism.gaoka instability lineU.(5), at least for RES1 and RES2,
With increasing hole density exchange processes beconwhile the calculation of the phase boundary for the 1100
less important and the Nagaoka instability lines for RES2parameter state requires an immense numerical effort.
and RES3 approach the one obtained for RES1. Sallce
RES wave functions differ only in the subspace with double
occupancies the corresponding instability lines end up with a
diverging on-site repulsiotJ, at the critical hole density Extending the Hamiltoniar(1) by taking next-nearest-
6= 0.4045 obtained for RESO. neighbor hopping processes of the electrons into account and
Figure Za) displays also the best known variational introducing a corresponding hopping amplitudeallows us
bound for the Nagaoka stability regime on the square latticéo createa particle-hole asymmetry of the DOS. Variation of
computed by Wurttet al>® The corresponding state contains the ratiot’/t makes it possible to simulate a continuous

B. Square lattice with next-nearest-neighbor hopping
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“transition” between a bipartite and a nonbipartite lattice. In
this subsection we investigate how this transition affects the 1.0
stability of the Nagaoka state with respect to a Gutzwiller
single spin flip on the square lattice. Furthermore we will
give a perturbation argument fétj<|t’|.

The band dispersion of the so-called’-U model on the
square lattice is given by

(e)

>
|
-

gr_p(K) = —2t(cok,+ cok,) — 4t' cok,cok, . (33)
- Q

Fort,t’>0 the lower band edge,=—4(t+t') is reached

atk,=0. The maxima of the band structure are located at the .2
corners of the Brillouin square far <t/2 and at the edge
centers fort’'>t/2, respectively. Exactly fort’=t/2 the
maximum single-particle energy,=2t is reached at the
whole border of the Brillouin zone. This leads to a nesting
situation and to the largest possible particle-hole aymmetry
with a diverging DOS at the upper band edge. Fort/2
local minima of the band structure develop at the corners of

the Brillouin zone leading to a step in the DOS. In the limit 1.0
t/t’—0 the single-particle energy at thekepoints reaches
the lower band edge. The calculation of the D@S;/ (&) .8
requires in general a numerichl integration. Only fort’
=t/2 is it possible to map;_,(&¢) on the DOS fot=0 and s 6
hence on a complete elliptic integragee Appendix E e
D
-1/2 \/78
pr—t(€)= 1—z> po| 2t\/1- z)- (34)
.2
The symmetry of the Nagaoka stability regime with re-
spect to half-filling found in the “pure” Hubbard model is
0

destroyed if the next-nearest-neighbor hoppihg switched
on. In analogy to the nonbipartite triangular akdgome
lattices(see Ref. 25 and Sec. Il F in this papene should
expect that the tendency towards saturated ferromagnetism FIG. 3. t-t’-U model on the square lattice fgt'|<|t|/2: |t']
increases for more than half filling and decreasesnfarl. =1-]t|=0,0.1,0.2,0.3,1/3: (8 DOS p;_(g) for t,t'>0
The RES ansatzes with the reduction to DOS integral$p; . () for t,t’ <0 is obtained bys« —&], (b) Nagaoka insta-
cannot be used for thet’ model since the’ hops go be- bility lines for a Gutzwiller single spin fligthe curves fom<1
yond nearest-neighbor hopping. correspond td,t'>0 whereas the curves fer>1 correspond to
The calculation of the optimum spin-flip energy for the t,t'<0).
Gutzwiller ansatdEq. (3) with f=0] requires additional ef-
fort for thet-t’-U model due to the more complicated struc-t’/t=1/2 the Nagaoka state is stable towards a Gutzwiller
ture of the band dispersion E(3). The kinetic energy of single spin flip for allU>0 in this limit. Even the slope of
the flipped spin no longer depends only gnbut also on the  the Nagaoka instability lin&) (n) vanishes ah=2.

correspondingnomentunk,. Fort,t’>0 (i.e., for less than If one increases the ratid/t beyond 1/2, the logarithmic
half filling) we find k,=0 as fort’=0, whereas fort,t’  singularity in the DOS is gradually shifted back towaeds
<0 (i.e. for more than half fillingwe choose,= (7, 7) for =0 and the shape ¢f;_,.(¢) becomes more and more sym-
t'/t<1/2 andk,=(7,0) fort'/t>1/2. metric [Fig. 4@)]. Nevertheless the step at=4t'(1—t/t")

Figure 3 shows the DOS for thiet’-U model on the remains present for allt’>0. The DOS at=0 is identical
square lattice and the corresponding Nagaoka instabilityo p5(e), which reminds us that th&-U model with sup-
lines in the phase diagram for various ratidst<1/2. We  pressed nearest-neighbor hopping consistsvofcompletely
set|t|+|t’|=1 so that the lower band edge is alwayssgt decoupled square lattices.
=—4. Increasingt’'/t leads to a lower DOS at, and a At t’ =t the Nagaoka stability region in the phase diagram
higher DOS ate;, while the logarithmic singularity at is found to be still very asymmetric with respect e= 1
=4t’' approaches the upper band edge. The maximum pafFig. 4b)]. A further increase of' /t makes the phase bound-
ticle hole asymmetry is reached #@t'/t|=1/2 (i.e., |t'| aries above and below half filling approach the ones obtained
=1/3) where the DOS Eq(34) diverges like (ei—¢ att=0. Within our variational calculations, the local stabil-
-lIn(e,—¢)|) "1 for e~¢,. The Nagaoka stability region for ity of the saturated ferromagnetic state is identical in both
less than half filling shrinks as'/t is increased and disap- limiting casest’ =0 andt=0, but see the perturbative argu-
pears att’/t=1/2 [Figs. 3b), 5]. On the other hand, it ex- ment below. The step in the DOS, however, leads to a cusp
pands rapidly forn>1, especially in the limitn=2. At  in the Nagaoka stability lindJ.(n) for all |t/t'|<2. For
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Pr-v (€)

4 6 8 1.0
1= 1-

; ; FIG. 5. Critical densities for the Nagaoka instability = o
J el A for a Gutzwiller single spin flip on the square lattice as a function of
;o [t'|=1—]t|. Between the two full lines the Nagaoka state is found
/ to be possibly stable. The dashed-dotted line marks the singular
case |t'/t|=1/2 where the particle-hole asymmetry reaches its
maximum.
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point is the observation that &t 0 the square lattice decom-
poses into two independent square lattices tilted by 45° with
hopping element’. Without anyt the two independent Na-
0 ] gaoka states on each sublattice can be oriented arbitrarily
n without influencing the energy. Thus we deal with a degen-
erate situation and investigate Bf?) (second-order pertur-
bation coefficient irt) whether the parallel or the antiparallel
orientation is favored. The linear ord&®) vanishes for
particle-hole symmetry reasons and does not lift the degen-
eracy.

For the parallel configuration it is straightforward to cal-
culateE(®). Without loss of generality we choose=1/4 and
consider e(k) = eq(k) —2t[ cosk,) = cosk,)] with eq(k)=
—cosk,)cosk,) as dispersion. The plus sign refers mo
<1,t'>0 and the minus sign ta>1,t'>0. This can be
seen by means of a particle-hole transformation and a sign
transformationc;— —c¢; on all sites with areven xcoordi-

ate. One obtains at constant fillingg®=—|A|/
2t")A. (ep) with

FIG. 4. t-t'-U model on the square lattice fot'|=|t|/2: |t’|
=1-1t|=1/3,0.4,05,2/3,1:(@ DOS p;_w(g) for tt'>0
[pi_t(&) for t,t'<0 is obtained by~ —¢], (b) Nagaoka insta-
bility lines for a Gutzwiller single spin flipithe curves fom<1
correspond td,t’>0 whereas the curves far>1 correspond to
t,t’'<0).

t—0, this cusp approaches=1 anddU/dn|,—,, is dis-
continuous at=0. This represents a qualitative difference to
the limitt’—0.

In Fig. 5 the upper and lower critical densities for the
Nagaoka instability atJ = are plotted as functions ¢f’|
=1—|t|. Thereby we once again demonstrate the shift of th
Nagaoka stability region towards more than half filling with
increasing particle-hole asymmetry in the DOS. The regimes

of complete Nagaoka stability fon>1 (—0.21st'< I

—0.39) and of complete Nagaoka instability forx1 (1/3 Ai(SF):f ——[cogk,) £ cogky)]?
<t’<0.45) arenot symmetric with respect tdt’'|=1/3. -7 (2m)

There are two different reasons for this asymmetry. First, X 6(e+ cog ky)cogky))

since the increase of the DOS at the lower band edge is more

pronounced foit’\,—1/3 (that is, on the left-hand side of 4 ) )

the dashed-dotted line in Fig) fhan fort’ ~— 1/3, also the =——[*eK(l-ep)—E(l-ep)] (39
tendency towards saturated ferromagnetism in the low- &
density limit(corresponding tm— 2 in Fig. 5 is stronger in
the former case. Second, the Nagaoka instability conditio

near half filling is essentially determined by the ratjé(zt), ) " 4 L
i.e., by the asymmetry of the band edges with respegt to Hanisch/Muier-Hartmann?* K and E are complete elliptic

) . . u (2) . .
—0. The fact that the latter asymmetry is more pronouncedt€drals. Note that the coefficie™™ is not continuous

for |t'|>1/3 than for|t’|<1/3 is responsible for the instabil- 2¢roSsh=1. H . i arallel ‘
ity of the Nagaoka state for less than half filling on the right- N€Xt We assess the energy of two antiparaliel Nagaoka

hand side of the dashed-dotted line in Fig. 5. states on each of the sublattices. Let us agg for the
In the limit t—0, a perturbative argument gives further fermions on theA sublattice andblzo for the fermions on the
insight in the stability of saturated ferromagnetism. StartingB sublattice. The perturbation reads then

ielding the dotted curves in Fig. 6. The relati¢85) is
ound with the help of the quantitiels, in Appendix A of
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FIG. 6. Second-order perturbation coeffici@&{® in t in units
of 4t’N. Dotted line: for parallel Nagaoka statéw global ferro-
magnetic state, see téxtlashed line: upper bound &2 for anti-
parallel Nagaoka statésr global antiferromagnetic state

FIG. 7. DOS for the simple cubic lattice€1).

46 (= A.i(e
E<2><—f F denz(e) (40
f -1 A—¢

where f=8(6—1)—e?, A\=e,/f, and A, from Eq. (35).
The evaluation of the right-hand side of E40) yields the
(36)  dashed curves in Fig. 6. The essence of Fig. 6 is that the
where MBZ is the magnetic Brillouin zone. The second-sa“_”?‘ted ferromagnetic_state is ungta_ble in the limiD for
order energy lowering is all fillings. The small region wherg{) lies below the upper
bound forE(2), does not count since we know that at these
dopings(and for larger dopingsalready the pure square lat-
(37) tice att=0 has no saturated ferromagnetic ground state, see
e.g., Refs. 24 and 23.
i We wish to draw the reader’s attention to the fact that the
8omparison in Fig. 6 is quite different from the main theme
of this paper which is based on single spin-flip energies.
Here the global stability is tested with a completely different,
antiferromagnetic state. We learn from the perturbative argu-
ment that in Fig. 5 the true lineg(t’) comprising theglobal
Nagaoka stability region have to converge both to the point
t'=1,n=1.

Hy=—2t > [cogk,)*cogky)](ay by o+ by a0,
ke MBZ =0 =0

E@t?|Al=—(AT,B|[Hy(Ho—Eg) "Hy|AT,Bl).

The acronymsAT and B| stand for the respective Fermi
seas. There are two processes which contribute equally
Eq. (37). Either a fermion is shifted from to B and back or
a fermion is shifted fronB to A and back. The latter yields
explicitly

8
E@—_ mke%BZ [cos(ky) £ cogk,) 1?0 (e~ £o(K))

(AT |aE’T[H0A_ Foa™ S(E)]ila&m” C. Simple cubic lattice

The energy dispersion of the simple cubic lattice is

d?k
=4f . s[cogk,) +cogky)]?
(2m) esd k)= —2t[ cog k) + cogk,) + cogk,)]. (42

x gE(SO(E))Q(SF_ SO(E))’ (38) The calculation op.{e) can be performed by an integration

whereg, is the one-particle Green function. Now we specify OVer the known DOS of the square lattiGee Appendix E
that we work atU = and weassumehat the Nagaoka state |1he maxima and minima of the energy dispersidd) are
is stable fort=0 at the filling considered. If the Nagaoka £t=2|t| ande,=—2]t|, respectively, with the coordination
state is not stable we do not need to make the present corimberz=6. At the band edges the DBig. 7) shows the
parison anyway. Based on our assumption, the Green fungduare-root behavior which is characteristic &r 3. The
tion is purely real and negative. It obeys the inequality van Hove singularities a¢=*2t correspond to the saddle
points of the dispersiof41).

Ou(eo(k))<(go(k)—e€p) " 1<0 (3939 Figure 8a) shows the spin-flip energy &t=« for Gw,

- = - - NN, and RESO. For small hole doping the loss of spin-up
kinetic energy due to the spin flip is sufficiently strong to
keep the Nagaoka state stable. With increadinige spin-flip
energy decreases due to the gain of kinetic energy for the
flipped spin which grows linear withh in leading order. The
The estimate(399 corresponds to a simple Gutzwiller upper bound for the critical hole density is reduced from
ansatZ® and yields Eq.(39b) [see Eqgs(4) and (5) with t  8,=0.323 for Gw(Refs. 28 and 20to &.,=0.247 for NN
=t'=1/4 andz=4 in Ref. 24. Thus we obtain and finally to 6,,=0.237 for RESO. As ind=2, the NN

955 :<aE,I|H0,A_ Eo,A|a|:r,¢>

=—e;/6+eo(k)o[1—(e,/6)?]. (39b)
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(corresponding tdJ,,4=0.753) below which the Nagaoka
state is proven to be unstable for &ll The region left for a
possible Nagaoka ground state on the sc lattice is therefore
substantially smaller than on the square lattR&S3 for the
square lattices,=0.405U "= 36.4t|). Generally the ten-
dency of the Hubbard model towards a saturated ferromag-

&S _ 5 _ netic ground state on @dimensional hypercubic lattice be-
< : comes weaker with increasiry Mller-Hartmanr® showed
1ok i that the critical hole density at)=o with respect to a
r ] Gutzwiller single spin flip decreases asymptotically &s
_1.53_ b «1/y/dInd for d>1. In the limiting case of infinite dimen-
. . ] sions the ground state of the Hubbard model is never fully
P e T T L polarized™
0 2 .4 .6 8 1.0
6=1-n .
D. bcc lattice
b The bcc lattice is another interesting example of a three-
1.0 (b) dimensional bipartite lattice. It has a slightly higher coordi-
. T T T T T T . . . .
/' N | nation numbeg=8 compared to the simple cubic lattice. Its
9 Nagaoka Y ‘,«’ i dispersion reads
BELI AN . £bed K) = — 8tcog k,)cog k) cog k). (42)
D;- aL // ’ /'/l = . .
| S | The calculation of the DO%,.{&) can again be performed
6l ////_/” | by an integration over the known DOS of the square lattice
| A~ i (see Appendix E The bipartiteness is obvious sineg.(k
sl i +Q) +epedk) =0 with Q= (m,m,m)". For this reason we
[ i consider onlyn=<1.
a ! I s I s I s The DOS is shown in Fig.(®). The square-root singulari-
0 1 -2 -3 -4 ties at the band edges are generic for three dimensions. The
6=1-n least common feature for a three-dimensional lattice is the

squared logarithmic singularity at zero energy.{¢)

FIG. 8. (@ Spin-flip energy atJ=2 as a function of the hole ~In?(e)/(47°) which results from the points in momentum

density on the sc latticet€1) for Gw, NN, and RESO(b) phase . - . _
diagram 6<1): Nagaoka instability lines on the sc lattice for Gw space where all cosines in E(2) vanish, e.g.gbc‘{lf)~

: —8t(ky— 7/2) (k,— m/2) (k,— 7/2).
dashed-dotted NN (long-dashey RES1(] full line), RES2 X" y z . . .
Esﬁzrt‘-sdasﬁe)d and Fggg?{up?;re?ull ”ne)l(ower ull line) Evaluating Eq.(4) for the bcc lattice, we find the critical

density5.,=0.324 in the Gutzwiller approach. This is almost

hopping term gives the dominant contribution to the decreasthe same result as for the simple cubic lattice. The result
of &, while the extension of the spin-up hopping processes,=0.239 for the full ansatz RESO is also only a tiny bit
to the whole lattice has only a small effect. higher than the RESO critical doping for the sc lattice. It

Roth?® investigated the Nagaoka instability with respect toappears that the essential ingredients are indeed the dimen-
a single spin flip on the sc lattice already in 1969, makingsionality and the bipartiteness as we will see below.
use of the so-called two pole approximation instead of the The results for finite interaction are shown in Figh)®
projection method. It was shown latef® that the Hilbert The value ofUgg is 16.413. The reduced interaction values
subspace considered in Ref. 38 is equivalent to the Basileare very similar to the ones for the simple cubic lattice. The
Elser subspace in the limit — . Roth obtained numerically ansatz RES1 does not capture the diverging interaction for
a critical hole density of 0.24 which is consistent with ourn—1 but RES2 yields already the asymptotic behavior of
variational result for RESO. RES3 forn—1. The critical interaction ifJ g o~=0.7438

The phase diagraifig. 8b)] for the simple cubic lattice for RES3.
shows a qualitative difference to the square lattice: The criti- As far as the local stability of the Nagaoka state is con-
cal U at half filling obtained for the Gutzwiller single spin cerned we do not find any indication that the bcc lattice is
flip is not at all improved by including NN hopping terms. more favorable than the simple cubic lattice. Herrmann and
Even for RES1U(5=0) is still given by the bandwidth Nolting*®” found in the framework of the spectral density
12t|. This is due to the fact that for the sc lattice the DOS atapproach an enhanced tendency towards ferromagnetism for
the upper band edge vanishes, while it is nonzero for theéhe bcc lattice. They investigated the divergence of the sus-
square lattice. ceptibility in the paramagnetic phase which is enhanced by

As in d=2, the ansatz RES2 leadslth (6=0)=%= and the large DOS at zero energy. Combining their result with
to a considerable reduction of the Nagaoka stability regimeurs one might come to the conclusion that the bcc lattice
near half filling. For the full resolvent ansatz RES3 we fi- favors a nonsaturated ferromagnetism for intermediate cou-
nally achieve a minimum critical coupling &J}"=48.9t|  pling and doping.
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FIG. 9. (a) DOS for the bcc latticetE=1). (b) Phase diagram
(n<1): Nagaoka instability lines on the bcc lattice for RE@bt-
ted line, RES2(dashed, and RESJ3full line).

E. Honeycomb lattice

Besides the square lattice the honeycomb latisee Fig.
9 in Ref. 25 is another prominent example of a bipartite
lattice ind=2. In contrast to the square lattice it is not a posed intothree sublattices, each of them having triangular
Bravais lattice, however, but a triangular lattice with a twostructure. Investigating the local instability of the Nagaoka
site basis. The coordination numberzs-3 and the band

dispersion reads

enoi K== B2 A (K],

(43

wheree (k) stands for the energy dispersion of the triangu-
lar lattice to be described in E44). Despite this additional

o]
v T T T 7

Aey

1 —n

FIG. 10. Spin-flip energy a=c as a function of the hole
density on the honeycomb lattice<1) for Gw, NN, and RESO.

As explained in Ref. 25 the Nagaoka stability island in the
phase diagram around quarter fillilgig. 11) is mainly due
to the zero in the DOS ai=0, i.e., between the two energy
bands. Since the lattice structure enters the calculation of the
optimum spin-flip energy by means of the resolvent method
only via the DOS the stability island is present even for the
full resolvent ansatz RES3. On the other hand, the critital
at half filling diverges for RES2 and RES3 and the Nagaoka
stability region for smallé shrinks compared to the results
for NN and RES1. These results and the pronounced differ-
ence between the two minimum valueslbf(41.2|t| for the
low doping regime and 17.2%| for the stability island cor-
roborate the previous conjectérehat a saturated ferromag-
netic ground state exists around quarter filling. The lack of a
Nagaoka theorem for the honeycomb lattfc@ indicates a
degeneracy between the Nagaoka state and other possible
states near half filling even &t=oo.

F. Triangular lattice

The triangular lattice is nonbipartite. It can be decom-

state towards a Gutzwiller single spin flip a Nagaoka ground
state was excluded on the triangular lattice for less than half
filling.2>% This is in agreement with the Nagaoka theorem,
which predicts a saturated ferromagnetic ground statd at
= only for the half-filled latticeplusan additional electron.

1.0 —

complication the formulas developed in Sec. Il via the resol- PN e ]
vent method hold here as wdlee Appendix R Br ]
The instability of the Nagaoka state with respect to Gw 37 5

..

and NN was already discussed in Ref. 25. Here we present

the improvements obtained by the resolvent method. The
evaluation of RESO shows that hopping processes with a
larger distance from the down-spin position have only a very
small influence on the optimum spin-flip energy lat= o ' A T T
(Flg 10) 0 .2 4 .6 .8 1.0

The instability gap (0.378 §<0.481) between the two
possible Nagaoka stability regions remains almost un- FiG. 11. Phase diagranm& 1): Nagaoka instability lines on the
changed compared to the result for NN. The upper criticahoneycomb lattice for Gwdashed-dotted NN (long-dashed, al-
hole density is only slightly improved té.,=0.643 from  most identical with RES]. RES2 (short-dashel and RES3(full
0.662(NN) and 0.802(Gw).® line).
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FIG. 13. Phase diagranm{ 1): Nagaoka instability lines on the
triangular lattice for Gw(dashed-dotted NN (lower full line),
RES1 (short-dashed RES2 (long-dashey and RES3(upper full
line).

0.4)

O0=0.824[Fig. 12a@)]. The differenceA §=0.088 between
the results obtained for NN and RESO is eight times larger
than the one for the square latticA §=0.011). This dem-

o
DE 10 onstrates the_ i_mportance of the spin-up hopping processes
- for the instability of Nagaoka ferromagnetism on the trian-
3 gular lattice. The reason is that due to the large hole densities
-1.5 under consideration, the probability to find unoccupied sites

near the flipped spin is quite high. The same line of reason-
) ; ing applies also fotJ <, see Fig. 13.
§=n—-1 Previously we investigated a variational state which re-
o _ stricts the hopping processes to a 31-site cluster around the

FIQ. 12.(a) Spln-fllp energy at)= as a function of the hole position of the flipped Sp?ﬁ and obtaineds,,=0.887. Al-
density on the triangular lattica £ —1) for Gw, NN, and RESO, 45,91y the nearest-neighbor processes once again are the
i 10 0425t of e Tl 7837 most mportant cnes, he e of rlevant hoppig pr-
(upper full line, and RES3lower full line) cesses on the triangular lattice turns out to be much larger

' ' than on the square lattice. Hence the critical hole density
. 6,=0.824 found by the resolvent method is essentially
Thus we cqn3|der henceforth the electron doped case forIower than the one found from the finite cluster calculations.
=1on equ[valeptly1=—1 andn<1. . Moreover, the evaluation of RESO requires much less ana-

Each lattice site hag=6 nearest .nelghpors. quated atthe lytical and numerical effort than the iterative extension of the
comers of a hexagon. The band dispersion is given by variational ansatz by additional hopping processes. For de-

tails on the application of the resolvent method to the trian-

\/§ky gular lattice see Appendix C.

Y2 | (44 Near half filling the influence of the majority spin hop-

ping processes contained in NN and RE8hich suppress
wherek belongs to the likewise hexagon-shaped first Bril-double occupanci¢on the Nagaoka stability is negligible,
louin zone. The upper band edge£6) is found at the as expectedFig. 13. In contrast to this the resolvent ansatz
center of the Brillouin zone, whereas the lower band edgdRES2 with nearest-neighbor hopping processesating
ep,=—3 is reached at the corners of the hexagon. The DO®louble occupancies leads to a negative spin-flip energy near
(see Appendix E and Fig. 1 in Ref. R8vhich can be ex- half filling for all U<<« and hence to a divergence of
pressed by a complete elliptic integral, displays a logarithmidJ.(n=1) (Fig. 13. It turns out, however, that for larger
van Hove singularity at=—2. Forez=—2 the Fermi sur- hole densities, when the exchange effect loses its impor-
face forms a hexagon with an area of 3/4 of the whole Bril-tance, RES2 is somewhégss successful than RES1. The
louin zone. As usual il=2 the DOS at the band edges is plot of the spin-flip energy as a function &ffor the com-
nonzero| pp,=4p,= (\/37) 1]. paratively small on-site repulsiob,.4=0.4 in Fig. 12b)

In contrast to the square lattice, the Nagaoka state remairgemonstrates that above=0.12 the creation of extra holes
stable towards Gw for all fillings1>1 at U=%.282° The  near the flipped spin as described by RES2 is energetically
corresponding spin-flip energy as a functiondis depicted unfavorable. The full resolvent ansatz RES3, comprising
in Fig. 12a). Evaluating NN, however, a negative spin-flip RES1 and RES2, gives of course the best lower bound for
energy is found abové,=0.912 proving the instability of the Nagaoka instability linéJ(5). The minimum critical
the Nagaoka state in the low-density limit. The resolventcoupling obtained for RES3 g "=9.63t| (U.=0.378),
ansatz RESO lowers the spin-flip energy further and implieshe critical hole density dt) =« is given by the RESO value

Qo
N
'S
(o]
Co
-
o

Kx

2
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FIG. 14. DOS for thekagomelattice (t=—1).

.= 0.824. Hence the region for a possible Nagaoka ground
state on the triangular lattice appears to be much larger than
on the bipartite square and honeycomb lattices.

G. Kagome lattice

1)

Ae., (t=—1)

Ae,, (L
I

o
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flat band

flat band

o

Taking thekagomelattice as an example of a frustrated
non-Bravais lattice we want to demonstrate that the resolvent
method works also for this class of lattices. Representing the
line grap? of the honeycomb lattice theagomelattice (for
t<0) shows a flat, i.e., dispersionless band with spectral
weight 1/3 at the lower band edgg= —2|t| (Fig. 14. All
line graphs display such a flat baftiThe kagomelattice is
the first and the most prominent example of so-called flat2nd RESQ@) for t=
band ferromagnetisif:** A macroscopic degeneracy of the
lowest single-particle energy leads for certain band fillings top , (¢) is the DOS of the triangular lattice. Nevertheless, the
a unique saturated ferromagnetic ground state. Mfélke fact that thekagomelattice is not a Bravais lattice induces
proved that the Nagaoka state is the unique ground state gbme changes in the analytic expressions for the spin-flip
the Hubbard model on thkagomelattice for allU>0 atn  energy(Appendix D.
=1/3. Although in the flat-band regime every ground state of Figure 1%b) shows the spin-flip energy fdd =« andt
the Hamiltonian(1) is a simultaneous eigenstatetsf;,, and =-1 as a function ofs for RESO compared to the Gw and
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FIG. 15. Spin-flip energy a=« as a function of the hole
density on th&kagoméattice for Gw(dashed-dotted NN (dashedl
1, (b) fort=—1.

Hpot, the uniqueness of the ground state is not trivial. FOMNN results obtained in Ref. 25. As for the honeycomb lattice
n<1/3 the fully polarized ground state is not unidue. the enhancement of the Nagaoka stability #ior 1/3 is due
The kagomelattice can be considered as a triangular lat-to the zero in the DOS. The effect of the additional spin-up
tice with a basis of three lattice poiridsee also Appendix hopping processes contained in RESO is most pronounced
D. Besides the flat bangl(k) = 2t the diagonalization ofl, for 6>1/3. But the spin-flip energy remains positive for all
leads to the two dispersive bands band fillings. Note that the exact result in the flat-band re-
gime is a zero spin-flip enerdy?® The phase diagram far
>1 in Fig. 16 shows a strong tendency towards Nagaoka
ex(k)=—11=y3—ex(k)/t], (45 ferromagr%etism also beyond the flat-band regime, where we
find the Nagaoka state to be stable for @lt>0. There is
wheree . (k) stands for the dispersio@4) of the triangular ~ ©only a marginal difference between the Nagaoka instability
lattice. For thekagomelattice the resolvent method requires lines for NN and for RES1, since the values Wf under
less effort than for the triangular lattice with<O since the consideration are too small to allow a significant reduction of
lower band edge,= —2|t| is reached ak,=0 for one dis- the spin-flip energy by Basile-Elser hopping processes. Near
persive band and for the flat band of course. Tpa® is the  half filling, however, we are able to restrict the Nagaoka
optimum momentum as for bipartite lattices. Hence allstability region by RES2, i.e., by taking antiferromagnetic
lattice-dependent quantities appearing in our formulas can b@xchange processes into account. As for the triangular lattice,
calculated as integrals over the D@g(e). Fort=—1 one for a certain range of filling around=3/2 away from half
finds the DOS of théagoméattice (see Fig. 14 and Appen- filling RES2 gives a weaker bound ftf. () than RES1.
dix E) as For positive hopping matrix elementthe flat band is
found at theupper band edge. The flat-band regime for
<1 corresponds to hole densitiess@<1/3. Sincek,=0
ande,= — zt the resolvent method formulas are those of the
bipartite lattices(see Appendix B Figures 1%a) and 16

1 2 ’
p(e)=38(e+2)+3le—1|-pal(e=1)>~3]; (46)
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FIG. 16. Phase diagram: Nagaoka instability lines on the
kagomelattice for Gw, NN, RES1(lower full line), RES2, and
RES3 (upper full lind. For n<1 the difference between RES1, (b)

RES2, and RESS is less than the linewidth. -0 ' ' ' ' T ' f '

F - = NN i
show that the small Nagaoka stability island found B T Gw, =0 -
previously® for very largeU around quarter filling is still - Gw, U=t/2 -
present for RESO— RES3. The upper critical hole density is 3 er .
reduced from 0.727NN) to 0.715(RESQ andUg" reaches ) K 1
191.3t| (RES3J instead of 129/4| (NN). These results may AN —-TTIITT -
indicate that this stability island really provides an example LN \"'4:;\ 8
of a saturated ferromagnetic ground state on a nonbipartite 2| Y
lattice for less than half filling. Its origfi is the zero in the L b
DOS enhancing the stability of the Nagaoka state arofind 0 S S R Bl
=2/3. 0 .2 .4 .6 .8 1.0

6=n-1
H. fcc and hcp lattices FIG. 17. (a) ldentical DOS for the fcc and hcp lattices=(

: ; —1) and DOS for the fcc lattice with additional next-nearest-
The fcc and hcp lattices as the most prominent close- - ; )

acked lattices irdp=3 are found in numeprous real sub- neighbor hopping { =/2), (b) phase diagramr(>1): Nagaoka

P . - instability lines on the fcc lattice for Gw and NN and on the -fcc
stances among them the ferromagnetic transition metals Ngttice Witht' =t/2 for Gw
(fcc) and Co(hcp). The face-centered-cubic lattice is a Bra- '

vais lattice with coordination number=12. Its band disper-

sion part of the Hamiltoniarfl) in each of the hexagonal planes it
turns out that the terms reflecting the different arrangement
efec K) = — 4t(cogk,) cogky) + cogk,)cogk,) of the planes disappear if one chooses the Fourier transfor-
- mation in a convenient way. Thaensities of statefor the
+codky)cogk,)) (47 fcc and for the hcp lattices are therefadentical as well as
is related to the dispersio@1) of the simple cubidso lat- our variational results on the stability of the Nagaoka state
tice vig?® with respect to Gw and NN.
For less than half filling a saturated ferromagnetic ground
sgc(E) £sd 2K) state was already excluded due to the complete instability of
el K==~ st. (48 the Nagaoka state towards Gwiat= 2% Therefore we only

] _ ) investigate the case of more than half filling which corre-
The hexagonal close-packed latti@éso withz=12) isnota  gponds tot<0. The DOS[Fig. 17a)] displays thed=3
Bravais lattice but a hexagonal lattice with basis. Within thesquare-root behavigs(e) = \e,—¢ at the upper band edge
hexagonal planes, which we assume to be parallel toxyhe e,=2|t|. For the fcc lattice the lower band edgg= — 4|t| is
plane, thek dependence of the two energy bands reduces taached on differeritnesin k space which intersect in sev-

the energy dispersiof@4) of the triangular latticé! eral critical points located on the border of the Brillouin
I~ I TS . This reduces the “effective dimensionality” of the van
= —_— N - . Zone - . . . .
S“CP(E) & 1Ky Ky) 2108 V2/3Kz) - V32 4 (K Kyt Hove singularity by one and leads tdagarithmic singular-

(49) ity in the DOS. As a consequence, the Nagaoka state remains
Hence it is possible to compute the DOS of the hcp lattice bystable in the low-density limifcorresponding tav—2 for t
integration ovemp () (see Appendix E >0) for all U>0 with respect to Gw and NIFig. 17b)].
Modeling the fcc and hcp structures with close-packedThis result indicates the strong tendency towards Nagaoka
spheres, the sequence of layers with different positions of thierromagnetism on the fcc lattice, especially in comparison
sphere centers is known to be ABABRA .. for the hcp and with the triangular lattice where we proved timstability of
ABCABC. .. for the fcclattice. Diagonalizing the kinetic the Nagaoka state even fbr=o in the low-density limit.



13974 HANISCH, UHRIG, AND MULLER-HARTMANN 56

Also for low and intermediate hole doping the extension ofmagnetism in the Hubbard model since they cover the most
the Gutzwiller wave function by nearest-neighbor hoppingrelevant local excitations in the spin-up Fermi sea but are
processes yields only a slight reduction of the Nagaoka stastill simple enough to be evaluated routinely on various lat-
bility region in the phase diagram. This is in sharp contrasttices in various dimensions. Local and nonlocal band nar-
for example, to the situation on the sc lattice. The resolventowing effects are present in these approaches. Since this fact
method was not applied to the fcc and hcp lattices sincgs not obvious in the complete approaches we resort to the
three-dimensional momentum integraliwould have to b‘?)revious resul(4). The factors[1— (e,/5zt)?] clearly de-
performed in order to calculaty w) andh(w) (see Appen- scribes the band narrowing of the flipped spin. It comprises
dix C). two factors, one of which is local&) and thus survives also
As for the square Iat'gic(asee Sec. lll Bthe particle-hole i the |imit d—c. The other factof 1— (e, /5zt)?] is very
asymmetry of the DOS is even enhanced if one ext¢fids  important as well since it vanishes equally 6r-0. But in
by electron hopping betweenext-nearest-neighbor sites (q imit z— on scaling® t1/yZ the latter factor degen-

:‘lg)l:rzzrs]i(mpllgg:jl;?cpg?fciu.rgg ::T]etrf];(t: tlgglgzarth:r?; igﬁfr._erates to unity. This clearly shows its nonlocal character.
. pie | ; u - "Note the importance of the sequence of limits. The more
bution to the dispersion exactly compensates the second term

on the right-hand side of Eq48) if t' =t/2. In this case the sophisticated variational approaches discussed in the present

DOS for thet-t’-fcc lattice is connected to the DOS of the sc W(.)rk (RES0-RESBcomprise the ansa(8). Thus they con-
lattice via tain also local and nonlocal band narrowing effects. The

other main effect is a direct energy lifting of the minority
electron due to the infinitéor large on-site repulsion. Since

/ 2
pr_p (€)= m.ps&/@(l—g/:&t)t], (500 the minority electron blocks a site, the majority electrons
— €&

lose the kinetic energy related to hopping onto or from this

and therefore finally simplifies to an integral oygs(¢) (see site, nqmelyel. This i; seen best in the kinetic matrix ele-
Appendix B. The next-nearest-neighbor hopping with am-ments in Eq.(10b) or in the energy denominate@f3). Fur-
plitude t’ =t/2 creates aquare-rootdivergence of the DOS thermore, we like to draw the reader’s attention to the non-
at the lower band edgdor t,t’<0) in contrast to théoga-  Orthogonality as it can be discerned in Eg0a. It is very
rithmic singularity obtained fot’ =0 [see Fig. 17a)]. difficult to comprehend its effect intuitively. But we know
The Nagaoka instability line for a Gutzwiller single spin from the extensive efforts to reduce the critical doping by
flip on the fcc lattice witht’ =1/2 is compared with the result including more and more correlatidiishat this nonorthogo-
for the simple fcc lattice t{ =0) in Fig. 17b). The more nality hinders the spin flip to gain enough energy to destabi-
pronounced singularity of the DOS at the lower band edgédize the Nagaoka state. The added states do not reduce the
leads to an even more pronounced stability of the Nagaokaritical doping any further since they do not really enhance
state in the low-density limit. We fintdJ,(8)<1— & instead  the accessible Hilbert space.
of Ug(8)=1/In(1—6) for t’=0. The slight increase of the Besides the achievement of easily evaluated ansatzes the
critical U at half filling is due to the different bandwidth of comparison of the phase diagrams presented here yields the
thet-t'-U model (18t| instead of 1&|). following main results. For bipartite lattices the possible Na-
gaoka region shrinks rapidly with increasing coordination
numberz (cf. square and simple cubic latticéderrmann and
Nolting did not investigate low-dimensional lattices because
In summary, we investigated the stability of the Nagaokathey suppose that ferromagnetism is excludedsnl and 2
state for a series of two- and three-dimensional lattices: thby the Mermin-Wagner theoreM:!’ Note, however, that
squaret-, the square-t’-, the simple cubic, the bcc, the neither the Mermin-Wagner theorem makes any statement on
honeycomb, the triangular, theagome and the fcc(hcp ground state¥ nor any extended theorem can exclude a fer-
lattice. The results were mostly variational in nature and conromagnetic ground state since the total spincasserved
cerned the energy change due to a single spin flip. By thguantity is not affected by quantum fluctuations. The shrink-
resolvent approach the eigenvalue problem in the variationahg of the Nagaoka region on increasing coordination num-
subspace was reduced to a matrix inversion problem. Theer can be understood from the lowering of the DOS at the
relatively simple structure of the matrices under considerband edges or, equivalently, as the effect of a lower and
ation permits us to convert the matrix inversion into a scalatower band edge,,.

IV. CONCLUSIONS

inversion (or the inversion of a X2 matriX. For thet-t’ For the above reasons we investigated low-dimensional
square lattice a perturbative approacht iwas used as well nonbipartite lattices where low DOS at the lower band edge
for investigating thet/t’ —0 limit. can be avoided. Indeed, we found that the possible Nagaoka

The ansatzes RESO0—RES3 are particularly simple for unregions are enlarged considerably. This is true for electron
frustrated, isotropic, homogeneous lattices with nearestdoping for conventional hopping¥0,n>1) whereas satu-
neighbor hoppingSec. I, Appendix B. For frustrated, non- rated ferromagnetism in the hole-doped regivrQ.n<1)
bipartite lattices our approach is still tractable, though morecan be excluded by our results. Treating the electron doping
cumbersome. To demonstrate its tractability we derived foralso as hole doping after a particle-hole transformation, i.e.,
mulas for the triangular latticehonbipartite, Bravais lattige t>0,n>1—t<0,n<1, this phenomenon is easily under-
and for thekagomdattice (nonbipartite, non-Bravais lattite ~ stood: e,(t<0)<e,(t>0). The ratio of the lower band

We believe that our variational criteria are well suited in edges is 2 for the triangular and tkagomdattice, and 3 for
order to investigate the lattice dependence of saturated ferrthe fcc and hcp lattice. In infinite dimensions it becomes
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eveno for the generalizations of the fcc lattiég@™® For Ne .= —|A] Y e(ky) — (ko) — &(ky— ko—kp) + £p)].
> IS kqky 1 2 17 K=Ky b

these generalizations one hagt>0)/e,(t<0)x\/d. - - - - - - (Alc)

The above observations concern already the asymmetry of - . o
the density of states. Our results clearly show that a larg&ince only the positions of the creation and the annihilation
asymmetry favors ferromagnetism. It is most useful to have &perator are interchanged between the statgs and | W)
large DOS at the lower band edgethe hole-doping picture one gets, andD, from P, andD, substitutingn by 6, by
to stabilize the Nagaoka state. Note that thisdsequivalent «©—U ande(k) by —e(k). As for D, (12), D, contains a
to the well-known Stoner criteriok)p(eg)>1 which con-  diagonal matrix and &-independent part:
cerns only the DOS at the Fermi leVeThe best situation is 1 .
to have a strongly diverging singularity at the lower band Do=d; "+ (0—U=spuu (A2)
edge or close to it as we found in the investigation oftthe with
t" model with tunable DOgS and as was also observed previ-
ously for fcc-type latticed>1417 -1 _s

i ; = . —U+e(k

Our results concerning thet’ model extend previous (A5 ik, = Oy, (L 0= U F e (k)]
oneé_5 since we treat all ratios dfandt’ and all fillingsn. +ey[1—e(ko—kp)/(z0)]},
Hlubina et al. focused on the Fermi levels at the van Hove - -
singularity. Thus the Stoner criterion is at the basis of their
investigation albeit it goes technically beyond this mean-field
criterion. _ ~ fork,ky ke FS.D; * is known already from RESQL5) and

Herrmann and Nolting used a two-pole meth@DA: e "ohtain the matrix elements & D; *N for k;,ky e FS,
self-consistent spectral density approathinvestigate fer- -

; . . . d1,9,€ BZ\FS as
romagnetism for the simple cubic, tide=~ hypercubic, the — "=
d= fcc, and the bcc latticé!’ at zero and at finite tem-
perature. Their qualitative findings for zero temperature are(N*Dl’lN)klk2= IA]72 [ f(qy) 84,0,
similar to ours. We would like, however, to point out that the o Nl v~ 7T
two-pole method they employ is indeed a generalization of _ f f
. : . 9 = &p (91)f(d2)

the Gutzwiller ansatz in Eq3) with f=0 to finite tempera- - T+ (@w—e)h(@) . A
tures and nonsaturated magnetizations. Fei0 and satura- @~ eplite

(W=|A] 722 (A3)

tion it reduces to Eq3) with f=0. Thus it is not astounding X[ep—e(ky—q;—ky) +&(ky)—e(qy)]
that they found a good agreement with the results of Shastry - - - - -
et al?® Our approaches go far beyond E®) (barring the X[ep—&(Kp—o—Kp) +&(Ko) —£(gp)].

guestion of the extendability to finite temperatyréshis can
be seen, for instance, for the simple cubic lattice where we
found 8,=0.237 well below5,=0.322%1" Already Roth
found by numerical calculation in the variational subspace of
RESO the numbeb,=0.2438 For the bcc lattice one finds
again that the SDA methotl reproduces the Gutzwiller re-
sult 6.,=0.324 for saturated ferromagnetism whereas RES
yields a considerably lower value éf,=0.239. Thus one is
led to the conclusion that the SDA two-pole method canno
be exact as claimed in the strong-coupling liffit.

(A4)

A remarkable simplification occurs if terms like(k
q) factorize to—e(k)e(q)/(zt). This happens if, as for
hypercubic lattices, every component gives the same contri-
ution to the sum oveg; due to the symmetry of the Bril-
ouin zone. In this case the corresponding matrix element of
the one-particle Green’s function is invariant under permuta-
tion of the components. Of course the bound state we are
looking for has to display the same permutation symmetry.
Making use of this argument and assumiqag-0, g,= — zt

ACKNOWLEDGMENTS the product in the second line of EGA4) simplifies to
This work was performed within the research program of e(kq) e(kp) e(qy) ()
the Sonderforschungsbereich 341 supported by the Deutsche(zt)z( = —1>( — — )( = 1)( =+ 1)
. zt zt zt zt
Forschungsgemeinschaft. The authors gratefully acknowl-
edge useful discussions with Peter Wurth and Burkhard (A5)
Kleine. Carrying out the summation ovep, andg, we obtain
. _ e(ky) e(ky)
APPENDIX A: THE FULL RESOLVENT ANSATZ RES3 (NTDIIN) e =AY = -1 —=~1]a
1 TVkak, zt zt
Computing the elements of the matrixP—L [see Eq. (AB)

(12)] using Wick’s theorem we obtain )
with
(P, =N S, T IA 7, (Ala)
o o a:zyl(e1+25zt— SO+ (Q+2z1)%G(Q)

(Dl)lflkzz{n[w_8(E2)]+el[l+S(EZ_Eb)/(Zt)]}' 55152 (Q+Zt)[(Q+Zt)G(Q)_5]2

+|A| N w—ep), (Alb) n+(Q+ztG(Q)
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depending only orw andeg, but not on the indicek; and To find the energy of the bound state we have to solve the
ko. We define the vectow by (w),:=|A| % (k)/(zt) for  equation (¥ B,u)~ l—O Starting from Eq(A10) and writ-
ke FS. Making use of this definition, Eq$31), (A2), and  ing u formally asu=y"e; we obtain
(A6) the matan2 reads .
U Bau=e; y[d,+dyA(1-BA) tyd,ly e,
B, '=dy '+ (w+zt—U)uu? -7 T - e
— =e,[1+BA(1-BA) *]Be,
—a(uu"—uw" —wu"+ww"). (A8) - -
1 =e; (1-BA) 'Be, (A16)
The off-diagonal elements @, - do not depend explicitly
onk, andk,. In contrast to RESQL2), however, they are not and, using Eq(A12), we finally obtain the equation
overall constant but take specific values for each block of 1 CrCa0 (A17)
B, . To overcome this additional complication we introduce avs b2
the 2x 2 matrix for the lower edge of the spectrum gajb(w). After inserting

all terms EqQ.(A17) takes the form

a, az a—w—zt-U -—a
= = (A9) T
az ap -« a P1-G(Q)—p,=0 (A18)
and write B; ' as By '=d; ' -y Ay with y*:=(u,w). with
order to obtainB, we use an expansion trick similar to Eq — — —
(14D pi=ay(Q+zt)°—(w+zt—U)[ y(zt)*— a(e;+nQ)]
B,=d,(1—y*Ayd,) ! po=ay[N(Q+2xt+e;) +n2(w+zt—U) ]+ y4(zt)2
=dy(1-y"Ayd,+y*AydytAyd,+---) Making use of the identitieﬁ)+zt—U=_y_5‘1(Q_+ zt), e;
—dyt dyy*A(1—BA)“lyd,, (AL0) =.z.t(n—y) and introducingy: = ay+zty, Eq. (A18) sim-
ol b plifies to
with B:=yd,y* representing the:22 matrix
o ! B (AL9)
by by [uTdu uTdw 5+(Q+2HG(Q) a(Q+zt)
= -~ (A11)
bs bp] u dZW w dow From the definition ofx Eq. (A7) we derive the expression

While inverting the matrix
¢, ¢3] [1—ajb;—azh; —agh;—aybs x=(Q+2z0)1 +(Q+Zt)G(Q)> (A20)
1-BA= Cq4 Cy N —a,bz—azh, 1—ab,—asbs; for x. We definein analogy
(A12)
represents a simple algebraic task, the elemenBlwve to ;: (5T+ zt)| 1— __ __) (A21)
be computed by numerical integration. In analogyh{a) 6+ (Q+zt)G(Q)

=p*d [see Eq(16 e introduce —
vidw [ a(lea]we i . and write EQ.(A19) as x=zty/a. The eliminination ofa
_ _ finally leads to the simple result
h(w):=utdu=|A|"t> [S(w—U)+ ye(k)+e;]"*
- - ke FS —

- (A13) Zit =X, Y (A22)
with y:=6—e,/(zt). Just ah(w), h(w) reduces to an in- X X
tegral over the DOS: The Nagaoka instability lin&l .( 8) is obtained by assum-
d ing w= e for a given Fermi energy, calculating 7 andy
h(w)= JEF ple)de — =471G(Q), (A14)  and solve Eq(A22) numerically with respect toe. Note that
b S(w—U) et ye U enters Eq(A22) solely viaQ and hence vigy. To com-
with pute theoptimum spin-flip energfor RES3 for fixed values
U and é, we solve Eq(A22) with respect taw and subtract
_ eep(e)de — Slw—U)+eyg the Fermi energy from the solutionwqy(U, 6).
G( ):j , Qim (AlS)
e, Y€ vy

APPENDIX B: GENERAL UNFRUSTRATED LATTICE
The symmetry of the DOS with respect4e-0 allows us to
mapG(y) to the integralG(y) already defined in EJ16d. i, gec ) and the formulagA20)—(A22) apply to all unfrus-

Following_l?g._(Ail), the el_einlentsi(z)f the mitrB_a;E@/en trated, isotropic, homogeneous lattices with nearest-neighbor
by b=y "G(Q), b=y (z) Te;—nQ+Q°G(Q2)],  hopping. In this context, “homogeneous” means that all
andbs=(yzt) " n-QG(Q)]. sites are equivalent; “isotropic” means that all bonds in all

In this appendix it will be shown that the formulas derived
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directions are equivalent. “Unfrustrated” means that the

statecy:=|A|"23,a; is an eigenstate of the kinetic Hamil- Nor o= 02 [forilPF o242 [fail?lf0 0%
tonian with eigenenergy,= —z|t| wheret is the hopping - W - (B80)
element as in Eq.1l) andz is the coordination nhumber. This

requirest>0, hence the absence of frustration. Note that that can be re-expressed with the help of the matribgsA,
lattice does not need to be a Bravais lattice. The Bethe latandV

tice, however, is not unfrustrated far-1 in the above sense

since its lower band edge is,= —2\z—1]t|,*® and nots,, |f il 2lf ]2

=—2Jt]. . _ _ _ Ml’l:zg N(w—eg,)+e;+(e/zt)e,’ (B9
Let us denote by, the creation operators which diago-
nalize the kinetic energy
Ai=w8 1D biisis (B9b)
£aCi =[Hiin.CJ] (81) TR
and byaj+ the site-diagonal creation operators. The unitary Voi=fal? (B90)
transformation between these two bases has the matrix ele- = =
mentsf , ; where thes are all spatial vectors connecting nearest neigh-
- bors. One obtains
coi=2> fa;a/, (B2) x
oo (wP—L)—1=D—DVA(E (—MA)”)V*D. (B10)
which implies the expectation values with respect to the Na- n=o
gaoka state\") The key observation at this stage is that the vectawith
Pyt u;=|A|"2is an eigenvector both of the matrickkandA.
<C“Ta'f> f“”_ for &, e, (B33 The corresponding eigenvalue fibt is found with the help
n 4 of Eq. (B4)
(ajicpp)="Fg; foreg<er. (B3b)
The homogeneit); required i_mpIies that h(w)= 1 [fail "1l (B11)
DA n(w—ey) te t(e/zhe,’
> |f o j|?8(w—e,)=const (B4)  which simplifies due to E(B5) in the end to the forni16a.

The corresponding eigenvalue Afis w + zt= w—¢y,. So the
on the lattice, i.e., it does not depend prUnitarity yields ~ Series in Eq.(B10) yields a vanishing denominator for 0
furthermore - =1+ (w—¢ep)h(w). Thus we derived Eq(15) for a much
broader class of lattices.
The equations for RES1 and RES2 follow in analogy to
> |fal?=1. (B5)  the derivation in Sec. Il B. The ansatz RES1 is identical to
« - Eq. (18) for k,=0 and the additional matrix elements are the
same as in Eq20) onceg, is replaced by, . An important
point to note is that the homogeneitg4) ensures thaN,,
couples indeed to the constant eigenvector

First we address RESO with the ansaiz  cf)

(I)a:=2 achZTaﬁV\/’)fZ,j. (B6)
[ - - (V*DN)]-_=[5—h(w)n(w—sb)]ul (B12)
The resulting matrix elements are obtained by Wick's theo-

. for which the series summation in E@10) was achieved.
rem and re-expressed with the help of E@33—(B5) For the ansatz RES2 we work with E@5) for k,=0 and

find the matrix element&6) after replacing: by &, . Using

Pa’,a:nﬁa’,a_FZ |fa’,j|2|fuz,j|2! (B7a)
T = (V*DN);=yy, (B13)
Liar,a=(Neg=€1) 80 ) (B7b)  with y as in EQ.(270), we obtain again E¢28) as condition
for the variational spin-flip energy.
ee, Let us now turn to RES3. We use <&
Lla'a:_l_éa’a_tZ |fa’i|2|faj|2' (B7C) ‘A F)
’ zt ’ (I_J_> b 'z
_ + +
The matrix inversion to be solved is \I’B_zj: ajiCp12j [N g, (B14)
(0P—L)"'=(D"'+N)%, (B8a  in analogy to Eq{(29) for the doubly occupied states. The

matricesD, for ®, andD, for ¥4 as in Eq.(30) are given
Do =04 o[N(w—g,)+e1+(e/zt)e,] Y, (B8 by
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(D)o a=0ar o[N(w—e,)te1+e18,/(21)] which can be summarized in

E=—ztab™ (B20)
+w§j: |fa’,j_|2|fa,j_|2+tz |fa’,i_|2|fa,l|21 —
- Ll with E::E_E/ﬁ and 9::E+E/‘/E- The matrix elements
(B158  of C, with respect tau andv in obvious notation are

(Dz)ﬁr'ﬁ:5Br’ﬁ[5(w_U+8ﬁ)+el_e185/(zt)] 1 hO
Clu“ZWE (D1)gr 0= [Epr—— (B213
2 2 2 2 a'\a b7t%0
- - 1
(B15b) clvv=m2 €0/ (D))o afa
whereD; can be read off from Eq$B8b) and(B8c) andD, e
is analogous for the statel ;. 1 h2(w—ep,)
The matrixN, which couples the doubly and the nondou- 22\ 27 T (o —sp)hy)’ (B21b
bly occupied subspac¢see Eq.(30)], is obtained again via zt @~ &p/llo
Wick’s theorem and with EqgB3b) and (B4)
- -1 h,
Clul):C o= sa’(Dl)a’,a:_ )
Nag=t2 (o ifailfail®=Ifail 5,750 VztAlaTa Jzt 1+ (0=2pho
(i) - -t (B219

where we use the generalization of Efj6g (hg=h
2 (1 gt | 1T ). @16 g 163 (ho=h)
I,] - - - - - -
In order to re-express the inverse matri®,=(D, (B22)

h- J‘Ets”p(s)ds
n.: - .
—N*™D; IN) ! we define

SF Q_’ys
It is useful to keep the following relations in mind:

(Cl)i,ﬁ’;j,é‘: = 12 fI"i_Jré‘/fa’,i_(Dl)a’,afZ/’j_+isjfa,j_!

nebln hi=[— 6+ (nw+e;)hgl/y, (B23a
(B179
. + +
(CZ)i_,f’;l,f'_B/EB fﬁf,i_ﬂ_vfﬁ’,i_(DZ)B',ﬁfﬁ/,j_+§jfﬁ,i_’ For C, very similar equations are derived after replaciag

(B17b) by B, i.e., by changing the summation over the unoccupied
levels to a summation over the occupied levels

Ei,ﬁ’;j,ﬁ:: _tél_,J_(éf’,g_ 5§’9)+t5i_5r,j55,_§r(1_ 5@9)

- - [ — hO
uu_—
2 — (8243
1> 8145705 0050 (B170 1+(w—U—gp hg
5// ———————
1/ — Fz(cu —U—gyp)
Visp =fsisfpi (B17d Cp'=—| hy- ! ° |,  (B24b
- - - - zt 1+(w—U=—gp)hy
where the spatial vecto® ', andd” link nearest neighbors
or equal0. The resultis - 1 h,
Cl'=ClY=— —, (B249
- 2Tzt 1+ (w—U—sp)hy
B,=D, '+ > D, V'E*C,E(C,E*C,E)"VD, ?, o
n=0 . . i
(B18) where the generalization of EGAL3) (hy=h)
where we once again focus on the geometric series. In slight _ ere"p(e)de
extension of the situation for RES0-2 we do not guess one hnZIJ Ot (B25)
common eigenvector @&, C,, andC, but a two-dimensional °b ve
subspace spanned lyandv. The vectors are defined by s ysed. The following relations hold:
Uo:=|A|"¥? and “zero ~otherwise, and byv; 5.0
:=(2z|A]) " and zero otherwise. hy={n—[8(w—U)+eJhely, (B263
Straightforward calculation shows
Eu=—ztu+zt, (B193 hy={e;~[8(w—U)+elhi}/y.  (B26b
Ev=— JZtu+to (B19H) Due to the particularly simple form d& in Eq. (B20) all

we need to do is to calculate
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zt e(k) e(q)(  elky)
c—nt - 2 e _ t e

Cl. E Cli 1+((1)_8b)h0 8b[1+ Ep €p \1+ 48b
2h; 1 2 e(ky) e(gn)( . e(ky)

x(h0+Z—t+Z—t[h2+(w—sb)(h2h0—h1)]>, X |1+ P \1+ a0p ||’ (C3

(B278  making use ok,=—2z|t|/2. The permutation symmetry with
respect to the primitive lattice vectors which is essential for
zt the factorizatione(k—q)=—&(k)e(q)/(zt) holds also for
Cri=b*Cob= L e

prm— H . + =1 .
1+(w—U—gphy the triangular lattice. The matrid™ D, "N is calculated to be

(_ N*D; *N=auu’ + ay(uw’ +wu™) + a,ww™ (C4)
x| ho— - - —
(B27b)

The condition for the singularity of EqB18) reads now

2h; 1 _ P
74—Z_t[h2+(w_u_8b)(h2ho_ﬁg)])

with

a1=8§—28bh1+h2=H[Sbh_hl]zy (C5a

1=c;C,, (B28)

5. O
a2=sbh— ZSbhl+ ZhZ—H

[ 5 1
_sghz— Zsbhhl+zh2},

which is equivalent to E¢(A22) as can be shown by some (C5b
tedious, but straightforward calculation. Thus we have com- 1 - 1 1
pleted the proof that the equations for RES0-3 derived in the az=e2h==egh;+ —h,—H| e2h?— Ze,hh, + _hi}_
main text for hypercubic lattices hold for all unfrustrated, 2 16 i 2 16
isotropic, homogeneous lattices with nearest-neighbor hop- (C50

ping. Only the coordination number and the DOS enter thg, Egs. (C58—(C50, H is a short-hand notation for(

evaluation of the RES ansatzes. —ep)/[1+ (w—ep)h(w)]. The method developed in Appen-
dix A to calculateu™ B,u is applicable also for the triangular
lattice up to Eq.(A17) which yields the optimum spin-flip
energy for RES3.

The elements of the>22 matricesA andB are given by

APPENDIX C: TRIANGULAR LATTICE

For the triangular lattice with<<O the lower band edge
e,=—3|t| is reached ak,=(4/3,0). Sincek,#0, the in-

tegral a;=ay—(w—e,=U), ay=az az=a; b;=h(w), b,
=h,(w)/ed, by=h,(w)/e, with h;(w) andh,(w) defined
h(w) = 1 in analogy to Eq(C2) as integrals over the Fermi sphere.
T\ nlo—eT+el1-e(k—kp/ (201,

APPENDIX D: KAGOME LATTICE

(CY
cannot be mapped onto a one-dimensional integral over tht% To prepare the derivation of the ansatzes RESO-RESS for

DOS but has to be evaluated explicitly in momentum space e frustrateckagomelattice we diagonalize the one-particle
The optimum spin-flip energy for RESO for a given hole problem explicitly. Since we deal with a non-Bravais lattice

density 5 follows from the solutionw, of the equation with three sites per unit cell we have to solve ‘a3 eigen-

1+ (w—ep)h(w)=0 asAe.(5)=wo—er (See Sec. )l To value problem with
obtain the Fermi energy corresponding to the critical hole fa’j_: exp(iﬂ)cba,r@,

density &, the equation ¥ (er—ep)h(ep)=0 has to be
solved numerically. where 7(j) €{1,2,3} denotes the sublattice to which site
belongs. The one-particle Hamiltonian acting ¢, , be-

(D1)

For RES1, Eg.(23 holds also for k,#0, since
|A|"*Se(k—kyp)=2ne1/(zt) due to the symmetry of the comes
lattice. Calculatingﬂ*Dl_lﬁ for RES2, however, the inte-

grals h(k)=2t
e"(k) > [ kn,
hn=< — —— . 0 cogkny/2) co§ —
nfo—e(k)]+e[1-e(k—kp)/(z1)] keBZFS 2
(C2) S( nl) ﬁ(k(m—m))
X | cog == 0 cog ———| |,
which for k,=0 simplify to Eq.(B22) have to be computed 2 2
for n=1,2. Although the outline of the derivation remains kn, k(n,—n;)
unchanged, this causes some differences in the analytic ex- co :) CoO§ =——F—— 0
. ; s 2 2
pressions for the optimum spin-flip energy and the Nagaoka L -

. S . D2
instability line compared with the casg=0 (see Sec. ) b2

Evaluating the full resolvent ansatz RES3, the product invhere we used the unit vectons andn, as shown in Fig.
the second line of Eq/A4) can be written as 18. The secular equation of E@?2) is
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+ + + +
foifaitoli Njrs = fajsslajraohiNss

:f;-jfa,j+5)\j)\;r+é' (D7)

The last equality holds sinceé, ,;, in Eq. (D1) is real.
Hence only the real part ofj*)\jﬂ; in Eq. (D6) matters. It is

—1/2 leading thus to the first term in E(D5).

From the matrix elementé7a),(B7b),(D5) we find the
relations which are analogous to Egs.
(B8h),(B8c),(B9a),(B9b)

Da’,a: 5&’,a[n(w_8a)+el_(el/22t)8a]7lr (Dsa)

Na'.a:w; |fa’,j|2|fa,j|2+t<_2> [f o il?lfailPNTN
il Haj = ]

N o (D8b)
3
f12f ]2
, . . M; = 2 | a,L| | a,ll ) (DSC)
FIG. 18. Segment of thkagomedattice. The vectors are used in ol % N(w—¢g,)+e;,—(e/2zt)¢,
the main text. The numbers refer to the three sites in each unit cell
of this non-Bravais lattice.
Aji=wd it S NN (08D

0=(—2t+N)[N*+2t\—2t2+te o (K) ], (D3) -
The vectoru is again an eigenvector of the matriddsand

wheree 4 (k) is the triangular dispersio@4). From the secu- A. lts elgenva_llue foM is in anaIO_g_y_ to Eq(B11) identical
lar equation one deduces Hdb5) easily. More important for 0 EQ. (163 with the adapted definition

the following is the observation that(k) can be diagonal-

ized by an orthogonal, i.e., real, transformation since it is real Yk=n+e/(2zt). (D9)
symmetric. Thus the phase bf ; is completely given by the
plane-wave factor exfj) in Eq. (D1).

Since we wish to treat the frustrated cage<Q) we
modify the ansatdB6) by introducing an additional phase
factor\; depending only on the sublattice and being unity on
sublattice 1, exp(i/3) on sublattice 2, and exp@i/3) on
sublattice 3

The eigenvalue foA is w—2zt/2=w—¢y, as before. So the
series in Eq.(B10) yields a vanishing denominator for O
=1+ (w—¢ep)h(w) with h(w) as in Eq.(168 with y [Eq.
(160] replaced byyy [Eq. (D9)]. So the DOS, the lower
band edge:,, andyk are the only quantities to be changed
so that RESQ15) applies to the frustrateklagomelattice.

For RES1 the ansatz reads

©,i=2 ajiCea) V)L (D4) (W) =|AI7220 explikd)ajia AN (D10)
T - == . - - - - -

in extension of Eq(18). The resulting condition is identical

Thg resulting matrix glemenBa,,a andL;, , are the same Eq. (23 with the adaptedy, in Eq. (D9) and, of course,
as in Egs.(B7a,B7h since the phase factor cancels at eaChgb:ztlz.

site. ButL |,/ , does change into For RES? the ansatz reads

€18, i o
Lla,,a=ﬁaa,,a—t02j>|fa,,i_|2|fa,i|2xi_+xl. (D5) [W2):=[ |72, exttiki)aliay;alj|AT (D1D

_ _ _ ~yielding again conditior{28) with the adapted quantities, in
The change in the second term is obvious. The change in thearticulary : = e; +e,/(2zt).
first term A, is less trivial. In a first step one obtains The ansatz for the doubly occupied states in RES3 is the
extension of Eq(B14)

Alz_i5a’,a2 f;jfa,j+§)\;r)\j+5- (DG) + + +
zt E’é R e \I"B:$ aJ_TCma]_lL/\f')fm_)\J_ . (D12)

Transforming the terms of the sum likk——6 and j—| The relations analogous to Eq8159,(B15b),(B16),(B170
+ & leads to - - -7 read
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(DD ar o= 8o a[N(w— )+ 61— €16, /(221)] Simple cubic lattice
du
+w foril?lfal?+t Faril?1fajl NN = _1Juz—' +
2]_:| j_|| ,J_| ('_EE>| |_|| ,J_| [} Ps&s) ™ Ulm PD(s 2tu), (Eza)
D13
(D133 u;=max—1,—2-¢/(2t)), (E2b
Dy) g g=8p gl(w—U+eg)+e+ /(2zt
(D2)gr,p= ' gl 8(@ ep)teiteegl(221)] Upy=min(1,2—&/(2t)). (E20)
+w§j: |fﬁ',1|2|fﬂ,1|2+t%> £ ilPlf i PATN bec lattice
(D13b 4t du
—_— u). (E3)
e Pood ) ) joli2 AU &2 =
a,B™ tz (fa] a||fBI| | a,i_| fB,J_fBI_)
Triangular lattice
+t2 fZ.fanZJfﬁ. Ia,llzlfﬁ,i_lzxi_*xl), pale)=(Zotm) 1Kz, /2,]. (E4a

Fort>0, zy andz; are given by

3+2y3—elt—(e/(2t))? for 2t<e=<3t
o 4.\3—¢elt for —b6t<e<2t,

(D130

t
Eisjo= t5|1(55/ 550) Si—sj0s - 5'(1 550)

T T (E4b)
_tz 5I+5’/ 55/ 055 0)\ )\ (D13d) 4\ 3—¢gft for 2tse<3t
- Y 3+23=&lt—(e/(21))? for —6t<e<2t.
So far the analogy to the treatment of unfrustrated lattices (E40

is perfect once the different form ef,, yx, and of yy=6  For t<0, the upper and lower intervals in Eq&€4b and
+e,/(2zt) is taken into account. In particular the formulas (E4c) have to be replaced by 3|t|<e<—2|t| and —2|t|
(B21),(B24) for the matricesC, andC, carry over. But due <g<6|t|, respectively.

to the different form of Eq(D13d the matrixE is changed

compared to Eq(B19) Honeycomb lattice
Eu=zt/2u+ \ztv, (D143 pu(e)=|elt]- pA(3t—g?It). (E5)
_ \/Etu—t/2v, (D14b) Kagome lattice
1 2 )
_ [z22 -z pK(s)=§5(s—2t)+§|1+8/t|~pA(3t—(s+t) It).
=E=t (D149
Jz —12 (E6)
acting on (,v). This matrix is no longer singular as was Hep lattice (t= —1)
in Eqg. (B20). Thus we stay on the 22 matrix level. The
singularity condition based on EB18) is 2 (1
o phcp(s)=;fody:(y), (E73
O0=de(1-C,E*C,E), (D15
with the integrand
which can be evaluated easily. This concludes the derivation
for the RES3 ansatz on the frustrateagomelattice. ( —— pale_—(2+e_)y?]
APPENDIX E: DOS FOR THE LATTICES CONSIDERED \/8+ e-t(2t+e_ )y
; ; ; . pales—(2+e,)y%]
In this appendix we give the explicit formulas for the E(y)={ +V2+e, for <0,
densities of states for the lattices discussed in Sed[ln] er—(2+e,)y?—e_
stands for the complete elliptic integral of the first kifsee, 2
e.g., Ref. 4% \/6 e_ pale-+(6—e-)y ]2 for e=0
Ve, —&_—(6-¢_)y
Square lattice (E7b)
and

e 2
po(e)=(2[t|m?) K[ <4t> } (ED e.=e+2(1+ e +4). (E79)
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