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Multicritical behavior of the antiferromagnetic spin-3/2 Blume-Capel model:
Finite-size-scaling and Monte Carlo studies
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Transfer-matrix finite-size-scaling calculations and Monte Carlo simulations are used to investigate the
two-dimensional spin-3/2 Ising antiferromagnet in the presence of an external magnetic field and a single-ion
potential. Comparison is made between the results of this study and previous mean-field calculations. The
phase diagrams and the critical behavior of the model are discussed. In contrast to the mean-field picture, no
decomposition of the tricritical point is observed.
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I. INTRODUCTION

Spin-3/2 models have been introduced earlier to exp
phase transition1 in DyVO4 ~Refs. 2,3! and tricritical proper-
ties in ternary fluid mixtures.4 They have been studied b
mean-field approximation~MFA!. Recently the phase trans
tion in the spin-3/2 Blume-Emery-Griffith~BEG! model with
nearest-neighbor interaction, both bilinear and biquadra
and with a crystal-field interaction has been studied wit
the MFA and Monte Carlo simulation5 and by the
renormalization-group method.6

Transfer-matrix methods and Monte Carlo simulations
plied to finite systems and finite-size-scaling theory ha
been used with great success to study the critical prope
of Ising models.7–11 In the case of the spin-1 Ising antiferro
magnetic Blume-Capel model12,13 in the presence of an ex
ternal magnetic field in two dimensions, they have sho
that there is no decomposition of the tricritical line into a li
of critical end points and one of double critical points.14,15

This decomposition has been found by MFA~Ref. 16! and
confirmed by Monte Carlo simulation on a three-dimensio
cubic lattice.17

Using the mean-field approximation, the multicritical b
havior of the spin-3/2 Blume-Capel model with antiferr
magnetic bilinear interaction, with a crystal field and und
an external magnetic field, has been investigated.18 The re-
sults reconfirm the decomposition of the tricritical point f
this higher spin order model. Earlier, Motizuki19 performed
mean-field calculations for the spin-1/2 Ising model with a
tiferromagnetic nearest-neighbor and ferromagnetic n
nearest-neighbor exchange interactions and found that b
a given ratioR of the intrasublattice to intersublattice co
pling the decomposition also holds for this model. Howev
Monte Carlo renormalization-group study20 yielded results
which were inconsistent with the mean-field picture and
cent Monte Carlo simulation21 exclude the decomposition o
the tricritical point even for smallR in three dimensions for
this model. Mean-field approximation predicts also for oth
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models the existence of multicritical points, such as theS
51/2 Ising model in a random field obeying a symmet
three-peak distribution22 and the spin-1 BEG model with re
pulsive biquadratic coupling.23

In this paper we realize a thorough investigation of a tw
dimensional antiferromagnetic spin-3/2 Blume-Capel mo
in an external magnetic field by using transfer-matrix fini
size-scaling~TMFSS! calculations and Monte Carlo simula
tions. An approach which includes the correlated fluctuatio
ignored by the mean-field approximation. The objectives
this study are~i! to confirm, forH50, the existence of the
end point instead of a tricritical point,5 ~ii ! to determine the
global phase diagram in theT-H-D parameter space,~iii ! to
investigate whether the tricritical point decomposes into
bicritical point and a critical end point as predicted by mea
field approximation.

The model studied in this paper is defined by the Ham
tonian:

H52J(̂
i j &

SiSj1D(
i

Si
22H(

i
Si . ~1!

Here the spin variables are localized on sites of a squ
lattice with periodic boundary conditions and take the valu
63/2 and61/2. The first term describes the antiferroma
netic coupling (J,0) between the spins at sitesi and j , this
interaction is restricted to thez nearest-neighbor pairs o
spins. The second term describes the single-ion anisotr
and the last term represents the effect of an external magn
field. The Hamiltonian and the phase diagrams are invaria
under the transformation (H→2H,S→2S).

The remainder of this paper is organized as follows:
Sec. II, we briefly outline the formalism of the transfe
matrix finite-size-scaling method and the Monte Ca
method is described in Sec. III. In Sec. IV, our numeric
results are presented and Sec. V contains a summary a
conclusion.
13 954 © 1997 The American Physical Society
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II. TRANSFER-MATRIX FINITE-SIZE-SCALING
CALCULATIONS

Detailed description of the phenomenological finite-siz
scaling method and transfer-matrix formalism on tw
dimensional systems are given in Refs. 24,25. A system
linear sizeN is used with periodic boundary conditions an
only even values ofN are considered to avoid the introdu
tion of interfaces and to preserve the antiferromagn
phase. WithN85N12 the Nightingale condition24 for the
determination of the critical pointKc becomes

jN~Kc!

N
5

jN12~Kc!

N12
, ~2!

wherejN(K) is the correlation length. The symbolK denotes
the set of fieldsK5(T,D,H). Determining whether the tran
sition is first-order or continuous is accomplished by exa
ining the finite-size-scaling behavior of the persisten
length j̃.8,15,26 If the scaled persistence lengthj̃/N on the
transition line is a decreasing function ofN then the transi-
tion is continuous, otherwise the transition is first order.

The correlation length and persistence length are obta
from the three largest eigenvalues of the transfer matrix
the transfer-matrix~TM! method, the lattice is approximate
by anN3` lattice with periodic boundary conditions in th
finite direction. The full 4N34N transfer matrix was block
diagonalized utilizing invariance under one step translati
in the transverse direction. The symmetric and the antis
metric blocks,TS ~7003700 forN56! andTA ~6963696 for
N56!, are the only two blocks whose symmetries cor
spond to the ordered phases. We diagonalized them with
RS library routines~based onEISPACK routines! on DEC
station 5000/200. The diagonalization results in three eig
values of interest. The largest eigenvalue of bothTS and the
transfer matrix isl1

s . By virtue of the Perron-Frobeniu
theorem, it is positive and nondegenerate. The other two
genvalues arel2

s , second largest ofTS, andl1
A , the largest

eigenvalue ofTA. The correlation and the persistence leng
are, respectively, given by

j1
A5~ lnul1

s/l1
Au!21,

~3!

j1
s5~ lnul1

s/l2
su!21.

The correlation length exponentn is obtained following
the argument of Nightingale24 where a field differentiation is
used, while the exponenth for the decay of the correlation
function is determined by using the conjecture, due to D
rida and de Seze,27 or by using an argument based on co
formal invariance.28 These arguments predict that

hN5N/@pj1
A~N!#. ~4!

Since forN52 the estimates of the critical temperatu
and the exponents are not very accurate and forN58 an
entire block~of about 8230! of the transfer matrix could no
be stored in the available computers, so we find it reason
to stop here and no extrapolation of the results is perform
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III. MONTE CARLO SIMULATION

We have performed Monte Carlo simulation to comp
ment TMFSS calculations. The system studied is anL3L
square lattice with evenL, containingN5L2 spins, and we
use the well-known Metropolis algorithm29 with periodic
boundary conditions to update the lattice configurations. T
physical quantity of use is the staggered magnetiza
(J,0)uM u and is estimated by

uM u[^uMsu&5
1

NS (
c

(
i

d iSi~c!, ~5!

wherei runs over the lattice sites andd i511(d i521) for
sites on the even~odd! sublattice, respectively.c runs over
the configurations obtained to update the lattice over
sweep of the entireN spins of the lattice~one Monte Carlo
step, MCS!, counted after the system reaches thermal eq
librium, andS is the number of the MCS.

In order to measure the phase boundaries we shall
useful the measurement of fluctuations~variance of the
order-parameter! in Ms defined by the staggered magne
susceptibility:

xm5
N

kT
~^Ms

2&2^uMsu&2!. ~6!

IV. RESULTS AND DISCUSSION

A. Phase diagrams

In order to calculate the ground-state energy, we div
the lattice into two equivalent sublatticesa and b and ex-
press the Hamiltonian as a sum of the contributions of
pairs of nearest neighbors. By comparing the values of
different configurations, we obtain the ground-state ph
diagram Fig. 1.

For H/uJu>0, there are four ordered ground states, a f
rimagnetic ~3/2,1/2! an antiferrimagnetic~3/2,21/2! state,
and two with antiferromagnetic symmetry. Referring to t
sublattice magnetization (Ma ,Mb), we denote these state

FIG. 1. Ground-state phase diagram.
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13 956 56SMAÎNE BEKHECHI AND ABDELILAH BENYOUSSEF
by ~3/2,23/2!, ~1/2,21/2!, respectively. WhenH/uJu be-
comes strong we have two uniform ground states terme
~3/2,3/2! and ~1/2,1/2!.

For TÞ0, most of the phase diagrams in th
(D/uJu,H/uJu,T/uJu) space are obtained by transfer-mat
finite-size-scaling calculations withN8/N54/6. Most of the
Monte Carlo data are obtained with lattices of sizeL530
and some results withL540 and 60.

~i! In the absence of the external magnetic field,H/uJu
50, the behavior of the antiferromagnet, Fig. 2, is similar
the ferromagnet. There is a second-order transition line s
rating the disordered phase from the two antiferromagn
phases~3/2,23/2! and ~1/2,21/2! which are separated by
first-order line. This line terminates at an end point
~D/uJu51.9960.01; T/uJu50.51360.001!. To locate the
first-order line and the end point, the behavior of the per
tence length in theD/uJu direction is used. In this case, th
persistence length has a sharp peak, increasing aseN, at the
first-order transition. As one crosses the first-order transi
close to the critical point,j1

s(6) peaks much less sharp
than at lower temperature. At the point wherej1

s(6)/6
5j1

s(4)/4 become tangent at their peaks rather than be
Tc , we interpret that the Nightingale criterion is being sat
fied at the critical edge of the first-order line.30 On the other
hand, we have also performed Monte Carlo simulations
H/uJu50. The data were obtained for a lattice of sizeL
530 and 10 000 MCS after 5000 sweeps had been disca
for thermal equilibrium. The phase diagram is similar to th
obtained by TMFSS calculations. The second-order ph
boundary was obtained from peaks in the magnetic sus
tibility. Along the first-order line strong hysteresis was o
served when crossing this line in theD/uJu direction. The
critical point was determined when the hysteresis disappe
it occurs at~D/uJu52.0160.01; T/uJu50.6260.01!, Figs.
3~a!–3~c!. We locate the first-order line by using the mixe
start technique11 in which the upper half of the lattice wa
initialized to theT50 configuration expected on one side
the first-order boundary~3/2,23/2!, and the lower half plane
initialized to the configuration expected on the other side

FIG. 2. Phase diagram forH/uJu50 as obtained by TMFSS
calculations withN8/N54/6. Solid line represents critical point
and dashed line is the first-order transition. Monte Carlo results
also included forL530. 
 represents critical points and1 indi-
cates first-order transitions.
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the first order boundary~1/2,21/2!. By using this technique
we were able to locate the first-order transition. The diff
ences are explained by the fact that MC simulation overe
mates the critical temperature, while the TM method und
estimates it. So by increasing the system size the crit
temperature obtained by MC calculations decrease and
results increase in such a way that by using finite-si
scaling extrapolation of the results, these differences co
be eliminated as discussed in Ref. 15. Our results obta
by these two methods reconfirm our previous study18 of the
existence of the end point instead of the tricritical po
found by Barretoet al. in the ferromagnetic case.5

re

FIG. 3. Typical hysteresis observed when crossing the fi
order transition boundary forH/uJu50, and with L530, MCS
510 000.~a! T/uJu50.5, ~b! T/uJu50.55, ~c! T/uJu50.62.
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56 13 957MULTICRITICAL BEHAVIOR OF THE . . .
~ii ! In the presence of the magnetic field,HÞ0, the be-
havior of the antiferromagnet is completly different from t
ferromagnet. For negative values ofD/uJu, D/uJu,0, the
transition line between the antiferromagnetic phase~3/2,
23/2! and the disordered phase is always of second or
Fig. 4.

For 0<D/uJu,1.99, Fig. 5, the disordered phase is se
rated from the antiferromagnetic~3/2,23/2!, the antiferri-
magnetic~3/2,21/2!, and the ferrimagnetic~3/2,1/2! phases
by a line of critical points.

As D/uJu is increased,D/uJu>2, the phase diagram i
divided into two blocks of critical points, separating the d
ordered phase from the ferrimagnetic phase,~3/2,1/2! and the
antiferromagnetic phase,~1/2,21/2!, at high and low mag-
netic field, respectively, Figs. 6~a! and 6~b!.

B. Nondecomposition of the tricritical point

One of the most interesting and elusive features, predic
by mean-field theory, is the decomposition of the tricritic
point into a critical end point and a double critical point.18 To
confirm or not this issue, we have investigated the ph
diagram in the region where the nature of the phase tra
tion changes, in the neighborhood ofD/uJu'2. We have

FIG. 4. Phase diagram forD/uJu522 based on TMFSS calcu
lations withN8/N54/6. Solid line represents critical points.

FIG. 5. Phase diagram forD/uJu51.9 based on TMFSS calcu
lations withN8/N54/6. Solid line represents critical points.
r,
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FIG. 7. Phase diagram forD/uJu51.992 where decomposition
would be expected based on TMFSS calculations withN8/N
54/6. Solid line represents critical points and dashed line is
first-order transition. A tricritical point occurs. Monte Carlo resul
are also included forL530.
 denotes critical points and1 denotes
first-order transitions. In the neighborhood of the tricritical poin
simulations forL540 are added, where3 represents critical points
and_ denotes first-order transitions. Two tricritical points denot
by ) occur.

FIG. 6. Phase diagram forD/uJu>2 based on TMFSS calcula
tions with N8/N54/6. Solid line represents critical points.~a!
D/uJu52, ~b! D/uJu54.
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13 958 56SMAÎNE BEKHECHI AND ABDELILAH BENYOUSSEF
performed transfer-matrix finite-size-scaling calculations
D/uJu51.992 withN8/N54/6, Fig. 7. In this figure, the dis
ordered phase is separated from the ordered phases,~3/2,
23/2! and ~3/2,1/2!, by a line of critical points at low and
high magnetic field, respectively. For 2.65<H/uJu<6, the
disordered phase is separated from the antiferrimagn
phase~3/2,21/2! by a line of first-order transition. This line

FIG. 8. Comparaison of the phase transition forL530, 40, and
60 at~a! T/uJu50.66,Hc /uJu'3.18 where a continuity in the orde
parameter occurs which is characteristic of a second-order tra
tion, ~b! T/uJu50.65,Hc /uJu'3.2 which shows a behavior betwee
first- and second-order transitions, with that at~c! T/uJu50.64,
Hc /uJu'3.22, which shows the discontinuity indicative of a firs
order phase transition.
t

tic

meets the continuous line at a tricritical point,Ht /uJu52.65
60.01 andTt /uJu50.51660.001, as determined from th
persistence length. We have also realized Monte Carlo si
lations for the same value ofD/uJu51.992. The genera
shape of the phase diagram is the same as that determine
TMFSS. ForH/uJu,3.2 andH/uJu.6.0, there is a continu-
ous transition separating the disordered phase from the
dred phases. The points of this boundary were determine
observation of peaks in the staggered magnetic suscep
ity. For 3.2<H/uJu<6.0, the phase boundary is distinct
first order. In this region ofH the first-order phase boundar
exhibited a decided discontinuity inuM u as well as the hys-
teresis one would expect of a first-order phase transition
the region where the decomposition is expected, we h
made high statistics measurements for lattices of sizeL
530, 40, 60, and the length of the simulation varied fro
S5100 000 to 250 000. The location of the tricritical poi
was determined by using the observation of the beginning
the discontinuity in the order parameteruM u as the boundary
of the first-order region is encountered from the second-or
side, Figs. 8~a!–8~c!. Our estimate of the tricritical point val
ues are (Ht /uJu)153.260.02, (Tt /uJu)150.6560.01 and
(Ht /uJu)256.060.02, (Tt /uJu)250.1660.04. The main dif-
ferences are due to strong finite-size effects at low magn
field in Monte Carlo simulations and the small sizes us
here for the transfer-matrix calculations which does not g
the second tricritical point at high magnetic field as det
mined from the mean-field calculations, Fig. 9.

To confirm this nondecomposition we have also calc
lated the exponentsn andh for N/N854/6. In order to have
better values forn, both on the critical surface and along th
tricritical line, we have performed field differentiation~in the
D direction!. Along the critical line, far from the regions
D/uJu52.0 and D/uJu56.0 where finite-size effects ar
strong, we findn50.9644 andh50.2517 which are both in
good agreement with the expected values of the tw
dimensional Ising critical values,n51 andh51/4.31,32At the
tricritical point, we findn t50.5451 andh t50.1401, which
are also in good agreement with the two-dimensional Is
tricritical values,n t55/9 andh t53/20.33,34 These results re-

si-

FIG. 9. Mean-field calculation forD/uJu51.98 from Ref. 18.
Solid lines represent second-order transitions and dashed lines
resent first-order transitions.B2 andBA2 design the double critica
point and the critical point, respectively.
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56 13 959MULTICRITICAL BEHAVIOR OF THE . . .
confirm that the first- and the second-order surfaces
smoothly together at the tricritical line.

V. SUMMARY AND CONCLUSION

We have made a detailed TMFSS calculations and Mo
Carlo study of the phase diagram in the (D/uJu,H/uJu,T/uJu)
space and criticality of the antiferromagnetic Blume-Ca
spin-3/2 model on a two-dimensional lattice. We have c
firmed our previous study18 for the existence of the end poin
for H/uJu50 instead of the tricritical point.5 We have also
studied the question of the decomposition of the tricriti
point for HÞ0. No evidence is found for such a decompo
tion. This nondecomposition is confirmed by our estima
for the exponenth andn, which are in good agreement wit
those of the two-dimensional Ising model. In order to co
pare these results with previous work, we show in Fig. 9
prediction of the mean-field calculations.18 In particular, Fig.
9 shows the decomposition of the tricritical point into a cri
-
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cal end pointBA2 and a double critical pointB2. This dis-
agreement between mean-field calculations and the pre
results is readily explained. In the mean-field calculatio
correlated fluctuations are neglected, while for the tw
dimensional lattice, fluctuations are strong in TMFSS cal
lations and Monte Carlo simulations and they break do
the first-order phase transition associated with the decom
sition. Since the critical dimensionality for tricritical system
is d53 where the mean-field picture would be correct, it
important to investigate this model by Monte Carlo simu
tion in d53 using the histogram and Monte Car
renormalization-group method to determine the expone
This is a question which we leave for further study.
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