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Multicritical behavior of the antiferromagnetic spin-3/2 Blume-Capel model:
Finite-size-scaling and Monte Carlo studies
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Transfer-matrix finite-size-scaling calculations and Monte Carlo simulations are used to investigate the
two-dimensional spin-3/2 Ising antiferromagnet in the presence of an external magnetic field and a single-ion
potential. Comparison is made between the results of this study and previous mean-field calculations. The
phase diagrams and the critical behavior of the model are discussed. In contrast to the mean-field picture, no
decomposition of the tricritical point is observed.
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I. INTRODUCTION models the existence of multicritical points, such as $he
=1/2 Ising model in a random field obeying a symmetric
Spin-3/2 models have been introduced earlier to explairthree-peak distributid? and the spin-1 BEG model with re-
phase transitiohin DyVO, (Refs. 2,3 and tricritical proper-  pulsive biquadratic coupling®
ties in ternary fluid mixture$.They have been studied by In this paper we realize a thorough investigation of a two-
mean-field approximatiotMFA). Recently the phase transi- dimensional antiferromagnetic spin-3/2 Blume-Capel model
tion in the spin-3/2 Blume-Emery-GriffittBEG) model with  in an external magnetic field by using transfer-matrix finite-
nearest-neighbor interaction, both bilinear and biquadraticsize-scaling TMFSS calculations and Monte Carlo simula-
and with a crystal-field interaction has been studied withintions. An approach which includes the correlated fluctuations
the MFA and Monte Carlo simulatiSnand by the ignored by the mean-field approximation. The objectives of
renormalization-group methdd. this study are(i) to confirm, forH=0, the existence of the
Transfer-matrix methods and Monte Carlo simulations apend point instead of a tricritical point(ii) to determine the
plied to finite systems and finite-size-scaling theory haveglobal phase diagram in the-H-D parameter spacéiji) to
been used with great success to study the critical propertigavestigate whether the tricritical point decomposes into a
of Ising models. ! In the case of the spin-1 Ising antiferro- bicritical point and a critical end point as predicted by mean-
magnetic Blume-Capel modéf®in the presence of an ex- field approximation.
ternal magnetic field in two dimensions, they have shown The model studied in this paper is defined by the Hamil-
that there is no decomposition of the tricritical line into a line tonian:
of critical end points and one of double critical poifits?
This decomposition has been found by MFERef. 16 and
confirmed by Monte Carlo simulation on a three-dimensional H=-3, S+ DE S HZ S. (@)
cubic lattice!’ (i ! !
Using the mean-field approximation, the multicritical be-
havior of the spin-3/2 Blume-Capel model with antiferro- Here the spin variables are localized on sites of a square
magnetic bilinear interaction, with a crystal field and underlattice with periodic boundary conditions and take the values
an external magnetic field, has been investigdfethe re-  =3/2 and=1/2. The first term describes the antiferromag-
sults reconfirm the decomposition of the tricritical point for netic coupling §<0) between the spins at sitesandj, this
this higher spin order model. Earlier, Motiztikiperformed  interaction is restricted to the nearest-neighbor pairs of
mean-field calculations for the spin-1/2 Ising model with an-spins. The second term describes the single-ion anisotropy
tiferromagnetic nearest-neighbor and ferromagnetic nextand the last term represents the effect of an external magnetic
nearest-neighbor exchange interactions and found that belofield. The Hamiltonian and the phase diagrams are invariants
a given ratioR of the intrasublattice to intersublattice cou- under the transformatiorH— —H,S— —9S).
pling the decomposition also holds for this model. However, The remainder of this paper is organized as follows: In
Monte Carlo renormalization-group stu@yyielded results Sec. Il, we briefly outline the formalism of the transfer-
which were inconsistent with the mean-field picture and re-matrix finite-size-scaling method and the Monte Carlo
cent Monte Carlo simulatidh exclude the decomposition of method is described in Sec. Ill. In Sec. IV, our numerical
the tricritical point even for smalR in three dimensions for results are presented and Sec. V contains a summary and a
this model. Mean-field approximation predicts also for otherconclusion.
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Il. TRANSFER-MATRIX FINITE-SIZE-SCALING 10
CALCULATIONS

Detailed description of the phenomenological finite-size-
scaling method and transfer-matrix formalism on two-
dimensional systems are given in Refs. 24,25. A system of
linear sizeN is used with periodic boundary conditions and 5 %

6 (-1/2,-1/2) (1/2,-1/2) (1/2,1/2)

only even values oN are considered to avoid the introduc-
tion of interfaces and to preserve the antiferromagnetic D/l of
phase. WithN’=N+2 the Nightingale conditici for the ol
determination of the critical poiri{; becomes

32.2) Sz | (/2102)

F (-3/2,-3/2) (3/2,-312) . (3/2,3/2)
§N(Kc) _ §N+2(Kc) (2) 6 r
N N+2
where&y(K) is the correlation length. The symbéldenotes -10 ~% 2 0 2 & 10
the set of fieldK=(T,D,H). Determining whether the tran- HA
sition is first-order or continuous is accomplished by exam- _
ining the finite-size-scaling behavior of the persistence FIG. 1. Ground-state phase diagram.

length £.8152 |f the scaled persistence lengéiN on the
transition line is a decreasing function Nfthen the transi-

tion is continuous, otherwise the transition is first order. We have performed Monte Carlo simulation to comple-
The correlation length and persistence length are obtaineghent TMFSS calculations. The system studied isLanL

from the three Iaygest eigenvalues of the t.ransfer rr_latrix. '%quare lattice with eveh, containingN=L2 spins, and we

the transfer-matrixTM) method, the lattice is approximated \;se the well-known Metropolis algoritfhwith periodic

by anNx = lattice with periodic boundary conditions in the houndary conditions to update the lattice configurations. The

finite direction. The full 4x 4N transfer matrix was block physical quantity of use is the staggered magnetization
diagonalized utilizing invariance under one step translationsEJ<0)|M| and is estimated by

in the transverse direction. The symmetric and the antisym-

metric blocks ;TS (700x 700 forN=6) andT* (696x 696 for 1

N=6), are the only two blocks whose symmetries corre- IM|=(|M{)=—< 2 E 5S(c), (5)
spond to the ordered phases. We diagonalized them with the NS “c 5

RS library routines(based oneISPACK routines on DEC ) ) )

station 5000/200. The diagonalization results in three eigenherei runs over the lattice sites anfl=+1(5=—1) for
values of interest. The largest eigenvalue of bbtrand the ~ Sites on the everodd sublattice, respectivelyc runs over
transfer matrix is\$. By virtue of the Perron-Frobenius the configurations obtained to update the lattice over one

theorem, it is positive and nondegenerate. The other two efWeep of the entirél spins of the lattic§one Monte Carlo
genvalues ara$, second largest ofS, and\?, the largest step, MCS$, counted after the system reaches thermal equi-

eigenvalue of"A. The correlation and the persistence lengthdiPfium, andS s the number of the MCS. .
are, respectively, given by In order to measure the phase boundaries we shall find
' ' useful the measurement of fluctuatiofgariance of the

order-parametegrin M4 defined by the staggered magnetic

&=\, (3  susceptibility:

IIl. MONTE CARLO SIMULATION

g=(n\I/3h N

Xm:k_-l—(<M§>_<|Ms|>2)- (6)
The correlation length exponemtis obtained following

the argument of Nightingaf where a field differentiation is

used, while the exponeng for the decay of the correlation IV. RESULTS AND DISCUSSION

function is determined by using the conjecture, due to Der- A. Phase diagrams

rida and de Sez¥, or by using an argument based on con-

formal invarianc€® These arguments predict that In order to calculate the ground-state energy, we divide

the lattice into two equivalent sublatticesand b and ex-
A press the Hamiltonian as a sum of the contributions of the
mn=NI[mEL(N)]. (4) pairs of nearest neighbors. By comparing the values of the
different configurations, we obtain the ground-state phase
Since forN=2 the estimates of the critical temperature diagram Fig. 1.
and the exponents are not very accurate and\fer8 an For H/|J|=0, there are four ordered ground states, a fer-
entire block(of about 8230 of the transfer matrix could not rimagnetic (3/2,1/2 an antiferrimagnetia3/2,—1/2) state,
be stored in the available computers, so we find it reasonablend two with antiferromagnetic symmetry. Referring to the
to stop here and no extrapolation of the results is performedsublattice magnetizationM,,M,), we denote these states
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FIG. 2. Phase diagram far/|J|=0 as obtained by TMFSS 16 ' ' ' |nc,;menﬁng oIl -
calculations withN’/N=4/6. Solid line represents critical points qalt Tt e Decrementing D/IJI~ «
and dashed line is the first-order transition. Monte Carlo results are
also included forL=30. ¢ represents critical points antl indi- 12} o
cates first-order transitions.
1 -
by (3/2,-3/2), (1/12,—1/2), respectively. WherH/|J| be- = 08 |
comes strong we have two uniform ground states termed as v
(3/2,3/2 and (1/2,1/2. 06 |
For T#0, most of the phase diagrams in the Feeeaa,
(D/|3|,H/|3],T/|J|) space are obtained by transfer-matrix 041 IRAREREE
finite-size-scaling calculations withN'/N=4/6. Most of the 02 ® , ) ) , )
Monte Carlo data are obtained with lattices of slze 30 19 1.95 2 2.05 2.4 2.15 2.2
and some results with=40 and 60. ol
(i) In the absence of the external magnetic fietd]J| 16 . : :
=0, the behavior of the antiferromagnet, Fig. 2, is similar to cesesa, 622?2222223 Bl ©
the ferromagnet. There is a second-order transition line sepa 141 T,
rating the disordered phase from the two antiferromagnetic ]
phaseg3/2,—3/2) and (1/2,—1/2) which are separated by a 12
first-order line. This line terminates at an end point at 1 L s
(D/]3|=1.99+0.01; T/|J|=0.513+0.001). To locate the =
first-order line and the end point, the behavior of the persis- 08 f
tence length in thé/|J| direction is used. In this case, the
persistence length has a sharp peak, increasirgj aat the 06 r )
first-order transition. As one crosses the first-order transition 04l .
close to the critical point£3(6) peaks much less sharply ' © Teel, 85,
than at lower temperature. At the point whegg(6)/6 02 - - , - M
= £5(4)/4 become tangent at their peaks rather than below e 12 e 21 248 22
T., we interpret that the Nightingale criterion is being satis-
fied at the critical edge of the first-order lif€On the other FIG. 3. Typical hysteresis observed when crossing the first-

hand, we have also performed Monte Carlo simulations foPrder transition boundary foH/|J[=0, and with L=30, MCS
H/|J|=0. The data were obtained for a lattice of size —10000.(a T/13|=0.5, (b) T/|3|=0.55,(c) T/|3|=0.62.

=30 and 10 000 MCS after 5000 sweeps had been discarded

for thermal equilibrium. The phase diagram is similar to thatthe first order boundaryl/2,—1/2). By using this technique
obtained by TMFSS calculations. The second-order phasee were able to locate the first-order transition. The differ-
boundary was obtained from peaks in the magnetic suscegnces are explained by the fact that MC simulation overesti-
tibility. Along the first-order line strong hysteresis was ob- mates the critical temperature, while the TM method under-
served when crossing this line in thi&/|J| direction. The estimates it. So by increasing the system size the critical
critical point was determined when the hysteresis disappeartggmperature obtained by MC calculations decrease and TM
it occurs at(D/|J|=2.01+0.01; T/|J|=0.62=0.01), Figs. results increase in such a way that by using finite-size-
3(a)—3(c). We locate the first-order line by using the mixed scaling extrapolation of the results, these differences could
start techniqu¥ in which the upper half of the lattice was be eliminated as discussed in Ref. 15. Our results obtained
initialized to theT=0 configuration expected on one side of by these two methods reconfirm our previous stfiaf the

the first-order boundar{B/2,—3/2), and the lower half plane existence of the end point instead of the tricritical point
initialized to the configuration expected on the other side ofound by Barretcet al. in the ferromagnetic case.
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FIG. 4. Phase diagram f@®/|J|= —2 based on TMFSS calcu-
lations withN’/N=4/6. Solid line represents critical points.

(i) In the presence of the magnetic field#0, the be-
havior of the antiferromagnet is completly different from the
ferromagnet. For negative values Bf/|J|, D/|J|<0, the
transition line between the antiferromagnetic ph&3&,
—3/2) and the disordered phase is always of second orde =
Fig. 4.

For 0<D/|J|<1.99, Fig. 5, the disordered phase is sepa-
rated from the antiferromagneti@®/2,—3/2), the antiferri-
magnetic(3/2,—1/2), and the ferrimagneti¢3/2,1/2 phases
by a line of critical points.

As D/|J| is increasedD/|J|=2, the phase diagram is
divided into two blocks of critical points, separating the dis-
ordered phase from the ferrimagnetic phd8€2,1/2 and the
antiferromagnetic phasél/2,—1/2), at high and low mag-
netic field, respectively, Figs.(& and Gb).
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FIG. 6. Phase diagram fd/|J|=2 based on TMFSS calcula-

D/|3|=2, (b) D/|3|=4.

B. Nondecomposition of the tricritical point

One of the most interesting and elusive features, predicted

1.2 T T
by mean-field theory, is the decomposition of the tricritical o
point into a critical end point and a double critical pothTo il
confirm or not this issue, we have investigated the phase i
diagram in the region where the nature of the phase transi- o,
tion changes, in the neighborhood Bf|J|~2. We have 08 r °
=] o%%
1.4 . ; . ; N e, 1
1.2 ¢ 1 04
tr i 02} \‘-*.,t
08 1 0 H L
0 2 4

0.6

tions with N’/N=4/6. Solid line represents critical point$a)

H/JI

0.4

0.2

FIG. 5. Phase diagram f@/|J|=1.9 based on TMFSS calcu-
lations withN’/N=4/6. Solid line represents critical points.

6
H/I

FIG. 7. Phase diagram fdd/|J|=1.992 where decomposition
would be expected based on TMFSS calculations vith'N
=4/6. Solid line represents critical points and dashed line is the
first-order transition. A tricritical point occurs. Monte Carlo results
are also included foc = 30. ¢ denotes critical points an¢l denotes
first-order transitions. In the neighborhood of the tricritical point,
simulations forL =40 are added, wherg represents critical points
and A denotes first-order transitions. Two tricritical points denoted
by [ occur.
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FIG. 9. Mean-field calculation fob/|J|=1.98 from Ref. 18.
Solid lines represent second-order transitions and dashed lines rep-
resent first-order transition8? and BA? design the double critical
point and the critical point, respectively.

meets the continuous line at a tricritical poiht,/|J|=2.65
+0.01 andT,/|J|=0.516+0.001, as determined from the
persistence length. We have also realized Monte Carlo simu-
lations for the same value dd/|J|=1.992. The general
shape of the phase diagram is the same as that determined by
TMFSS. ForH/|J|<3.2 andH/|J|>6.0, there is a continu-
ous transition separating the disordered phase from the or-
dred phases. The points of this boundary were determined by
observation of peaks in the staggered magnetic susceptibil-
ity. For 3.2<H/|J|<6.0, the phase boundary is distinctly
first order. In this region oH the first-order phase boundary
exhibited a decided discontinuity iiM| as well as the hys-
teresis one would expect of a first-order phase transition. In
the region where the decomposition is expected, we have
made high statistics measurements for lattices of &ize
=30, 40, 60, and the length of the simulation varied from
S=100 000 to 250 000. The location of the tricritical point
was determined by using the observation of the beginning of
the discontinuity in the order parametéf| as the boundary

of the first-order region is encountered from the second-order
side, Figs. 8)—8(c). Our estimate of the tricritical point val-
ues are K./|J]);=3.2¢0.02, (T,/|J]);=0.65-0.01 and
(H{/|J]),=6.0=0.02, (T;/|J]|),=0.16+0.04. The main dif-
ferences are due to strong finite-size effects at low magnetic
field in Monte Carlo simulations and the small sizes used
here for the transfer-matrix calculations which does not give

60 at(a) T/|J|=0.66,H./|J|~3.18 where a continuity in the order the second tricritical point at high magnetic field as deter-
parameter occurs which is characteristic of a second-order transiyined from the mean-field calculations Fig. 9.

tion, (b) T/|J|=0.65,H./|J|~3.2 which shows a behavior between
first- and second-order transitions, with that (af T/|J|=0.64,
H./|J|~3.22, which shows the discontinuity indicative of a first-

order phase transition.

To confirm this nondecomposition we have also calcu-
lated the exponents and » for N/N’'=4/6. In order to have
better values fow, both on the critical surface and along the
tricritical line, we have performed field differentiati¢im the
D direction. Along the critical line, far from the regions

performed transfer-matrix finite-size-scaling calculations atD/|J|=2.0 and D/|J|=6.0 where finite-size effects are
D/|J|=1.992 withN'/N=4/6, Fig. 7. In this figure, the dis- strong, we findv=0.9644 and»=0.2517 which are both in

ordered phase is separated from the ordered ph&3&X,

good agreement with the expected values of the two-

—3/2) and (3/2,1/2, by a line of critical points at low and dimensional Ising critical values=1 and7=1/43-32At the

high magnetic field, respectively. For 2851/|J|<6, the

tricritical point, we findv,=0.5451 andz,=0.1401, which

disordered phase is separated from the antiferrimagnetiare also in good agreement with the two-dimensional Ising
phase(3/2,—1/2) by a line of first-order transition. This line tricritical values,v,=5/9 andz,=3/203334These results re-
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confirm that the first- and the second-order surfaces joirtal end pointBA? and a double critical poinB2. This dis-

smoothly together at the tricritical line.

V. SUMMARY AND CONCLUSION

agreement between mean-field calculations and the present
results is readily explained. In the mean-field calculations
correlated fluctuations are neglected, while for the two-
dimensional lattice, fluctuations are strong in TMFSS calcu-

We have made a detailed TMFSS calculations and Montgytions and Monte Carlo simulations and they break down

Carlo study of the phase diagram in tHe/(J|,H/|J|,T/|J])

the first-order phase transition associated with the decompo-

space and criticality of the antiferromagnetic Blume-Capekition. Since the critical dimensionality for tricritical systems
spin-3/2 model on a two-dimensional lattice. We have conys 4=3 where the mean-field picture would be correct, it is

firmed our previous stud§for the existence of the end point important to investigate this model by Monte Carlo simula-

for H/|J|=0 instead of the tricritical point.We have also
studied the question of the decomposition of the tricritical
point for H= 0. No evidence is found for such a decomposi-

tion in d=3 using the histogram and Monte Carlo
renormalization-group method to determine the exponents.
This is a question which we leave for further study.

tion. This nondecomposition is confirmed by our estimates

for the exponenty and v, which are in good agreement with
those of the two-dimensional Ising model. In order to com-
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