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for the cohesive energy of heavy alkali metals

N. H. March and Angel Rubio
Departamento de Bica Téaica, Universidad de Valladolid, E-47011 Valladolid, Spain
(Received 4 December 1996; revised manuscript received 11 July 1997

Following a summary of deductions from experiment on the bonding of Rb and Cs in very different liquid
and solid environments, energy calculations based on density-functional tE#eFyare presented on ordered
chains of K as a function of nearest-neighbor distances. At a given bond length, and sufficiently low density,
a regime occurs in which modest zig-zag behavior is found to stabilize the original linear chains. As for Rb and
Cs, we conclude that K may exhibit low coordination in highly expanded forms. The preafomstio results
on lattices of K atoms for coordination numbers 8, 4, and 2 are analyzed by means of a quantum-chemical
model in which a nearest-neighbor Heisenberg Hamiltonian is characterized by free-spditeeK potential
energy curves. The satisfactory accord between the two different treatments has prompted us to present results
also for Rb and Cs lattices for five different coordination numbers for which DFT calculations are not currently
available. The relevance to experiments on expanded fluid Cs and to zig-zag chains of Cs on semiconductor
substrates is briefly referred 650163-18207)02445-4

. INTRODUCTION ferent type of study made by Whitma al.”® In their work,
Cs was deposited on semiconductor crystal surfaces, and as a
In pioneering work on the measurement of liquid structureresult data has, subsequent to the experiments of Hensel
factorsS(q) using neutron diffraction, Henset al>? have et al. on SRO, become available on expanded Cs structures
studied liquid metallic Rb and Cs in a number of thermody-With long-range ordeLRO). While, as emphasized by Free-
namic states along the liquid-vapor coexistence curve toMman and Ma_rcﬁ,thls data is at |east partially about Cs in
wards the critical point. Their findings were that the highlnteracnon with the semiconducting substrate, there is never-

coordination numbers just above freezing, compatible Wm{heless again an important message about chemical bonding

the local coordination in the hot bcc solids, were progres—In h.ighly expagded Cs, but this time with LRO. Specifipally,
sively lowered as these heavy alkali liquid metals WereWh|tman et al.” have measured the structural properties of

) . . Cs adsorbed on Ga#kl0) and InSi§110) surfaces at room
highly expanded. Al the same time, it was fqund that thetemperature using scanning tunneling microscopy. Their
nearest-neighbor distance remained largely intact, as e

q d by th o fth i e e Vlvork establishes that Cs initially forms long, one-
enced by the position of the main peakd(y) remaining at  gimengional zig-zag chains on both these surfaces. To take

almost constant value @fy,«. These findings suggested the g0 examplé? their Fig. Xa) shows a large-area image of
study of different phaseéwith different coordination num- g chains on GaA%10) that includes chains more than 1000
bers for expanded alkali metals for a fixed nearest-neighbom in length. Their experiments conclusively demonstrate, in
distance(see below. addition, that the chains tend to be separated by some tens of
One of u$ noted that the coordination number data of nm and have no LRO along t§@01] direction; thus estab-

Henselet al,'? when plotted against mass densitycould lishing that they are truly one-dimensional structures.
be fitted by their Fig. 1b), showing the higher-resolution image, the Cs
structures are revealed as zig-zag chains of single atoms in
d=az+b, 1) registry with the substratél 10) surface. In the present con-

text, it is important to stress that the Cs-Cs nearest-neighbor

where a=230 andb=—80, both in kg/n?. For a low- distance here is 6.9 A, to be compared with the correspond-
density state of Cs described by Winter and HeAseith  ing distance of 5.2 A in bulk Cs. On the In@4.0) surface,
atomic number density=0.004 16 A3 and temperatur@  the formation of Cs zig-zag chains was again revealed by the
=1923 K, pair potentialgs(r) were extracted from the mea- experiments of Whitmaet al.’ but because of InSb having
suredS(q) by Ascough and March following the proposal the greatest spacing of the 1lI-V semiconductors, the Cs
of Johnson and March.One of these potentidisdashed nearest-neighbor distance is now 8.0 A. Thus we have a low-
curve is compared with a theoretical pair potential obtainedering of the coordination of Cs induced by the semiconductor
by Arai and Yokoyam&in Fig. 1 (continuous ling This  substrate. This is to be compared with the previously dis-
potential has a sharp minimum at 5.6 A followed by a repul-cussed lowering of the coordination in an expanded Cs liquid
sive region out to~ 9 A (with the maximun at-8.5 A) and  taken along the liquid-vapor coexistence curve toward the
a second minima at9.4 A. We shall return to consequences critical point. In this last case, it seems to be established
of these pair interactions for expanded liquid metal Cs bebeyond reasonable doubt that the building block of the ex-
low. panded liquid metals Cs and Rb is a chemical bond with a

Turning from these liquid metals, with short-range orderrather constant length of-5.4-5.7 A with coordination
(SRO characterized by(q), we next consider a quite dif- number between 2 and 3.
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40 T T T TABLE I. Equilibrium structural properties for different phases

of K as shown in Fig. 2. The zig-zag chain data are not reported
because they depend strongly on zig-zag angle or coordination, see
Fig. 2. The pseudoatom energy used as a reference is 7.95 eV. The
shorter bond lengthnearest-neighbor NN distaniceorresponds to

the dimer(3.90 A and this increases when the coordination in-
creasegthe diamond structure has the shortest bond length due to
the larger structural packingin parentheses in the Table are given
the experimental values for the bcc-K bulk phase.

20 =

NN Econ Bulk modulus

20 + distance(A)  (eV/atom (GPa

K-bcc 4.42(4.52 1.08(0.99 4.0(3.3
K-diamond 4.02 0.80 1.41
Linear chain 4.00 0.32

#(r) (10%a.u.)

energy schemé!?in the local-density approximatioi.DA )
- (Ref. 13 to the exchange correlation potential (r) to de-
scribe the ground statéb initio norm-conserving nonlocal
ionic pseudopotentials have been generated by the soft-
pseudopotential method of Troulliers and Marttimclud-
ing nonlinear core correctior’s.These core corrections are
important to describe the structural properties of systems
r (A) with shallow core levels close to the valence compfeas it
is the case here. The LDA wave functions were expanded up
FIG. 1. Pair potentialgin a.u) for expanded liquid Cs metal {5 g 10-Ry cutoff where good convergence in total energy
from Ref. 6(continuous ling and Ref. 4(dashed lingcorrespond- 45 achievedsee Refs. 11 and 12 for details of the method
ing to an atomic densityp=0.00416 A and temperaturel  The other essential input, besides of course the nearest-
=1923 K. The vertical arrows indicate the position of the neares?eighbor distance and the angdler heighj of the zig-zag

60

-80 | 1 1 i

and next-nearest neighbor for the hypothetical diamond structure g hains considered, was the exchange-correlation potential

expanded Cs. The comparison with the theoretical pair potenti . . D .
given by the continuous line shows qualitatively that the potential ;}/XC(r) in_constructing the total periodic potential(r)

this density and temperature tends to favor low coordination struc-_ Viartred ) + V(). VHar".e*{r) is, of course, determined by
tures. the geometry of the lattice plus the ground-state electron

densityn(r) and in the local-density approximation used to

These key experimerltd” have therefore led us to study CONSrUCV,((r). This is again specified by(r) alone. _
further, by density-functional theoFT), the energetics of The qalculatlons for open_structures as the linear and zig-
chains of alkali atoms. For calculational purposes, we hav&2d chains were performed in a supercell geometry scheme.
chosen to focus on K, rather than Rb and Cs investigated i¥/€ keep the real periodicity of the structure along the chain
the experiments on condensed conducting phases sumnfdif€ction and introduce a large vacuum region in the other
rized above because their pseudopotential generation is [e§0 directions in order to minimize the chain-chain interac-
certain due to relativistic and-electron effectgsee below.  tion (using a distance between chains of 9. Ahe set of
The paper is organized as follows: first we briefly describeihreée-dimensional structurgsrystalline phasgswere com-

the theoretical model used and the results obtained for higrRuted for different fixed symmetries and nearest-neighbor

and low-coordinated K lattices. Then we use this data jrfiStances.

conjunction with available pair potentials at different ther-

modynamic states to discuss the local coordination of the 1. LOCAL COORDINATION OF LOW-DENSITY
low-density heavier alkalis in condensed phases. We shall ALKALIS IN CONDENSED PHASES

later bring these DFT results for K into contact with a simple

and physically appealing quantum-chemical model proposed Table | records the results of theab initio calculations

by March, Tosi, and Kleirt® Then, encouraged by the agree- for the normal bcc-K phase and other hypothetical phases
ment of this model with the DFT data, we extend the resultsuch as the diamond and the metallic-linear chéiot
from the quantum-chemical model to Rb and Cs for whichPeierls distorted, see belpthat are not realizable in normal

DFT calculations are not available. Some conclusions argonditions(coordinations ranging from 2 to)8The agree-
given at the end of the paper. ment for the bcc-K phase with experimental data is good

(within the typical LDA few-percent errors for lattice con-
stant, bulk modulus, and cohesive engrgys expected, the
computed equilibriumT=0 nearest-neighbor distance in-
We have performed thab initio band-theory calculations creases with increasing coordinati@s well as the cohesive
within the framework of density-functional theory. Briefly, energy. Thus external forces such as substrate induced reg-
we employ the standard plane-wave pseudopotential totalstration, temperature, or pressure would determine the type

Il. THEORETICAL METHOD
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' T T T ' TABLE I1. Position in A of the prominent features in the DFT
asb K—bec theory pair potential of liquid K near freezing’(:GSfC). [M. w.
——o-— K—chain Johnson, N. H. March, F. Perrot, and A. K. Ray, Philos. Ma§9B

o  K-zig-zag | 965 (1994]. When the nearest-neighbor distance is fixed to the
— 2+ K—diamond principal minimum value the next-nearest-neighbor distance for the
bee structure is 5.42 Awell within the first potential we), whereas
for the lower coordination diamond it is 7.6 &ery close to the
i repulsive maximum This indicates qualitatively that the potential
J near freezing tends to favor high coordination structuse® text

|
@
I

g Average First Principal First Second

-8.5 - - density node minimum maximum node

Energy (eV/atom)

. 0.001 882 6 4.02 4.69 7.33 6.56

ther modest zig-zag chains or linear chains could be formed.
Ll P B ol This is a convenient point at which to return to the inte-
3 4 5 6 rionic potentials in Fig. 1. From Eq1), this thermodynamic
bond length (4) state corresponds to a coordination number between 2 and 3.
In principle, neglecting the density change on freezing, we

FIG. 2. Total energy per atom for different K phases as a funcq, 14 yse the theoretical pair potential given by continuous

tion of the nearest-neighbor distance. For bond-lengths larger thalrihe in Fig. 1 to compare energies of different crystal struc-
4.50 A, the zig-zag and linear chains coincide. The set of values fo&lreS at cé)nstant volumé.e., not now at constant nearest-
zig-zag chains with bond lengths lower thd A corresponds to the neighbor distande What W'e .F’1ave done instead is to mark on
formation of nearly equilateral trianglésoordination~ 4 instead Fig. 1, for a nearest-neighbor distance put equal to that in

of 2 for the linear or small deformed zig-zag chaimluding some .
chain-chain interactions. We note that for a given bond length of thgxpanded metallic bcc 086.63 A), where the next-nearest-

zig-zag chain the structure is minimized with respect to the zig-zad'€19hPor distances, etc., would lie for the diamond structure
angle. This angle tends to be 180mear chaif with increasing with coordination number 4. The next-nearest-neighbor dis-

bond length, from the “delocalized molecular orbitals” treatment tance for the diamond structure is 9.2 A, to be compared with
used to construct this figure. the 9.7 A of a 3-fold coordination structure such as graphite
(note that the pair potential reaches its maximum repulsive
of coordination shown by these alkali met&iaNVe note that  part at~9 A followed by a flat second minimum where the
the nearest-neighbor distance for the linear chain is close toext nearest-neighbor distances of the low-coordinated struc-
the experimental dimer bond length of 3.90'AFor what tures li@. This qualitative argument indicates that low local
follows we are interested in the low-densigxpanded bond coordination is favored for the expanded condensed phase of
length region where low-coordination phases are moreCs in agreement with the experimental observation from Eq.
likely to be obtainedsee also Fig. 2 We think of the ex- (1). In order to get more insight for a different thermody-
panded metal as formed by a set of tangled zig-zag chainsamic limit, we have also given in Table Il the data for a
with coordination between 2 to 4 depending of the nearestbFT pair potential of liquid K near freezing the position of
neighbor distance. In this low-density regime we have foundninimum and maximum of the potential. When fixing the
a very small chain-chain interaction, however when densitfirst-nearest-neighbor distance to the position of the principal
increases it becomes important and favors the formation aiinimum (4.69 A) we get a next-nearest neighbor distance
three-dimensional structures. As a remark, the results presf 5.4 and 7.6 A for the bcc and diamond structures, respec-
sented in Fig. 2 are obtained @t=0 for the crystalline tively. In contrast to what happens in Fig. 1, where the lower
phases, and therefore the three-dimensional structures ateordination structure seems to be favored by the potential,
lower in energy than the low-coordinated phases; howevenear freezing the diamond peak lies just close to the maxi-
these LRO models are only illustrative to mimic the SRO inmum of the potentia{located only~3.5% beyond the maxi-
the liquid metals. mum of the potential for liquid K given in Table 11, while for
The energetics of a linear chain of equidistant K atoms isexpanded Cs the peak lies9% beyond the maximum and
compared from the DFT calculations with the energy perclose to the second potential minimum of Fig.dahd there-
atom of a planar zig-zag chain in Fig. 2. For a sufficientlyfore this structure would not be stable when compared to
large nearest-neighbor distance, it is found that a modedtigher coordination structures
zig-zag, for fixed nearest-neighbor distance, lowers the en- Our concluding remarks for this section will focus on the
ergy and hence results in a stabilization of the pHiser  electrical characteristics of the Rb and Cs assemblies in both
longer distances there is no stable zig-zag chain. We mugluid SRO and ordered LRO phases. Taking the LRO case
stress, however, that in the long nearest-neighbor distandést, Whitmanet al.” probed for metallic behavior by mea-
regime the band-structure calculations the way they are pesuring the tunneling conductivityreduction of the band gap
formed here should be viewed with some caution becausat zero bias, which is known to be proportional to the density
correlations beyond those included through the LDAOf states at the Fermi level. Their measured current vs volt-
exchange-correlation potential might become very importanage curves showed that the band gap of 1.45 eV of GaAs was
in this regime(see below. Thus, for expanded K metal ei- lessened to 1.1 eV with the one-dimensional chains of Cs on
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the surface, which implies that the Cs chain structures are 1 I L L B
insulatingd on GaA$110) Earlier, one of uShad suggested | 1
the same conclusion from a chain model for the SRO in fluid
Cs but now at the critical density. But there the Peierls tran-
sition was invoked to propose the identity of the metal- "
insulator transition and the critical point in fluid Cs. Whit- L
man et al” refer, on the other hand, in support of their
experimental approach, to the theoretical study of Ferraz and=
co-workers$? in relation to the proximity of bulk Cs to the 2
metal-insulator transition. It may well be asked whether, in %

the theoretical studies of chains of K reported here, we are < | RN
also in the vicinity of a metal-insulator transition. We must ~
therefore add that the energy band-theory approach used i R
here, in the context of density-functional theory, bases all its 0 S~ —
findings on “delocalized molecular orbitals” describing the L . ~ -
one valence electron per K atom. Even though, of course, ————— e .

E,,(2=8)—2E_,(z=4)

0.5 —

some account of electron correlation is incorporated through E . (z=4)-2E_, (z=2) " T-
the exchange-correlation potential, one has, in essence, un- e b b b b b o
derlying the treatment, a one-electron Slater-Kohn-Sham 3.8 4 4z 4.4 4.6 48
single determinant reference wave function. To study the bond length (4)

metal-insulator transition, one should follow the Gutzwiller £, 3. weighted cohesive energy difference curves for bce
proceduré’ which is the analogue for crystals of the (;—g) diamond ¢=4), and chain £=2) assemblies of K atoms
Coulson-Fischét quantum-chemical treatment of the,H  from the ab initio data from Fig. 2 as a function of the nearest-
molecule. In essence, both these approaches expand out tigighbor bond length. Plot motivated by quantum-chemical model
determinantal wave function and then, by introduction of ain Eq. (2). Using the “exchange” functiory(r,) taken from theo-
variational “parameter”\(r), one reduces drastically, near retical studies in Ref. 27, we extract the valued (@) for z=4 and

the metal-insulator transition, the weights of “ionic” con- 2 asf(4)=2.9 andf(2)=1.3 (see text

figurations in which two electrons are permitted to reside on

the same atomic sit&.Of course, this approach is quite dif- co-workerst® The quantum-chemical interpretation R{r ;)
ferent from the Peierls transition referred to above, in whichwill be discussed further below. The second term will be
alternating bond lengths introduce a new energy gap andritten, with appropriate sign as(z)g(ry), (Refs. 10 and
hence preclude a one-dimensional metal. The LRO experi23) to yield the approximate form

ments above the “dimerization” are precluded by substrate

Cs interaction and therefore we have not considered such E(zr)=2zR(r)—f(2)a(re). 2
Peierls instability in the LRO calculations on K chains re- (2:f0)= 22R(o) = 1(2)g(ro) @
ported here. The second term in Ed2), which “factorizes” into a func-

tion of z, f(z) timesg(ry), in analogy with the first term, is
characteristic of the so-called “glue” models of solid-state
physics, as discussed, for instance, in the early work of Fin-
nis and Sinclaf* that deals with metallic cohesion as arising
from embedding ions in a free-electron gas. For this embed-
In the previous section we have been concerned with thded atom potential the pairwise potentie¢lated toR(r )]
electronic structure of different lattices of K atoms usingand many-body embedding functigrelated tog(ry)] are
density-functional theory with a local-density approximationusually fitted to reproduce the equilibrium atomic volume,
for the exchange and correlation potential. In particular, theelastic moduli, and ground-state structure of the perfect lat-
cohesive energyE.(z,ro) was calculated as a function of tice. Here, we shall press the relationship of the functions
nearest-neighbor distancg for different values of the coor- R(rq) andg(ry) to properties of the K free space dimer and
dination numbee. The values of explored werez=8, cor-  from this deduce the cohesive energy curves for extended
responding to bulk body-centered-cubic K metal, with equi-structures. But, for the moment, let us use the form of(Ep.
librium nearest-neighbor distancer,~4.5 A, z=4 to motivate a different plot of the data of Fig. 2. Thus, if the
corresponding to a diamond structure and chains both linedilinear superposition of factorizable contributions” in Eq.
and(modes} zig-zag puckered chaing£2). The purpose of (2) is useful, we can remove the functi&{r o) by taking the
the present section is to focus on a quantum-chemical chaweighted difference of the cohesive energy curves of Fig. 2,
acterization of the cohesive energy curves of the above lafnamely,E.(z=8)—2E.(z=4), E.(z=4)—2E.(z=2), and

IV. QUANTUM-CHEMICAL MODEL
FOR THE COHESIVE ENERGY
OF ALKALIS

tices. E.(z=8)—4E.(z=2). We have therefore plotted these
The idea underlying the analysis to be presented here is tiliree quantities in Fig. 3.
decompose the cohesive enel§y(z,ro) into a linear com- The upper two curves of Fig. 3 reflect the shapg @fy)

bination of two terms. The first, prmportional to the coordi- over the range of, for which DFT band-structure calcula-
nation numberz, is to be thought of as a typical pairwise tions were available. Of course, the functibfz) enters the
additive contribution, which we shall write in the convenient plots when interpreted using E@), and is only available for
form 3zR(ry), following the notation of March and coordination numbers= 12, 8, and 6; from Refs. 10 and 25
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FIG. 4. Continuous line: plots of the cohesive enekyyz,r) bond length (&)
for K lattices corresponding to coordination numbets 8, 4, and
2 from the quantum-chemical model in E®) as a function of the FIG. 5. Cohesive energy curv&s(z,ro) for (a) Rb and(b) Cs

nearest-neighbor bond length. Dashed lines, squares, triangles, agtbms with long-range order in bce, diamond, fcc, simple cubic, and
open and closed circles correspond to #einitio calculations of  linear chain structuregoordinations ranging frora=12 to z=2)

Fig. 2 for the same coordinations as before. The simple quantun@s a function of the nearest-neighbor bond length. The experimental
mechanical model is able to reproduce the main features and tefiRb (Cs) bulk bce bond length of 4.83 £6.23 A) is indicated by the
dencies of the full calculation. In constructing the curvesze, vertical arrow. The results for Cs are relevant here in view of the
4, and 2, the quantity(z) in Eq. (1) was taken as(8)=4, f(4) interest in the bce bulk metal and in highly expanded Cs chains with
=2.9, andf(2)=1.3 (see text for details The experimental bond both short-rangéRef. 29 and long-rangéRef. 7) order.

length of K-bee bulk(4.52 A) (Ref. 30 is indicated by the vertical ) ] ) o
arrow. the difference of cohesive energy calculations in Fig. 3. To

fit these cohesive energy differences grossly using the theo-

the values off(z) are known to be equal to 4, 4, and 3, retical values fog(r,), we need to choosHz=4)~2.9 and
respectively. While presently we do not have an analyticf(z=2)~1.3. This extends the available set of values of the
form for f(z), we know it is a slowly varying function af  smooth functionf(z) to the range Zz<12 for the heavier
as compared to the first term in E). Below we shall alkalis. To complete the description of the quantum-chemical
provide estimates of(z) for z=4 andz=2 that match this model of Eq.(1) we can relat¥ the functionR(r,), “elimi-
behavior, but as March and co-workEtgoint out, for lat-  nated” in the plots of the band-structure cohesive energy
tices other than bipartite lattices, first-principles calculationsdifferences in Fig. 1, to thé3,, potential-energy curve of the
of f(z) beyond perturbation theory present substantial diffi-dimer given also in Ref. 27.
culties. Turning to the lowest curve in Fig. 3, we have plot- In Fig. 4 we present the results for the cohesive energy of
ted theab initio linear chain data as well dsupplemented the present quantum-chemical model for different extended
some “zig-zag” chain datdfilled circles in Fig. 3. Obvi- K structures(bcc, diamond, and chaingompared with the
ously, there is some “residual” dependence of the cohesiveab initio calculations from Fig. 2. We have usegdr,) and
energyE.(z,ro) on second-neighbor interactions, which is R(r,) obtained from the singlet and triplet potential-energy
ignored in writing the approximate form in E). Indeed, curves of the free spacedimer, to calculate the quantum-
below a certain value of, there is some “scatter” for chemical approximation t&(z,ry) in Eq. (2). While, of
lattices with the same coordinatian(2 for these chains course, the band calculations are expected to be fully quan-

From the work of Poshusta and Kléfron hydrogen, and titative, we observe that the main features such as bond
Malrieu and co-workers on N@Ref. 25 based on a cluster- length, bulk modulus, and cohesive energy are successfully
expandedab initio Heisenberg spin Hamiltonian, one can reproduced within a few percent error by the quantum-
interpretg(ry) in Eq. (2) as reflecting the “exchange” part chemical formula of Eg(2). We have thought it of interest to
of the dimer potential energy curve that is half the differenceadd data for Rb and Cs from E@), using again the work of
between singlet and triplet potential-energy curves for theKrauss and Stevens for the corresponding free space
free space dimer. Theoretical values of thé§% and %3, dimers?’ In both cases various coordinatioftsetween 2 to
potential energies are available from the work of Krauss and 2) are studied by using the “universaf(z) (Ref. 10 func-
Steven$’ and from their Table(A) we have constructed the tion for the heavier alkalis previously obtained for K. In Fig.
“exchange” g(ro) in Eg. (1) (see also Zemke and 5 we show the results for Rb and Cs. For the ground-state
co-workeré® for a complete experimental analysis of the bcc structure of both metals the quantum-chemical bond
K-dimer singlet and triplet statesThis “exchange” part length is smaller than the experimental one by a few percent.
compares well with the “extracted” forms predicted from The curves for Cs are of interest in relation to the neutron-
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scattering experiments of Hensel and co-workemn this  cohesive energy curves reflect rather directly the dimer form
metallic fluid along the liquid-vapor coexistence curve. Alsoof g(rg). This has encouraged us to plot the cohesive energy
the work of Whitmaret al.” in which Cs chaingzig-zag are  curves from Eq.(2), using R(r,) from the 33, triplet
found when Cs is adsorbed on GaAs and InSb semiconducpotential-energy curve of the K dimét.The main features
ing substrates is relevant hefgee previous section on low- of the band-theory results are thereby obtained, very simply,

coordination phases using values forf(z) in Eq. (2) extracted fromab initio
calculations. We have extended these results by using the
V. CONCLUSIONS dimer curves to construct the cohesive energy curves for

o .. . long-range ordered arrays of Rb and Cs atoms. The represen-
In summary, local coordination seems to exhibit similaristion of the cohesive energy in E) by coordination-
trends with density for all the heavier alkali metals. In thedependent functions naturally led to a coordination-

liquid state the bond length remains remarkably constanfiependent pair potential determined from properties of the
when the density is varied from the normal melting point t04imer1° The relevance of Eq_2) for other systems than the

twice the critical density. Howeve_r when grown on Se”_“con'alkalis, as hydrogen lattices, is presently under study.
ductor substrates, the nearest-neighbor distances are imposed

by these substrates. Nevertheless, at low coverage the Cs
atoms take up zig-zag chain configurations with low-
coordination numbers as found in the expanded liquid phase. A.R. acknowledges financial support from DGESrant

The present calculations on K atoms support the zig-zaglos. PB95-0720 and PB95-020and Junta de Castilla y
chains as possible structures in the low-coordination regimeiseon (Grant No. VA25/95. One of us(N.H.M.) performed
both in the liquid phase and on semiconductor surfacesmost of his contribution to this study during a visit to the
Similar results are expected to hold for the other alkali met-University of Valladolid in 1996. He wishes to thank J. A.
als (Rb and Cg in agreement with available experiments. Alonso and his colleagues for the very stimulating environ-
Furthermore, in Fig. 3 we have presented DFT band-theorynent they provided and for generous help and G. R. Freeman
data of three K lattices: bcc, diamond, and chains in a fornfor numerous invaluable discussions on the nature of chemi-
in which contact can be established with the quantum<al bonding in highly expanded Rb and Cs. N.H.M. also
chemical form of Eq(2). g(r,) is the “exchange” part of acknowledges partial financial support from the Leverhulme
the dimer probled??® and the shapes of the band-theory Trust, UK, for work involving density-functional theory.
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