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Density-functional calculation for K lattices in condensed phase and quantum-chemical model
for the cohesive energy of heavy alkali metals

N. H. March and Angel Rubio
Departamento de Fı´sica Teo´rica, Universidad de Valladolid, E-47011 Valladolid, Spain

~Received 4 December 1996; revised manuscript received 11 July 1997!

Following a summary of deductions from experiment on the bonding of Rb and Cs in very different liquid
and solid environments, energy calculations based on density-functional theory~DFT! are presented on ordered
chains of K as a function of nearest-neighbor distances. At a given bond length, and sufficiently low density,
a regime occurs in which modest zig-zag behavior is found to stabilize the original linear chains. As for Rb and
Cs, we conclude that K may exhibit low coordination in highly expanded forms. The previousab initio results
on lattices of K atoms for coordination numbersz5 8, 4, and 2 are analyzed by means of a quantum-chemical
model in which a nearest-neighbor Heisenberg Hamiltonian is characterized by free-space K2 dimer potential
energy curves. The satisfactory accord between the two different treatments has prompted us to present results
also for Rb and Cs lattices for five different coordination numbers for which DFT calculations are not currently
available. The relevance to experiments on expanded fluid Cs and to zig-zag chains of Cs on semiconductor
substrates is briefly referred to.@S0163-1829~97!02445-4#
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I. INTRODUCTION

In pioneering work on the measurement of liquid structu
factorsS(q) using neutron diffraction, Henselet al.1,2 have
studied liquid metallic Rb and Cs in a number of thermod
namic states along the liquid-vapor coexistence curve
wards the critical point. Their findings were that the hi
coordination numbers just above freezing, compatible w
the local coordination in the hot bcc solids, were progr
sively lowered as these heavy alkali liquid metals we
highly expanded. At the same time, it was found that
nearest-neighbor distance remained largely intact, as
denced by the position of the main peak inS(q) remaining at
almost constant value ofqmax. These findings suggested th
study of different phases~with different coordination num-
bers! for expanded alkali metals for a fixed nearest-neigh
distance~see below!.

One of us3 noted that the coordination number data
Henselet al.,1,2 when plotted against mass densityd, could
be fitted by

d5az1b, ~1!

where a5230 and b5280, both in kg/m3. For a low-
density state of Cs described by Winter and Hensel,2 with
atomic number densityr50.004 16 Å23 and temperatureT
51923 K, pair potentialsf(r ) were extracted from the mea
suredS(q) by Ascough and March,4 following the proposal
of Johnson and March.5 One of these potentials4 ~dashed
curve! is compared with a theoretical pair potential obtain
by Arai and Yokoyama6 in Fig. 1 ~continuous line!. This
potential has a sharp minimum at 5.6 Å followed by a rep
sive region out to; 9 Å ~with the maximun at;8.5 Å! and
a second minima at;9.4 Å. We shall return to consequenc
of these pair interactions for expanded liquid metal Cs
low.

Turning from these liquid metals, with short-range ord
~SRO! characterized byS(q), we next consider a quite dif
560163-1829/97/56~21!/13865~7!/$10.00
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ferent type of study made by Whitmanet al.7,8 In their work,
Cs was deposited on semiconductor crystal surfaces, and
result data has, subsequent to the experiments of He
et al. on SRO, become available on expanded Cs structu
with long-range order~LRO!. While, as emphasized by Free
man and March,9 this data is at least partially about Cs
interaction with the semiconducting substrate, there is ne
theless again an important message about chemical bon
in highly expanded Cs, but this time with LRO. Specificall
Whitman et al.7 have measured the structural properties
Cs adsorbed on GaAs~110! and InSb~110! surfaces at room
temperature using scanning tunneling microscopy. Th
work establishes that Cs initially forms long, on
dimensional zig-zag chains on both these surfaces. To
one example,7,9 their Fig. 1~a! shows a large-area image o
Cs chains on GaAs~110! that includes chains more than 100
Å in length. Their experiments conclusively demonstrate,
addition, that the chains tend to be separated by some ten
nm and have no LRO along the@001# direction; thus estab-
lishing that they are truly one-dimensional structures.7 In
their Fig. 1~b!, showing the higher-resolution image, the C
structures are revealed as zig-zag chains of single atom
registry with the substrate~110! surface. In the present con
text, it is important to stress that the Cs-Cs nearest-neigh
distance here is 6.9 Å, to be compared with the correspo
ing distance of 5.2 Å in bulk Cs. On the InSb~110! surface,
the formation of Cs zig-zag chains was again revealed by
experiments of Whitmanet al.,7 but because of InSb havin
the greatest spacing of the III-V semiconductors, the
nearest-neighbor distance is now 8.0 Å. Thus we have a l
ering of the coordination of Cs induced by the semiconduc
substrate. This is to be compared with the previously d
cussed lowering of the coordination in an expanded Cs liq
taken along the liquid-vapor coexistence curve toward
critical point. In this last case, it seems to be establish
beyond reasonable doubt that the building block of the
panded liquid metals Cs and Rb is a chemical bond wit
rather constant length of;5.4–5.7 Å with coordination
number between 2 and 3.
13 865 © 1997 The American Physical Society
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13 866 56N. H. MARCH AND ANGEL RUBIO
These key experiments1,2,7 have therefore led us to stud
further, by density-functional theory~DFT!, the energetics of
chains of alkali atoms. For calculational purposes, we h
chosen to focus on K, rather than Rb and Cs investigate
the experiments on condensed conducting phases sum
rized above because their pseudopotential generation is
certain due to relativistic andd-electron effects~see below!.
The paper is organized as follows: first we briefly descr
the theoretical model used and the results obtained for h
and low-coordinated K lattices. Then we use this data
conjunction with available pair potentials at different the
modynamic states to discuss the local coordination of
low-density heavier alkalis in condensed phases. We s
later bring these DFT results for K into contact with a simp
and physically appealing quantum-chemical model propo
by March, Tosi, and Klein.10 Then, encouraged by the agre
ment of this model with the DFT data, we extend the resu
from the quantum-chemical model to Rb and Cs for wh
DFT calculations are not available. Some conclusions
given at the end of the paper.

II. THEORETICAL METHOD

We have performed theab initio band-theory calculations
within the framework of density-functional theory. Briefly
we employ the standard plane-wave pseudopotential to

FIG. 1. Pair potentials~in a.u.! for expanded liquid Cs meta
from Ref. 6~continuous line! and Ref. 4~dashed line! correspond-
ing to an atomic densityr50.004 16 Å23 and temperatureT
51923 K. The vertical arrows indicate the position of the near
and next-nearest neighbor for the hypothetical diamond structur
expanded Cs. The comparison with the theoretical pair poten
given by the continuous line shows qualitatively that the potentia
this density and temperature tends to favor low coordination st
tures.
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energy scheme11,12in the local-density approximation~LDA !
~Ref. 13! to the exchange correlation potentialVxc(r ) to de-
scribe the ground state.Ab initio norm-conserving nonloca
ionic pseudopotentials have been generated by the s
pseudopotential method of Troulliers and Martins14 includ-
ing nonlinear core corrections.15 These core corrections ar
important to describe the structural properties of syste
with shallow core levels close to the valence complex,15 as it
is the case here. The LDA wave functions were expanded
to a 10-Ry cutoff where good convergence in total ene
was achieved~see Refs. 11 and 12 for details of the metho!.
The other essential input, besides of course the nea
neighbor distance and the angle~or height! of the zig-zag
chains considered, was the exchange-correlation pote
Vxc(r) in constructing the total periodic potentialV(r)
5VHartree(r)1Vxc(r). VHartree(r) is, of course, determined b
the geometry of the lattice plus the ground-state elect
densityn(r) and in the local-density approximation used
constructVxc(r). This is again specified byn(r) alone.

The calculations for open structures as the linear and
zag chains were performed in a supercell geometry sche
We keep the real periodicity of the structure along the ch
direction and introduce a large vacuum region in the ot
two directions in order to minimize the chain-chain intera
tion ~using a distance between chains of 9 Å!. The set of
three-dimensional structures~crystalline phases! were com-
puted for different fixed symmetries and nearest-neigh
distances.

III. LOCAL COORDINATION OF LOW-DENSITY
ALKALIS IN CONDENSED PHASES

Table I records the results of theseab initio calculations
for the normal bcc-K phase and other hypothetical pha
such as the diamond and the metallic-linear chain~not
Peierls distorted, see below! that are not realizable in norma
conditions~coordinations ranging from 2 to 8!. The agree-
ment for the bcc-K phase with experimental data is go
~within the typical LDA few-percent errors for lattice con
stant, bulk modulus, and cohesive energy!. As expected, the
computed equilibriumT50 nearest-neighbor distance in
creases with increasing coordination~as well as the cohesive
energy!. Thus external forces such as substrate induced
istration, temperature, or pressure would determine the t

t
of
al
t

c-

TABLE I. Equilibrium structural properties for different phase
of K as shown in Fig. 2. The zig-zag chain data are not repor
because they depend strongly on zig-zag angle or coordination
Fig. 2. The pseudoatom energy used as a reference is 7.95 eV
shorter bond length@nearest-neighbor NN distance# corresponds to
the dimer ~3.90 Å! and this increases when the coordination
creases~the diamond structure has the shortest bond length du
the larger structural packing!. In parentheses in the Table are give
the experimental values for the bcc-K bulk phase.

NN
distance~Å!

Ecoh

~eV/atom!
Bulk modulus

~GPa!

K-bcc 4.42~4.52! 1.08 ~0.94! 4.0 ~3.3!
K-diamond 4.02 0.80 1.41
Linear chain 4.00 0.32
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56 13 867DENSITY-FUNCTIONAL CALCULATION FOR K . . .
of coordination shown by these alkali metals.16 We note that
the nearest-neighbor distance for the linear chain is clos
the experimental dimer bond length of 3.90 Å.17 For what
follows we are interested in the low-density~expanded bond
length! region where low-coordination phases are mo
likely to be obtained~see also Fig. 2!. We think of the ex-
panded metal as formed by a set of tangled zig-zag ch
with coordination between 2 to 4 depending of the near
neighbor distance. In this low-density regime we have fou
a very small chain-chain interaction, however when den
increases it becomes important and favors the formation
three-dimensional structures. As a remark, the results
sented in Fig. 2 are obtained atT50 for the crystalline
phases, and therefore the three-dimensional structures
lower in energy than the low-coordinated phases; howe
these LRO models are only illustrative to mimic the SRO
the liquid metals.

The energetics of a linear chain of equidistant K atoms
compared from the DFT calculations with the energy p
atom of a planar zig-zag chain in Fig. 2. For a sufficien
large nearest-neighbor distance, it is found that a mod
zig-zag, for fixed nearest-neighbor distance, lowers the
ergy and hence results in a stabilization of the phase.18 For
longer distances there is no stable zig-zag chain. We m
stress, however, that in the long nearest-neighbor dista
regime the band-structure calculations the way they are
formed here should be viewed with some caution beca
correlations beyond those included through the LD
exchange-correlation potential might become very import
in this regime~see below!. Thus, for expanded K metal e

FIG. 2. Total energy per atom for different K phases as a fu
tion of the nearest-neighbor distance. For bond-lengths larger
4.50 Å, the zig-zag and linear chains coincide. The set of values
zig-zag chains with bond lengths lower than 4 Å corresponds to the
formation of nearly equilateral triangles~coordination; 4 instead
of 2 for the linear or small deformed zig-zag chains! including some
chain-chain interactions. We note that for a given bond length of
zig-zag chain the structure is minimized with respect to the zig-
angle. This angle tends to be 180°~linear chain! with increasing
bond length, from the ‘‘delocalized molecular orbitals’’ treatme
used to construct this figure.
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ther modest zig-zag chains or linear chains could be form
This is a convenient point at which to return to the int

rionic potentials in Fig. 1. From Eq.~1!, this thermodynamic
state corresponds to a coordination number between 2 an
In principle, neglecting the density change on freezing,
could use the theoretical pair potential given by continuo
line in Fig. 1 to compare energies of different crystal stru
tures at constant volume~i.e., not now at constant neares
neighbor distance!. What we have done instead is to mark o
Fig. 1, for a nearest-neighbor distance put equal to tha
expanded metallic bcc Cs~5.63 Å!, where the next-nearest
neighbor distances, etc., would lie for the diamond struct
with coordination number 4. The next-nearest-neighbor d
tance for the diamond structure is 9.2 Å, to be compared w
the 9.7 Å of a 3-fold coordination structure such as graph
~note that the pair potential reaches its maximum repuls
part at;9 Å followed by a flat second minimum where th
next nearest-neighbor distances of the low-coordinated st
tures lie!. This qualitative argument indicates that low loc
coordination is favored for the expanded condensed phas
Cs in agreement with the experimental observation from
~1!. In order to get more insight for a different thermod
namic limit, we have also given in Table II the data for
DFT pair potential of liquid K near freezing the position o
minimum and maximum of the potential. When fixing th
first-nearest-neighbor distance to the position of the princ
minimum ~4.69 Å! we get a next-nearest neighbor distan
of 5.4 and 7.6 Å for the bcc and diamond structures, resp
tively. In contrast to what happens in Fig. 1, where the low
coordination structure seems to be favored by the poten
near freezing the diamond peak lies just close to the m
mum of the potential~located only;3.5% beyond the maxi-
mum of the potential for liquid K given in Table II, while fo
expanded Cs the peak lies;9% beyond the maximum an
close to the second potential minimum of Fig. 1! and there-
fore this structure would not be stable when compared
higher coordination structures

Our concluding remarks for this section will focus on th
electrical characteristics of the Rb and Cs assemblies in b
fluid SRO and ordered LRO phases. Taking the LRO c
first, Whitmanet al.7 probed for metallic behavior by mea
suring the tunneling conductivity~reduction of the band gap!
at zero bias, which is known to be proportional to the dens
of states at the Fermi level. Their measured current vs v
age curves showed that the band gap of 1.45 eV of GaAs
lessened to 1.1 eV with the one-dimensional chains of Cs

-
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e
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TABLE II. Position in Å of the prominent features in the DF
theory pair potential of liquid K near freezing (T565°C!. @M. W.
Johnson, N. H. March, F. Perrot, and A. K. Ray, Philos. Mag. B69,
965 ~1994!#. When the nearest-neighbor distance is fixed to
principal minimum value the next-nearest-neighbor distance for
bcc structure is 5.42 Å~well within the first potential well!, whereas
for the lower coordination diamond it is 7.6 Å~very close to the
repulsive maximum!. This indicates qualitatively that the potentia
near freezing tends to favor high coordination structures~see text!.

Average First Principal First Second
density node minimum maximum node

0.001 882 6 4.02 4.69 7.33 6.56
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13 868 56N. H. MARCH AND ANGEL RUBIO
the surface, which implies that the Cs chain structures
insulating7 on GaAs~110! Earlier, one of us3 had suggested
the same conclusion from a chain model for the SRO in fl
Cs but now at the critical density. But there the Peierls tr
sition was invoked to propose the identity of the met
insulator transition and the critical point in fluid Cs. Whi
man et al.7 refer, on the other hand, in support of the
experimental approach, to the theoretical study of Ferraz
co-workers19 in relation to the proximity of bulk Cs to the
metal-insulator transition. It may well be asked whether,
the theoretical studies of chains of K reported here, we
also in the vicinity of a metal-insulator transition. We mu
therefore add that the energy band-theory approach u
here, in the context of density-functional theory, bases al
findings on ‘‘delocalized molecular orbitals’’ describing th
one valence electron per K atom. Even though, of cou
some account of electron correlation is incorporated thro
the exchange-correlation potential, one has, in essence
derlying the treatment, a one-electron Slater-Kohn-Sh
single determinant reference wave function. To study
metal-insulator transition, one should follow the Gutzwill
procedure,20 which is the analogue for crystals of th
Coulson-Fischer21 quantum-chemical treatment of the H2
molecule. In essence, both these approaches expand ou
determinantal wave function and then, by introduction o
variational ‘‘parameter’’l(r 0), one reduces drastically, nea
the metal-insulator transition, the weights of ‘‘ionic’’ con
figurations in which two electrons are permitted to reside
the same atomic site.22 Of course, this approach is quite di
ferent from the Peierls transition referred to above, in wh
alternating bond lengths introduce a new energy gap
hence preclude a one-dimensional metal. The LRO exp
ments above the ‘‘dimerization’’ are precluded by substr
Cs interaction and therefore we have not considered s
Peierls instability in the LRO calculations on K chains r
ported here.

IV. QUANTUM-CHEMICAL MODEL
FOR THE COHESIVE ENERGY

OF ALKALIS

In the previous section we have been concerned with
electronic structure of different lattices of K atoms usi
density-functional theory with a local-density approximati
for the exchange and correlation potential. In particular,
cohesive energyEc(z,r 0) was calculated as a function o
nearest-neighbor distancer 0 for different values of the coor
dination numberz. The values ofz explored werez58, cor-
responding to bulk body-centered-cubic K metal, with eq
librium nearest-neighbor distancer 0;4.5 Å, z54
corresponding to a diamond structure and chains both lin
and~modest! zig-zag puckered chains (z52!. The purpose of
the present section is to focus on a quantum-chemical c
acterization of the cohesive energy curves of the above
tices.

The idea underlying the analysis to be presented here
decompose the cohesive energyEc(z,r 0) into a linear com-
bination of two terms. The first, prmportional to the coord
nation numberz, is to be thought of as a typical pairwis
additive contribution, which we shall write in the convenie
form 1

2 zR(r 0), following the notation of March and
re
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co-workers.10 The quantum-chemical interpretation ofR(r 0)
will be discussed further below. The second term will
written, with appropriate sign asf (z)g(r 0), ~Refs. 10 and
23! to yield the approximate form

Ec~z,r 0!5 1
2 zR~r 0!2 f ~z!g~r 0!. ~2!

The second term in Eq.~2!, which ‘‘factorizes’’ into a func-
tion of z, f (z) timesg(r 0), in analogy with the first term, is
characteristic of the so-called ‘‘glue’’ models of solid-sta
physics, as discussed, for instance, in the early work of F
nis and Sinclair24 that deals with metallic cohesion as arisin
from embedding ions in a free-electron gas. For this emb
ded atom potential the pairwise potential@related toR(r 0)#
and many-body embedding function@related tog(r 0)# are
usually fitted to reproduce the equilibrium atomic volum
elastic moduli, and ground-state structure of the perfect
tice. Here, we shall press the relationship of the functio
R(r 0) andg(r 0) to properties of the K free space dimer an
from this deduce the cohesive energy curves for exten
structures. But, for the moment, let us use the form of Eq.~2!
to motivate a different plot of the data of Fig. 2. Thus, if th
‘‘linear superposition of factorizable contributions’’ in Eq
~2! is useful, we can remove the functionR(r 0) by taking the
weighted difference of the cohesive energy curves of Fig
namely,Ec(z58)22Ec(z54), Ec(z54)22Ec(z52), and
Ec(z58)24Ec(z52). We have therefore plotted thes
three quantities in Fig. 3.

The upper two curves of Fig. 3 reflect the shape ofg(r 0)
over the range ofr 0 for which DFT band-structure calcula
tions were available. Of course, the functionf (z) enters the
plots when interpreted using Eq.~2!, and is only available for
coordination numbersz5 12, 8, and 6; from Refs. 10 and 2

FIG. 3. Weighted cohesive energy difference curves for b
(z58!, diamond (z54!, and chain (z52! assemblies of K atoms
from the ab initio data from Fig. 2 as a function of the neares
neighbor bond length. Plot motivated by quantum-chemical mo
in Eq. ~2!. Using the ‘‘exchange’’ functiong(r 0) taken from theo-
retical studies in Ref. 27, we extract the values off (z) for z54 and
2 as f (4)52.9 andf (2)51.3 ~see text!.
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56 13 869DENSITY-FUNCTIONAL CALCULATION FOR K . . .
the values off (z) are known to be equal to 4, 4, and
respectively. While presently we do not have an analy
form for f (z), we know it is a slowly varying function ofz
as compared to the first term in Eq.~2!. Below we shall
provide estimates off (z) for z54 andz52 that match this
behavior, but as March and co-workers10 point out, for lat-
tices other than bipartite lattices, first-principles calculatio
of f (z) beyond perturbation theory present substantial d
culties. Turning to the lowest curve in Fig. 3, we have pl
ted theab initio linear chain data as well as~supplemented!
some ‘‘zig-zag’’ chain data~filled circles in Fig. 3!. Obvi-
ously, there is some ‘‘residual’’ dependence of the cohes
energyEc(z,r 0) on second-neighbor interactions, which
ignored in writing the approximate form in Eq.~2!. Indeed,
below a certain value ofr 0, there is some ‘‘scatter’’ for
lattices with the same coordinationz ~2 for these chains!.

From the work of Poshusta and Klein26 on hydrogen, and
Malrieu and co-workers on Na~Ref. 25! based on a cluster
expandedab initio Heisenberg spin Hamiltonian, one ca
interpretg(r 0) in Eq. ~2! as reflecting the ‘‘exchange’’ par
of the dimer potential energy curve that is half the differen
between singlet and triplet potential-energy curves for
free space dimer. Theoretical values of these1Sg and 3Su
potential energies are available from the work of Krauss
Stevens27 and from their Table I~A! we have constructed th
‘‘exchange’’ g(r 0) in Eq. ~1! ~see also Zemke an
co-workers28 for a complete experimental analysis of th
K-dimer singlet and triplet states!. This ‘‘exchange’’ part
compares well with the ‘‘extracted’’ forms predicted fro

FIG. 4. Continuous line: plots of the cohesive energyEc(z,r 0)
for K lattices corresponding to coordination numbersz5 8, 4, and
2 from the quantum-chemical model in Eq.~2! as a function of the
nearest-neighbor bond length. Dashed lines, squares, triangles
open and closed circles correspond to theab initio calculations of
Fig. 2 for the same coordinations as before. The simple quant
mechanical model is able to reproduce the main features and
dencies of the full calculation. In constructing the curves forz58,
4, and 2, the quantityf (z) in Eq. ~1! was taken asf (8)54, f (4)
52.9, andf (2)51.3 ~see text for details!. The experimental bond
length of K-bcc bulk~4.52 Å! ~Ref. 30! is indicated by the vertica
arrow.
c
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e

e
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the difference of cohesive energy calculations in Fig. 3.
fit these cohesive energy differences grossly using the th
retical values forg(r 0), we need to choosef (z54);2.9 and
f (z52);1.3. This extends the available set of values of
smooth functionf (z) to the range 2<z<12 for the heavier
alkalis. To complete the description of the quantum-chem
model of Eq.~1! we can relate10 the functionR(r 0), ‘‘elimi-
nated’’ in the plots of the band-structure cohesive ene
differences in Fig. 1, to the3Su potential-energy curve of the
dimer given also in Ref. 27.

In Fig. 4 we present the results for the cohesive energy
the present quantum-chemical model for different exten
K structures~bcc, diamond, and chains! compared with the
ab initio calculations from Fig. 2. We have usedg(r 0) and
R(r 0) obtained from the singlet and triplet potential-ener
curves of the free space K2 dimer, to calculate the quantum
chemical approximation toEc(z,r 0) in Eq. ~2!. While, of
course, the band calculations are expected to be fully qu
titative, we observe that the main features such as b
length, bulk modulus, and cohesive energy are success
reproduced within a few percent error by the quantu
chemical formula of Eq.~2!. We have thought it of interest to
add data for Rb and Cs from Eq.~2!, using again the work of
Krauss and Stevens for the corresponding free sp
dimers.27 In both cases various coordinations~between 2 to
12! are studied by using the ‘‘universal’’f (z) ~Ref. 10! func-
tion for the heavier alkalis previously obtained for K. In Fi
5 we show the results for Rb and Cs. For the ground-s
bcc structure of both metals the quantum-chemical bo
length is smaller than the experimental one by a few perc
The curves for Cs are of interest in relation to the neutr

and

-
n-

FIG. 5. Cohesive energy curvesEc(z,r 0) for ~a! Rb and~b! Cs
atoms with long-range order in bcc, diamond, fcc, simple cubic,
linear chain structures~coordinations ranging fromz512 to z52!
as a function of the nearest-neighbor bond length. The experime
Rb ~Cs! bulk bcc bond length of 4.83 Å~5.23 Å! is indicated by the
vertical arrow. The results for Cs are relevant here in view of
interest in the bcc bulk metal and in highly expanded Cs chains w
both short-range~Ref. 29! and long-range~Ref. 7! order.
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13 870 56N. H. MARCH AND ANGEL RUBIO
scattering experiments of Hensel and co-workers29 on this
metallic fluid along the liquid-vapor coexistence curve. Al
the work of Whitmanet al.7 in which Cs chains~zig-zag! are
found when Cs is adsorbed on GaAs and InSb semicond
ing substrates is relevant here~see previous section on low
coordination phases!.

V. CONCLUSIONS

In summary, local coordination seems to exhibit simi
trends with density for all the heavier alkali metals. In t
liquid state the bond length remains remarkably cons
when the density is varied from the normal melting point
twice the critical density. However when grown on semico
ductor substrates, the nearest-neighbor distances are imp
by these substrates. Nevertheless, at low coverage th
atoms take up zig-zag chain configurations with lo
coordination numbers as found in the expanded liquid ph
The present calculations on K atoms support the zig-
chains as possible structures in the low-coordination regi
both in the liquid phase and on semiconductor surfac
Similar results are expected to hold for the other alkali m
als ~Rb and Cs! in agreement with available experiment
Furthermore, in Fig. 3 we have presented DFT band-the
data of three K lattices: bcc, diamond, and chains in a fo
in which contact can be established with the quantu
chemical form of Eq.~2!. g(r 0) is the ‘‘exchange’’ part of
the dimer problem10,28 and the shapes of the band-theo
tta

tt

d,

s

ct-

r

nt

-
sed
Cs
-
e.
g

es
s.
t-

ry

-

cohesive energy curves reflect rather directly the dimer fo
of g(r 0). This has encouraged us to plot the cohesive ene
curves from Eq.~2!, using R(r 0) from the 3Su triplet
potential-energy curve of the K dimer.27 The main features
of the band-theory results are thereby obtained, very sim
using values forf (z) in Eq. ~2! extracted fromab initio
calculations. We have extended these results by using
dimer curves to construct the cohesive energy curves
long-range ordered arrays of Rb and Cs atoms. The repre
tation of the cohesive energy in Eq.~2! by coordination-
dependent functions naturally led to a coordinatio
dependent pair potential determined from properties of
dimer.10 The relevance of Eq.~2! for other systems than th
alkalis, as hydrogen lattices, is presently under study.
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