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The theory of spin-lattice relaxatiogf8LR)-rate anomaly at structural phase transitions proposed about 30
years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has
changed considerably. We use both the results of previous authors and perform original calculations of the
response functions when it is necessary. We consider displacive systems and use the perturbation theory to
treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the
order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the
resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the
one-phonon processes, the anomalous part being proportional to &ithdr.f~* or (T—T.) 2 depending
on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of
applicabity of the theoryclose to the phase transitipis estimated to be £8- 10° times more than the typical
value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appear-
ance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-
parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector
dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave
vector. In the case of two-component order parameter the damping constant for the component with nonzero
equilibrium value is different from that for the other component, the difference is of the same order of
magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the
mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known
to influence the static longitudinal response function. We calculate as well the dynamic response function to
find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the
longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly
weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on
SLR in incommensurate phase are discussed as \@€IL63-18207)08545-1

I. INTRODUCTION ing experiments or in low-frequency macroscopic otes.,
in the measurements of dielectric losses, for ferroelegtrics

The study of spin-lattice relaxatiofSLR) rate (rl‘l) So it was natural and inevitable that in the first theory of the
anomalies near structural phase transitions began 30 yeaspin-lattice relaxation anomalies some assumptions were ini-
agd with observation of & ] ! maximum at the ferroelectric tially made about the response functions. Specifically, it was
phase transition in NMR experiments on NajGBimilar  assumed that the order-parameter response function is that of
anomalies have been observed since 4lietiKH,PO, and at  an oscillator with damping with all the parameters being fre-
many other phase transitions both in NMR and NQR experiquency independent and only one of them having a tempera-
ments(for a recent review, see Ref).3The theory used to ture and wave-vector dependence: the eigenfrequency of the
interpret these anomalies is basically the same that was descillator(the soft-mode frequengyNeither were the orders
veloped about the same timé*°and that is presented in the of magnitude of the parameters involved discussed: such es-
most exhaustive form in Ref. 5 which we refer to below. timations were in their initial stage at that time. Similar com-

The conclusions of SLR theory depend essentially on thenents can be addressed to an important later development of
results or assumptions about the relevant lattice-dynamic rehe theory: its application to incommensurét€) phases$.
sponse functions, in our case about the dynamic response Since then considerable progress has been made in under-
function of the order parameter. It should be emphasized thatanding the character of the order-parameter response func-
the response functions probed in a SLR experiment are fairljions for structural displacive transitions or, rather, for the
special: for low frequencies and, in principle, any wave vec-so-called displacive limit. Let us recall that in the displacive
tors, such functions are not probed directly, either in scatterlimit it is supposed that the phase transition occurs in a
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weakly anharmonic crystal*?or, rather in a crystal that can is general for degenerated systems including Heisenberg
be considered as a weakly anharmonic one in a broad tenmagnetics and nematic liquid cryst{i$* where the effects
perature region(T<T,, T, is the atomic temperature, of these fluctuations were discussed long ago. The main ef-
T.~10°-10K) excluding a fairly narrow vicinity of the fect of the third-order anharmonicity is that not only the
phase transitiorfas long as the phase-transition temperaturdransversal susceptibility is infinite at—0 (q is the wave

T.<T,). The condition for this vicinity read vectol but also the longitudinal one. For structural IC sys-
tems the divergence of the longitudinal susceptibility was

IT-T T. discussed by Bruce and Cowley in their frequently cited

T <T—m, (1) paper® They did not calculate, however, the dynamic lon-

gitudinal response function which is necessary to treat the

and beyond it one can use a standard perturbation theory &@ntribution of the longitudinal fluctuations to the SLR rate.
take into account the effects of the anharmonicity. That isSUrPrisingly, these calculation have not been made, despite
why it is possible to use a regular theoretical approach tdhe experimentalists repeatedly emphasizing their necessity
treat dynamic properties of the displacive systems, beyontfee, €.g., Refs. 23,p4To perform these calculations is one
the region defined by Eq1), and it is in difference with the Of the aims of the present paper. _

order-disorder systems where the anharmonicity is always 10 calculate the response functions of interest, we shall

large and should be modeled in some wégnetic Ising  Start from classical equations of motion for the order param-
model or something of the kind eter in the symmetrical phase treating then the effects of

The main qualitative conclusion that can be made as §ome of the anharmonic terms within first-order perturbation

result of this progress is that the order-parameter respondgeory. A part of the crystal anharmonicity will be taken into
function is far more complicated that it was assumed in Refs@ccount(phenomenologicallyin the initial equations of mo-
5,6. For “ordinary” (not incommensurajephase transitions tion by a phenomenological viscosity coefficient which we
it reduces to the statement that the low-frequency dampiny/ill estimate according to the results of previous authors.
coefficient can be quite different from the high-frequency This method allows us to avoid the partial summation of the
one probed in neutron or light-scattering experiments. Foinfinite perturbation theory series that is req_uwed when one
some special cases it was already indicated in Refs. 13,19@Iculates the low-frequency response function and assumes,
but a decisive step was made by Cowley and Codfbko @S the zero approximation, the response function of the har-
argued that in the nonsymmetrical phase, due to a new thirdhonic crystal. As temperature plays the role of a parameter
order anharmonicity, the damping constant acquires stronj the equations, we do not take into account, by this method,
frequency dispersion at frequencies much lower than thée part analogous to the thermoelastic losses for
soft-mode one. They proposed a semiphenomenological |ov\}o_ng_|tud|nal-acoust|c waves _but calculate them separately
frequency response function with temperature dependenc#ithin a standard macroscopic treatm&ht.
not only of the soft-mode frequency but of the other param- The paper is organized as follows. In Sec Il we present
eters as well. Later some of these dependences have bed¢ formulas which will be used to calculafg *. In Sec. Ill
corrected® but the qualitative result of Cowley and Coombs We discuss the case of one-component order parameter. This
remains intact. In addition, the temperature anomaly of th&ase proves to be the simplest one. In Sec. IV the case of
damping constant in the symmetrical phase was predicte@any-component order parameter is discussed with a special
long ago!* One sees that there are enough reasons to recoattention to incommensurate systems. In Sec. V we make
sider the theory of Ref. 5. However, this reconsideration cansome comments about order-disorder systems. Finally, Sec.
not only consist of application of the known results for the VI contains a brief summary and a discussion of implications
order-parameter response function to the calculation of thef the theoretical results of the paper for interpretation of the
SLR anomaly. The problem is that the known results refer t&xperimental data.
low frequencies andmall wave vectorand no study of the
wave-vector dependence has been made, to the best of our
knowledge. It may be due to the idea that in the scaling
region the wave-vector dependences have only one scale: the
reciprocal correlation radiug { *). But we are interested in  The spin-lattice relaxation is determined by the probabili-
temperatures beyond the critical region and the scaling hyties of transitions between the states of the Zeeman Hamil-
pothesis is not applicable here. We will see that the wavetonian due to perturbations caused by the lattice
vector dependence at a scale which is less thdrproves to  fluctuations?® In general, the return of the nuclear magneti-
be essential and important in the treatment of SLR. zation back to its thermal equilibrium value cannot be de-
For IC systems the importance of the third-order anharscribed by one exponent but in any case the temporal equa-
monicity specific for the nonsymmetricélC) phase is well tions contain probabilities that are proportional to some
understood. Here one of the aspects of this anharmonicity isombinations of the spectral densities of local fluctuations of
interaction between the logitudinal and the transversal ordeithe electric-field-gradient tensor. These spectral densities are
parameter fluctuations which correspond, in the harmoniproportional to the spectral densities of fluctuations of the
approximation, to amplitudon and phason. An IC phase in amtattice variables among which we will single out those cor-
ideal crystal is soft: there is no restoring force to the inho-responding to the order parameter. It is, in effect, the local
mogeneous shift of the IC modulation, i.e., the fluctuation ofspectral density of the order-parameter fluctuations that will
the phase of IC modulation, the transversal fluctuations, dibe discussed in the present paper. To demonstrate its specific
verge when the fluctuation vector goes to zero. This propertjeatures is enough to consider the simplest case where one

Il. SPIN-LATTICE RELAXATION TIME AND THE
ORDER-PARAMETER CORRELATION FUNCTIONS
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can write the perturbation Hamiltonian as a prod@ét(t), fluctuationsgkd< 1, k is the wave vectod is the interatomic
whereA is an operator acting on the spin variables &t distancé. As usual, the anharmonic interaction of the order
is a function depending on the lattice variables. The generparameter and other degrees of freedom is taken into account

alization is straightforward. In this simplest c&%e by the temperature dependence of the coeffickeatA’ (T
1 —T.) and by the viscosity term. In fact, even for a weakly
T =03(Q), (2)  anharmonic crystal, the exact equation is more complicated

than Eq.(9). In particular, the coefficieny proves to depend
essentially on the frequendgee below. However, within
o _ this paper we are interested in the response function for low
J(w)ZJ (F(OF(t+7))e '“dr, (3)  frequency(Q), is lower than any characteristic frequency of
o the systerpand the wave vectors comparable with the order-
and( ) designates the statistical average. Being interested iparameter correlation radius which, for the displacive limit

whereg is a constant(), is the Larmor frequency,

the phase-transition anomaly we presEnas systems, is much larger than the interatomic distance even
far from the phase transitioff. Under such conditions the
F=Fo+ta;p+an’+---, 4 coefficienty in Eq. (9) can be considered as a constant but,

in general, quite different from that obtainable from study of

the form of the soft-mode line in neutron or Raman-

scattering spectrésee below. Also the anharmonic coeffi-

cient B can be considered as independent of the wave vec-
tors.

J(QL):aij D3q(| n(q,QL)|2)+a§J D3q(| 7%(q,2)]?) Our study will be centered on taking into account consis-
tently the effects of the last term in the Ihs of Ef) in the

where 7 is the order parameter which, for the moment, we
assume to have only orieesal) component.
Using Egs.(3) and(4) one obtains

3 ) response function. Explicitly we shall make it only for the
+alazf Dal{7(a, Q) 7°(—a, — Q) cases where the results needed cannot be found in literature
referring otherwise to other authors. We will see below that
+(n(q,— Q) 7’ (—q,Qp))] despite that a good part of the effects of the last term in the

Ihs of Eq.(9) has been discussed already, a part of the study
that is important for the theory of the SLR anomaly was not
where7(9,€,), 7%(q,Q,) are time and space Fourier trans- made.
forms of 5(r,t) and 7(r,t), D3gq=d3q/(27)3, and () As it has been already mentioned in the displacive limit
means statistical average. The first term in the right-handhe calculations can be made within the perturbation theory if
side(rhs) of Eq. (5) corresponds to the one-phonon process|T—T| is not too small. In terms of the coefficients in Egs.
the second to the two-phon¢Raman process, and the third (8),(9) this condition reads
to what can be called the “mixed” contribution. This con-
tribution is absent, of course, for a harmonic lattice but we B
will be interested in anharmonic effects as well and there is &= W<l'
no reason to neglect this contributiad hoc
The correlation functions are related to the dynamic re-This is the condition of applicability of the Landau theory as
sponse function for the order parameter determined by thwell.>” Taking into account the estimations of the Landau
formula: coefficients in the displacive limit due to Vak$A’ ~d =3,
B~T,d 7, D~T,d 3, where T,~10*-1PK and the
7(d, Q)= x(q,Q2)h(q,Qy), (6)  “atomic” (maximum) value of the order parameter is esti-
mated agl, one comes to Eql).

=J1+Jr+J1o, 5

(10

whereh is the generalized force conjugated#oOne ha&’

5 T [ll. ONE-COMPONENT ORDER PARAMETER
(In(a,Q0)]%)= oy Im x(q,Q). (7 ,
L A. Symmetrical phase
The dynamic response function of the order parameter can be To the zero approximation the response function is
calculated from the equation of motion for the order param-

eter which is obtainable from the continuous medium effec- 1
tive potential energy which is the Landau free energy: Xo(k,w)= ——7 @yt ATDK’ (108
()= ﬁ 24 E 4y E V)2 8 Let us discuss the order of magnitude of the order-parameter
7 7 7 (Vn) 8 N .
2 4 2 viscosity constanty or, rather, the soft-mode damping con-

stantI'=y/m. The calculations of this constant have been
made by many authors, for recent reviews see, Ref. 28. It is
myn+yn+An—DAn+Bni=h. (99  convenient to discriminate the contributions due to the cou-
pling of the soft mode to other “hard” optical mode¥ ),
This equation is supposed to be obtained as a result afue to the coupling to acoustic modds,} and due to the
integration over all the degrees of freedom of the system buanharmonicity within the soft-mode branch, i.e, the effect of
are those corresponding to the long-wave order-parametéhe last term in the Ihs of Eq9), (I';):

with addition of the inertial and the viscosity terms:
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F=Tp+T,+T.. (11 , M, 1 , @ [T\ T,
I =21 gropme g2 g -7
It was estimated by Stolen and Dransféldhat at T>Tp = € (15)
(Tp is the Debye temperature
where Eqg. (14) has been used, it was estimated that

r—q (l)z 12 (D/m)d—2~Q3, as O/m)*?=c is of order of magnitude of
noTRIT the sound speed, and fbr, A’ the same estimation has been
used following Eq(10)
where(), is the Debye frequency. AE<Tp, this contribu- To calculate the contribution of the two-phonon processes
tion is exponentially small at frequencies that are muchit is enough to use the harmonic approximation neglecting
smaller than the hard optical mode frequencies. the damping. As a result one obtains
The coupling with the acoustic modthe coupling ternf
is the “striction” one, 7u;;, U;, is the strain tensorgives 1 mY?r2
the contributioA*3? Jp(Q)~a) 167 D2 LGmax~ 2(A/D)Y?). (16)
T It is the same temperature dependence as in Ref. 5 but we
Fa~Qp Ta (13 have calculated the coefficients as well. Estimaiipg, as

d~ ! one can see that #&=0 the value 0f),(Q,) given by
if the frequency of they vibrations is close to the frequency Eq. (16) corresponds to a standard estimation of the contri-
of the soft mod& as it takes place, e.g., in neutron experi- bution of the two-phonon processes to the SLR rate irrespec-
ments. For small frequencig¢s < (A/m)Y?=w,] the situa- tive of a phase transitioff. That is, this value is of the same
tion is more complicatef For the weakly dispersive soft order of magitude as the “background value” of the SLR,
mode (WDSM) (D/m)Y?< v, wherev is the sound speed, Joy, for an ideal crystal and without interaction between the
the estimation{13) remains valid for low frequencies as well, relaxing centers. Using the same estimation as aftef).
in the opposite case, for a strongly dispersive soft modend estimating as well; ~a,d, one sees that
(SDSM), the contribution of the acoustic mode is negligible.

An intermediate situation is possible as well, of course. We ) d? T2
shall discuss below the two opposite cases. Jo~a =72, (17)
The contribution of the anharmonic coupling within the b Tat
soft branch can be estimated“as where a numerical factor is ignored. Comparing with Eq.
) s (15) one sees that in the S_DSM case the anomalqus part of
r—qo (l) ( Tat ) (14) the SLR rate is more than its “background” value in a very
¢ DT, \T-T.) broad temperature regiod ¢ T,<T_), and at the boundary

of applicability of the perturbation theoiy.e., at the bound-
This contribution is due to the fourth-order anharmonismary of the critical regiol it is more than the background
[term = »* in Eq. (8)] and does not exhibit essential fre- value by a factor of the order of value off {/T,), i.e.,
qguency dependence. Comparing EG) and (14) one sees 10— 1 times.
that outside the critical regiorsee Eq(1)] I'.<I", and they The anomalous part of the SLR rate is even more in the
become comparable at the boundary of the critical region. case of WDSM. Substituting in Eq15) I', given by Eq.

We see that in the SDSM case the temperature deperii3) for I', one finds that in this case

dences of the high-frequency and the low-frequency soft-
mode damping coefficients are quite different. The main con- d? [ T.\%?
tribution to the high-frequency damping coefficient is due to Jl(QL)Naf O- ( )
the interaction with the acoustic moddsg. (13)] and, there- D
fore, only a small anomaly is expected for this coefficientone sees that the value af given by Eq.(17a is larger
beyond the critical region. At the same time the main contrixhan that given by Eq(15) in the whole region of applica-
bution to the low-frequency coefficient is due to the anhar-jity of the perturbation theorjEq. (1)]. The “mixed” con-
monicity within the soft branchcompare Eqs14) and(12)]  tripution [the third term in the rhs of Eq5)] is absent in the

and the anomaly is very strong. _ symmetrical phase within our treatment.
With all the anharmonicities taken into account a good

approximation for the order-parameter low-frequency re-
sponse function is to write it in the same form as in Bd)a
with vy substituted fomI" . given by Eq.(14). The renormal- One has to take into account now that the order parameter
ization due to the anharmonicity of the coefficignteduces has a nonzero equlibrium value. To the zero approximation,
to a redefinition of the phase-transition temperature and it ise., neglecting they fluctuations one has

not reasonable to take into account explicitly. The only dif-

ference of this response function from that used in Ref. 5 is né=—AIB. (18

the temperature dependence of the damping conjsaatEq.

(14)]. Using the result of Ref. 5 or Eq$7) and (5), one  To the approximation used in this paper this formula remains
obtains for the contribution of the direct procesfte first  valid with the fluctuations taken into account as well, their
term in the rhs of Eq(5)]: effect reduces to a renormalization of the phase-transition

T 1/2
< ) (179

T-T,

at

B. Nonsymmetrical phase
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temperature. In Eq9) it is convenient now to single ou,  interested just in the response of the system to the action of
and 5(r,t) — .. The latter function we represent in the Fou- the force. Therefore, the second term in the rhs of 4)

rier form: should be replaced, to the first approximation, by
n(r,t)— ﬂe:; n(k,t)exp(ikr), (19 —6B 70>, f 7' (K,0)7?(q—k,Q—w)dw, (22
K
and write the Eq(9) as where 7' (k,w) is the change in the random variabiék,w)

due to action of the forct(q,Q), 7°(k,w) represents the
fluctuations in the absence of the force. One sees from Eq.
(20) that, to the first approximation,

m#(q) +y7n(q) +(—2A+Dg?) 5(q)

+387.% n(k)n(a-k)=h(a,0), (20
Kow) = —6B7:7°(0,2)7'”(—g+k,—Q+w)
where we have omitted the term of the third orderzik), 7' (K,w)= Mo +iyw—2A+ DK )
i.e., the fourth-order anharmonocity. The effect of this anhar- (23

monicity has been discussed already for the symmetrical 0 )
phase, it is basically the same for the nonsymmetrical on¥here 7°(q,2)=x""(q,Q2)h(q.,2) and, for the nonsym-
and we shall use the above results at the proper moment. ol¢etrical phase,
aim now is to calculate the order-parameter response func-

tion taking into account the third-order anharmonicity de- ¥9(q,Q)= 1 .
scribed by the last term in the Ihs of EQO), i.e., to calcu- ’ —mQ*—2A+Dg"+iyQ
late 7(g,Q) in the presense of the fordg(g,{)) averaging

over the fluctuations ofy(k) with k#q. = 1

. . . 2 2 A 1 (24)

To this end we write Eq(20) in the form m[— Q4+ wi(q) +il'Q]
(—mQ2+iyQ—2A+Dg?) 7(q,Q) where wg(q) is the soft-mode frequency. Thus, to first ap-
proximation, the response function
=h(q,Q)—3Bﬂe§k: f n(k,w)n(q—k,ﬂ—w)dw. X*l(l)(q,Q):X*l(o)(q,ﬂ)_(GBne)Z
(2D S f (7(a-kQ-ol?)

The second term in the rhs plays the role of an additional K m[—w?+ w5(K) +iTw]
force conjugated tay(q). A part of this force is independent (25)

of h(g,t) and describes interaction between the fluctuations
of 7(q) and the rest of the fluctuations in the absence of the Designating the second term in the rhs of E5 as
force h. This part is of no importance for us because we are2(q,Q) = — (6B 7,)2I1(q,Q2) one obtains

T I'dkdow
87T4m2ff {[(0—Q)2—wik—q) 2+ T%(0— Q)% — 0’ + wi(k) +iTw]’

I(q,Q2)= (26)

where we have made use of Eq%) and (24) to calculate with Q at Q>I" and, aswy>1" in the temperature region
(| 7O(k,w)|?). It is important that the integrand is maxi- under discussion, the high-frequency damping constant
mum atw in the region of the soft-mode frequencies. This[I'(wg)=TI"g] is almost the same as in the symmetrical phase
means that the damping constant in the integral is, in effeciand can be estimated according to EL3).
the high-frequency one. It is not the case, however, for the low-frequency damp-
The real part oflI(g,Q)=11,(q,Q)+iQII,(q,Q) is of ing constant. Using Eq27) and omitting a numerical factor
no interest for us: a§), is smaller than any of the charac- which is close to unity one gets
teristic frequencies of the system it provides, in effect, the
first fluctuation correction to the static response function that 1 TB |A|Y2
had been calculated earliésee, e.g., Refs. 9,10The func- Q7" 1m E(q,Q:O)Em5F(0)~5mF—O, (28)
tion I1,(q=0,Q) has already been calculatfdOne finds
where 8'(0) is the increase of the low-frequency order-
Tre r parameter damping constant in the nonsymmetrical phase.
1(9=00)= g—57 22" (27)  One sees thatsT(0)x(T,—T)¥2 It is important that
6I'(0)>T, in all the region of applicability of the perturba-
One sees that the contribution of the considered third-ordetion theory. Indeed, close enough to the phase transition, just
anharmonicity to the damping constant decreases rapidlgt the boundary of applicability of the Land&and the per-
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turbation theory the first factor in the rhs of E30) is of  estimated & (T,/T)Qpd *. EstimatingC~d 2 and tak-

the order of magnitude of unifsee Eq(10)] and the second  ing into account that ;2~d~2|T—T,|/T4 (one has to use

factor can be presented ag(wo/I'o). At the boundary of  the estimations of the coefficients in the end of Sed.dHe

applicability of the Landau theory,~T'o, as one sees from finds thatxr_ 2C~1~Qp|T—T,|/T,. Therefore, even at the

Eq. (13), the estimatiot? wo~Qp|(T—T)/Tof"% and EQ.  poundary of the applicability of the perturbation thedBg.

(1). Therefore at the boundary of applicability of the LandaU(l)] the Larmor frequency can be considered as quite small.

theory oT'(0)~T,. As &I'(0)=(T.—T)¥% while T'y  Thus one obtains

changes slowly with temperature, one concludes 8hi40)

exceedd’ in all the regions of applicability of the pertur- A'2D

bation theory. Q7 timZ~T
Thus the relation between the low- and high-frequency

order-parameter damping constants is quite diffefenthe ~ Comparing Eqs(32) and (30) and using the above estima-

region of applicability of the perturbation thegrin the sym-  tions one sees that the rhs of Eg2) is smaller than the rhs

metrical and nonsymmetrical phase. In the symmetricabf Eq.(30) aboutT, /T, times. This difference can be less in

phase, the low-frequency damping constanhisch smaller real crystals because the defects can strongly diminish the

thanI'y in the SDSM case and is of the same order of magthermal conductivity at not so high temperatures, while Eqg.

nitude in the WDSM case, while in the nonsymmetrical (30) contains, at the end, thermodynamic coefficients which

phase it ismuch bigger Using Eq.(13) and the above esti- are less sensitive to the defects than the kinetic ones.

(32

mations of the coefficients one can present &8 in the Now we will calculate the contribution of the “mixed”
form term, i.e., of the last term in the rhs of E&). The correla-
tion function
TC_T 1/2
5P(0)~QD( T ) ~wq. (29
" (6,070 -0)=F [ (sa0)nk.o)

Let us suppose for a moment that the wave-vector depen- K
dence of the low-frequency damping constant can be Xn(—q—k,—Q—w))de
negected. Using E@15) with substitutionl". by 61'(0) given
by Eq.(29) one comes to the conclusion that the contribution (33

of the direct processes does not depend on temperature in i zero if the anharmonicity is neglected. To take it into
nonsymmetrical phase and, comparing with Ef) one  account the first approximation, one can use @8) consid-
concludes that the one-phonon contribution is larger than thgying ,(0)(g,Q) as the fluctuation in the harmonic approxi-
two-phonon one by a factor of abouT {/T,), i.e., by 2-3  mation. One finds

orders of magnitude. We shall see that the both conclusions

are not correct due to the wave-vector dependence afy(q,Q)7%(—q;—Q))

Im 3(q,Q2~0) which we will now study.

The functionIl,(q,2=0) is calculated and discussed in =—18B 74| 7'9(q,Q)|?)
the Appendix. The value of the spin-lattice relaxation rate is
determined by this function in the regiap~r_* which is > j |7%(q—k,Q—w)[?) q (34
different from the function folg~0 due to a dispersion in K m[ — w?+ wé(k)+i1“w] @

the regionq~T/c, c=(D/m)Y2 Taking this into account _
and using Eq(47) one obtains, to a reasonable approxima-Comparing Eqs(34) and(25) one sees that

tion for thi ion:
ion for this region (9(a,Q) 72(—q,— Q)Y +{(n(q,— Q) 74— 0, Q))

2'l(qv&))
Bne

TB

De’ @0 =(|79(q,0)2)

Now we will take into account that the changes of thewhere it is taken into account that,(g,Q2) and %,(q,Q)
order parameter in the nonsymmetrical phase lead to chang@&e, correspondingly, even and odd function§)ofOne sees
in temperature. The influence of this coupling on the orderthat it is easy to compare the “mixed” contribution with the
parameter response function has been discussed by sevefgrmonic approximation for the first-order ofthe first term

authors®?=2® For the corresponding contributiop™*(q,Q2)  in the rhs of Eq(5)], one has just to compare the fraction in
—x " 10)(q,Q)=31(q,Q) one has the rhs of Eq.(35) with unity. One can well use the static

value3,(q,Q2=0) that has already been calculatéd:

Q tim 3(g=r;5Q=0)=méT(g~r_ 1)~
(35

12,2

. e
21(9,Q)=1QT : ; (31) 18 B272T r
iQC+ KQ El(q): P ; tan_l qZC (36)

wherek is the thermal conductivity coefficient; is the spe-

cific heat per unit volume. Let us compare the two terms inUsing the estimations of the coefficier(Sec. 1) one finds
the denominator in the rhs of E31) for q~rc_l because that forq~rc’l the fraction is equal td ./ T, by the order of
we are interested just in this region. Fbe T the thermal magnitude and consequently the “mixed” contribution is
conductivity coefficient in an ideal dielectric crystal can besmall.
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m71(qQ) + y72(q) + (2B1 92+ Dg?) 71(q)

+3B1710% 7(a=K)+ (Bt B2) 710
s X2 ma(K)ma@=k)=ha(a,0), (393
8
g Mz(a) + y72(0) + (Bo 7+ DG?) 72(a)
g +2(B1+B2) me 72(K) m(a-k)=hy(q,), (39D
£
® In a similar way as in Sec. Ill one finds
(|7 (a-k,0-w)?)
Q)=—36B272 .
S| - 22(a.0) =~ 3681 ni,. 2, M — 0’ + w2 (K) +ilTw]
— T \\“H— o 2 2
= sosu temperature _4(Bl+BZ) e
(7(a—k,Q~w)[?)
FIG. 1. Qualitative form of the spin-lattice relaxation-rate > 2 do, (409

_ 2, 2 ;
anomaly at phase transition in an ideal displacive systaa text K ML= o™+ wo(k) +ilw]

_ 2.2
Therefore, to estimate the contribution of the third-order 25(0,2)= ~4(B1+B2) 7L

anharmonicity arising in the nonsymmetrical phase to the (| 79(q—k,Q—w)[?)
spin-lattice relaxation rate anomalyy(3), one can substitute X > ! > > _ 1)
the last term in Eq(30) for I, in Eq. (15) to obtain k Ml — 0+ wgy(k) +iTw]
d2 (T.\32/ T. |12 —4(B1+By)?7i,
Jyg~al — —°) (—C) : 3
ot 1) | 7 (17" (@~ k.0~ )l

x>

2 ) mM—w2+ w2 (K)+iTw]

The contribution of the fourth-order anharmonicity is still
given by Eq.(15) and the contribution due to coupling to the (40b)
acoustic mode by Eq.179 in the WDSM case. One sees 2y 2 2 2 n 2
that the SLR anomaly is more symmetric in the WDSM Casewhgre 0p1(K)=(2B1 77+ DK)/m,  wpy(K)=(Bz7ie+
than in the SDSM caséFig. 1): Eq. (37) is basically the Dk?)/m. One sees the similarity to E€R5) which allows us
same as Eq173. to use the results of the Appendix to estimatedm Im X.,.

If B, andB, are of the same order of magnitude the discus-
sion for the case of one-component order param&ec. 11))
IV. TWO-COMPONENT ORDER PARAMETER is applicable forS.,; as well with the only difference being

There is nothing special in the case for the symmetricthat there are now two different correlation radii for the
phase but there are some specific features for the nonsyrf¥0 terms in the rhs of Eq40a. As long as they are of
metrical one. To illustrate them we shall consider separatelyin® Same order of magnitude it is not important for the order-

the cases of the commensurate and incommensurate nonsyR¥-magnitude estimations. To discuss ¥3(q,Q1~0) one
metrical phase. can use as well EqAl) substitutingA;(k) for A(k) and

A,(g—k) for A(g—Kk) [Alyz(k)zmwélz(k)] or vice versa.
Realizing that both forq=0 and forg~r; , the integral
is determined by~ A/yc and taking into account E¢13)
In this case we will restrict ourselves to the Landau freeone comes to the conclusion that the estimation of (86)

A. Commensurate phase

energy of the form is valid for this case as well, both fog=0 and for
g~rc1». Thus theq dispersion atq~I'/c is absent for
A B 3,(q,Q~0).
_ R, 2 P15 290 P2 5 9 2(Q,
O(m1,7m2)= 5 (it m)+ 7 (nit 7)™+ 5 7 Let us emphasize that, while the high-frequency damping

constant is the same for the two components of the order
parametefthere is, of course, some difference proprtional to
T.—T but it can be neglectedthe low-frequency damping
constants are different for the two components. They are of
with B,>0. The equlibrium values of the order-parameterthe same order of magnitude in theegion essential for the
components in the nonsymmetrical phase argi,  SLR but even in this region the difference between them is
=—A/B;, 72.=0. Analogously to Eq(20) one obtains for of the same order of magnitude as the constants themselves
the Fourier components of;(r,t) — 71, and 7,(r,t) (or even more, taking into account that order-of-magnitude

D
+ 5 [V7)?+(Vn2)] (39)
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estimations are quite rouglnd in general they have differ- becomes divergent aj—0 and the perturbation procedure
entq and temperature dependence. used is no longer applicable. It is possible, nevertheless to

To calculate the SLR rate one has to generalize(#gas  reformulate the pertubation theory in such a way that the first

) ) approximation remains valid even B,=0. The trick is to
F=Fotayn+ayni+bimtbyns;... . (4D develop the perturbation theory not for the reciprocal re-

sponse functions as in Sec. IV but for the response functions
themselves. The result of this section for the response func-
tion of %,(q) reads

The coefficients,,, b, are, in general, different for different
nuclei in the unit cell, and it can happen, in particular, thhat
or b, are zero for the nucleus in question. For the chse
=0 the estimations repeat those for the one-component order

parameter. For the cas®,=0 there are no losses due to 1

thermal conductivity and the “mixed” contribution is ab- X119, Q)= 5 - —
sent, to the first approximation. As these two contributions —Mw®+ 2B, 77+ Dk +il'1Q)
are negligible anyway and, fd,~B,, the damping con- 31,(0,Q)

stants forq~rc’l are of the same order of magnitude. The — > > > 5,
same can be said about the two SLR rates. In the general (—Mw™+ 2By 73+ DK™+l Q)
case the “mixed” contribution contains additional terms of (42)

the type( 7:(q,Q) 72(—a,— Q1)) and{7:(q,Q2,) n3(—a,

-0 that are nonzero because of the anharmonicity but L
can "gé shown to be negligible as well. y where, 11(q,Q) is given by Eq.(408. Now one can safely

setB,=0 and the divergencies arising are the real divergen-
cies of the response function gt~0, 2—0, because from
the rest of the perturbation series no stronger divergencies
The simplest case of an IC system corresponds to thappear if the condition€l), (10) are fulfilled. This statement
Landau free energy E¢38) with B,=0 (andB,;=B). Now is the classical version of the result by Vaks, Larkin, and

B. Incommensurate phase

71(r,t) — 710 corresponds to longitudinal fluctuatigampli-  Pikin'” who considered Heisenberg ferromagnet. The reason
tudon, to the harmonic approximatipand 7,(r,t) is the for the effectiveness of this version of the perturbation theory
transversal on¢phason, to the harmonic approximation is mutual compensation of the divergencies in the higher-

To find the transversal response function one can setrder terms which is quite typical for an IC phasee, e.g.,
B,=0 in Eqg. (40b) (the integrals remain finijeand taking Refs. 36—3Y. Let us mention as well that the static longitu-
into account, of course, th&,=0 as well in the nonrenor- dinal response functiol,(q) obtained by this method co-
malized transversal response functjéhmee first terms in Eq.  incides with that obtained by other authtf€! but we are
(39b)]. Therefore for the transversal damping constant thenot aware of calculations of the dynamic response function
above estimations are valid as well. The result of Ref. 6 foifor structural IC systems with the divergencies that are due to
the transversalphason contribution to the SLR rate remains the anharmonic longitudinal-transversal interaction taken
valid. into account.

The above method is not valid for the longitudinal re- Designating the limiB,=0 of the second term in the rhs
sponse function: the second term in the rhs of #Pa  of Eq. (409 as —4(B7,)°I1,(q,Q) one has

T ff I',dk dw
87*'m? {[(0—Q)2—cX(k—q)?>+T5(0—0)%}(— 0+ c?k2+iT0)’

(0,Q)= (43

where we have the possibility of improving the first-order where y,=mI",. For y,Q0<Dg? one can sef)=0 in the
perturbation formula substituting, for I', whereI', takes  denominator of the integral in E¢44). As a result one has
into account the renormalization described by E&pb) at  under this condition

B,=0. This substitution corresponds to a partial summation

of the perturbation series. We have mentioned already that T T I
I', has no essentidt dependence in the region of interest I1(a.9)= 87D E_'Q c2q?) (45)

and can be estimated according to E2[).
To reveal the main divergencies @t-0, g—0, one can In the opposite limity,Q0>Dq? one can sefj=0 in Eq.(44)
setm=0 in Eq. (43). Integrating overw one obtains to obtain

1-i
K2 K2—i Im,(Q)= . 46
H{0.0)= - [(g—k)2+k2—iQy,]dk (€2) 87D ([Q],) 2 (46)
80 | (a-k)[[D(g—k)*+ DK+ 307]
(44)  As an interpolation fodl,(qg,{}) one can use
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,(q.0)= T ( 1 CLETRE R O o L2 -
(42" 8702 | [D (207 m) 2+ | O[T T i o (6
- _%) (47)  One sees that the correction connected with the transversal
(Dg“+ 72|)) softness depends logarithmically on the Larmor frequency

but it is smaller than the frequency-independent part in the

Taking into accounm#0 leads to an additional diverging region of applicability of the perturbation theotg<1).

term in ImII(q,Q)=—iQlIl;»(q,Q2) that can be estimated

as
V. ORDER-DISORDER SYSTEMS

STT,y(q,0) = T i (48) Within the one-ion model there is no region of applicabil-
(0 87D%q I, ity of the perturbation theory for order-disorder syst&hi$
but the crystals studied experimentally are usually rather far
for g<I';/c. In the opposite limit, fog>I',/c, one finds  from this model and it might be of some interest to discuss,
within the perturbation theory, if the above considered ef-
1 (49) fects could be of some importance for order-disorder systems
as well. Such a discussion will be inevitably rather specula-
tive because, as we have seen, the anhamonicity governed
rrections to the low-frequency response function can be
etermined by the high-frequency order-parameter dynamics

-
5Ht2(q,ﬂ)=4ﬂ_—Dzaa-

One sees that at at small frequencies which we are interesté&
in (Q < i i . .
in (4 <T7) dlli2(q,2) can be neglected comparing with o™ e v i hardly known and not universal for the

lp;[rtg\(/?d(?s) tﬁgelga?i/nsqc.c()iﬁigugirzl\fgt’ebtlrjwtaztitt?wi lgr]zsf CO;tEqSorder—disorder systems. For the sake of illustration we shall

(49) and (A7) are the same, up to a numerical factor Thus@ssume that to obtain the order-disorder case one can just put
the specific “softness” of the transversal “displacements” m—0 in the above formulas.

influence the longitudinal response function for a relatively It is wortthwrluleh to d|sc|uss:|,_hof courfﬁ,dthedcase r?f the
small part of theq space and in the main part of this Spacenonsymme rical phase only. 'h€ new third-order anharmo-

the effect of the transversal fluctuations is similar to that ofniCi.tie.S appearing at the transition to this phase thf”‘t were of
one-component order parameter main interest above can be expected to be of less importance

We are now in position to discﬁss the SLR rate due to thd®" order-disorder systems: the latter are strongly anharmonic
transversal and longitudinal fluctuations. Under special conY their nature and some change of the anharmonicity can

ditions and in special points of the NMR spectrum one carhardly produce a drastic effect. Specifically one can set

probe these SLR rates separafelyet us restrict ourselves to m—>Q n Eq. .(Al) to see that_ for one-component the_ anhar-
the one-phonon processes monicity arising at the transition provides a correction pro-

The transversal SLR rate can be calculated using the Corp_ortional to¢ to the qriginal viscosity co_nstarﬁty), e., it is
ventional formulA but taking into account that the damping a part of the corrections to the mean-field theory due to the

constant [',) in the formula should have the order of mag- Cr'lt.'gafl flui:ltl:r?tlonﬁ For tanséc Fl)lhastﬁ eq(h47) tbecpmes
nitude given by Eq.30) and does not coincide with the valid for all tne wave vectorssmailer than the atomic one,

-1 H —
damping constant of the soft mode measured from neutron cﬂ ) with 2= 1.

light-scattering spectra. ST-! 1 Q
Qualitatively it is valid as well for the longitudinal fluc- Tllo” S——d ) _D’ (52)
tuations excluding the effect of the region of smalithat TN 2% O

should be discussed separately. Designating the longitudinal
damping constant f0tq~rg1 asI'; and redefining the zero-

. . . 2 — .
order response function just by replacifigoy T'; to incor- where it is estimated thddd</y~Q . The correction due

porate the nondivergent part of the renormalization one cah0 the Iongltudlnal—transversgl anharmonic mteractlpn may
e more here than in the displacement case but insignifi-

calculate the correction due to the smaldivergence. To cantly because of the loaarithm
reveal the role of this divergence it is enough to compare y 9 '

J Im x{9(a,Q,)dg and J Im 8x14(q,Q,)dq, (see Sec. )

the first integral being calculated for all tigeregion and the VI. CONCLUSIONS
second for the regiog<T';/c with We attempted to improve the theory of the SLR rate
anomalies at structural phase transitions taking into account
1 . .

(0)_ . the relevant results for the lattice response functions that

1T B2 D2 +iy,Q, were not taken into account in the previous versions of the
theory. The most remarkable of these results is, probably, a

iQL4Bwﬁth2 strong wave-vector dispersion of the low-frequency damping

(50 constant that influences essentially the results on the SLR
rate anomaly. An essential difference in the damping con-
stants for a different component of the order parameter might

wherey;=mI"; andlIl,, is given by Eq.(47). One finds for be considered as an unexpected result as well. A specific

the ratio of the second and the first integral: feature of the IC phase, the divergence of the transversal

5X11:(B77§e+ DQP+iy Q)2
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fluctuations at zero wave vectors, reveals itself in the Larmof‘transversal contamination” of the longitudinal contribution
frequency dependence of the longitudingamplitudon”) ~ somehow took place. .

SLR rate. However this dependence is rather weak, a loga- One of the most studied effect of the defects in IC phases
rithmic one, and proves to be more weak than it was foundS So-called “phason gap™ that has been reported repeatedly
. o for a review see Ref. 39The method to find the “phason

in some experimentgsee, e.g., Ref. 24 Therefore, the

o ) S ) gap” uses the assumption that the phaswansversaland
longitudinal-transverse interaction in ateal crystalconsid- o amplitudon(longitudina) damping constants are equal.

ered in this paper cannot explain the experiments, one caye have shown above that it is not the case. Still, as they are
Speculate that the defects which are known to influence dr&éxpected to be of the same order of magnitude, one may
matically the properties of IC phases might be responsibléiope that the order of magnitude of the reported “phason
for the disagreement. As well, one can suspect that thgaps” is fairly close to the real one.

APPENDIX

Integrating in Eq(26) over v one obtains

2
[A(k)+A(q—k)+2%}dk

Ty
I15(gq,Q2=0)= ggf v : (A1)
A(k)A(q—k)[[A(q—k)—A(k)]ZﬁLZE [A(k)+A(q—k)]]
whereA(k)zmwé(k)z —2A+DK?2. After integration over the spherical angles one obtains
(A 0=0 Ty fkat tan [ ka/k,(k?+r_ %+ q?%/4)1?] jkm In[ (k+q/2)%+r_%/(k—q/2)%+r_ 2 i
Z(q: - )_ 4’772D3 0 qkl(k2+l’(?2+q2/4)3/2 o q(k2+rc_2+q2/4)2 g
(A2)

wherek, = y/(mD)Y?=T'/c, ky~d~* andr_ 2= —2A/D. The characteristic wave vectky is important for what follows. It
is worthwhile to mention thalt1<rc’l in all the region of applicability of the perturbation theory.

Let us discuss first the dependence of the first integrdl} in Eq. (A2). It is seen that the main contribution to this integral
comes from the regiok=(r_ >+ q?/4)*2. So forq<k, the tan* can be replaced by its argument and one obtains

Kat k2dk T
o2 T 22 212
l1~2k; Jo (Krr. 2t q2a? 2 ki “(re “+q°4)~7% (A3)

where it is taken into account thh;t>rgl. For g>k, one can replace the tahby /2 to find

. [kt kdk P _
Iy~ kg 'q 1J'0 (k2+r72+q2/4)3’2%ﬂ-k1 'q l(rc2+q2/4) v, (A4)
C

One sees that at=k; the two formulas match perfectly.
The second integral in EqA2) (1,) can be estimated fcn|<rc’1. The logarithm can be approximated here &syZk?
+r-2+g?%4) to find

| ~2fkat K T (v 24 gty 2 (A5)
2 %o (KP+r_ %+g%4)%? 8¢ '

As k1<rc‘1 one can negledt, for q<rc‘l and, as the regioq>rc‘1 is of no importance to treat the spin-lattice relaxation rate
anomaly, we neglect it as well. Therefore, in theegions of our interest we can use, as a good approximation, the formula

T re
87Dl (1+q%r2/4)Y(1+qk, */2)°

5(q,2=0)~ (A6)

Forg>r_* this formula becomes very simple:

I5(q,Q2=0)~ (AT)

2wD%cq?”

For the order-of-magnitude estimations one can use this formula~f<1rc’l as well.
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