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The theory of spin-lattice relaxation~SLR!-rate anomaly at structural phase transitions proposed about 30
years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has
changed considerably. We use both the results of previous authors and perform original calculations of the
response functions when it is necessary. We consider displacive systems and use the perturbation theory to
treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the
order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the
resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the
one-phonon processes, the anomalous part being proportional to either (T2Tc)

21 or (T2Tc)
21/2 depending

on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of
applicabity of the theory~close to the phase transition! is estimated to be 102– 103 times more than the typical
value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appear-
ance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-
parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector
dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave
vector. In the case of two-component order parameter the damping constant for the component with nonzero
equilibrium value is different from that for the other component, the difference is of the same order of
magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the
mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known
to influence the static longitudinal response function. We calculate as well the dynamic response function to
find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the
longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly
weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on
SLR in incommensurate phase are discussed as well.@S0163-1829~97!08545-7#
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I. INTRODUCTION

The study of spin-lattice relaxation~SLR! rate (T1
21)

anomalies near structural phase transitions began 30 y
ago1 with observation of aT1

21 maximum at the ferroelectric
phase transition in NMR experiments on NaNO2. Similar
anomalies have been observed since then2 in KH2PO4 and at
many other phase transitions both in NMR and NQR exp
ments~for a recent review, see Ref. 3!. The theory used to
interpret these anomalies is basically the same that was
veloped about the same time,1,2,4,5and that is presented in th
most exhaustive form in Ref. 5 which we refer to below.

The conclusions of SLR theory depend essentially on
results or assumptions about the relevant lattice-dynamic
sponse functions, in our case about the dynamic respo
function of the order parameter. It should be emphasized
the response functions probed in a SLR experiment are fa
special: for low frequencies and, in principle, any wave v
tors, such functions are not probed directly, either in scat
560163-1829/97/56~21!/13785~11!/$10.00
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ing experiments or in low-frequency macroscopic ones~e.g.,
in the measurements of dielectric losses, for ferroelectri!.
So it was natural and inevitable that in the first theory of t
spin-lattice relaxation anomalies some assumptions were
tially made about the response functions. Specifically, it w
assumed that the order-parameter response function is th
an oscillator with damping with all the parameters being f
quency independent and only one of them having a temp
ture and wave-vector dependence: the eigenfrequency o
oscillator~the soft-mode frequency!. Neither were the orders
of magnitude of the parameters involved discussed: such
timations were in their initial stage at that time. Similar com
ments can be addressed to an important later developme
the theory: its application to incommensurate~IC! phases.6

Since then considerable progress has been made in un
standing the character of the order-parameter response f
tions for structural displacive transitions or, rather, for t
so-called displacive limit. Let us recall that in the displaci
limit it is supposed that the phase transition occurs in
13 785 © 1997 The American Physical Society
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13 786 56LEVANYUK, MINYUKOV, ETRILLARD, AND TOUDIC
weakly anharmonic crystal7–12 or, rather in a crystal that ca
be considered as a weakly anharmonic one in a broad
perature region~T!Tat, Tat is the atomic temperature
Tat;104–10 K! excluding a fairly narrow vicinity of the
phase transition~as long as the phase-transition temperat
Tc!Tat!. The condition for this vicinity reads10

uT2Tcu
Tc

,
Tc

Tat
, ~1!

and beyond it one can use a standard perturbation theo
take into account the effects of the anharmonicity. Tha
why it is possible to use a regular theoretical approach
treat dynamic properties of the displacive systems, bey
the region defined by Eq.~1!, and it is in difference with the
order-disorder systems where the anharmonicity is alw
large and should be modeled in some way~kinetic Ising
model or something of the kind!.

The main qualitative conclusion that can be made a
result of this progress is that the order-parameter respo
function is far more complicated that it was assumed in R
5,6. For ‘‘ordinary’’ ~not incommensurate! phase transitions
it reduces to the statement that the low-frequency damp
coefficient can be quite different from the high-frequen
one probed in neutron or light-scattering experiments.
some special cases it was already indicated in Refs. 1
but a decisive step was made by Cowley and Coombs15 who
argued that in the nonsymmetrical phase, due to a new th
order anharmonicity, the damping constant acquires str
frequency dispersion at frequencies much lower than
soft-mode one. They proposed a semiphenomenological
frequency response function with temperature depende
not only of the soft-mode frequency but of the other para
eters as well. Later some of these dependences have
corrected16 but the qualitative result of Cowley and Coom
remains intact. In addition, the temperature anomaly of
damping constant in the symmetrical phase was predi
long ago.14 One sees that there are enough reasons to re
sider the theory of Ref. 5. However, this reconsideration c
not only consist of application of the known results for t
order-parameter response function to the calculation of
SLR anomaly. The problem is that the known results refe
low frequencies andsmall wave vectorsand no study of the
wave-vector dependence has been made, to the best o
knowledge. It may be due to the idea that in the scal
region the wave-vector dependences have only one scale
reciprocal correlation radius (r c

21). But we are interested in
temperatures beyond the critical region and the scaling
pothesis is not applicable here. We will see that the wa
vector dependence at a scale which is less thanr c

21 proves to
be essential and important in the treatment of SLR.

For IC systems the importance of the third-order anh
monicity specific for the nonsymmetrical~IC! phase is well
understood. Here one of the aspects of this anharmonici
interaction between the logitudinal and the transversal or
parameter fluctuations which correspond, in the harmo
approximation, to amplitudon and phason. An IC phase in
ideal crystal is soft: there is no restoring force to the inh
mogeneous shift of the IC modulation, i.e., the fluctuation
the phase of IC modulation, the transversal fluctuations,
verge when the fluctuation vector goes to zero. This prop
m-
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is general for degenerated systems including Heisenb
magnetics and nematic liquid crystals17–21 where the effects
of these fluctuations were discussed long ago. The main
fect of the third-order anharmonicity is that not only th
transversal susceptibility is infinite atq→0 ~q is the wave
vector! but also the longitudinal one. For structural IC sy
tems the divergence of the longitudinal susceptibility w
discussed by Bruce and Cowley in their frequently cit
paper.22 They did not calculate, however, the dynamic lo
gitudinal response function which is necessary to treat
contribution of the longitudinal fluctuations to the SLR rat
Surprisingly, these calculation have not been made, des
the experimentalists repeatedly emphasizing their neces
~see, e.g., Refs. 23,24!. To perform these calculations is on
of the aims of the present paper.

To calculate the response functions of interest, we s
start from classical equations of motion for the order para
eter in the symmetrical phase treating then the effects
some of the anharmonic terms within first-order perturbat
theory. A part of the crystal anharmonicity will be taken in
account~phenomenologically! in the initial equations of mo-
tion by a phenomenological viscosity coefficient which w
will estimate according to the results of previous autho
This method allows us to avoid the partial summation of
infinite perturbation theory series that is required when o
calculates the low-frequency response function and assu
as the zero approximation, the response function of the
monic crystal. As temperature plays the role of a parame
in the equations, we do not take into account, by this meth
the part analogous to the thermoelastic losses
longitudinal-acoustic waves but calculate them separa
within a standard macroscopic treatment.25

The paper is organized as follows. In Sec II we pres
the formulas which will be used to calculateT1

21. In Sec. III
we discuss the case of one-component order parameter.
case proves to be the simplest one. In Sec. IV the cas
many-component order parameter is discussed with a sp
attention to incommensurate systems. In Sec. V we m
some comments about order-disorder systems. Finally,
VI contains a brief summary and a discussion of implicatio
of the theoretical results of the paper for interpretation of
experimental data.

II. SPIN-LATTICE RELAXATION TIME AND THE
ORDER-PARAMETER CORRELATION FUNCTIONS

The spin-lattice relaxation is determined by the probab
ties of transitions between the states of the Zeeman Ha
tonian due to perturbations caused by the latt
fluctuations.26 In general, the return of the nuclear magne
zation back to its thermal equilibrium value cannot be d
scribed by one exponent but in any case the temporal e
tions contain probabilities that are proportional to som
combinations of the spectral densities of local fluctuations
the electric-field-gradient tensor. These spectral densities
proportional to the spectral densities of fluctuations of
lattice variables among which we will single out those co
responding to the order parameter. It is, in effect, the lo
spectral density of the order-parameter fluctuations that
be discussed in the present paper. To demonstrate its spe
features is enough to consider the simplest case where
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can write the perturbation Hamiltonian as a productAF(t),
whereA is an operator acting on the spin variables andF(t)
is a function depending on the lattice variables. The gen
alization is straightforward. In this simplest case26

T1
215gJ~VL!, ~2!

whereg is a constant,VL is the Larmor frequency,

J~v!5E
2`

`

^F~ t !F~ t1t!&e2 ivtdt, ~3!

and ^ & designates the statistical average. Being intereste
the phase-transition anomaly we presentF as

F5F01a1h1a2h21•••, ~4!

whereh is the order parameter which, for the moment,
assume to have only one~real! component.

Using Eqs.~3! and ~4! one obtains

J~VL!5a1
2E D3q^uh~q,VL!u2&1a2

2E D3q^uh2~q,VL!u2&

1a1a2E D3q@^h~q,VL!h2~2q,2VL!&

1^h~q,2VL!h2~2q,VL!&#

[J11J21J12, ~5!

whereh(q,VL), h2(q,VL) are time and space Fourier tran
forms of h(r ,t) and h2(r ,t), D3q5d3q/(2p)3, and ^ &
means statistical average. The first term in the right-h
side~rhs! of Eq. ~5! corresponds to the one-phonon proce
the second to the two-phonon~Raman! process, and the third
to what can be called the ‘‘mixed’’ contribution. This con
tribution is absent, of course, for a harmonic lattice but
will be interested in anharmonic effects as well and there
no reason to neglect this contributionad hoc.

The correlation functions are related to the dynamic
sponse function for the order parameter determined by
formula:

h~q,VL!5x~q,VL!h~q,VL!, ~6!

whereh is the generalized force conjugated toh. One has27

^uh~q,VL!u2&5
T

pVL
Im x~q,VL!. ~7!

The dynamic response function of the order parameter ca
calculated from the equation of motion for the order para
eter which is obtainable from the continuous medium eff
tive potential energy which is the Landau free energy:

F~h!5
A

2
h21

B

4
h41

D

2
~¹h!2 ~8!

with addition of the inertial and the viscosity terms:

mḧ1gḣ1Ah2DDh1Bh35h. ~9!

This equation is supposed to be obtained as a resu
integration over all the degrees of freedom of the system
are those corresponding to the long-wave order-param
r-

in
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fluctuations~kd!1, k is the wave vector,d is the interatomic
distance!. As usual, the anharmonic interaction of the ord
parameter and other degrees of freedom is taken into acc
by the temperature dependence of the coefficientA5A8(T
2Tc) and by the viscosity term. In fact, even for a weak
anharmonic crystal, the exact equation is more complica
than Eq.~9!. In particular, the coefficientg proves to depend
essentially on the frequency~see below!. However, within
this paper we are interested in the response function for
frequency~VL is lower than any characteristic frequency
the system! and the wave vectors comparable with the ord
parameter correlation radius which, for the displacive lim
systems, is much larger than the interatomic distance e
far from the phase transition.10 Under such conditions the
coefficientg in Eq. ~9! can be considered as a constant b
in general, quite different from that obtainable from study
the form of the soft-mode line in neutron or Rama
scattering spectra~see below!. Also the anharmonic coeffi-
cient B can be considered as independent of the wave v
tors.

Our study will be centered on taking into account cons
tently the effects of the last term in the lhs of Eq.~9! in the
response function. Explicitly we shall make it only for th
cases where the results needed cannot be found in litera
referring otherwise to other authors. We will see below th
despite that a good part of the effects of the last term in
lhs of Eq.~9! has been discussed already, a part of the st
that is important for the theory of the SLR anomaly was n
made.

As it has been already mentioned in the displacive lim
the calculations can be made within the perturbation theor
uT2Tcu is not too small. In terms of the coefficients in Eq
~8!,~9! this condition reads

j5
BT

D3/2uAu1/2!1. ~10!

This is the condition of applicability of the Landau theory
well.27 Taking into account the estimations of the Land
coefficients in the displacive limit due to Vaks:10 A8;d25,
B;Tatd

27, D;Tatd
23, where Tat;104–105 K and the

‘‘atomic’’ ~maximum! value of the order parameter is es
mated asd, one comes to Eq.~1!.

III. ONE-COMPONENT ORDER PARAMETER

A. Symmetrical phase

To the zero approximation the response function is

x0~k,v!5
1

2mv21 ivg1A1Dk2 . ~10a!

Let us discuss the order of magnitude of the order-param
viscosity constantg or, rather, the soft-mode damping co
stantG5g/m. The calculations of this constant have be
made by many authors, for recent reviews see, Ref. 28.
convenient to discriminate the contributions due to the c
pling of the soft mode to other ‘‘hard’’ optical modes (Gh),
due to the coupling to acoustic modes (Ga) and due to the
anharmonicity within the soft-mode branch, i.e, the effect
the last term in the lhs of Eq.~9!, (Gc):
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G5Gh1Ga1Gc . ~11!

It was estimated by Stolen and Dransfeld29 that at T.TD
~TD is the Debye temperature!

Gh;VDS T

Tat
D 2

, ~12!

whereVD is the Debye frequency. AtT!TD this contribu-
tion is exponentially small at frequencies that are mu
smaller than the hard optical mode frequencies.

The coupling with the acoustic mode~the coupling term30

is the ‘‘striction’’ one, h2uii , uik is the strain tensor! gives
the contribution14,31

Ga;VD

T

Tat
, ~13!

if the frequency of theh vibrations is close to the frequenc
of the soft mode16 as it takes place, e.g., in neutron expe
ments. For small frequencies@v!(A/m)1/2[v0# the situa-
tion is more complicated.16 For the weakly dispersive sof
mode ~WDSM! (D/m)1/2!n, wheren is the sound speed
the estimation~13! remains valid for low frequencies as we
in the opposite case, for a strongly dispersive soft mo
~SDSM!, the contribution of the acoustic mode is negligib
An intermediate situation is possible as well, of course.
shall discuss below the two opposite cases.

The contribution of the anharmonic coupling within th
soft branch can be estimated as14

Gc;VDS T

Tat
D 2S Tat

T2Tc
D 1/2

. ~14!

This contribution is due to the fourth-order anharmoni
@term }h4 in Eq. ~8!# and does not exhibit essential fre
quency dependence. Comparing Eqs.~13! and ~14! one sees
that outside the critical region@see Eq.~1!# Gc,Ga and they
become comparable at the boundary of the critical regio

We see that in the SDSM case the temperature de
dences of the high-frequency and the low-frequency s
mode damping coefficients are quite different. The main c
tribution to the high-frequency damping coefficient is due
the interaction with the acoustic modes@Eq. ~13!# and, there-
fore, only a small anomaly is expected for this coefficie
beyond the critical region. At the same time the main con
bution to the low-frequency coefficient is due to the anh
monicity within the soft branch@compare Eqs.~14! and~12!#
and the anomaly is very strong.

With all the anharmonicities taken into account a go
approximation for the order-parameter low-frequency
sponse function is to write it in the same form as in Eq.~10a!
with g substituted formGc given by Eq.~14!. The renormal-
ization due to the anharmonicity of the coefficientA reduces
to a redefinition of the phase-transition temperature and
not reasonable to take into account explicitly. The only d
ference of this response function from that used in Ref. 5
the temperature dependence of the damping constant@see Eq.
~14!#. Using the result of Ref. 5 or Eqs.~7! and ~5!, one
obtains for the contribution of the direct processes@the first
term in the rhs of Eq.~5!#:
h

e
.
e

n-
t-
-

t
i-
-

-

is
-
is

J1~VL!5a1
2 mTGc

8p2D3/2

1

A1/2;a1
2 d2

VD
S Tc

Tat
D 2S Tc

T2Tc
D ,

~15!

where Eq. ~14! has been used, it was estimated th
(D/m)d22;VD

2 , as (D/m)1/25c is of order of magnitude of
the sound speed, and forD, A8 the same estimation has bee
used following Eq.~10!

To calculate the contribution of the two-phonon proces
it is enough to use the harmonic approximation neglect
the damping. As a result one obtains

J2~VL!'a2
2 1

16p

m1/2T2

D5/2 @qmax22~A/D !1/2#. ~16!

It is the same temperature dependence as in Ref. 5 bu
have calculated the coefficients as well. Estimatingqmax as
d21 one can see that atA50 the value ofJ2(VL) given by
Eq. ~16! corresponds to a standard estimation of the con
bution of the two-phonon processes to the SLR rate irresp
tive of a phase transition.26 That is, this value is of the sam
order of magitude as the ‘‘background value’’ of the SL
J0 , for an ideal crystal and without interaction between t
relaxing centers. Using the same estimation as after Eq.~15!
and estimating as wella1;a2d, one sees that

J0;a1
2 d2

VD

T2

Tat
2 , ~17!

where a numerical factor is ignored. Comparing with E
~15! one sees that in the SDSM case the anomalous pa
the SLR rate is more than its ‘‘background’’ value in a ve
broad temperature region (T2Tc,Tc), and at the boundary
of applicability of the perturbation theory~i.e., at the bound-
ary of the critical region!, it is more than the backgroun
value by a factor of the order of value of (Tat/Tc), i.e.,
102– 103 times.

The anomalous part of the SLR rate is even more in
case of WDSM. Substituting in Eq.~15! Ga given by Eq.
~13! for Gc one finds that in this case

J1~VL!;a1
2 d2

VD
S Tc

Tat
D 3/2S Tc

T2Tc
D 1/2

. ~17a!

One sees that the value ofJ1 given by Eq.~17a! is larger
than that given by Eq.~15! in the whole region of applica-
bility of the perturbation theory@Eq. ~1!#. The ‘‘mixed’’ con-
tribution @the third term in the rhs of Eq.~5!# is absent in the
symmetrical phase within our treatment.

B. Nonsymmetrical phase

One has to take into account now that the order param
has a nonzero equlibrium value. To the zero approximat
i.e., neglecting theh fluctuations one has

he
252A/B. ~18!

To the approximation used in this paper this formula rema
valid with the fluctuations taken into account as well, th
effect reduces to a renormalization of the phase-transi
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temperature. In Eq.~9! it is convenient now to single outhe
andh(r ,t)2he . The latter function we represent in the Fo
rier form:

h~r ,t !2he5(
k

h~k,t !exp~ ikr !, ~19!

and write the Eq.~9! as

mḧ~q!1gḣ~q!1~22A1Dq2!h~q!

13Bhe(
k

h~k!h~q2k!5h~q,t !, ~20!

where we have omitted the term of the third order inh~k!,
i.e., the fourth-order anharmonocity. The effect of this anh
monicity has been discussed already for the symmetr
phase, it is basically the same for the nonsymmetrical
and we shall use the above results at the proper moment.
aim now is to calculate the order-parameter response fu
tion taking into account the third-order anharmonicity d
scribed by the last term in the lhs of Eq.~20!, i.e., to calcu-
late h~q,V! in the presense of the forceh(q,V) averaging
over the fluctuations ofh~k! with kÞq.

To this end we write Eq.~20! in the form

~2mV21 igV22A1Dq2!h~q,V!

5h~q,V!23Bhe(
k
E h~k,v!h~q2k,V2v!dv.

~21!

The second term in the rhs plays the role of an additio
force conjugated toh~q!. A part of this force is independen
of h(q,t) and describes interaction between the fluctuati
of h~q! and the rest of theh fluctuations in the absence of th
forceh. This part is of no importance for us because we
i-
is

ec

-
th
ha

rd
id
r-
al
e
ur
c-
-

l

s

e

interested just in the response of the system to the actio
the force. Therefore, the second term in the rhs of Eq.~21!
should be replaced, to the first approximation, by

26Bhe(
k
E h8~k,v!h~0!~q2k,V2v!dv, ~22!

whereh8~k,v! is the change in the random variableh~k,v!
due to action of the forceh(q,V), h (0)(k,v) represents the
fluctuations in the absence of the force. One sees from
~20! that, to the first approximation,

h8~k,v!5
26Bheh

0~q,V!h~0!~2q1k,2V1v!

2mv21 igv22A1Dk2 ,

~23!

where h0(q,V)5x (0)(q,V)h(q,V) and, for the nonsym-
metrical phase,

x~0!~q,V!5
1

2mV222A1Dq21 igV

[
1

m@2V21v0
2~q!1 iGV#

, ~24!

wherev0(q) is the soft-mode frequency. Thus, to first a
proximation, the response function

x21~1!~q,V!5x21~0!~q,V!2~6Bhe!
2

3(
k
E ^uh~0!~q2k,V2vu2&

m@2v21v0
2~k!1 iGv#

dv.

~25!

Designating the second term in the rhs of Eq.~25! as
((q,V)52(6Bhe)

2P(q,V) one obtains
P~q,V!5
T

8p4m2 E E Gdk dv

$@~v2V!22v0
2~k2q!#21G2~v2V!2%@2v21v0

2~k!1 iGv#
, ~26!
tant
se

p-
r

r-
ase.

-
just
where we have made use of Eqs.~7! and ~24! to calculate
^uh (0)(k,v)u2&. It is important that the integrand is max
mum atv in the region of the soft-mode frequencies. Th
means that the damping constant in the integral is, in eff
the high-frequency one.

The real part ofP(q,V)5P1(q,V)1 iVP2(q,V) is of
no interest for us: asVL is smaller than any of the charac
teristic frequencies of the system it provides, in effect,
first fluctuation correction to the static response function t
had been calculated earlier~see, e.g., Refs. 9,10!. The func-
tion P2(q50,V) has already been calculated.16 One finds

P2~q50,V!5
Trc

8pD2

G

G21V2 . ~27!

One sees that the contribution of the considered third-o
anharmonicity to the damping constant decreases rap
t,

e
t

er
ly

with V at V.G and, asv0@G in the temperature region
under discussion, the high-frequency damping cons
@G(v0)[G0# is almost the same as in the symmetrical pha
and can be estimated according to Eq.~13!.

It is not the case, however, for the low-frequency dam
ing constant. Using Eq.~27! and omitting a numerical facto
which is close to unity one gets

V21 Im S~q,V50![mdG~0!'
TB

D3/2

uAu1/2

G0
, ~28!

where dG~0! is the increase of the low-frequency orde
parameter damping constant in the nonsymmetrical ph
One sees thatdG(0)}(Tc2T)1/2. It is important that
dG(0).G0 in all the region of applicability of the perturba
tion theory. Indeed, close enough to the phase transition,
at the boundary of applicability of the Landau~and the per-
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turbation! theory the first factor in the rhs of Eq.~30! is of
the order of magnitude of unity@see Eq.~10!# and the second
factor can be presented asv0(v0 /G0). At the boundary of
applicability of the Landau theoryv0;G0 , as one sees from
Eq. ~13!, the estimation10 v0;VDu(T2Tc)/Tatu1/2, and Eq.
~1!. Therefore at the boundary of applicability of the Land
theory dG(0)'G0 . As dG(0)}(Tc2T)1/2, while G0
changes slowly with temperature, one concludes thatdG~0!
exceedsG0 in all the regions of applicability of the pertur
bation theory.

Thus the relation between the low- and high-frequen
order-parameter damping constants is quite different~in the
region of applicability of the perturbation theory! in the sym-
metrical and nonsymmetrical phase. In the symmetr
phase, the low-frequency damping constant ismuch smaller
thanG0 in the SDSM case and is of the same order of m
nitude in the WDSM case, while in the nonsymmetric
phase it ismuch bigger. Using Eq.~13! and the above esti
mations of the coefficients one can present Eq.~28! in the
form

dG~0!;VDS Tc2T

Tat
D 1/2

;v0 . ~29!

Let us suppose for a moment that the wave-vector dep
dence of the low-frequency damping constant can
negected. Using Eq.~15! with substitutionGc by dG~0! given
by Eq.~29! one comes to the conclusion that the contribut
of the direct processes does not depend on temperature i
nonsymmetrical phase and, comparing with Eq.~16! one
concludes that the one-phonon contribution is larger than
two-phonon one by a factor of about (Tat/Tc), i.e., by 2–3
orders of magnitude. We shall see that the both conclus
are not correct due to the wave-vector dependence
Im S~q,V'0! which we will now study.

The functionP2(q,V50) is calculated and discussed
the Appendix. The value of the spin-lattice relaxation rate
determined by this function in the regionq;r c

21 which is
different from the function forq'0 due to a dispersion in
the regionq;G0 /c, c5(D/m)1/2. Taking this into account
and using Eq.~47! one obtains, to a reasonable approxim
tion for this region:

V21 Im S~q'r c
21,V50![mdG~q'r c

21!;
TB

Dc
.

~30!

Now we will take into account that the changes of t
order parameter in the nonsymmetrical phase lead to cha
in temperature. The influence of this coupling on the ord
parameter response function has been discussed by se
authors.32–35 For the corresponding contributionx21(q,V)
2x21(0)(q,V)5ST(q,V) one has

ST~q,V!5 iVT
A82he

2

iVC1kq2 , ~31!

wherek is the thermal conductivity coefficient,C is the spe-
cific heat per unit volume. Let us compare the two terms
the denominator in the rhs of Eq.~31! for q;r c

21 because
we are interested just in this region. ForT>TD the thermal
conductivity coefficient in an ideal dielectric crystal can
y
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estimated as28 (Tat/T)VDd21. EstimatingC;d23 and tak-
ing into account thatr c

22;d22uT2Tcu/Tat ~one has to use
the estimations of the coefficients in the end of Sec. III! one
finds thatkr c

22C21;VDuT2Tcu/Tc . Therefore, even at the
boundary of the applicability of the perturbation theory@Eq.
~1!# the Larmor frequency can be considered as quite sm
Thus one obtains

V21 Im ST'T
A82D

Bk
. ~32!

Comparing Eqs.~32! and ~30! and using the above estima
tions one sees that the rhs of Eq.~32! is smaller than the rhs
of Eq. ~30! aboutTat/Tc times. This difference can be less
real crystals because the defects can strongly diminish
thermal conductivity at not so high temperatures, while E
~30! contains, at the end, thermodynamic coefficients wh
are less sensitive to the defects than the kinetic ones.

Now we will calculate the contribution of the ‘‘mixed’’
term, i.e., of the last term in the rhs of Eq.~5!. The correla-
tion function

^h~q,V!h2~2q,2V!&5(
k
E ^h~q,V!h~k,v!

3h~2q2k,2V2v!&dv

~33!

is zero if the anharmonicity is neglected. To take it in
account the first approximation, one can use Eq.~23! consid-
ering h (0)(q,V) as the fluctuation in the harmonic approx
mation. One finds

^h~q,V!h2~2q;2V!&

5218Bhe^uh~0!~q,V!u2&

3(
k
E uh~0!~q2k,V2v!u2&

m@2v21v0
2~k!1 iGv#

dv. ~34!

Comparing Eqs.~34! and ~25! one sees that

^h~q,V!h2~2q,2V!&1^h~q,2V!h2~2q,V!&

5^uh~0!~q,V!u2&
S1~q,V!

Bhe
, ~35!

where it is taken into account thatS1(q,V) and S2(q,V)
are, correspondingly, even and odd functions ofV!. One sees
that it is easy to compare the ‘‘mixed’’ contribution with th
harmonic approximation for the first-order one@the first term
in the rhs of Eq.~5!#, one has just to compare the fraction
the rhs of Eq.~35! with unity. One can well use the stati
valueS1(q,V50) that has already been calculated:10

S1~q!5
18

2p

B2he
2T

D2q
tan21

qrc

2
. ~36!

Using the estimations of the coefficients~Sec. II! one finds
that forq;r c

21 the fraction is equal toTc /Tat by the order of
magnitude and consequently the ‘‘mixed’’ contribution
small.
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Therefore, to estimate the contribution of the third-ord
anharmonicity arising in the nonsymmetrical phase to
spin-lattice relaxation rate anomaly (J1,3), one can substitute
the last term in Eq.~30! for Gc in Eq. ~15! to obtain

J1,3'a1
2 d2

VD
S Tc

Tat
D 3/2S Tc

uT2Tcu
D 1/2

. ~37!

The contribution of the fourth-order anharmonicity is st
given by Eq.~15! and the contribution due to coupling to th
acoustic mode by Eq.~17a! in the WDSM case. One see
that the SLR anomaly is more symmetric in the WDSM ca
than in the SDSM case~Fig. 1!: Eq. ~37! is basically the
same as Eq.~17a!.

IV. TWO-COMPONENT ORDER PARAMETER

There is nothing special in the case for the symmetr
phase but there are some specific features for the nons
metrical one. To illustrate them we shall consider separat
the cases of the commensurate and incommensurate non
metrical phase.

A. Commensurate phase

In this case we will restrict ourselves to the Landau fr
energy of the form

F~h1 ,h2!5
A

2
~h1

21h2
2!1

B1

4
~h1

21h2
2!21

B2

2
h1

2h2
2

1
D

2
@¹h1!21~¹h2!2] ~38!

with B2.0. The equlibrium values of the order-parame
components in the nonsymmetrical phase are:h1e

2

52A/B1 , h2e50. Analogously to Eq.~20! one obtains for
the Fourier components ofh1(r ,t)2h1e andh2(r ,t)

FIG. 1. Qualitative form of the spin-lattice relaxation-ra
anomaly at phase transition in an ideal displacive system~see text!.
r
e

e

l
m-
y,
m-

e

r

mḧ1~q!1gḣ1~q!1~2B1h1e
2 1Dq2!h1~q!

13B1h1e(
k

h1~q2k!1~B11B2!h1e

3(
k

h2~k!h2~q2k!5h1~q,t !, ~39a!

mḧ2~q!1gḣ2~q!1~B2h1e
2 1Dq2!h2~q!

12~B11B2!h1e(
k

h2~k!h1~q2k!5h2~q,t !, ~39b!

In a similar way as in Sec. III one finds

S1~q,V!5236B1
2h1e

2 (
k
E ^uh1

~0!~q2k,V2v!u2&

m@2v21v01
2 ~k!1 iGv#

dv

24~B11B2!2h1e
2

3(
k
E ^uh2

~0!~q2k,V2v!u2&
m@2v21v02

2 ~k!1 iGv#
dv, ~40a!

S2~q,V!524~B11B2!2h1e
2

3(
k
E ^uh1

~0!~q2k,V2v!u2&

m@2v21v02
2 ~k!1 iGv#

dv

24~B11B2!2h1e
2

3(
k
E ^uh2

~0!~q2k,V2v!u2&

m@2v21v01
2 ~k!1 iGv#

dv,

~40b!

where v01
2 (k)5(2B1h1e

2 1Dk2)/m, v02
2 (k)5(B2h1e

2 1
Dk2)/m. One sees the similarity to Eq.~25! which allows us
to use the results of the Appendix to estimate ImS1, Im S2.
If B1 andB2 are of the same order of magnitude the disc
sion for the case of one-component order parameter~Sec. III!
is applicable forS11 as well with the only difference being
that there are now two different correlation radii for th
two terms in the rhs of Eq.~40a!. As long as they are of
the same order of magnitude it is not important for the ord
by-magnitude estimations. To discuss ImS2(q,V'0) one
can use as well Eq.~A1! substitutingA1(k) for A(k) and
A2(q2k) for A(q2k) @A1,2(k)5mv01,2

2 (k)# or vice versa.
Realizing that both forq50 and for q;r c1,2 the integral
is determined byk;A/gc and taking into account Eq.~13!
one comes to the conclusion that the estimation of Eq.~30!
is valid for this case as well, both forq50 and for
q;r c1,2. Thus theq dispersion atq;G/c is absent for
S2(q,V'0).

Let us emphasize that, while the high-frequency damp
constant is the same for the two components of the or
parameter~there is, of course, some difference proprtional
Tc2T but it can be neglected!, the low-frequency damping
constants are different for the two components. They are
the same order of magnitude in thek region essential for the
SLR but even in this region the difference between them
of the same order of magnitude as the constants themse
~or even more, taking into account that order-of-magnitu
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estimations are quite rough! and in general they have differ
ent q and temperature dependence.

To calculate the SLR rate one has to generalize Eq.~4! as

F5F01a1h11a2h1
21b1h21b2h2

2 . . . . ~41!

The coefficientsan , bn are, in general, different for differen
nuclei in the unit cell, and it can happen, in particular, thatan
or bn are zero for the nucleus in question. For the casebn
50 the estimations repeat those for the one-component o
parameter. For the casean50 there are no losses due
thermal conductivity and the ‘‘mixed’’ contribution is ab
sent, to the first approximation. As these two contributio
are negligible anyway and, forB1;B2 , the damping con-
stants forq;r c

21 are of the same order of magnitude. T
same can be said about the two SLR rates. In the gen
case the ‘‘mixed’’ contribution contains additional terms
the type^h1(q,VL)h2(2q,2VL)& and ^h1(q,VL)h2

2(2q,
2VL)& that are nonzero because of the anharmonicity
can be shown to be negligible as well.

B. Incommensurate phase

The simplest case of an IC system corresponds to
Landau free energy Eq.~38! with B250 ~andB1[B!. Now
h1(r ,t)2h1e corresponds to longitudinal fluctuation~ampli-
tudon, to the harmonic approximation! and h2(r ,t) is the
transversal one~phason, to the harmonic approximation!.

To find the transversal response function one can
B250 in Eq. ~40b! ~the integrals remain finite! and taking
into account, of course, thatB250 as well in the nonrenor
malized transversal response function@three first terms in Eq.
~39b!#. Therefore for the transversal damping constant
above estimations are valid as well. The result of Ref. 6
the transversal~phason! contribution to the SLR rate remain
valid.

The above method is not valid for the longitudinal r
sponse function: the second term in the rhs of Eq.~40a!
er

io
th
st
er

s

ral

t

e

et

e
r

becomes divergent atq→0 and the perturbation procedur
used is no longer applicable. It is possible, nevertheles
reformulate the pertubation theory in such a way that the fi
approximation remains valid even atB250. The trick is to
develop the perturbation theory not for the reciprocal
sponse functions as in Sec. IV but for the response functi
themselves. The result of this section for the response fu
tion of h1(q) reads

x11~q,V!5
1

2mv212B1h1e
2 1Dk21 iG1V

2
S11~q,V!

~2mv212B1h1e
2 1Dk21 iG1V!2 ,

~42!

whereS11(q,V) is given by Eq.~40a!. Now one can safely
setB250 and the divergencies arising are the real diverg
cies of the response function atq→0, V→0, because from
the rest of the perturbation series no stronger divergen
appear if the conditions~1!, ~10! are fulfilled. This statemen
is the classical version of the result by Vaks, Larkin, a
Pikin17 who considered Heisenberg ferromagnet. The rea
for the effectiveness of this version of the perturbation the
is mutual compensation of the divergencies in the high
order terms which is quite typical for an IC phase~see, e.g.,
Refs. 36–37!. Let us mention as well that the static longitu
dinal response functionx11(q) obtained by this method co
incides with that obtained by other authors19–21 but we are
not aware of calculations of the dynamic response funct
for structural IC systems with the divergencies that are du
the anharmonic longitudinal-transversal interaction tak
into account.

Designating the limitB250 of the second term in the rh
of Eq. ~40a! as24(Bh1e)

2P t(q,V) one has
P t~q,V!5
T

8p4m2 E E G2dk dv

$@~v2V!22c2~k2q!2#21G2
2~v2V!2%~2v21c2k21 iG2v!

, ~43!
where we have the possibility of improving the first-ord
perturbation formula substitutingG2 for G, whereG2 takes
into account the renormalization described by Eq.~40b! at
B250. This substitution corresponds to a partial summat
of the perturbation series. We have mentioned already
G2 has no essentialk dependence in the region of intere
and can be estimated according to Eq.~30!.

To reveal the main divergencies atV→0, q→0, one can
setm50 in Eq. ~43!. Integrating overv one obtains

P t~q,V!5
T

8p3 E @~q2k!21k22 iVg2#dk

~q2k!2@@D~q2k!21Dk2#21g2
2V2#

,

~44!
n
at

where g25mG2 . For g2V!Dq2 one can setV50 in the
denominator of the integral in Eq.~44!. As a result one has
under this condition

P t~q,V!5
T

8pD2q S p

2
2 iV

G2

c2q2D . ~45!

In the opposite limitg2V@Dq2 one can setq50 in Eq.~44!
to obtain

P t~V!5
T

8pD3/2

12 i

~ uVug2!1/2. ~46!

As an interpolation forP t(q,V) one can use
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P t~q,V!5
T

8pD3/2 S 1

@D~2q/p!21g2uVu#1/2

2
ig2V

~Dq21g2uVu!3/2D . ~47!

Taking into accountmÞ0 leads to an additional divergin
term in ImPt(q,V)52 iVP t2(q,V) that can be estimate
as

dP t2~q,V!5
T

8pD2q

1

G2
~48!

for q!G2 /c. In the opposite limit, forq@G2 /c, one finds

dP t2~q,V!5
T

4pD2q

1

cq
. ~49!

One sees that at at small frequencies which we are intere
in (VL!G2) dP t2(q,V) can be neglected comparing wit
P t2(q,V) given by Eq.~47! if q!G2 /c, but atq@G2 /c it
provides the leading contribution. Note that the rhs of E
~49! and ~A7! are the same, up to a numerical factor. Th
the specific ‘‘softness’’ of the transversal ‘‘displacement
influence the longitudinal response function for a relativ
small part of theq space and in the main part of this spa
the effect of the transversal fluctuations is similar to that
one-component order parameter.

We are now in position to discuss the SLR rate due to
transversal and longitudinal fluctuations. Under special c
ditions and in special points of the NMR spectrum one c
probe these SLR rates separately.6 Let us restrict ourselves to
the one-phonon processes.

The transversal SLR rate can be calculated using the
ventional formula6 but taking into account that the dampin
constant (G2) in the formula should have the order of ma
nitude given by Eq.~30! and does not coincide with th
damping constant of the soft mode measured from neutro
light-scattering spectra.

Qualitatively it is valid as well for the longitudinal fluc
tuations excluding the effect of the region of smallq that
should be discussed separately. Designating the longitud
damping constant forq;r c

21 asG1 and redefining the zero
order response function just by replacingG by G1 to incor-
porate the nondivergent part of the renormalization one
calculate the correction due to the small-q divergence. To
reveal the role of this divergence it is enough to comp
* Im x11

(0)(q,V1)dq and * Im dx11(q,V1)dq, ~see Sec. II!
the first integral being calculated for all theq region and the
second for the regionq,G2 /c with

x11
~0!5

1

Bh1e
2 1Dq21 ig1VL

;

dx115
iVL4Bh1e

2 P t2

~Bh1e
2 1Dq21 ig1VL!2 , ~50!

whereg15mG1 andP t2 is given by Eq.~47!. One finds for
the ratio of the second and the first integral:
ted

.
s

f

e
-

n

n-

or

al

n

e

dT1l
21

T1l
21~0! '

1

23/2p2

G2

G1
j ln

G2

VL
. ~51!

One sees that the correction connected with the transve
softness depends logarithmically on the Larmor freque
but it is smaller than the frequency-independent part in
region of applicability of the perturbation theory~j!1!.

V. ORDER-DISORDER SYSTEMS

Within the one-ion model there is no region of applicab
ity of the perturbation theory for order-disorder systems10,11

but the crystals studied experimentally are usually rather
from this model and it might be of some interest to discu
within the perturbation theory, if the above considered
fects could be of some importance for order-disorder syste
as well. Such a discussion will be inevitably rather specu
tive because, as we have seen, the anhamonicity gove
corrections to the low-frequency response function can
determined by the high-frequency order-parameter dynam
and the latter is hardly known and not universal for t
order-disorder systems. For the sake of illustration we s
assume that to obtain the order-disorder case one can jus
m→0 in the above formulas.

It is worthwhile to discuss, of course, the case of t
nonsymmetrical phase only. The new third-order anharm
nicities appearing at the transition to this phase that were
main interest above can be expected to be of less importa
for order-disorder systems: the latter are strongly anharmo
by their nature and some change of the anharmonicity
hardly produce a drastic effect. Specifically one can
m→0 in Eq. ~A1! to see that for one-component the anh
monicity arising at the transition provides a correction p
portional toj to the original viscosity constant~g!, i.e., it is
a part of the corrections to the mean-field theory due to
critical fluctuations.38 For an IC phase Eq.~47! becomes
valid for all the wave vectors~smaller than the atomic one
d21! with g25g1 .

dT1l
21

T1l
21~0! '

1

23/2p2 j ln
VD

VL
, ~52!

where it is estimated thatDd2/g;VD . The correction due
to the longitudinal-transversal anharmonic interaction m
be more here than in the displacement case but insig
cantly because of the logarithm.

VI. CONCLUSIONS

We attempted to improve the theory of the SLR ra
anomalies at structural phase transitions taking into acco
the relevant results for the lattice response functions
were not taken into account in the previous versions of
theory. The most remarkable of these results is, probabl
strong wave-vector dispersion of the low-frequency damp
constant that influences essentially the results on the S
rate anomaly. An essential difference in the damping c
stants for a different component of the order parameter m
be considered as an unexpected result as well. A spe
feature of the IC phase, the divergence of the transve
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fluctuations at zero wave vectors, reveals itself in the Larm
frequency dependence of the longitudinal~‘‘amplitudon’’ !
SLR rate. However this dependence is rather weak, a lo
rithmic one, and proves to be more weak than it was fou
in some experiments~see, e.g., Ref. 24!. Therefore, the
longitudinal-transverse interaction in anideal crystalconsid-
ered in this paper cannot explain the experiments, one
speculate that the defects which are known to influence
matically the properties of IC phases might be respons
for the disagreement. As well, one can suspect that
r

a-
d

an
a-
le
e

‘‘transversal contamination’’ of the longitudinal contributio
somehow took place.

One of the most studied effect of the defects in IC pha
is so-called ‘‘phason gap’’ that has been reported repeate
~for a review see Ref. 39!. The method to find the ‘‘phason
gap’’ uses the assumption that the phason~transversal! and
the amplitudon~longitudinal! damping constants are equa
We have shown above that it is not the case. Still, as they
expected to be of the same order of magnitude, one m
hope that the order of magnitude of the reported ‘‘phas
gaps’’ is fairly close to the real one.
al

ate
mula
APPENDIX

Integrating in Eq.~26! over v one obtains

P2~q,V50!5
Tg

8p3 E FA~k!1A~q2k!12
g2

m Gdk

A~k!A~q2k!H @A~q2k!2A~k!#212
g2

m
@A~k!1A~q2k!#J , ~A1!

whereA(k)5mv0
2(k)522A1Dk2. After integration over the spherical angles one obtains

P2~q,V50!5
Tg

4p2D3 F E
0

kat tan21@kq/k1~k21r c
221q2/4!1/2#

qk1~k21r c
221q2/4!3/2 kdk1E

0

kat ln@~k1q/2!21r c
22/~k2q/2!21r c

22#

q~k21r c
221q2/4!2 kdkG ,

~A2!

wherek15g/(mD)1/25G/c, kat;d21 andr c
22522A/D. The characteristic wave vectork1 is important for what follows. It

is worthwhile to mention thatk1!r c
21 in all the region of applicability of the perturbation theory.

Let us discuss first theq dependence of the first integral (I 1) in Eq. ~A2!. It is seen that the main contribution to this integr
comes from the regionk<(r c

221q2/4)1/2. So forq!k1 the tan21 can be replaced by its argument and one obtains

I 1'2k1
22E

0

kat k2dk

~k21r c
221q2/4!2 '

p

2
k1

22~r c
221q2/4!21/2, ~A3!

where it is taken into account thatkat@r c
21. For q@k1 one can replace the tan21 by p/2 to find

I 1'pk1
21q21E

0

kat kdk

~k21r c
221q2/4!3/2'pk1

21q21~r c
221q2/4!21/2. ~A4!

One sees that atq5k1 the two formulas match perfectly.
The second integral in Eq.~A2! (I 2) can be estimated forq!r c

21. The logarithm can be approximated here as 2kq/(k2

1r c
221q2/4) to find

I 2'2E
0

kat k2dk

~k21r c
221q2/4!3/2'

p

8
~r c

221q2/4!23/2. ~A5!

As k1!r c
21 one can neglectI 2 for q!r c

21 and, as the regionq@r c
21 is of no importance to treat the spin-lattice relaxation r

anomaly, we neglect it as well. Therefore, in theq regions of our interest we can use, as a good approximation, the for

P2~q,V50!'
T

8pD2G

r c

~11q2r c
2/4!1/2~11qk1

21/2!
. ~A6!

For q@r c
21 this formula becomes very simple:

P2~q,V50!'
T

2pD2cq2 . ~A7!

For the order-of-magnitude estimations one can use this formula forq;r c
21 as well.
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