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Sierpinski gasket in a magnetic field: Electron states and transmission characteristics
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The Sierpinski gasket fractal has been studied in the presence of a magnetic field applied perpendicular to
the plane of the fractal. The discretized Satinger equation for a single electron is solved using an exact
real-space decimation technique. An infinite number of energy eigenvalues exist that give rise to perfectly
extended eigenstates on this fractal. A prescription for their evaluation is proposed. Aharonov-Bohm oscilla-
tions in the transmission coefficient have been investigated in the case of this fractal lattice. The nature of
oscillations for different electron energies and its dependence on the system size as well as on the boundary
sites are discussed in detdi80163-182607)02745-§

The electronic and other physical properties of regular In this paper we discuss the case of a Sierpinski gasket
fractal lattices have been quite popular subjects of study ifiractal in a magnetic field applied perpendicular to the plane
condensed matter and statistical physics for many ye8rs. of the fractal. We use a real-space renormalization-group
A very well-studied model has been the Sierpinski gaskefRSRG scheme. Our interest is twofold. First, we wish to
(SG). In 1982, Domanyet al® solved the Schdinger equa- reexamine the effect of a magnetic field on the energy spec-
tion for a single tightly bound electron on a SG using atrum of the infinite gasket. In particular, we calculate the
real-space decimation scheme. The energy levels are fourgigenvalues that will correspond to the extended states in the
to be discrete, very closely spaced, and highly degeneratpresence of a magnetic field. Second, we investigate the
These gaskets have the interesting property that they are seftharonov-Bohm oscillations in the transmission coefficient
similar under a scale transformation and have a hierarchy dpr arbitrarily large fractal lattices in the presence of a mag-
loops. This structure leads to a Cantor set energy spectrufetic field. A magnetic field is already known to produce
and to the localization of almost all the one-electron states agUch oscillations in the cgnductamjer transmittance in
has been observed in Ref. 1. This localization is structurd@rious physical systentS~'” Even in the case of a simple
induced and not disorder induced as in the case of Andersdipht-binding ring of atoms one gets interesting observations
localization. Rammal and ToulouUsextended the earlier feg?rding the periodic b_ehavior of th_e conductance, as well
work on the SG to include a magnetic field given perpen—as its dependence on d_n‘ferent physical pgramé?elrkaw-
dicular to the plane of the gasket. Such a field, as was showf’S" @ ?t“dY of osqllatlons of t_he transmittance for fractal
in a later publication by Banavast al.® changes the quali- lattices is still lacking. As a S|erp|ns_k| gasket possesses

. ' . loops at all scales of length, the behavior of the transmission
tative feature of the energy spectrum. A majority of the

ienf . b ded in ch H coefficient as a function of the magnetic field, to our mind, is
eigeniunctions become extended In character. However, &oing to be a highly interesting study. We propose to inves-

precise determination of these eigenfunctions or the corrjgate in detail the dependence of the period of oscillations
sponding eigenvalues could not be made. Their conclusiongy the size of the lattice along with the effect of boundary
were based on a numerically done “escape rate” countingsites on the transmittance and its period for this particular
and studying the inverse participation ratio at energies obfrgctal.

tained by diagonalizing a lattice of a finite number of sites.  Qur results are quite interesting. We find thatEat €,

Very recently, interest in the electronic spectrum of someyheree is the site energy of the fractal lattice afdis the
regular fractal lattices has been renewed. Exact results ha\é&]ergy of the electron, we have an extended eigenstate. This
been obtained based on renormalization-group methodgalue of E is found to be independent of the field strength.
which show that some regular fractals like the SG and theDther energies corresponding to the extended states depend
loopless Vicsek fractal are capable of sustaining an infiniteon the strength of magnetic field.
number of extended eigenstate$? These extended states  As far as the transmittance of finite lattices is concerned,
exhibit different behaviors depending on the lattice geomwe find that the transmission coefficient exhibits periodic
etry. Such behaviors may be reflected in, say, the end-to-enskcillations with respect to the applied field. Results have
transmission coefficient for arbitrarily large finite fractal been obtained for energies that correspond to the extended
lattices'™*? Precise rules for evaluating the eigenvalues coreigenstates for the infinite fractal. The role of edge atoms in
responding to these extended eigenstates have been peefinite lattice has been observed to be rather interesting as
scribed based on an analysis of the recursion relations of theill be discussed later on. The general trend is that the lattice
parameters of the Hamiltonian under the renormalizationin the presence of the field exhibits a larger transmission than
group transformatiof?® in the absence of the field, which is in agreement with the
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An=[(E—ety(n)+1;(n)?], (6
By =[(E—en)ti(n)+1ty(n)?], @)
Co=2t:(Mtp(N) +[t:(N)*+to(N)°*V(E—€n), (8

D= (E—€7)?=3ti(n)ty(n) — [t:(n) 3+ tp(n)°*J/(E— €p).
9

Here,n in the subscript or in the parentheses refers tathe

@ ) stage of renormalization.
FIG. 1. (a) Part of an infinite Sierpinski gasket affu) its renor- From the recursion relations listed above, it is not difficult
malized version. Arrows indicatint; or t, have been shown in a to find out that if we choos&= ¢, at any stage, then for
small plaquette only. all subsequent stages of renormalization we hgye, =€,

andt;(n+2)=—t;(n+1)=t¢(n). An identical behavior for
results of Banavaet al® that a whole lot of eigenstates now t, naturally follows. This implies that we get a two-cycle
possess an extended character. In what follows, we develdixed point for the hopping integrals. To be specific, if we
our ideas and give the results in details. selectE=¢ at the very beginning, then for all subsequent
We start by describing a single electron on an infinite SGstages of renormalization the parameters get locked in their
lattice by the usual tight-binding Hamiltonian in the Wannier respective fixed point values with the hopping integrals fixed
representation in presence of a magnetic fiéld: at nonzero values. This indicates that we have an extended
eigenstate a = ¢.'? This idea can be carried onto any stage
] 1) of renormalization and by equatirig) to €, at that stage we
' can extract an infinity of extended electron eigenstatesidf
. . . . infinitely large. However, a few points are worth discussing
Wherei € is the 0[1i-S|te poterltlal at ‘3" the“atomlc S|,t,es. here. First of all, it is interesting to observe that the eigen-
ti=te'” andt,=te"” are the “forward” and "backward” 51 e E= ¢ obtained at the initial level is independent of the
hopplng integrals, respectively. Throughout _the_ dISC_USS'O'gtrength of the magnetic flux threading the fractal space. In-
we will take t=1. .The effect of th? magnetic _f|elq IS to cidentally, the same energy value also corresponded to an
introduce a phase in the nearest-nelghbor hopping 'mé%ral'extended state in the absence of fitHowever, the energy
We have defined=2m¢/ ¢o, whereg, is the flux quantum 51 es obtained from progressively higher stages of the RG
hcle. ) o , are dependent on the flux. Second, from the recursion rela-
In Fig. 1(a) we show a part of the infinite lattice. Follow- s it is very simple to show that, E= €, at anynth stage
ing Banavaret al® we select a flux distribution in which all of iteration. then we have an equétion :
bonds in the direction of the arrows have the nearest- '
neighbor hopping matrix elemetitand all bonds opposite to  (E— ¢, _;){(E—€,_1)%— 7t{(n—1)ty(n—1)—3[t;(n—1)3
the arrows have a matrix elemety. All the elementary
upward-pointing triangles have the same flug 3vhile for +tp(n—1)°]}=0. (10
the smallest downward-pointing triangle it is3¢. To ex-
amine the eigenvalues and eigenfunctions we have to solve
set of difference equations. A typical equation looks like

H=Z e|i><i|+<i2j> [teli)(j |+ ol )

It is seen from the above equation that all the roots that were
tAe solutions of the equatioB— e,_,=0 are also the solu-
tions at the next level. The other roots may be obtained from
; ; 3
(E— €)=t i)+t + ). 2) the solution of the equationE(—e,_1)°—7t;(n—21)ty(n
Y=tz t s _ b(¢2. ¥t o —1)—3[ty(n—1)3+1t,(n—1)3]=0. However, not all of
In Eq. (2) 4 represents the Wannier orbital at itk site and  them are allowed solutions. It can be shown that the energy
the subscripts denote site indices as shown in R@. Other  yalues for which the quantit , in the recursion relatiof¥)
equations can be formed in a similar fashion. Heye;te'”,  pecomes zero are disallowed solutions as far as the extended
andty, is its complex conjugate. The site energy IS taken tostates are concerned. Also, there may not even be a state at
be the same and equal &at all sites. We decimate all the that particular energy. The latter statement can be verified by
sites appearing on the right-hand side of &). Sites similar  taking a look at the density of states. We take a specific
to site 1 are kept undecimated as can be identified by comexample. Let us solve the equatiBr ¢,=0 forn=1 and 2
paring Figs. 1a) and 1b). A part of the renormalized lattice ith y= /2. We get the solution&€=0, +7 from the
consisting of the undecimated sites is shown in Fih).1 st |evel, and E=0, +.7, +3.298930 859, =3
Recursion relations for the on-site terms and the hopping- 5 363 836 68. and- 1.236 661 365 825 from the second
integrals are then obtained, and are given by level. We find that the roots are symmetric around the value
_ E=0 and that all of them correspond to the extended eigen-
€n+1= Ent 2L Ante(N) Bl (n) /Dy, © states. This last result can be easily verified by looking at the
_ flow of the hopping integrals under successive renormaliza-
+1)= B,+ D 4 . .
ti(n+ D) =[t;(n)By+ tp(n) CnJ/Dn, @ tion steps. We have also calculated the local density of states
_ for the infinite gasket for different values of the magnetic
tp(n+1)=tF (n+1). 5 4
b(N*+1)=t7(n+1) ©) flux and present the result for=0 and fory=w/2 only in
Here, Fig. 2. We find that the density of statd30S) is perfectly
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not give an analytical proof at this moment.

We now concentrate on the latter part of our investigation,
i.e., variation of the transmission coefficient across gaskets
of arbitrarily large sizes as a function of the applied magnetic
field as well as the fractal generation. To do this, we assign a
site energyeg to each of the three boundary sites. Then after
n-step renormalization, a lattice comprising of 3¢31)/2
sites (including the three outermost atomesan be trans-
formed into a cluster of three sites which formed the bound-
1 2 3 4 ary of the original lattice, but now with modified site ener-
gies and the nearest-neighbor hopping integral. From this
three-site cluster we generate a pair of sites each with a site
energy eg and a forward-hopping integradl; connecting
them. The site energy and the hopping terms are given by

; - 0
(b) E

FIG. 2. (a) (Local density of states for an infinite gasket in
absence of a magnetic field=0 andt=1. It should be noted that
the DOS forE=—2 andE=1 have been truncated down to unity
for convenience(b) (Local) density of states in presence of a mag- ~_ N +t(n M/TE = ea(n 11
netic field applied perpendicular to the plane of the diagram. Here, €8 = €a(N) T tr(M)t(n)/[ ea(n)]. (1)
€011 andy=mlz B=tu(n) + t(n)/[E— eg(m)]. (12

; . ._The “backward” hopping is, as always, the complex conju-
feature of the DOS spectrum is the almost continuous regloaate of the forward one. The value of the site energy of the

3roundE=O. It is to be nor:ed thqt in t.he zero-field case Weporder atom at any stageis given byeg(n), and is related
0 not come across such quasicontinuous parts symmettis i<\ alue at an earlier stage by the equation

cally distributed in the spectrum arouriel=0. We have

scanned the region aroutd=0 very closely. All the energy  e;(n)=eg(n—1)+[A,_ t;(n—1)+ Bn_1tp(n—1)]/D,_;.
values that we have scanned through keep the hopping inte- (13
grals oscillating in absolutely chaotic fashion for an indefi- . .
nite number of iterations. This behavior of the hopping inte—':rqrn the expressions &, andB, it is seen that, whenever
grals also signals the presence of extended eigenstates &S chosen to be equal te,, eg also flows to the fixed
those energies. The continuous character of the DOS speB2INt i-€.,es(n+1)=eg(n) for all subsequent values of
trum aroundE=0 is maintained even on a finer scan as far”n ordered lead of |dgnt|qal atoms of site energy.(s.et
as we have observed. Thus we see that there can be tf§ual to zerband hopping integra, (set equal to unityis

different types of extended electronic states in the presencdtached to the two border atoms of the SG at the two ends.
of a magnetic field. For one class the Hamiltonian param- € problem now reduces to that of studying the transmis-

eters show fixed-point behaviors, while, for the other, theySion through a “dimer impurity” placed in an otherwise pe-

in particular the hopping integrals, oscillate chaotically with-fiodic infinite chain. The transfer matrik (Ref. 14 across
out going to zero. Whether these behaviors are reflected iff'€ Pair of impurity sites then has the matrix elements
the tranmission characteristics or not is discussed below. We

symmetric arounde=0 for this specificy. An interesting

- ~\2 o~
would like to point out that the features we observe in the Pu=(E~ )/t~ T, (14
DOS remain unaltered if we choosgeto be different from P~ —(E—en)/T; (15)
zero. We have also calculated the DOS for different values 12 S
of the flux. Fory==/4, w/6, and=/8, for example, we find P.——P (16)
the presence of locally continuous distributions in the DOS. 2 12>
The continuous nature persists on a finer and finer scan in the —_

Poo=— 1A 17

values of energy. All these observations strongly indicate the
presence of a band of extended eigenstates, although we cafe transmission coefficient can then be calculated to be
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FIG. 4. Variation of the transmission coefficiert)(against the
magnetic flux(y). e=0,t=1, andE= J7 which correspond to an
extended eigenstate. The hopping integrals exhibit a two-cycle fixe

point. The site energies of the “lead atoms” have been chosen to b

unity.

T: 4 S|nzk/[| P12_ P21+ ( Pll_ P22)CO§(| 2
+ [Pyt Pyl %sirPk], (18)

wherek is the incident wave vector of the wave traveling

through the ordered lead. We now discuss the results of th

investigation onT separately.

(i) Enhancement of T in presence of the fidltis is, of
course, not unexpected if we recall our earlier discussion
and, in particular refer to Banavat al® However, an ex-

plicit calculation can be done to visualize the effect. We do

this for E=0 with e=0 and|t;|=|t,|=1. In this case a
simple algebra shows that, fag=0, the transmittivity is
given by

T=1[1+cog(3y,)], (19

where vy, is the renormalized flux at theth stage. In the
absence of a magnetic field the above choice of paramete
led to the value o =0.512 1t is clear that in the presence of
the field the transmittivity lies in the range 0.5-%ee
Fig. 3. Thus there is an enhancement. That this is true fo
the other energies as well can be checked numerically.

(i) Aharonov-Bohm effect in fractal spac&his is the
most interesting situation which shows Aharonov-Bohm-
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E=\/7, for which we have a two-cycle behavior of the hopping
integrals.(b) E=0.3, (¢) E=0.5. For(b) and(c) hopping integrals

type oscillations in the case of a fractal lattice. The resultLScillate chaotically. In every case we have seleeted andt=1.
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show two distinct types of variation corresponding to the
“extended state” energies obtained from different stages of
renormalization. First, we observe that with the Hamiltonian
parameters chosen as in the cégeabove, forE=0, T os-
cillates following Eq.(19) above. The oscillation is periodic
and the period ighy/6 (see Fig. 3, ¢, being the fundamental
flux quantum. Both the period and the valueToét any field

are independent of the generation of the fractal. This fact can
be understood quite easily when we observe that the varia-
tion of T againsty as given by Eq(19) above is exactly the
same as that of an elementary triangular loop comprised of
three atoms at the three vertices, each with site energ§y

and connected by hopping integrals of absolute value unity.
As a result of settinge=0 all the on-site energies and the

FIG. 5. T vs y with the same parameters as in Fig. 4, except thathopping integralgtheir absolute valug@gyet locked in their

hereE=0.3, for which the hopping integrals oscillate chaotically.
The site energies of the “lead atoms” have been taken as zero.

fixed-point values which are 0 and 1, respectively, from the
very first stage of the RSRG. Therefore, starting with an
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arbitrarily large generation fractal we bring it down, on re-values ofeg it is ¢¢/3. It can be tested numerically that, for
peated decimation of sites, to the elementary triangle talkedll values ofeg other than zero and any enerfynot equal
about. The entire SG then can not be distinguished from & zero that corresponds to an extended eigenstate, the period
renormalization-group point of view, ff0m_ a simple t”anguj of oscillation of T is completely independent of the choice of
lar plaquette having the same site energies and the hopping, and is equal tap,/3.

integrals. So at this particular energy the plane wave that is |n aqdition to the above we have also investigated the
incident on the target lattice through the ordered lead fails 1Qayiation of the transmittivity at a particular energy and field
recognize the intricate fractal structure. The quantum iNteryith the generatiorfsize) of the fractal. We show our results

ference inside the bulk destroys the information regarding,, Figs. 8a)—6(c). The energy values chosen are, as before
the lattice topology, and the result of an elementary trlangu’[hose which give rise to extended electronic states in the

lar plaquette is reproduced. P . e :
We have studied the variation of the transmittivity as amf'mte Iatt|_c € We_ observe wo distinct types in thege grapr_]s.
The energies which correspond to the two-cycle fixed-point

function of the applied field for the other energy values | fthe sit . d the hopping int Is al .
which correspond to the extended eigenstates for the infinjté&'ues ot the site energies and the hopping Integrals also give

fractal at the same value of and which are obtained from 1S€ 10 @ two-cycle periodic variation df with the genera-
the latter stages of renormalization. For all such energy valtion number{Fig. 6@)]. If, say, the energies are obtained by
ues the transmittivity exhibits periodic oscillationsdnwith ~ Solving the equatio = €, , then the transmission coefficient
a period equal topy/3. This period is independent of the Starts exhibiting its two-cycle behavior from the<{1)th
generation number for large generations. With increasingeneration onwards. On the other handT ifs calculated at
size the transmittivity becomes fragmented but the periodi@n energy for which the absolute values of the hopping inte-
nature remains unaltered. In Figs. 4 and 5 we show the varigrals oscillate chaotically with the progress of renormaliza-
tion of T. In Fig. 4 we show the variation af againsty for  tion, the transmission coefficient also fluctuates. The nature
E= 7. This energy corresponds to an extended eigensta®f the fluctuation can be seen in Figgbpand &c).
for the infinite fractal, and has been obtained as a result of In conclusion, we have made an analytical effort to un-
setting E=€, for y=x/2. The hopping integrals exhibit ravel the extended eigenstates that occur in a Sierpinski gas-
two-cycle behavior. It should, however, be noted that, inket fractal in the presence of a magnetic field applied per-
order to calculatd at this particular energy, one has to suit- pendicular to the plane of the gasket. The endtgy0 (with
ably tune the site energy of the lead atoms so that the chosan=0) is shown to lead to an extended state irrespective of
energy falls inside the “allowed” band of the “lead” chain. the value of the magnetic field, whereas the other energies
The magnitude of the site energy of the lead atoms otherwisere field dependent. An interesting feature is the presence of
has no effect off. In Fig. 5 we have chosda=0.3. Atthis a dense set of extended eigenvalues placed symmetrically
energy the magnitude of the hopping integrals oscillates chaaroundE=0 with y= 7/2. On the basis of similar observa-
otically with nonzero values for an indefinite number of it- tions for other values of the flux as well, we find it tempting
erations. This energy corresponds to an extended eigenstate conjecture the presence of a “band” of extended states
of the infinite lattice, but is of a different character in the induced by the magnetic field. No analytical proof could be
sense that the fixed-point behaviors of the Hamiltonian pagiven, but detailed numerical tests tend to support this view
rameters are not observed in this case. for this specific value of the flux. The energy eigenvalues
(iii) Effect of the boundary sitdt is straightforward to that have been obtained using the RSRG method are then
calculate the transmittivityl as a function of the site energy used to study the variation of the transmittivity across arbi-
eg of the border atom. The result f&@=0 is trarily large finite lattices. The Aharonov-Bohm-like oscilla-
) ) ) 3 tions in the transmission coefficient in the presence of the
T(ep)=4[eg—2eg cog3y) +1]/{4(eg—1)"+[eg—2ep field exhibit interesting features. The periods of oscillation
2 are different depending on whether the extended state eigen-
+2cog3y)]7}. (20 value is extracted at the very basic level of the system or its
It is interesting to find that for values @f; other than zero, renormalized version. However, the periods turn out to be
the periodicity in the variation of againsty gets doubled. insensitive to the size of the lattice. The role of the boundary
That is, while foreg=0 the period is¢y/6, for nonzero site for a finite gasket has also been investigated.
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