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Sierpinski gasket in a magnetic field: Electron states and transmission characteristics
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The Sierpinski gasket fractal has been studied in the presence of a magnetic field applied perpendicular to
the plane of the fractal. The discretized Schro¨dinger equation for a single electron is solved using an exact
real-space decimation technique. An infinite number of energy eigenvalues exist that give rise to perfectly
extended eigenstates on this fractal. A prescription for their evaluation is proposed. Aharonov-Bohm oscilla-
tions in the transmission coefficient have been investigated in the case of this fractal lattice. The nature of
oscillations for different electron energies and its dependence on the system size as well as on the boundary
sites are discussed in detail.@S0163-1829~97!02745-8#
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The electronic and other physical properties of regu
fractal lattices have been quite popular subjects of stud
condensed matter and statistical physics for many year1–6

A very well-studied model has been the Sierpinski gas
~SG!. In 1982, Domanyet al.1 solved the Schro¨dinger equa-
tion for a single tightly bound electron on a SG using
real-space decimation scheme. The energy levels are fo
to be discrete, very closely spaced, and highly degene
These gaskets have the interesting property that they are
similar under a scale transformation and have a hierarch
loops. This structure leads to a Cantor set energy spec
and to the localization of almost all the one-electron state
has been observed in Ref. 1. This localization is struct
induced and not disorder induced as in the case of Ande
localization. Rammal and Toulouse7 extended the earlie
work on the SG to include a magnetic field given perpe
dicular to the plane of the gasket. Such a field, as was sh
in a later publication by Banavaret al.,8 changes the quali
tative feature of the energy spectrum. A majority of t
eigenfunctions become extended in character. Howeve
precise determination of these eigenfunctions or the co
sponding eigenvalues could not be made. Their conclus
were based on a numerically done ‘‘escape rate’’ count
and studying the inverse participation ratio at energies
tained by diagonalizing a lattice of a finite number of site

Very recently, interest in the electronic spectrum of so
regular fractal lattices has been renewed. Exact results h
been obtained based on renormalization-group meth
which show that some regular fractals like the SG and
loopless Vicsek fractal are capable of sustaining an infin
number of extended eigenstates.9–12 These extended state
exhibit different behaviors depending on the lattice geo
etry. Such behaviors may be reflected in, say, the end-to
transmission coefficient for arbitrarily large finite fract
lattices.11,12 Precise rules for evaluating the eigenvalues c
responding to these extended eigenstates have been
scribed based on an analysis of the recursion relations o
parameters of the Hamiltonian under the renormalizati
group transformation.12,13
560163-1829/97/56~21!/13768~6!/$10.00
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In this paper we discuss the case of a Sierpinski gas
fractal in a magnetic field applied perpendicular to the pla
of the fractal. We use a real-space renormalization-gro
~RSRG! scheme. Our interest is twofold. First, we wish
reexamine the effect of a magnetic field on the energy sp
trum of the infinite gasket. In particular, we calculate t
eigenvalues that will correspond to the extended states in
presence of a magnetic field. Second, we investigate
Aharonov-Bohm oscillations in the transmission coefficie
for arbitrarily large fractal lattices in the presence of a ma
netic field. A magnetic field is already known to produ
such oscillations in the conductance~or transmittance! in
various physical systems.15–17 Even in the case of a simpl
tight-binding ring of atoms one gets interesting observatio
regarding the periodic behavior of the conductance, as w
as its dependence on different physical parameters.18 How-
ever, a study of oscillations of the transmittance for frac
lattices is still lacking. As a Sierpinski gasket posses
loops at all scales of length, the behavior of the transmiss
coefficient as a function of the magnetic field, to our mind,
going to be a highly interesting study. We propose to inv
tigate in detail the dependence of the period of oscillatio
on the size of the lattice along with the effect of bounda
sites on the transmittance and its period for this particu
fractal.

Our results are quite interesting. We find that atE5e,
wheree is the site energy of the fractal lattice andE is the
energy of the electron, we have an extended eigenstate.
value ofE is found to be independent of the field streng
Other energies corresponding to the extended states de
on the strength of magnetic field.

As far as the transmittance of finite lattices is concern
we find that the transmission coefficient exhibits period
oscillations with respect to the applied field. Results ha
been obtained for energies that correspond to the exten
eigenstates for the infinite fractal. The role of edge atoms
a finite lattice has been observed to be rather interestin
will be discussed later on. The general trend is that the lat
in the presence of the field exhibits a larger transmission t
in the absence of the field, which is in agreement with
13 768 © 1997 The American Physical Society



w
el

SG
ier

s

io
o
al

-
l
s

lve

t
e

om

in

ult

le
e
nt
heir
ed
ded

ge

ng
n-
e
In-
an

RG
ela-

ere

om

rgy

nded
te at
by

ific

d
lue
en-
the
iza-
ates
tic

56 13 769SIERPINSKI GASKET IN A MAGNETIC FIELD: . . .
results of Banavaret al.8 that a whole lot of eigenstates no
possess an extended character. In what follows, we dev
our ideas and give the results in details.

We start by describing a single electron on an infinite
lattice by the usual tight-binding Hamiltonian in the Wann
representation in presence of a magnetic field:19

H5(
i

eu i &^ i u1(̂
i j &

@ t f u i &^ j u1tbu j &^ i u#, ~1!

where e is the on-site potential at all the atomic site
t f5teig and tb5te2 ig are the ‘‘forward’’ and ‘‘backward’’
hopping integrals, respectively. Throughout the discuss
we will take t51. The effect of the magnetic field is t
introduce a phase in the nearest-neighbor hopping integr19

We have definedg52pf/f0 , wheref0 is the flux quantum
hc/e.

In Fig. 1~a! we show a part of the infinite lattice. Follow
ing Banavaret al.8 we select a flux distribution in which al
bonds in the direction of the arrows have the neare
neighbor hopping matrix elementt f and all bonds opposite to
the arrows have a matrix elementtb . All the elementary
upward-pointing triangles have the same flux 3f, while for
the smallest downward-pointing triangle it is23f. To ex-
amine the eigenvalues and eigenfunctions we have to so
set of difference equations. A typical equation looks like

~E2e!c15t f~c281c3!1tb~c21c18!. ~2!

In Eq. ~2! c i represents the Wannier orbital at thei th site and
the subscripts denote site indices as shown in Fig. 1~a!. Other
equations can be formed in a similar fashion. Here,t f5teig,
and tb is its complex conjugate. The site energy is taken
be the same and equal toe at all sites. We decimate all th
sites appearing on the right-hand side of Eq.~2!. Sites similar
to site 1 are kept undecimated as can be identified by c
paring Figs. 1~a! and 1~b!. A part of the renormalized lattice
consisting of the undecimated sites is shown in Fig. 1~b!.
Recursion relations for the on-site terms and the hopp
integrals are then obtained, and are given by

en115en12@Ant f~n!1Bntb~n!#/Dn , ~3!

t f~n11!5@ t f~n!Bn1tb~n!Cn#/Dn , ~4!

tb~n11!5t f* ~n11!. ~5!

Here,

FIG. 1. ~a! Part of an infinite Sierpinski gasket and~b! its renor-
malized version. Arrows indicatingt f or tb have been shown in a
small plaquette only.
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An5@~E2en!tb~n!1t f~n!2#, ~6!

Bn5@~E2en!t f~n!1tb~n!2#, ~7!

Cn52t f~n!tb~n!1@ t f~n!31tb~n!3#/~E2en!, ~8!

Dn5~E2en!223t f~n!tb~n!2@ t f~n!31tb~n!3#/~E2en!.
~9!

Here,n in the subscript or in the parentheses refers to thenth
stage of renormalization.

From the recursion relations listed above, it is not diffic
to find out that if we chooseE5en at any stagen, then for
all subsequent stages of renormalization we haveen115en
andt f(n12)52t f(n11)5t f(n). An identical behavior for
tb naturally follows. This implies that we get a two-cyc
fixed point for the hopping integrals. To be specific, if w
selectE5e at the very beginning, then for all subseque
stages of renormalization the parameters get locked in t
respective fixed point values with the hopping integrals fix
at nonzero values. This indicates that we have an exten
eigenstate atE5e.12 This idea can be carried onto any sta
of renormalization and by equatingE to en at that stage we
can extract an infinity of extended electron eigenstates, ifn is
infinitely large. However, a few points are worth discussi
here. First of all, it is interesting to observe that the eige
valueE5e obtained at the initial level is independent of th
strength of the magnetic flux threading the fractal space.
cidentally, the same energy value also corresponded to
extended state in the absence of field.12 However, the energy
values obtained from progressively higher stages of the
are dependent on the flux. Second, from the recursion r
tions it is very simple to show that, ifE5en at anynth stage
of iteration, then we have an equation

~E2en21!$~E2en21!327t f~n21!tb~n21!23@ t f~n21!3

1tb~n21!3#%50. ~10!

It is seen from the above equation that all the roots that w
the solutions of the equationE2en2150 are also the solu-
tions at the next level. The other roots may be obtained fr
the solution of the equation (E2en21)327t f(n21)tb(n
21)23@ t f(n21)31tb(n21)3#50. However, not all of
them are allowed solutions. It can be shown that the ene
values for which the quantityDn in the recursion relation~4!
becomes zero are disallowed solutions as far as the exte
states are concerned. Also, there may not even be a sta
that particular energy. The latter statement can be verified
taking a look at the density of states. We take a spec
example. Let us solve the equationE5en50 for n51 and 2
with g5p/2. We get the solutionsE50, 6A7 from the
first level, and E50, 6A7, 63.298 930 859, 6),
62.363 836 68, and61.236 661 365 825 from the secon
level. We find that the roots are symmetric around the va
E50 and that all of them correspond to the extended eig
states. This last result can be easily verified by looking at
flow of the hopping integrals under successive renormal
tion steps. We have also calculated the local density of st
for the infinite gasket for different values of the magne
flux and present the result forg50 and forg5p/2 only in
Fig. 2. We find that the density of states~DOS! is perfectly
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13 770 56ARUNAVA CHAKRABARTI AND BIBHAS BHATTACHARYYA
symmetric aroundE50 for this specificg. An interesting
feature of the DOS spectrum is the almost continuous reg
aroundE50. It is to be noted that in the zero-field case w
do not come across such quasicontinuous parts symm
cally distributed in the spectrum aroundE50. We have
scanned the region aroundE50 very closely. All the energy
values that we have scanned through keep the hopping i
grals oscillating in absolutely chaotic fashion for an inde
nite number of iterations. This behavior of the hopping int
grals also signals the presence of extended eigenstate
those energies. The continuous character of the DOS s
trum aroundE50 is maintained even on a finer scan as f
as we have observed. Thus we see that there can be
different types of extended electronic states in the prese
of a magnetic field. For one class the Hamiltonian para
eters show fixed-point behaviors, while, for the other, the
in particular the hopping integrals, oscillate chaotically wit
out going to zero. Whether these behaviors are reflected
the tranmission characteristics or not is discussed below.
would like to point out that the features we observe in t
DOS remain unaltered if we choosee to be different from
zero. We have also calculated the DOS for different valu
of the flux. Forg5p/4, p/6, andp/8, for example, we find
the presence of locally continuous distributions in the DO
The continuous nature persists on a finer and finer scan in
values of energy. All these observations strongly indicate
presence of a band of extended eigenstates, although we

FIG. 2. ~a! ~Local! density of states for an infinite gasket i
absence of a magnetic field.e50 andt51. It should be noted that
the DOS forE522 andE51 have been truncated down to unit
for convenience.~b! ~Local! density of states in presence of a ma
netic field applied perpendicular to the plane of the diagram. He
e50, t51, andg5p/2.
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not give an analytical proof at this moment.
We now concentrate on the latter part of our investigati

i.e., variation of the transmission coefficient across gask
of arbitrarily large sizes as a function of the applied magne
field as well as the fractal generation. To do this, we assig
site energyeB to each of the three boundary sites. Then af
n-step renormalization, a lattice comprising of 3(3n11)/2
sites ~including the three outermost atoms! can be trans-
formed into a cluster of three sites which formed the bou
ary of the original lattice, but now with modified site ene
gies and the nearest-neighbor hopping integral. From
three-site cluster we generate a pair of sites each with a
energy e B̃ and a forward-hopping integralt f̃ connecting
them. The site energy and the hopping terms are given b

e B̃5eB~n!1t f~n!tb~n!/@E2eB~n!#, ~11!

t b̃5tb~n!1t f~n!2/@E2eB~n!#. ~12!

The ‘‘backward’’ hopping is, as always, the complex conj
gate of the forward one. The value of the site energy of
border atom at any stagen is given byeB(n), and is related
to its value at an earlier stage by the equation

eB~n!5eB~n21!1@An21t f~n21!1Bn21tb~n21!#/Dn21 .
~13!

From the expressions ofAn andBn it is seen that, wheneve
E is chosen to be equal toen , eB also flows to the fixed
point, i.e.,eB(n11)5eB(n) for all subsequent values ofn.
An ordered lead of identical atoms of site energye0 ~set
equal to zero! and hopping integralt0 ~set equal to unity! is
attached to the two border atoms of the SG at the two en
The problem now reduces to that of studying the transm
sion through a ‘‘dimer impurity’’ placed in an otherwise pe
riodic infinite chain. The transfer matrixP ~Ref. 14! across
the pair of impurity sites then has the matrix elements

P115~E2e B̃!2/t f̃2t b̃, ~14!

P1252~E2e B̃!/t f̃ , ~15!

P2152P12, ~16!

P22521/t f̃ . ~17!

The transmission coefficient can then be calculated to be

FIG. 3. Variation of the transmission coefficient (T) with the
magnetic flux~g!. Here,E50, e50, andt51.
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56 13 771SIERPINSKI GASKET IN A MAGNETIC FIELD: . . .
T54 sin2k/@ uP122P211~P112P22!cosku2

1uP111P22u2sin2k#, ~18!

wherek is the incident wave vector of the wave travelin
through the ordered lead. We now discuss the results of
investigation onT separately.

~i! Enhancement of T in presence of the field. This is, of
course, not unexpected if we recall our earlier discussi
and, in particular refer to Banavaret al.8 However, an ex-
plicit calculation can be done to visualize the effect. We
this for E50 with e50 and ut f u5utbu51. In this case a
simple algebra shows that, foreB50, the transmittivity is
given by

T51/@11cos2~3gn!#, ~19!

where gn is the renormalized flux at thenth stage. In the
absence of a magnetic field the above choice of parame
led to the value ofT50.5.12 It is clear that in the presence o
the field the transmittivity lies in the range 0.5–1~see
Fig. 3!. Thus there is an enhancement. That this is true
the other energies as well can be checked numerically.

~ii ! Aharonov-Bohm effect in fractal space.This is the
most interesting situation which shows Aharonov-Boh
type oscillations in the case of a fractal lattice. The resu

FIG. 4. Variation of the transmission coefficient (T) against the
magnetic flux~g!. e50, t51, andE5A7 which correspond to an
extended eigenstate. The hopping integrals exhibit a two-cycle fi
point. The site energies of the ‘‘lead atoms’’ have been chosen t
unity.

FIG. 5. T vs g with the same parameters as in Fig. 4, except t
hereE50.3, for which the hopping integrals oscillate chaotical
The site energies of the ‘‘lead atoms’’ have been taken as zero
he
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show two distinct types of variation corresponding to t
‘‘extended state’’ energies obtained from different stages
renormalization. First, we observe that with the Hamiltoni
parameters chosen as in the case~i! above, forE50, T os-
cillates following Eq.~19! above. The oscillation is periodic
and the period isf0/6 ~see Fig. 3!, f0 being the fundamenta
flux quantum. Both the period and the value ofT at any field
are independent of the generation of the fractal. This fact
be understood quite easily when we observe that the va
tion of T againstg as given by Eq.~19! above is exactly the
same as that of an elementary triangular loop comprised
three atoms at the three vertices, each with site energye50
and connected by hopping integrals of absolute value un
As a result of settingE50 all the on-site energies and th
hopping integrals~their absolute values! get locked in their
fixed-point values which are 0 and 1, respectively, from
very first stage of the RSRG. Therefore, starting with

d
e

FIG. 6. Transmission coefficient (T) against generation (n). ~a!
E5A7, for which we have a two-cycle behavior of the hoppin
integrals.~b! E50.3, ~c! E50.5. For~b! and~c! hopping integrals
oscillate chaotically. In every case we have selectede50 andt51.
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13 772 56ARUNAVA CHAKRABARTI AND BIBHAS BHATTACHARYYA
arbitrarily large generation fractal we bring it down, on r
peated decimation of sites, to the elementary triangle tal
about. The entire SG then can not be distinguished from
renormalization-group point of view, from a simple triang
lar plaquette having the same site energies and the hop
integrals. So at this particular energy the plane wave tha
incident on the target lattice through the ordered lead fails
recognize the intricate fractal structure. The quantum in
ference inside the bulk destroys the information regard
the lattice topology, and the result of an elementary trian
lar plaquette is reproduced.

We have studied the variation of the transmittivity as
function of the applied field for the other energy valu
which correspond to the extended eigenstates for the infi
fractal at the same value ofg and which are obtained from
the latter stages of renormalization. For all such energy v
ues the transmittivity exhibits periodic oscillations inf with
a period equal tof0/3. This period is independent of th
generation number for large generations. With increas
size the transmittivity becomes fragmented but the perio
nature remains unaltered. In Figs. 4 and 5 we show the va
tion of T. In Fig. 4 we show the variation ofT againstg for
E5A7. This energy corresponds to an extended eigens
for the infinite fractal, and has been obtained as a resul
setting E5e2 for g5p/2. The hopping integrals exhibi
two-cycle behavior. It should, however, be noted that,
order to calculateT at this particular energy, one has to su
ably tune the site energy of the lead atoms so that the cho
energy falls inside the ‘‘allowed’’ band of the ‘‘lead’’ chain
The magnitude of the site energy of the lead atoms otherw
has no effect onT. In Fig. 5 we have chosenE50.3. At this
energy the magnitude of the hopping integrals oscillates c
otically with nonzero values for an indefinite number of
erations. This energy corresponds to an extended eigen
of the infinite lattice, but is of a different character in th
sense that the fixed-point behaviors of the Hamiltonian
rameters are not observed in this case.

~iii ! Effect of the boundary site.It is straightforward to
calculate the transmittivityT as a function of the site energ
eB of the border atom. The result forE50 is

T~eB!54@eB
222eB cos~3g!11#/$4~eB

221!21@eB
322eB

12 cos~3g!#2%. ~20!

It is interesting to find that for values ofeB other than zero,
the periodicity in the variation ofT againstg gets doubled.
That is, while for eB50 the period isf0/6, for nonzero
o
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values ofeB it is f0/3. It can be tested numerically that, fo
all values ofeB other than zero and any energyE not equal
to zero that corresponds to an extended eigenstate, the pe
of oscillation ofT is completely independent of the choice o
eB and is equal tof0/3.

In addition to the above we have also investigated t
variation of the transmittivity at a particular energy and fie
with the generation~size! of the fractal. We show our results
in Figs. 6~a!–6~c!. The energy values chosen are, as befo
those which give rise to extended electronic states in
infinite lattice. We observe two distinct types in these grap
The energies which correspond to the two-cycle fixed-po
values of the site energies and the hopping integrals also g
rise to a two-cycle periodic variation ofT with the genera-
tion number@Fig. 6~a!#. If, say, the energies are obtained b
solving the equationE5en , then the transmission coefficien
starts exhibiting its two-cycle behavior from the (n11)th
generation onwards. On the other hand, ifT is calculated at
an energy for which the absolute values of the hopping in
grals oscillate chaotically with the progress of renormaliz
tion, the transmission coefficient also fluctuates. The nat
of the fluctuation can be seen in Figs. 6~b! and 6~c!.

In conclusion, we have made an analytical effort to u
ravel the extended eigenstates that occur in a Sierpinski g
ket fractal in the presence of a magnetic field applied p
pendicular to the plane of the gasket. The energyE50 ~with
e50! is shown to lead to an extended state irrespective
the value of the magnetic field, whereas the other energ
are field dependent. An interesting feature is the presenc
a dense set of extended eigenvalues placed symmetric
aroundE50 with g5p/2. On the basis of similar observa
tions for other values of the flux as well, we find it temptin
to conjecture the presence of a ‘‘band’’ of extended sta
induced by the magnetic field. No analytical proof could b
given, but detailed numerical tests tend to support this vi
for this specific value of the flux. The energy eigenvalu
that have been obtained using the RSRG method are t
used to study the variation of the transmittivity across ar
trarily large finite lattices. The Aharonov-Bohm-like oscilla
tions in the transmission coefficient in the presence of t
field exhibit interesting features. The periods of oscillatio
are different depending on whether the extended state eig
value is extracted at the very basic level of the system or
renormalized version. However, the periods turn out to
insensitive to the size of the lattice. The role of the bounda
site for a finite gasket has also been investigated.
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