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Spin-density wave in Ising-coupled antiferromagnetic chains
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The effect of anisotropy in the nearest-neighbor spin interactions that coUp2 consecutive spig-
antiferromagnetic chains is studied theoretically by considering the limit where the coupling is purely of the
Ising type. An analysis based on the equivalent Luttinger model reveals that the ground state is an Ising
antiferromagnet in generdlS0163-18207)04646-3

The recent discovery of the “ladder” materials spawnedfermion analogy for the Lawrence-Doniach model descrip-
from research in high-temperature superconductivity has retion of layered superconductots*?We now pass to the cal-
newed interest in the physics of coupled antiferromagneticulations.
chains! The former systems are composed of magnetically The Hamiltonian forN Ising-coupled antiferromagnetic
isolated ladders of spih-moments that experience an effec- chains that are sequentially ordered can be divided into par-
tive exchange interaction between all nearest neighborgillel and perpendicular partsl=H;+H_ , where
Both experiment and theory find that tBe= 1 antiferromag-
netic ladder shows a spin gap of order the exchange coupling
constant between chaifg.This result, however, should be
compared with that corresponding to a single chain, which
exhibits no spin gap.In general, an analysis of the weak- +3587 1S 1T h.S ] (1)
and of the strong-coupling limits reveals that no spin gap
appears for an odd number of chains. and

Deviations from isotropy in the Heisenberg spin coupling N—1
that results from the exchange interaction can occur natu- H, = >y IS S, )
rally, however, and have interesting theoretical conse- =1 7 '

guences. It is known, for example, that Ising anisotropy pro- . . . . i .
duces a spin gap in the case of a single chafinn the describe, respectively, the spin couplings within and in be-

present context of coupled antiferromagnetic chains, the foltVe€n the correspondingXZ chains. Here, the spin operator

lowing question then arises: What effect does anisotropy iri.! aCtS 0N spirg states lying at theth site of chairl, andh,

the Heisenberg spin couplings that rperpendicularto the =~ denotes an external magnetic field directed along zhe
spind chains have on the ground state? In response to thi@is- We presume an antiferromagnetic sig>0, for the
query, we shall study here the low-temperature physics of itrachainX coupling, and we shall set=1 throughout.
finite numberN of consecutive spid-XXZ chaing coupled ~ The Jordan-Wigner transformatidhthen yields a system of
via a nearest-neighbor Ising interaction. The calculationaldeal spinless fermions, with a degenerate energy spectrum
strategy will be to first transcribe the problem to that of in- k= —Jx, coska as a function of momenturk along each
teracting spinless fermions utilizing the Jordan-Wigner transchain I, that interact through both the intrachain and the
formation, and to then apply the well-known Abelian interchain Ising couplinggl and J; . Here,a denotes the
bosonization techniqu®’ On this basis, we arrive at the fol- parallel lattice constant. In this language, an antiferromag-
lowing conclusions valid foN=2 Ising-coupled antiferro- netic chain then corresponds to a half-filled bamg<0.
magnetic chains: (i) The ground state is in a pinned spin- Note that interchainXY coupling introduces unwieldy
density wave(SDW) state that is commensurate with the “string” contributions® into the Hamiltonian, which is one
lattice® and that exhibits a spin gayii) The SDW slides reason why it has been omitted. The continuum limit can be
along the direction parallel to the chains in the case where itakena la Kogut and Susskind under these conditiéramd

is incommensuratéyhich can result from the application of we thereby obtain the following Luttinger model for the par-
an external magnetic fieff. It is noteworthy that the allel and perpendicular pieces of the Ising-coupled antiferro-
bosonization analysis employed here is closely related to enagnetic chains:

N
Hy= 21 ZI [J(SS 1+ S Sy
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N
LADDER
H=> f dxJy,a(L]iolL,—RlioR)+4aLRIRIL, ( :
I=1
XY J 1
+h(L{L+RR)] 3) DIMER| ™
andH, =H, ;+H, 3+H, 4, with a backscattering term XY AF ISING AF
N—-1
H, 1= > f dx Ja(L/Rl, L. 1R+H.c), (4) 0
I=1 I
JZ
an interchain umklapp term
XY AF® ISING AF"
N—-1
Hy 5= 2, f dx Ba(RIRl, 1Ly, 1L i€+ H.e), (5) ey
1=t QUAD.

and an interchain forward-scattering term
FIG. 1. Shown is the phase diagram for two séib(—XZ chains

Nt + + . coupled via a weak Ising interactiody). The Ising antiferromag-
H, 4= > f dx Jya:(L/Li+RR) (L), 1L 14 netic (AF) regions (A, ,#0) are characterized by strict long-range
=t spin order along each chain, while te¥ AF regions @, ,=0)
. . i T
+Rl 1R 1) (6) Show  dominant XY  spin  correlations (S,Sy)

_ _ e 2eX( /%) (<, " +K, 4 along each chaih[see Eq(13)]. The sign

Here e 'F*R,(x) and e'***L,(x) denote field operators for of the intrachain Ising couplingdf) switches between these two
right and left moving spinless fermions that move along thephases by passing through an intermedi¥té dimer phase(A,
[th chain, with a Fermi surface atkg, while the symbols #0, A,=0) characterized by dominant interchain dimer correla-
“::” represent normal ordering” The intrachain umklapp tions (S;,S.,S¢,S; = (a/x)%+ " for antiferromagnetic coupling
ternf* that has been omitted from E(B) will be discussed ~J.>0. Quadrapolar XY spin correlations (S;;S;,Sy 1)
at the end of the pap¢see Eq(15)]. «(a/x)k» " dominate in the opposing regiof, =0, A,#0) at

We first consider two chain'$,in which case the above ferromagnetic couplings. Note that the supersctiph indicates
Luttinger model can be treated exactly. This is achieved byOca| ferromagnetic order in between chains.
observing that the chain index can be interpreted as a pseu-
dospin label. Equation$3)—(6) then describe the Luther- where the+(—) signs above correspond to tipéo) label.
Emery model for pseudospihfermions in this instanc¥ 16 Application of the bosonic representaﬂon
Since such fermions experience pseudospin-charge separa-
tion, we have that the coupled chains factorize following R|(X)E(27Ta)_1/2 exp[i(47-r)1’2¢R(x,l)], (11
Hy+H, =H,+H,, where

g

Li(x)=(2ma)” P ex —i(4m) P (x,)] (12

Hp=27rvp2 E pj(q)pj(—q)-i-ng Pr(Q)pL(—Qq) for the spinless fermions, where  ¢;(x,l)
a0 J=RL q =lim, o 27L, 'S, " exp(-3ald—igX)p;(al) are the
+H, 3, (7)  bosonic fields corresponding to right and left moving fermi-
ons (=R,L), reveals that the spectrum of the pseudospin
sector(8) has a gapA,#0, for —g,<|J%|.* (In general,
He=2m0,2, > o(@)oj(—q)+9,> or(q)o(—q) a~'~a~1is the momentum cutoff of the Luttinger model.
a0 I=RL a At half filling (h,=0), where &-=2m/a and the umklapp
+H, (8) process5) is at work, similar considerations indicate that a
) . ) .. gap,A,#0, opens in the pseudocharge spectr(m for
are the respective commuting portions of the Ham|lton|an_gp<|\]§|_ Comparison of Eq(10) with these conditions
Her?i/ pi(a)=2 1/2[Pj(q’1)+Pj(qi2_)] and  0j(q)  yields the phase diagram shown in Fig. 1 for two Ising-
=2""9p;(q9,2)—p;(q,1)] are the particle-hole operators for coypled spint XXZ chains. We remind the reader that the
pseudocharge and pseudospin excitations, wik{q.l)  spinless fermions corresponding to the pseudoch@hgand
=S/ (a+k)a(k) and p (a,1)=2b/(q+k)bi(k). The the pseudospili8) systems are noninteracting along the re-
operatorsa, (k) andby(k), respectively, annihilate right and spective Luther-Emery lineg,=6mv /5 andg,=6mv /5,
left moving electrons of momentuinon thelth chain. Also, gt which point the gaps have valug, ,= (ala)(|3%|/27).
the Fermi velocities and interaction strengths for each comon the other hand, the Coulomb gés anal8@s well as
ponent are renormalized by the interchain forward-scattering,ean-field theor}f indicate that the latter vanish exponen-
procesg6) to tially as the Luttinger-liquid state is approached; e,
~|3% lex —2mv,,, /(135 |+8,.)]-
We now address the issue of the physical character of the
| two-chain system in the case where all spin couplings are
Upo=43% 05, (100 antiferromagnetic, which means that, ,#0 (see Fig. 1

Vo= gty 12, (9)
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TABLE I. Listed is the correlation exponent obtained via the The above results imply that this SDW state is
bosonization techniqu@Ref. 3 for various order parametei®(x),  incommensurafe(kr# 7/2a) for large enough Zeeman en-
in the spin ladder; i.e{O(x)0'(0))x(a/x)”. Antiferromagnetic  ergy splitting° |h,|>A,, in which case umklapp processes
Ising coupling inbetween chains is assuntsee Fig. L Note that  hecome irrelevant. Then by E€}), the pseudocharge sector

the valuen=0 indicates strict long-range order, whilg=0 indi- is in a pure Luttinger liquid StatEAp—>O. Also, since the
cates 1/52;‘02”43”99 order. Below, we haw,,=(27mv,,  posonic field¢,=2" YA p;+ ¢,) now represents a Gold-
~95.0) (27067 Gy 0) stone mode, where (X) = ¢ (X,1) + dr(X,1), we have that

the SDW can freelslide along the chain direction. The list
of physical properties that we outlined above must then be
revised as follows. Since the pseudocharge system is now

Order parameter 7 (XY AF) 7 (XY dimen % (Ising AF)

y lik-1 -1

S,l 4(Kp +Ka‘ ) * * . . . . i

& K,+K, K, 0 compressible, the longitudinal paramagnetic susceptibility no
Sfilsf,z K1 Kt o longer shows a spin gap. In particular, we have thkat
s'sh, Kt - - =[(m/2)J,+ s+ 3351 at zero temperature. Likewise, the

low-temperature specific heat is now dominated by the
pseudocharge compone@fT. Last, the sliding Goldstone

Since the longitudinal paramagnetic susceptibility is simplymOde results in onl)algebralcl(_)ngltudlnal spin correlations
given by the pseudocharge compressibility, we have that thi@ylsé/1)~cos(2<Fx)(a/x)Kn, with  exponent K,=(2mv,
quantity follows the activated behavigr,exp(—2A,/kgT) —9,)"(2mv,+9,)" Note that heres, refers to the de-

at low temperatures. Also, pseudocharge-spin separation inyiation of the magnetization with respect to its average value
plies that the specific heat is given by the s@p=C, (Refs. 9 and 1 xzh,. And although the transverse spin
+C, of the respective charge and spin contributions, each oforrelations remain f|n|te_ in the the present incommensurate
which follow the activated behavid®, ,xexp(-24,,/ksT) ~ €ase, theXY spin-correlation lengthg,/a=v,/A,, is now

at low temperatures. The question of long-range order at zergrger.

temperature can be attacked with the bosonization method We shall now treat the general caseNo$ 2 chains. The
(11) and (12). Following Luther and Pesch&lthe static Previous results, Eqs9) and(10), obtained for the case of

transverse spin correlator on the same chain may be calcfwo Ising-coupled chains indicate that the interchain
lated using the formula forward-scattering proceg$) can be neglected in the limit

of weak coupling,|J;|<J},.|Jy. This shall be assumed
b throughout in the present discussion. To begin with, we shall
(Sc150.0 also neglect all umklapp processes. The Luttinger model for
:ei2k,:x<eiw1/2[¢R(x,1)—¢|_(x,1)]e—iﬂ—1/2[¢R(0’1)_¢L(0’1)]>/4ﬂ_a the Ising-coupled antiferromagnetic chair_ls in such case re-
duces to the sum of Eq$3) and (4), which describes a
(13 generalized backscattering modél.A mean-field anal-
ysist? of this model for largeN finds that long-range
that is valid to lowest order ire'2*. Pseudospin-charge order of the charge-density wave typdl[(x)Ri(x))
separation then implies that this correlator has the asymptoti@;exp{i(477)1’2¢,(x)], is stable for|J§|>—2Jl. Notice that
form (S; S, ) = €' G (x) G{2(x)/4ma, whereG{Z(x)  this agrees with the exact results for two chaisee Fig. 1
=(alx) 9.~ X'¢s is the autocorrelation function for pseudo- In addition, the application of the Abelian bosonization tech-
triplet superconductivity®>® with Cooper pairs of effective nique, Eqs(11) and(12), yields the action
unit charge, and wher&{?(x) is equal to the previous
modulo the symbolic replacemept- . Here,d,, ,= 3 and . 1 2
alé,,=A, ,lv,,. Hence, we arrive at the result SLD_'I dxodxl[ 21 2 (Oudl)
(Si1Sop~ €2 (alx)Y%e ¥4y,  where g&yla=(A,lv,
+A,/v,) Lis the(finite) XY correlation length that signals _ , ,
short-range transverse spin correlations. Lorentz invariance _502,21 cos{(477K)1/2(¢>|+1—¢| )]
in the dynamical correlatoB{%” (x,t) for pseudotriplet su-
perconductivity then implies that the dynamical trans-related to the Lawrence-Doniach model of layered
verse spin correlato(13) exhibits a spin gapA,,=A, superconductivity; where ¢/ (x,t) represents the time evo-
+A,. Similar calculations reveal that the longitudinal lution of the bosonic field operator¢(x) after
spin correlator has the asymptotic forn{S;,S; ) renormalizatior?. Here, K =e?” is one-half the exponent for
fCOS(2<FX)G§;’JL)>V\/(X)G(S‘E)W(X)/(‘Wa)z, where G, (x)—1 I;siig oHrderl,I with t.he an_glg’/,set by the condition tar)hnﬂ
is the autocorrelator for pseudo-SDW ordeand where = —2J;/7J,,, while x,=(ivgt,X) is a two vector, with a
GE),(x) is obtained again through a trivial symbolic re- renormalized Fermi velocityor=Jy a sech2. Also, &
placement. We therefore find that such Ising-coupled antifer= (J;) ~ Y2 denotes th&Y spin-correlation length. An analy-
romagnetic chains displastrict long-range order of the Ising sis based on the equivalence of Efi4) to a layered Cou-
type, like that displayed by an isolated Heisenberg chain ifomb gas' indicates that this term is relevant in the renor-
the presence of Ising anisotropy’ (See Table | for a listing malization group sense fo|rJ§|>—4Jl. Notice that this
of the relevant static correlation exponént conclusion, condition is roughly consistent with the phase diagram cor-
the system is in a pinned SDW state that is commensuratesponding to two chainéee Fig. 1, as well as with the
with the lattice, and that necessarily exhibits a spin gap. mean-field result just cited. Also, it is clear from Ed4)

N

N-1
(14
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that collective sliding along the chain direction, conclude that the first harmonic term is irrelevant in the pres-
d1(X)— di(X)+ ¢, , represents a Goldstone mode. All of ence of the base term. In the limit of weak couplidg;—0,
these pieces of information when put together then stronglyhis means that a spin gapé<>) opens forJ) >
suggest that the ground state of weakly Ising-coupled chains- (37/10)J,, and that bound states appear 0.8 In
corresponds to an unpinned SDW state if umklapp processe®ntrast, a spin gap will open only in the presence of Ising
are absent. anisotropy,Jl>J‘)‘(y, for the case of an isolatedXZ chain
Suppose now that we include the umklapp processeg)=0).% On the basis of what is known for a singkeXZ
present(at half filling) in zero field. The addition of the chain?®° we conclude that Ising-coupled spnXXZ chains
interchain proces5) as well as the intrachain ofi€ then  with all-antiferromagnetic couplings are generally in an Ising
leads to the bosonic action antiferromagnetic state. Notice that this claim relies on the
validity of the reduction(16) to a single spin chain, which

N
. 1 , ) , clearly fails in the case of andd number of Heisenberg-
S=i f d2x( 21 (5 (9u9()?— & % cog 2(4mK) 2| ]] coupled chaind! Nevertheless, the fact that we obtain a slid-
ing SDW state in the absence of umklapp processes, coupled
"o 5 12 Yo with the fact that umklapp processes only reinfofcem-
- 21 2&,“ cog (4mK) "¢y, ,]cog (4mK) "] |, mensurate SDW order, strongly indicates that such a reduc-

tion is indeed correct.
(19 To conclude, we find that anisotropy in the spin coupling
that may exist in between antiferromagnetic chains can dra-
matically change the nature of the ground state of each chain.
In particular, the present Luttinger-model-based analysis
demonstrates that consecutive spinantiferromagnetic

where &, represents theXY spin-correlation length of an
isolatedXXZ chain. If we then fix a particular chainand
integrate out the neighboring fieldSye obtain the effective

action . . . o 2
chains flow to the Ising antiferromagnetic fixed point in the
— 1 v 2 U o presence oanyamount of Ising coupling inbetween nearest-
S=i f dx{3(9,¢()°— & “ cod (4mK) "¢/ ] neighbor chaingsee Fig. 1 This contrasts with the case of a
single chain, where the Ising antiferromagnetic state exist
— &7 cog2(4mK)Y2( 1}, (16)  only in the presence of Isingnisotropy J,>J,,. It also

contrasts with the situation where all couplings are Heisen-
berg, in which case no spin gap exists for an odd number of
chains. The latter suggests that a transition betweeixXte
and the Ising antiferromagnetic fixed points occurs at some
intermediate perpendicular anisotropy,,<J,, in such

which is a sine-Gordon modélwith a first harmonic due to
the intrachain umklapp process. Note that the coeffi
cient 552 of the base term is not free, it being propor-
tional to the appropriate averagécog(4mK)Y2¢/_,])
+(cog(4mK) 24/, ,]) that results from the integration.
Within the equivalent Coulomb gas description, this inter-

chain term corresponds to unit charges, while the former |tis a pleasure to thank D. Poilblanc, A. Nersesyan, and J.
intrachain term proportional t@z’z corresponds talouble  Fernandez-Rossier for discussions. This work was supported
charges. Since double charges in general dissociate into unit part by National Science Foundation Grant No. DMR-
charges if the system is in thispin-gap plasma phas®we  9322427.
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