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Dynamic finite-size effect in the three-dimensional classicaXY model
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Explicit dynamic finite-size scaling in the time-dependent correlation functions for the three-dimensional
classicalXY model is explored. The dynamic scaling method, proposed by us previously, is utilized for finding
the time-scaling variables of the model. Time-dependent correlation functions of the model for different
numbers of spins could be collapsed into universal curves. Compared to infinite-range spin models, the width
of the scaling region is found to be much narrow&0163-1827)01045-X]

[. INTRODUCTION equivalently in the dynamic structure fackdike the present
work.
In our previous work, we developed a method which
could take into account the dynamic finite-size scaling prop- Il. DESCRIPTION OF THE DYNAMIC
erty appearingexplicitly in the time-dependent correlation SCALING METHOD

function. We applied the method to study the finite-size ef- In our previ work we developed a finite-size dvnami
fect in the time-dependent correlation functions of the clas- our previous work, we devetoped a finite-size dynamic

. . ~ L scaling method in which the time-dependent correlation
sical spin van der ‘_’Va"’?'s moa_e‘f (CSvW) W'th. |r_1f|_n|te- functions aredirectly scaled in the time domain. The time-
range ferromagnetic interaction and an infinite-range

: : . . ) scaling variable can be found by comparing the orders of
antiferromagnetic classical spin mot¢IRCAS). With the magnigt]ude of both sides of t?\le eqﬂatio%s of motion,

time-scaling variable determined by applying this method, =~ . . o
the time-dependent correlation functions for systems with? §x 0H/ s for the single spin v_ectosi at sitei, and
different numbers of spins collapsed into universal curvesS— — >i=15 dH/ds for the total spin vectoS=2_,5.

We could also interpret the meaning of the system Sizeysual guantities considered in simulations are the ensemble

dependenmaximum time intervalwhere the calculation of averages of the absglutg value Of. spins. The order c.)f magni-
Dekeyser and Léeis valid. In fact, the maximum time in- tude of these quantities in each side can be determined from

terval is found to be related to the interval, i.e., the size of th the results of statics, which in most cases are obtained

characteristic time. where the dvnamic scalind is ma'nta'ne?hrough Monte CarldMC) simulations’ In general, the size
IStic time, w e dynami ng 1 intal dependence of the spin variable is changed by taking the
In both models, the dynamic finite-size scaling phenomen

; o A ENYerivative with respect to time. We introduced a characteris-
persist even far away from criticality. This is in contrast with . o 7, which represented this change. The change may
most static finite-size scaling phenomena which usually aPgepend on the system siteand theN dependence of is
pear only close to criticality. . . expressed in the formr~O(N®), wheree is to be deter-

In this note, we further apply our dynamic scaling methodmined. We asserted that the equations of motion for a system
to a short-range spin model to elucidate the effect of then the thermodynamic limit are well defined only within this
interaction range on the dynamic finite-size scaling behavioreharacteristic timeZ. Thereby we chos&/7 or equivalently
One possible choice for a short-range spin model is the welltN ~¢ as the finite-size time-scaling variabte This assertion
known Heisenberg model. Since the total spin componentand the above proposition were fully justified for the CSVW
are constants of motion, their time-dependent behavior ignd IRCAS models.
trivial. Hence, we investigate the dynamic finite-size behav- Following the above analysis, we arrived at the finite-size
ior of the three-dimensional classical' model(3DCXY), in  scaling form for the time-dependent correlation functions,
which the total spin components have nontrivial time evolu-namely
tions. Since neither the statics nor the dynamics of this model
is exactly solvable, we shall appeal to the spin dynamics (s(t)s{"(0))
simulatiorf (SDS approach. RN Fal7) 1)

Recently, Chen and Landadeveloped a dynamic finite- !
size scaling theory in the frequency—wave-number domainfor the single spin components € x,y,z), and
which inherits the features of the dynamic scaling theory of
Halperin and Hohenbefdor bulk systems. However, their (Sa(1)S,(0)) P 2
dynamic finite-size scaling explores the size dependence of a <5§> =Gal7), )
characteristic frequencw,,, which can only beindirectly .
attained by integrating the dynamic structure fackk,)  for the total spin components. Her,(7) and G,(7) are
with respect to angular frequenay. Hence, they did not universal dynamic scaling functions.
intend to explore the existence direct dynamic finite-size The exponene can be determined with the help of the
scaling in the time-dependent correlation functidgor identity (B(t)A(0))=—(B(t)A(0)), i.e.,
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<('SQ)2> <éqsq> TABLE |. Time-scaling exponents ande’ of the time-scaling
- = — - '2 =N"2°F (0), (3)  variable r=tN~%*") for the time-dependent spin-correlation func-
((s)% ((s)%) tions of the 3DXY model. Numbers in parentheses are the errors

for the single spin components, and in the last digits.

~ .. Time-scaling exponerg
<(<Ssaz)> - <?§§f ! N#,0), @) =T =T =T

for the total spin components at time 0. The first expres- )
sions in these equations are usually accessible from statit’®@! SPin
simulations and the equations of motion. Then log-log plots
of Egs.(3) and(4) yield the exponents ande’. This implies
that the tllme_—scallr.lg variableg®N ¢ or tN~¢ can be found 'Siz: _‘]Sﬂy‘E sj‘+Jsﬂx‘2 s, (®)
from static simulations such as MC. It should be noted that jenN jENN

once we take the dynamic finite-size scaling ansatz, &gs.

and (2), for granted, our dynamic scaling method, E®.  where S _yy denotes the sum over nearest neighbjorsf

Single spin 0.00(1) 0.03(1) 0.00(1)

0.00(1) 0.34(1) 0.49(1)

and(4), is exactat least in the short-time region. sitei. Among the equations of motion for the total spin com-
ponents S, is a constant of motion which is not of our inter-
lll. SIMULATION OF 3DC XY est, and we get
Now we apply thedirect dynamic scaling method de-
scribed above to the 3DCY model. The model is defined by - _ z y
the Hamiltonian S= ‘]Z S‘jgN Sy ©)
H=-JD (s's'+9'9)), (5) -
in §5=3> s> s (10)
i jeNN

wheres denotes thexr component of a classical Heisenberg

Spin at sitei; J is the positive f:oupling.clpnstant. Note that In order to obtain the scaling exponent, we have calculated
the sum runs over nearest-neighbor pajjsof the system. '

Q a C 2
For simplicity we choose the simple cubic lattice, which {(Si )H{(s7)?) and((S)?)/(Sy). Then Eqgs(3) and(4) en-

should not affect the result according to the universality ar2Ple us to find the time scaling exponengésand e’. The
gument. results are summarized in Table |. Unlike the CSVW or

We now proceed to find out the time-scaling exponents IR(_:AS models, there is no size dependence away from criti-
ande’, and hence the time-scaling variables of the madel Cality except for the remarkably strong oneTa& T, for the
by utilizing the dynamic scaling method described in thetotal spin correlations. In the critical regio,~T,, the
previous section. Since the relevant static correlation funclime-scaling exponents show extremely weak size depen-
tions are not known analytically, we make use of MC Simu_der_me within the error bound for the single spin correlatl_ons,
lations. In our MC simulations, we have studieck 5% 5, while the dependence is strong for the total spin correlations.

7X7x7, and 10 10X 10 lattices. Ensemble averages are '€ reason why the behavior of the 3RE model is so
obtained through the heatbath algorithfnin the simula- different from that of the CSVW model will be discussed
tions, we have discarded the first 4 000 Monte Carlo step8€loW. _ , _ .

per spin(MCS) for the equilibration of the system. Ensemble ~ Having obtained the time-scaling variables, we now pro-

averaging is carried out by collecting three sets of 10000 t&€€d to find the range of the variable, within which the time-

30000 configurations, where successive configurations ar’%ependent spin-correlation functions for the systems with

separated by 10 to 20 MCS to assure the statistical indepe ifferent number of spins collapse into a universal curve. To

dence between the configurations. The error in our MC cald® SO, we calculated the time-dependent spin-correlation
culation is estimated to be less than 2%. function for the model through the SDS.

We obtained the dimensionless inverse critical tempera- In_the SDs, ens_emble averages of Fhe time—dependenf[ cor-
ture from the MC data via the Binder cumulant plot: relations are obtained through MC simulation as described
B.J=0.641), where B,=1kgT.. The number inside the above. From each configuration, the equations of motion are

C . ’ c- . . .
parenthesis denotes the standard error in the last digit.  Integrated using the fourth-order Runge-Kutta algorithm.

For the 3DXXY model, the equations of motion for a The time interval between each step in the present work is

. . - 0.01 in units ofJ.
single spin vector are given b
Ing pin v g y In Fig. 1, we depict the time-dependent single spin-

_ c_orrelatio_n fun<_:tions Fx(r_):<s’1((t)§>l‘(0)_)/<[s’1‘(0)]2) vs
s = —J%Z,E s’ (6)  time-scaling variables, which are given in Table |, at differ-
JeNN ent temperature regimes. Although our result is given only
for site 1, it is also valid for any sitéz,(7) shows an iden-
S?IZJSZ 2 S}(’ 7) tical behavior due to the symmetry of the model. We witness
jENN almost perfect collapse of curves at least upltes0.3 for
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15— C r limit almost sets the motion of the component of the total

A r (a) 5x5x5 L (b) L (C) . . . . .

= F —— 77 | c spin in a single phase, and hence effectively all the spins

N 10 [ oo 10x10x10 o :'"\\ behave as if they are dynamically coupled.

* 5L -~ N o ~ As time increases, however, this correlation vanishes

Py E ™t T T quickly, so that corrections to scaling make the collapsing

£ ool = = less apparent. As a consequence, the dynamic scaling region

M E , a | E in the 3DXY model becomes narrow. This narrow scaling
'-50 — ] ‘o e ] ‘o — 1' ' region and weak size dependence should be contrasted to the

CSVW model, where the coupling is inherently of infinite
J1

range. It is indeed the infinite-range coupling of spins which
gives rise to the collective effect, and thus the finite-size
FIG. 1. F,(7) vs J7 at (@) 8J=0.30, (b) BJ=0.64, and(c) scaling for the qur_elgtlon function is strong at _all tempera-

ture regimes for infinite-range models. This intrinsic collec-
tiveness of the model makes dynamic coupling of all spins

all temperature regimes. The data collapsing range is reducéﬂminiSh only gradually in time, so that corrections to scalin.g
substantially at the critical temperature from that of theapp_ear_at a much Iater' stage. Hoy\{ever, the small Sca"F‘g
CSVW and IRCAS models. region is rather normal in many critical phenomena and it

I,§hould be interpreted that the CSVW model has an extraor-

BJ=0.90, respectively.

Figure 2 shows the time-dependent total spin-correlatio Yinarily long scaling region
. _ 2 . _ . .
funpt|ons Gx.(T) —(&(t)&(O))/(SAO)) Vs time-scaling We briefly mention an interesting but anomalous behavior
variables, which are given in Table I, at different temperature

regimes.G, () also shows an identical behavior due to theof the total spin-correlation function dt~T.. Our dynamic
S ?’nmeﬁ }é)thhe model. From the figure, almost perfect coI—SCaling method predicts =0.34(1) and the time-dependent
y y ) gure, P correlation function fits well within the characteristic time
lapse of the curves at least upie<0.2 can be seen for all .
. : interval (at smallJ7). On the contrary, we found afterwards
temperature regimes. Note here that the data collapsing ran

is reduced dramatically at the critical temperature from tha ’a_t the co'rr('alanon. function fits the scaling function with
of the CSVW and IRCAS models e’ =0.50 within a fairly broader range even beyahg=1.0.

In both cases, we observe that the data collapsing regionssmce our dynamic finite-size scaling is exact at short times

(or equivalently the dynamic scaling regiore much nar- as mentioned in Sec. Il, we suspect this might be a manifes-
rowe(r] than thgse of )t/he infinite-ra%gegCSVW and IRCAStati.On O.f the so—(;alled intermediate asympto_ﬁbsiowever,
models. At the same time, the finite-size dependence of th'Ea0 inquire into this matter further would require more study.
time-scaling variables becomes much weaker for the single

spin correlations at all temperature regimes. These differ- IV. CONCLUSION

ences can be understood by examining . We immedi- _ - e o
ately note that each spin is coupled only to nearest neighborﬁ WG,’ have studied thexphmtc?ynamm f|_n|te-5|ze scaling in

in the 3DCXY model. Therefore, practically no collective the t|me-dependent corre!atlon 'funct|on of the 30C
effect of spin-spin interactions would arise at high tempera-mOd.GI' Applying the dynamic scaling mgthoq proposgd by us
tures, thus the size dependence would be minimal. Thigrewo_usly, we have found the appropriate tlme-s_callng var-
causes the zero in the first column in Table I. N&ar due ab_les In various temperature regimes using static MC simu-
to diverging correlation length effectively all the spins be- lations. Time-dependent correlation functions have been cal-

come correlated with each other. Hence, each spin will haVQUI".’ug? usmgil dyf?am'cf SES d5|mulat|ons. VY't.h th? SC"?‘"”Q
effective dynamical coupling to all other spins, and there will Varabies, cofiapsing o the dynamic correlation functions
be some collective effect which in turn causes appreciabl

into universal curves is successfully carried out.
size dependence. At low temperatures, the dynamic finite- | N results confirm our proposition of usimg:t/7as the

size scaling of the total spin is strong although the correlal'me'sca"ng variable fodirect dynamic finite-size scaling of

tion length becomes short. We suppose this is caused by tﬁBe time-dep(_andent cprrelation functiorjs. It'also supports our

long-range order related to the varialSe, which we have assertion of interpreting thmaxmum tlmg intervabf De-

chosen to investigate. Onset of long-range order inXhe k.e_yser. and Le_?eas the regior within Wh!Ch ogr.dyn.amlc
finite-size scaling holds. Therefore, our direct finite-size scal-

15 ing method correctly describes the behavior of a short-range
A F (a) F (b) F(e) model, as it did for infinite-range models, such as CSVW
o 10— o = and IRCAS. In the 3D&Y model, however, the data col-
Y T~ | N SN lapsing regions are found to be much narrower than those of
i 3 [ N infinite-range models. Also, the size dependence is much
g - 1oxioxto | weaker. These changes are attributed to the short-range na-
@ 00 E 3 ture of the coupling in the model.
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