
PHYSICAL REVIEW B 1 DECEMBER 1997-IVOLUME 56, NUMBER 21
Dynamic finite-size effect in the three-dimensional classicalXY model
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~Received 3 April 1997!

Explicit dynamic finite-size scaling in the time-dependent correlation functions for the three-dimensional
classicalXY model is explored. The dynamic scaling method, proposed by us previously, is utilized for finding
the time-scaling variables of the model. Time-dependent correlation functions of the model for different
numbers of spins could be collapsed into universal curves. Compared to infinite-range spin models, the width
of the scaling region is found to be much narrower.@S0163-1829~97!01045-X#
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I. INTRODUCTION

In our previous work,1 we developed a method whic
could take into account the dynamic finite-size scaling pr
erty appearingexplicitly in the time-dependent correlatio
function. We applied the method to study the finite-size
fect in the time-dependent correlation functions of the cl
sical spin van der Waals model2–4 ~CSVW! with infinite-
range ferromagnetic interaction and an infinite-ran
antiferromagnetic classical spin model5 ~IRCAS!. With the
time-scaling variable determined by applying this meth
the time-dependent correlation functions for systems w
different numbers of spins collapsed into universal curv
We could also interpret the meaning of the system s
dependentmaximum time interval, where the calculation o
Dekeyser and Lee2 is valid. In fact, the maximum time in
terval is found to be related to the interval, i.e., the size of
characteristic time, where the dynamic scaling is maintain
In both models, the dynamic finite-size scaling phenom
persist even far away from criticality. This is in contrast wi
most static finite-size scaling phenomena which usually
pear only close to criticality.

In this note, we further apply our dynamic scaling meth
to a short-range spin model to elucidate the effect of
interaction range on the dynamic finite-size scaling behav
One possible choice for a short-range spin model is the w
known Heisenberg model. Since the total spin compone
are constants of motion, their time-dependent behavio
trivial. Hence, we investigate the dynamic finite-size beh
ior of the three-dimensional classicalXY model~3DCXY!, in
which the total spin components have nontrivial time evo
tions. Since neither the statics nor the dynamics of this mo
is exactly solvable, we shall appeal to the spin dynam
simulation6 ~SDS! approach.

Recently, Chen and Landau7 developed a dynamic finite
size scaling theory in the frequency–wave-number dom
which inherits the features of the dynamic scaling theory
Halperin and Hohenberg8 for bulk systems. However, thei
dynamic finite-size scaling explores the size dependence
characteristic frequencyvm , which can only beindirectly
attained by integrating the dynamic structure factorS(k,v)
with respect to angular frequencyv. Hence, they did not
intend to explore the existence ofdirect dynamic finite-size
scaling in the time-dependent correlation function~or
560163-1829/97/56~21!/13677~4!/$10.00
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equivalently in the dynamic structure factor! like the present
work.

II. DESCRIPTION OF THE DYNAMIC
SCALING METHOD

In our previous work,1 we developed a finite-size dynam
scaling method in which the time-dependent correlat
functions aredirectly scaled in the time domain. The time
scaling variable can be found by comparing the orders
magnitude of both sides of the equations of motio
ṡi52si3dH/dsi for the single spin vectorsi at site i , and
Ṡ52( i 51si3dH/dsi for the total spin vectorS5( i 51si .
Usual quantities considered in simulations are the ensem
averages of the absolute value of spins. The order of ma
tude of these quantities in each side can be determined f
the results of statics, which in most cases are obtai
through Monte Carlo~MC! simulations.9 In general, the size
dependence of the spin variable is changed by taking
derivative with respect to time. We introduced a characte
tic time T, which represented this change. The change m
depend on the system sizeN and theN dependence ofT is
expressed in the formT;O(Ne), where e is to be deter-
mined. We asserted that the equations of motion for a sys
in the thermodynamic limit are well defined only within th
characteristic timeT. Thereby we choset/T or equivalently
tN2e as the finite-size time-scaling variablet. This assertion
and the above proposition were fully justified for the CSV
and IRCAS models.1

Following the above analysis, we arrived at the finite-s
scaling form for the time-dependent correlation function
namely

^si
a~ t !si

a~0!&

^~si
a!2&

5Fa~t! ~1!

for the single spin components (a5x,y,z), and

^Sa~ t !Sa~0!&

^Sa
2&

5Ga~t!, ~2!

for the total spin components. Here,Fa(t) and Ga(t) are
universal dynamic scaling functions.

The exponente can be determined with the help of th
identity ^Ḃ(t)A(0)&52^B(t)Ȧ(0)&, i.e.,
13 677 © 1997 The American Physical Society
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^~ ṡi
a!2&

^~si
a!2&

52
^s̈i

asi
a&

^~si
a!2&

5N22eF̈a~0!, ~3!

for the single spin components, and

^~Ṡa!2&

^Sa
2&

52
^S̈aSa&

^Sa
2&

5N22e8G̈a~0!, ~4!

for the total spin components at timet50. The first expres-
sions in these equations are usually accessible from s
simulations and the equations of motion. Then log-log pl
of Eqs.~3! and~4! yield the exponentse ande8. This implies
that the time-scaling variablestN2e or tN2e8 can be found
from static simulations such as MC. It should be noted t
once we take the dynamic finite-size scaling ansatz, Eqs~1!
and ~2!, for granted, our dynamic scaling method, Eqs.~3!
and ~4!, is exactat least in the short-time region.

III. SIMULATION OF 3DC XY

Now we apply thedirect dynamic scaling method de
scribed above to the 3DCXY model. The model is defined b
the Hamiltonian

H52J(
^ i , j &

~si
xsj

x1si
ysj

y!, ~5!

wheresi
a denotes thea component of a classical Heisenbe

spin at sitei ; J is the positive coupling constant. Note th
the sum runs over nearest-neighbor pairsi , j of the system.
For simplicity we choose the simple cubic lattice, whi
should not affect the result according to the universality
gument.

We now proceed to find out the time-scaling exponente
ande8, and hence the time-scaling variables of the modet
by utilizing the dynamic scaling method described in t
previous section. Since the relevant static correlation fu
tions are not known analytically, we make use of MC sim
lations. In our MC simulations, we have studied 53535,
73737, and 10310310 lattices. Ensemble averages a
obtained through the heatbath algorithm.10 In the simula-
tions, we have discarded the first 4 000 Monte Carlo st
per spin~MCS! for the equilibration of the system. Ensemb
averaging is carried out by collecting three sets of 10 000
30 000 configurations, where successive configurations
separated by 10 to 20 MCS to assure the statistical inde
dence between the configurations. The error in our MC c
culation is estimated to be less than 2%.

We obtained the dimensionless inverse critical tempe
ture from the MC data via the Binder cumulant plo9

bcJ50.64(1), where bc51/kBTc . The number inside the
parenthesis denotes the standard error in the last digit.

For the 3DCXY model, the equations of motion for
single spin vector are given by

ṡi
x52Jsi

z (
j PNN

sj
y , ~6!

ṡi
y5Jsi

z (
j PNN

sj
x , ~7!
tic
s

t

-

c-
-

s

o
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-

ṡi
z52Jsi

y (
j PNN

sj
x1Jsi

x (
j PNN

sj
y , ~8!

where ( j PNN denotes the sum over nearest neighborsj of
site i . Among the equations of motion for the total spin com
ponents,Sz is a constant of motion which is not of our inte
est, and we get

Ṡx52J(
i

si
z (
j PNN

sj
y , ~9!

Ṡy5J(
i

si
z (
j PNN

sj
x . ~10!

In order to obtain the scaling exponent, we have calcula

^( ṡi
a)2&/^(si

a)2& and^(Ṡx)
2&/^Sx

2&. Then Eqs.~3! and~4! en-
able us to find the time scaling exponents,e and e8. The
results are summarized in Table I. Unlike the CSVW
IRCAS models, there is no size dependence away from c
cality except for the remarkably strong one atT!Tc for the
total spin correlations. In the critical region,T'Tc , the
time-scaling exponents show extremely weak size dep
dence within the error bound for the single spin correlatio
while the dependence is strong for the total spin correlatio
The reason why the behavior of the 3DCXY model is so
different from that of the CSVW model will be discusse
below.

Having obtained the time-scaling variables, we now p
ceed to find the range of the variable, within which the tim
dependent spin-correlation functions for the systems w
different number of spins collapse into a universal curve.
do so, we calculated the time-dependent spin-correla
function for the model through the SDS.

In the SDS, ensemble averages of the time-dependent
relations are obtained through MC simulation as descri
above. From each configuration, the equations of motion
integrated using the fourth-order Runge-Kutta algorith
The time interval between each step in the present wor
0.01 in units ofJ.

In Fig. 1, we depict the time-dependent single sp
correlation functions Fx(t)5^s1

x(t)s1
x(0)&/^@s1

x(0)#2& vs
time-scaling variables, which are given in Table I, at diffe
ent temperature regimes. Although our result is given o
for site 1, it is also valid for any site.Fy(t) shows an iden-
tical behavior due to the symmetry of the model. We witne
almost perfect collapse of curves at least up toJt&0.3 for

TABLE I. Time-scaling exponentse ande8 of the time-scaling

variablet5tN2e(e8) for the time-dependent spin-correlation fun
tions of the 3DCXY model. Numbers in parentheses are the err
in the last digits.

Time-scaling exponente
T@Tc T'Tc T!Tc

Single spin 0.00(1) 0.03(1) 0.00(1)

Total spin 0.00(1) 0.34(1) 0.49(1)
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all temperature regimes. The data collapsing range is redu
substantially at the critical temperature from that of t
CSVW and IRCAS models.1

Figure 2 shows the time-dependent total spin-correla
functions Gx(t)5^Sx(t)Sx(0)&/^Sx

2(0)& vs time-scaling
variables, which are given in Table I, at different temperat
regimes.Gy(t) also shows an identical behavior due to t
symmetry of the model. From the figure, almost perfect c
lapse of the curves at least up toJt&0.2 can be seen for al
temperature regimes. Note here that the data collapsing r
is reduced dramatically at the critical temperature from t
of the CSVW and IRCAS models.1

In both cases, we observe that the data collapsing reg
~or equivalently the dynamic scaling regions! are much nar-
rower than those of the infinite-range CSVW and IRCA
models. At the same time, the finite-size dependence of
time-scaling variables becomes much weaker for the sin
spin correlations at all temperature regimes. These dif
ences can be understood by examining Eq.~5!. We immedi-
ately note that each spin is coupled only to nearest neigh
in the 3DCXY model. Therefore, practically no collectiv
effect of spin-spin interactions would arise at high tempe
tures, thus the size dependence would be minimal. T
causes the zero in the first column in Table I. NearTc , due
to diverging correlation length effectively all the spins b
come correlated with each other. Hence, each spin will h
effective dynamical coupling to all other spins, and there w
be some collective effect which in turn causes apprecia
size dependence. At low temperatures, the dynamic fin
size scaling of the total spin is strong although the corre
tion length becomes short. We suppose this is caused by
long-range order related to the variableSx , which we have
chosen to investigate. Onset of long-range order in theXY

FIG. 2. Gx(t) vs Jt at ~a! bJ50.30, ~b! bJ50.64, and~c!
bJ50.90, respectively.

FIG. 1. Fx(t) vs Jt at ~a! bJ50.30, ~b! bJ50.64, and~c!
bJ50.90, respectively.
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limit almost sets the motion of thex component of the tota
spin in a single phase, and hence effectively all the sp
behave as if they are dynamically coupled.

As time increases, however, this correlation vanish
quickly, so that corrections to scaling make the collaps
less apparent. As a consequence, the dynamic scaling re
in the 3DCXY model becomes narrow. This narrow scalin
region and weak size dependence should be contrasted t
CSVW model, where the coupling is inherently of infini
range. It is indeed the infinite-range coupling of spins wh
gives rise to the collective effect, and thus the finite-s
scaling for the correlation function is strong at all tempe
ture regimes for infinite-range models. This intrinsic colle
tiveness of the model makes dynamic coupling of all sp
diminish only gradually in time, so that corrections to scali
appear at a much later stage. However, the small sca
region is rather normal in many critical phenomena and
should be interpreted that the CSVW model has an extra
dinarily long scaling region.

We briefly mention an interesting but anomalous behav
of the total spin-correlation function atT'Tc . Our dynamic
scaling method predictse850.34(1) and the time-dependen
correlation function fits well within the characteristic tim
interval ~at smallJt). On the contrary, we found afterward
that the correlation function fits the scaling function wi
e850.50 within a fairly broader range even beyondJt51.0.
Since our dynamic finite-size scaling is exact at short tim
as mentioned in Sec. II, we suspect this might be a mani
tation of the so-called intermediate asymptotics.11 However,
to inquire into this matter further would require more stud

IV. CONCLUSION

We have studied theexplicit dynamic finite-size scaling in
the time-dependent correlation function of the 3DCXY
model. Applying the dynamic scaling method proposed by
previously, we have found the appropriate time-scaling va
ables in various temperature regimes using static MC sim
lations. Time-dependent correlation functions have been
culated using dynamic SDS simulations. With the scal
variables, collapsing of the dynamic correlation functio
into universal curves is successfully carried out.

The results confirm our proposition of usingt5t/T as the
time-scaling variable fordirect dynamic finite-size scaling o
the time-dependent correlation functions. It also supports
assertion of interpreting themaximum time intervalof De-
keyser and Lee2 as the regionT within which our dynamic
finite-size scaling holds. Therefore, our direct finite-size sc
ing method correctly describes the behavior of a short-ra
model, as it did for infinite-range models, such as CSV
and IRCAS. In the 3DCXY model, however, the data co
lapsing regions are found to be much narrower than thos
infinite-range models. Also, the size dependence is m
weaker. These changes are attributed to the short-range
ture of the coupling in the model.
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