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Numerical evidence for the bottleneck frequency of quasidiffusive acoustic phonons

Shin-ichiro Tamura
Department of Applied Physics, Hokkaido University, Sapporo 060, Japan
(Received 25 July 1997

A kinetic equation on quasidiffusion of phonons was recently analyzed by Esipov and he predicted the
existence of a bottleneck frequencygf) which separates the phonons decaying from those diffusing to a
detector. We have solved numerically the kinetic equation and obtained the temporal evolution of phonon
concentration excited at the center of a spherical sample. We have also performed Monte Carlo simulations of
phonon propagation in the same geometry. At a time much later than the ballistic arrival time of phonons, both
sets of results exhibit a sharp peak in the phonon concentration around the pregdj¢téd/ith Monte Carlo
simulations we have also confirmed the same relaxation rate for the phonons of frequeraigs.
[S0163-182697)01645-7

Propagation of high-frequency acoustic phonons in nonarriving at a detector far>t, though they fail to account for
metallic crystals at low temperatures is governed by(e the shape of the phonon signal arrivingtatt,.?° In this
focusing effect due to the anisotropy of the lattide(2) sense the one-branch model is useful in discussing the be-
elastic scattering due to foreign and isotopic impuritiesid  havior of phonons in the time regids-t,, . Simulations with
(3) anharmonic decay via three-phonon interacfichThe @ more sophisticated three-branch model taking account of
propagation in the regime where the latter two effects ardocusing effects have also been done and they reproduce the
dominant is called quasidiffusion’® Because of a highly- Shape of observed time traces well evenffett,,.>*
frequency-dependent decay rate of phonefs=Ar® (A is The kinetic equations describing the quasidiffusion of
a constant depending on phonon polarization ani$ the ~Phonons have been proposed and analyzed by several

frequency, there exists a characteristic frequendy) at an a.Uth(.)rS?'&lg’Z.z Specifically, Esipov has recently stuc_iied th(_a
elapsed ti;ne determined byrs(»)=t. This frequency gives kinetic equation in the framework of a one-branch, isotropic
the length | of space eAxpansi;)n at a timé  as model and found a novel resiéftHe claims that the equation

. ) governing the phonon concentratiblf»,t) involves a char-
lN”[tAl(V) T'(4”)]1/2,~t9/10' wherev is the Debye velocity 5 ieristic frequency(called the bottleneck frequencyiy)
and77-é =Bv" (B is a constantis the elastic scattering \yhich separates the phonons into two groups; ie., the
rate.” Thus the average phonon distribution in a sampléshonons withv< vgy have the same relaxation time deter-
sprequ more slpwly_ than in ballistic propagation but fastefnined by vg, but those withy> vgy decay with time con-
than in normal diffusion. stants depending on their frequency. However, it is still not

More recent observations show that the characteristic beshvious if the existence afgy has a clearly visible influence
havior of quasidiffusive phonons appears in the time trace opn the solutiorN(»,t) of the kinetic equation.
the detected phonon signal as an exponentially decaying tail The purpose of the present work is to study the validity of
at a time much later than the ballistic time of flighf the kinetic equation for quasidiffusion and to give explicit
through the sampl&:~12Experimentally, this exponential be- evidence for the presence ofy . This is done by numeri-
havior has been observed for several semiconductingally solving the equation studied by Esipov and obtaining
samples of slab geometry such as silicon, germanium, anidhe time evolution of the phonon concentration. We also
GaAs with a photoexcitation technigue at a low input powercarry out Monte Carlo simulations for phonon propagation in
level® It is critical for observing the exponential tails to the same sample geometry. As we shall see below, the results
remove liquid helium from the surface where the phonon®f both studies explicitly suggest the existence of a bottle-
are excited. Otherwise, the high-frequency phonons excitedeck frequency in the quasidiffusive regime. More specifi-
at the sample surface are lost into the helium bath and theally, att>t, the numerical solution for the frequency dis-
quasidiffusive tail originating from these phonons is hardlytribution of phonons inside a sample exhibits a sharp peak at
observed. The quasidiffusion is also important in analyzinghe predicted bottleneck frequenaysy. This distribution
the phonon signal produced by high-energy particles in ajives good agreement with the phonon concentration ob-
crystal4-18 tained by the Monte Carlo simulation if the initial phonon

The applicability of a quasidiffusive model is seen by frequency is high enough. Also the simulations reveal that
comparing the experimental heat pulses with Monte Carldhe tails of the detected phonon signals fex vgy decay
simulationst®~?! Originally a simple one-branch model was with the same relaxation rate as predicted by Esipov.
proposed, where three-phonon polarizations were approxi- We start with the kinetic equation that Esipov studiéd.
mated by a single mode with the Debye velodityThe  Neglecting the upconversion of phonons, the kinetic equa-
Monte Carlo simulations based on this model can reproductgon governing the propagation of phonons in the one-branch
the exponential tail in the time-of-flight spectrum of phononsisotropic model is written
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FIG. 1. Flux versus arrival time of purely diffusive phonons in 1.2t
silicon sphere of radiuR=5.5 mm. Phonons of 2 THz frequency E (b)
are assumed to be generated at the center of the spher® aDots 1.05_ 5¢
are the Monte Carlo results and the solid line is the analytical result — _ \
derived from Eq.(2). g 08k 751,
s £
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whereN is the phonon concentratioB,(v) = sv°7(v) is the 3 T
averaged diffusivity, and’(»’,v) describes the probability 0.(()):0 : '0'5' s -1'0- - '1'5' T
of a phonon of frequency’ producing a phonon of fre- ) ‘ ‘ : 2.0 25
guencyv in a decay via a three-phonon process. The kerne Frequency (THz)
I'(v',v) is assumed a¥ (v',v)=[7a(v")] P(¥',v) with
P(v',v)=600(v'—v)?/(v')°. This form of P satisfying FIG. 2. Frequency dependences of phonon concentrations in the

sample at several timeésmuch later than ballistic time of flight, .

. . e : (& The solutionsN; of Eg. (3) and(b) the Monte Carlo results for
First we consider the case pure diffusionby neglecting R=5.5 mm. To compare the profiles the maxmum value of each

the right-hand sidéRHS) of Eq. (1) and also the term pro- ; . i
. 1 : tfrace is normalized to unity.
portional to 7, ~. Suppose that the phonons are excited at

t=0 at the center of a spherical sample of radiand with et only the first eigenwave in the Fourier series putting
the boundary conditiomN(»,R,t)=0. This boundary condi- N(v,r,t)=Ny(v,t)sin(mr/R)r. Now N,(v,t) obeys the
tion implies that the surface of the sphere is covered with dntegro-differential equation

perfect absorber of phonons. The solution of the diffusion

equation is then J 1

ETN O e

ngVP(VO,V)dv= vo was originally introduced by Maris

Nqi(v,t)= fde,Nl(V/,t)F(V’,V),
3

with 75*=7?D(v)/R? for a sphere. This is the equation
which Esipov analyzed closely. At a tintemuch later than
whereNjy is the initial number of phonons. In order to check t, Esipov found that the solutionN; behaves as
our Monte Carlo code we compare in Fig. 1 the flux ~exd —t/ty(v)], the time constant, being determined from
V,N|,_g derived from the solutiof2) and the corresponding
results of the Monte Carlo simulations for the phonon propa-
gation in the presence of elastic scatteriﬂ‘glsz4 with
B=2.43x10 ** s3 valid for silicon. The details of the
Monte Carlo simulations are described in Ref. 20. As ex-This can be readily seen by discretizing the frequency
pected both results coincide very well. An important obser-» as vq,vy, ...,v,, ..., and converting Eg.(3) into
vation is that in the sum of Eq2), the first term (=1) a set of coupled linear differential equations
gives the dominant contribution at largeThus Esipov has for N1(vq,t),Ny(vo,t), ... Ny(wp,t), ..., where

“.n _nar
N(v,r,t)=Ny > Fsin%exp:—nzsz(v)t/Rz], 2
n=1

1

= t—=
Ta(v)  o(v)

. 4

[to(»)] *=min

v=v
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FIG. 4. Monte Carlo results for intensities vs arrival time for
phonons with frequencies within the intervals indicated. The
F ] straight line indicates the exponentially decreasing profile with time
3 691, (b) 3 constant3™=3.1t, . R=5.5 mm andy=5.91x 10° cm/s are used.
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E 3 cay with the same time constat{ vgy). It should be noted
0.8F E that this bottleneck frequencygy depends on the system
size but not on the initial frequency of phonons exited. Nu-
merically vgy=1.68 THz andy(vgy)=3.0 t, for a spheri-

Number of Phonons (arb. units)

0‘6;_ 12-15¢, E cal silicon sample of radiuR=5.5 mm, where we have used
3 9-124, E v=5.19x10° cm/s for the Debye velocity and
0.4F 3 A=1.2x10"%¢ s* for the mode-averaged decay constant in

e 3 silicon.
02F 3 In order to see more explicitly the existence of the bottle-
3 E neck frequency we have solved Eg) numerically and plot-
00: L I N 3 ted the time evolution of the phonon concentratiby( v,t).
0.0 0.5 1.0 1.5 vpy 2.0 25 Figure Z2a) exhibits the solutions of Eq3) for ten selected

times much later than the ballistic time of flighi. The
frequency distributions of phonons quasidiffusing in the
FIG. 3. Frequency dependences of the phonon numbers arriving2MPle exhibit sharp peaks which move towarelsvgy for
at the surface of the spherical sample are plotted at several timesl— - This clearly indicates the existence of the predicted
much later than ballistic time of flight, . (a) The results derived bottleneck frequency for phononstatt,; that is, the relax-
from the solution of Eq(3) and (b) the Monte Carlo results for ~ation time is the longest at=vgy. The abrupt decrease of
R=5.5 mm integrated over the time intervals indicated. The averNi(v,t) for v>vpy is due to the strong anharmonic decay as
age arrival times of the traces {h) correspond to the arrival times predicted. The phonons far<vgy should decay with the
labeled for the first four traces @¢8). To compare the profiles the same time constamg(vgy) but the shape of the-dependent
maximum value of each trace is normalized to unity. The diffusionprofile of N,(»,t) depends on the selected formPfv’,v).

Frequency (THz)

approximation fails at the low-frequency region hatchedan It should be noted that the same relaxation rate for phonons
of v<wgy att>t, arises from the fact that those phonons are
1<vo<...<wpp<.... Because;l and 751 are propor-  produced via a decay of the phonon with- vgy, .
tional to »° and v~ 4, respectively, their sum has a minimum  Figure 2b) also plots the time evolutions of phonon con-
at v=vgy=(4/5)"°v*, where centration calculated by the Monte Carlo simulation in the
same sample geometry. An initial frequen@THz) higher
2 2\ 19 . . L= T
Tv than vgy is assumed. The simulated frequency distributions
vr= 3R2AB ) at later times also show peaks arourg;, and their profiles

are very similar ta\(»,t) plotted in Fig. 2a) except in the

and the corresponding relaxation rate of the phonon signal d@w-frequency region. Note that the low-frequency phonons

t>t, is propagate nearly ballistically and are excluded in the calcu-
lation with the diffusion approximation.

4 9 5 The phonon flux in the diffusion approximation is given
[to(ven)]™ =7 Avey: ©®)  py J(v,r,t)=—D(»)VN(w,r,t) (Fick's law). So in this ap-

proximation the number of phonons hitting the surface of the

Thus, if the initial frequency is high enough, the phononssphere at t>t, should be proportional to

with v>wvgy decay with a decay rate given by D(v)V,N|,_g~v *N;(v,t). We have shown in Fig. 3 the

1ho(v)=17a(v) + Lmp(v), whereas those withh<wgy de-  frequency dependence of the phonon flux arriving at the sur-
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face of silicon sample. The majority of phonons detected agxperimental vaIu&S"pt: 3.6, observed in the slab geom-
the sample surface consist of those with vgy. We note  etry. A more quantitative comparison with the experiments
that the frequency dependence at late times exhibits a bumpoy|g require Monte Carlo simulation including three dis-
at aboutvgy/2 in addition to the peak aroundgy. This  inct phonon modes and the exact sample geometry of the
bump becomes more significant when we assUM@y neriments

’ 3 N(5," — 3,\N ryn+1 i . P _ ' . . .
P(v',v)~v(v' = )"/ (»")""" with n>2; that is, the anhar To conclude, we have solved numerically the kinetic

g];ungi;(r:]tgre;c)?\)(/)nsopr:istso?eziﬁnénzrr]gcolrt] smhglrﬁ df[)eeql;f)mlé dinc:8 quatior_w for quasidiffusion and a]so _conducted Monte Carlo
that the solution of the kinetic equa'ti(ﬁﬁig. 3(a)] coincides calculations of phonon propagation in the presence of both

qualitatively with the Monte Carlo resuffig. 3(b)] which elastic scattering and frequeljcy downconversion. Both re-
also exhibits shoulders in addition to peaks negy at later sults have conﬂ_rmed the §X|stence_ of the bottleneck fr_e-
times. However, the diffusion approximation again leads to1U€ncyen predicted by Esipov, which governs the quasi-
an unphysicaldivergen} result at the low-frequency region diffusion of phonons at>ty,: (1) The frequency distribution
[hatched region in Fig.(&)] where this approximation is no ©f phonons in a sample has a sharp peak=abgy, and(2)
longer valid. the quasidiffusive tails of the phonons with< vgy decay
The Esipov prediction that the time constagtis the  With the same time constatg(vgy). However, the kinetic
same for any phonons with< vgy can be also confirmed by equation we consider is based on the diffusion approxima-
Monte Carlo calculations. This is done by plotting the timetion and hence fails at low phonon frequencies. It would be
traces of the phonon intensity hitting the sample surfidg.  an interesting challenge to construct a model which explains
4). The initial frequencyy, of the phonons excited is again 4 both the ballistic and quasidiffusive regimes including three-
THz (>vgy), but the results are insensitive to the frequencyphonon branches.
assumed ifvy higher than 4 THz is chosen. We see that the
tail of the simulated phonon signal exhibits an exponential The authors would like to thank S. E. Esipov and H. J.
decay in time, and the decay constants for three chosen fréaris for valuable discussions, and O. B. Wright for useful
quency intervalsy<0.7 THz, 0.7 THz<v< 1.1 THz, and comments on the manuscript. This work was supported in
1.1 THz<v<1.5 THz are the same; that i§™=3.1t,. In  part by a Grant-in-Aid for Scientific Research from the Min-
addition this time constant is consistent wijfrgy) =3.0t,  istry of Education, Science and Culture of Jag@nant No.
given by Eq.(6) for R=5.5 mm, but slightly smaller than the 09640385.

1B. Taylor, H. Maris, and C. Elbaum, Phys. Rev. Le#8, 416  !'J. A. Shields, M. E. Msall, M. S. Carroll, and J. P. Wolfe, Phys.

(1969; Phys. Rev. B3, 1462(1971). Rev. B47, 12 510(1993.

2G. A. Northrop and J. P. Wolfe, iNonequilibrium Phonon Dy-  12M. E. Msall, S. Tamura, S. E. Esipov, and J. P. Wolfe, Phys. Rev.
namics edited by W. E. Bron(Plenum, New York, 1985 p. Lett. 70, 3463(1993.

. 165. 13M. E. Msall and J. P. Wolfe, Phys. Rev. &5, 9557 (1997.

S. Tamura, Phys. Rev. B7, 858(1983; 30, 849(1984. 14B. A. Young, B. Cabrera, and A. T. Lee, Phys. Rev. Lé#,

4S. Tamura, Phys. Rev. B1, 2574(1985. 2795(1990.

®S. Tamura and H. J. Maris, Phys. Rev3B 2595(1985. 154, J. Maris and S. Tamura, Phys. Rev4B, 727 (1993.

6A. Berke, A. P. Mayer, and R. K. Wehner, J. Phys2G 2305 16 3. Maris. J. Low Temp. Phy$3, 355 (1993.

7D(1\9/82 ‘ 4V B Levi Phvs. S Solid 17s. E. Esipov, M. E. Msall, B. Cabrera, and J. P. Wolfe, J. Low
1.17. (1333 ovtsev and Y. B. Levinson, Phys. Status Solidia3 Temp. Phys93, 377 (1993,

18A. T. Lee, B. Cabrera, B. L. Dougherty, M. J. Penn, J. G. Pronko,

8 . . T . . . _
Y. B. Levinson, inNonequilibrium Phonons in Nonmetallic Crys and S. Tamura, Phys. Rev. B, 3244(1996.

tals, edited by W. Eisenmenger and A. A. Kaplyansiorth- 19 .
Holland, Amsterdam, 1986p. 91. H. J. Maris, Phys. Rev. B1, 9736(1990.

20
SW. E. Bron, Y. B. Levinson, and J. M. O’Conor, Phys. Rev. Lett. 218' Tamura, Phys. Rev. 88, 13 502(1993.
49, 209(1982. S. Tamura, J. Low Temp. Phy83, 433(1993.

22 :
107 E. Wilson, F. M. Lurie, and W. E. Bron, Phys. Rev3B, 6103 S. R. Esipov, Phys. Rev. B9, 716 (1994.
(1984).



