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Numerical evidence for the bottleneck frequency of quasidiffusive acoustic phonons

Shin-ichiro Tamura
Department of Applied Physics, Hokkaido University, Sapporo 060, Japan

~Received 25 July 1997!

A kinetic equation on quasidiffusion of phonons was recently analyzed by Esipov and he predicted the
existence of a bottleneck frequency (nBN) which separates the phonons decaying from those diffusing to a
detector. We have solved numerically the kinetic equation and obtained the temporal evolution of phonon
concentration excited at the center of a spherical sample. We have also performed Monte Carlo simulations of
phonon propagation in the same geometry. At a time much later than the ballistic arrival time of phonons, both
sets of results exhibit a sharp peak in the phonon concentration around the predictednBN . With Monte Carlo
simulations we have also confirmed the same relaxation rate for the phonons of frequenciesn,nBN .
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Propagation of high-frequency acoustic phonons in n
metallic crystals at low temperatures is governed by the~1!
focusing effect due to the anisotropy of the lattice,1,2 ~2!
elastic scattering due to foreign and isotopic impurities,3 and
~3! anharmonic decay via three-phonon interaction.4–6 The
propagation in the regime where the latter two effects
dominant is called quasidiffusion.7–10 Because of a highly-
frequency-dependent decay rate of phononstA

215An5 (A is
a constant depending on phonon polarization andn is the
frequency!, there exists a characteristic frequencyn(t) at an
elapsed timet determined bytA(n)5t. This frequency gives
the length l of space expansion at a timet as
l;v@tA(n)t I(n)#1/2;t9/10, where v is the Debye velocity
and t I

215Bn4 (B is a constant! is the elastic scattering
rate.7,8 Thus the average phonon distribution in a sam
spreads more slowly than in ballistic propagation but fas
than in normal diffusion.

More recent observations show that the characteristic
havior of quasidiffusive phonons appears in the time trace
the detected phonon signal as an exponentially decaying
at a time much later than the ballistic time of flighttb

through the sample.11–13Experimentally, this exponential be
havior has been observed for several semiconduc
samples of slab geometry such as silicon, germanium,
GaAs with a photoexcitation technique at a low input pow
level.13 It is critical for observing the exponential tails t
remove liquid helium from the surface where the phono
are excited. Otherwise, the high-frequency phonons exc
at the sample surface are lost into the helium bath and
quasidiffusive tail originating from these phonons is hard
observed. The quasidiffusion is also important in analyz
the phonon signal produced by high-energy particles i
crystal.14–18

The applicability of a quasidiffusive model is seen
comparing the experimental heat pulses with Monte Ca
simulations.19–21 Originally a simple one-branch model wa
proposed, where three-phonon polarizations were appr
mated by a single mode with the Debye velocity.19 The
Monte Carlo simulations based on this model can reprod
the exponential tail in the time-of-flight spectrum of phono
560163-1829/97/56~21!/13630~4!/$10.00
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arriving at a detector fort@tb though they fail to account for
the shape of the phonon signal arriving att.tb.20 In this
sense the one-branch model is useful in discussing the
havior of phonons in the time regiont@tb . Simulations with
a more sophisticated three-branch model taking accoun
focusing effects have also been done and they reproduce
shape of observed time traces well even fort.tb.20,21

The kinetic equations describing the quasidiffusion
phonons have been proposed and analyzed by sev
authors.7,8,19,22Specifically, Esipov has recently studied th
kinetic equation in the framework of a one-branch, isotro
model and found a novel result.22 He claims that the equation
governing the phonon concentrationN(n,t) involves a char-
acteristic frequency~called the bottleneck frequencynBN)
which separates the phonons into two groups; i.e.,
phonons withn,nBN have the same relaxation time dete
mined bynBN but those withn.nBN decay with time con-
stants depending on their frequency. However, it is still n
obvious if the existence ofnBN has a clearly visible influence
on the solutionN(n,t) of the kinetic equation.

The purpose of the present work is to study the validity
the kinetic equation for quasidiffusion and to give explic
evidence for the presence ofnBN . This is done by numeri-
cally solving the equation studied by Esipov and obtain
the time evolution of the phonon concentration. We a
carry out Monte Carlo simulations for phonon propagation
the same sample geometry. As we shall see below, the re
of both studies explicitly suggest the existence of a bot
neck frequency in the quasidiffusive regime. More spec
cally, at t@tb the numerical solution for the frequency di
tribution of phonons inside a sample exhibits a sharp pea
the predicted bottleneck frequencynBN . This distribution
gives good agreement with the phonon concentration
tained by the Monte Carlo simulation if the initial phono
frequency is high enough. Also the simulations reveal t
the tails of the detected phonon signals forn,nBN decay
with the same relaxation rate as predicted by Esipov.

We start with the kinetic equation that Esipov studied22

Neglecting the upconversion of phonons, the kinetic eq
tion governing the propagation of phonons in the one-bra
isotropic model is written
13 630 © 1997 The American Physical Society



-
n

-
a

h
io

ck
ux

pa

ex
er

ing

n

cy

s

the

ach

in
y

su

56 13 631BRIEF REPORTS
F ]

]t
2D~n!¹21

1

tA~n!GN~n,r ,t !

5E
n

`

dn8N~n8,r ,t !G~n8,n!, ~1!

whereN is the phonon concentration,D(n)5 1
3v

2t I(n) is the
averaged diffusivity, andG(n8,n) describes the probability
of a phonon of frequencyn8 producing a phonon of fre
quencyn in a decay via a three-phonon process. The ker
G(n8,n) is assumed asG(n8,n)5@tA(n8)#21P(n8,n) with
P(n8,n)560n2(n82n)2/(n8)5. This form of P satisfying
*0

n0nP(n0 ,n)dn5n0 was originally introduced by Maris.19

First we consider the case ofpure diffusionby neglecting
the right-hand side~RHS! of Eq. ~1! and also the term pro
portional to tA

21 . Suppose that the phonons are excited
t50 at the center of a spherical sample of radiusR and with
the boundary conditionN(n,R,t)50. This boundary condi-
tion implies that the surface of the sphere is covered wit
perfect absorber of phonons. The solution of the diffus
equation is then

N~n,r ,t !5N0(
n51

`
n

r
sin

npr

R
exp@2n2p2D~n!t/R2#, ~2!

whereN0 is the initial number of phonons. In order to che
our Monte Carlo code we compare in Fig. 1 the fl
¹ rNur 5R derived from the solution~2! and the corresponding
results of the Monte Carlo simulations for the phonon pro
gation in the presence of elastic scatteringt I

215Bn4 with
B52.43310242 s3, valid for silicon. The details of the
Monte Carlo simulations are described in Ref. 20. As
pected both results coincide very well. An important obs
vation is that in the sum of Eq.~2!, the first term (n51)
gives the dominant contribution at larget. Thus Esipov has

FIG. 1. Flux versus arrival time of purely diffusive phonons
silicon sphere of radiusR55.5 mm. Phonons of 2 THz frequenc
are assumed to be generated at the center of the sphere att50. Dots
are the Monte Carlo results and the solid line is the analytical re
derived from Eq.~2!.
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kept only the first eigenwave in the Fourier series putt
N(n,r ,t)5N1(n,t)sin(pr/R)/r. Now N1(n,t) obeys the
integro-differential equation

F ]

]t
1

1

tA~n!
1

1

tD~n!GN1~n,t !5E
n

`

dn8N1~n8,t !G~n8,n!,

~3!

with tD
215p2D(n)/R2 for a sphere. This is the equatio

which Esipov analyzed closely. At a timet much later than
tb Esipov found that the solutionN1 behaves as
;exp@2t/t0(n)#, the time constantt0 being determined from

@ t0~n!#215min
ñ >n

F 1

tA~ ñ !
1

1

tD~ ñ !
G . ~4!

This can be readily seen by discretizing the frequen
n as n1 ,n2 , . . . ,nn , . . . , and converting Eq. ~3! into
a set of coupled linear differential equation
for N1(n1 ,t),N1(n2 ,t), . . . ,N1(nn ,t), . . . , where

FIG. 2. Frequency dependences of phonon concentrations in
sample at several timest much later than ballistic time of flighttb .
~a! The solutionsN1 of Eq. ~3! and~b! the Monte Carlo results for
R55.5 mm. To compare the profiles the maxmum value of e
trace is normalized to unity.
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n1,n2, . . . ,nn, . . . . BecausetA
21 andtD

21 are propor-
tional ton5 andn24, respectively, their sum has a minimu
at n5nBN[(4/5)1/9n*, where

n* [S p2v2

3R2AB
D 1/9

~5!

and the corresponding relaxation rate of the phonon sign
t@tb is

@ t0~nBN!#215
9

4
AnBN

5 . ~6!

Thus, if the initial frequency is high enough, the phono
with n.nBN decay with a decay rate given b
1/t0(n)51/tA(n)11/tD(n), whereas those withn<nBN de-

FIG. 3. Frequency dependences of the phonon numbers arr
at the surface of the spherical sample are plotted at several timt
much later than ballistic time of flighttb . ~a! The results derived
from the solution of Eq.~3! and ~b! the Monte Carlo results for
R55.5 mm integrated over the time intervals indicated. The av
age arrival times of the traces in~b! correspond to the arrival time
labeled for the first four traces of~a!. To compare the profiles the
maximum value of each trace is normalized to unity. The diffus
approximation fails at the low-frequency region hatched in~a!.
at

s

cay with the same time constantt0(nBN). It should be noted
that this bottleneck frequencynBN depends on the system
size but not on the initial frequency of phonons exited. N
merically nBN51.68 THz andt0(nBN)53.0 tb for a spheri-
cal silicon sample of radiusR55.5 mm, where we have use
v55.193105 cm/s for the Debye velocity and
A51.2310256 s4 for the mode-averaged decay constant
silicon.

In order to see more explicitly the existence of the bott
neck frequency we have solved Eq.~3! numerically and plot-
ted the time evolution of the phonon concentrationN1(n,t).
Figure 2~a! exhibits the solutions of Eq.~3! for ten selected
times much later than the ballistic time of flighttb . The
frequency distributions of phonons quasidiffusing in t
sample exhibit sharp peaks which move towardsn5nBN for
t→`. This clearly indicates the existence of the predict
bottleneck frequency for phonons att@tb ; that is, the relax-
ation time is the longest atn5nBN . The abrupt decrease o
N1(n,t) for n.nBN is due to the strong anharmonic decay
predicted. The phonons forn<nBN should decay with the
same time constantt0(nBN) but the shape of then-dependent
profile of N1(n,t) depends on the selected form ofP(n8,n).
It should be noted that the same relaxation rate for phon
of n,nBN at t@tb arises from the fact that those phonons a
produced via a decay of the phonon withn5nBN .

Figure 2~b! also plots the time evolutions of phonon co
centration calculated by the Monte Carlo simulation in t
same sample geometry. An initial frequency~4 THz! higher
thannBN is assumed. The simulated frequency distributio
at later times also show peaks aroundnBN and their profiles
are very similar toN1(n,t) plotted in Fig. 2~a! except in the
low-frequency region. Note that the low-frequency phono
propagate nearly ballistically and are excluded in the cal
lation with the diffusion approximation.

The phonon flux in the diffusion approximation is give
by J(n,r ,t)52D(n)¹N(n,r ,t) ~Fick’s law!. So in this ap-
proximation the number of phonons hitting the surface of
sphere at t@tb should be proportional to
D(n)¹ rNur 5R;n24N1(n,t). We have shown in Fig. 3 the
frequency dependence of the phonon flux arriving at the s

ng
s

r-

FIG. 4. Monte Carlo results for intensities vs arrival time f
phonons with frequencies within the intervals indicated. T
straight line indicates the exponentially decreasing profile with ti
constantt0

sim53.1tb . R55.5 mm andv55.913105 cm/s are used.
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face of silicon sample. The majority of phonons detected
the sample surface consist of those withn,nBN . We note
that the frequency dependence at late times exhibits a b
at aboutnBN/2 in addition to the peak aroundnBN . This
bump becomes more significant when we assu
P(n8,n);nn(n82n)n/(n8)n11 with n.2; that is, the anhar-
monic decay splits a parent phonon more frequently i
daughter phonons of equal energy. It should be pointed
that the solution of the kinetic equation@Fig. 3~a!# coincides
qualitatively with the Monte Carlo result@Fig. 3~b!# which
also exhibits shoulders in addition to peaks nearnBN at later
times. However, the diffusion approximation again leads
an unphysical~divergent! result at the low-frequency regio
@hatched region in Fig. 3~a!# where this approximation is no
longer valid.

The Esipov prediction that the time constantt0 is the
same for any phonons withn,nBN can be also confirmed b
Monte Carlo calculations. This is done by plotting the tim
traces of the phonon intensity hitting the sample surface~Fig.
4!. The initial frequencyn0 of the phonons excited is again
THz (.nBN), but the results are insensitive to the frequen
assumed ifn0 higher than 4 THz is chosen. We see that t
tail of the simulated phonon signal exhibits an exponen
decay in time, and the decay constants for three chosen
quency intervalsn,0.7 THz, 0.7 THz,n, 1.1 THz, and
1.1 THz ,n,1.5 THz are the same; that is,t0

sim53.1tb . In
addition this time constant is consistent witht0(nBN)53.0tb
given by Eq.~6! for R55.5 mm, but slightly smaller than th
-
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experimental valuet0
expt53.6tb observed in the slab geom

etry. A more quantitative comparison with the experime
would require Monte Carlo simulation including three di
tinct phonon modes and the exact sample geometry of
experiments.

To conclude, we have solved numerically the kine
equation for quasidiffusion and also conducted Monte Ca
calculations of phonon propagation in the presence of b
elastic scattering and frequency downconversion. Both
sults have confirmed the existence of the bottleneck
quencynBN predicted by Esipov, which governs the qua
diffusion of phonons att.tb : ~1! The frequency distribution
of phonons in a sample has a sharp peak atn5nBN , and~2!
the quasidiffusive tails of the phonons withn,nBN decay
with the same time constantt0(nBN). However, the kinetic
equation we consider is based on the diffusion approxim
tion and hence fails at low phonon frequencies. It would
an interesting challenge to construct a model which expla
both the ballistic and quasidiffusive regimes including thre
phonon branches.
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