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Electronic level degeneracy in nonsymmorphic periodic or aperiodic crystals
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The theory of space-group representations is extended to aperiodic crystals by reformulating it as the theory
of symmetry-required degeneracies of electronic levels that emerges from the Fourier-space approach to crystal
symmetry. As an illustration it is shown that the nonvanishing of a simple linear combination of phase
functions belonging to commuting elements from the little group ofquires the degeneracy of all levels with
generalized Bloch wave vectay. This condition is applied to all cubic and icosahedral centrosymmetric
nonsymmorphic space groups, and to the two nonsymmorphic space groups of periodic crystals that have no
systematic extinction§S0163-182@7)00146-X]

One of the more subtle applications of the theory of groupgroupG, of L under which thé/(k) are invariant except for
representations in solid-state physics is the demonstratiogn appropriate change of phase:
that in nonsymmorphic crystals the orbital electronic energy
levels at certain wave vectors are necessarily degenerate. We V(gk) =e2mPKv/(k). 3)
have reformulated that analysis in a manner that makes no
use of translational symmetry, applying equally well to peri-The V(k) acquire this property from the analogous property
odic or aperiodic crystals. Our reformulation is based on thgor the Fourier coefficientp(k) and the invariance of the
Fourier-space approach to crystal symmetry discovered biteractionv (k) under the operations i6. The phase func-
Bienenstock and Ewatliand extended to aperiodic crystals tions® 4 are linearimodulo unity onL and satisfy thgroup
by Rokhsar, Wright, and MermihThe link between non- compatibility condition
symmorphic crystal symmetry and level degeneracy emerges

so directly when that symmetry is characterized in terms of P (k) =D 4(hk) + Pp(k) (4)

the “phase-functions” of Fourier-space crystallography, that

our analysis may also be of use to those interested only iGwhere “=" denotes equality modulo unity These restric-
periodic crystals. tions on the phase functions are necessary and sufficient for

Consider the orbital levels of an electron in a potentialthe potential(or the ionic density to have its positionally
V(r) produced by a periodic or quasiperiodic array of ionsaveraged autocorrelation functions of all orders invariant un-
with charge density(r): der all operations of5. Two sets of phase functiornB and

@' characterize the same symmetry type and are said to be

_ 3., , , gauge equivalentf there is agauge functiony, linear
V(r)—j d>r'v(r—=r")p(r’), D (modulo unity on L, such that
or in Fourier space, D4 (k)=Dg(k) + x(gk—k). (5
V(k)=v(k)p(k). (2)  The existence of such a gauge function is necessary and suf-

ficient for the two sets of phase functions to characterize

If v(r) is taken to be the bare Coloumb interaction thé¢k) potentials with identical autocorrelation functions of all or-
will depend only on the magnitude &, but if a screened ders. In the periodic cas@y4(k) must be of the formay- k
interaction is used it might have lower symmetry. In whatwhereag is a translation that combines withto leave the
follows we shall assume thai(k) is at least invariant under potential identical to what it was befogewas applied, and a
every operatiorg in the point group of the ionic density. change of gauge is simply the changejrbrought about by
This ensures that the Fourier coefficients of the one-electron change in the origin about whiah acts. In the aperiodic
potentialV(k) have all the symmetry-related properties pos-case point-group symmetry is defined entirely in terms of
sessed by the ionic Fourier coefficieni¢k). We review positionally averaged autocorrelation functions so no origin
these properties in the next paragrajph. more extensive is relevant. No translation of the rotated quasiperiodic poten-
review can be found in Sec. Il of Ref.)3. tial is identical to its unrotated form, and the more general

TheV(k) are zero except on a sketof three-dimensional formulation in terms of phase and gauge functions is neces-
wave vectors consisting of all integral linear combinations ofsary. Space-group types are specified in terms of gauge-
D integrally independent wave vectors, for sorde=3, equivalence classes of phase functions, and have been tabu-
known as theank of L. WhenD = 3 the potential is periodic lated for a variety of cases in Refs. 3 and 4.
and the set of wave vectotsis the familiar reciprocal lat- As in the periodic case, the one-electron Sdimger
tice. WhenD exceeds 3, the potential is quasiperiodic. Theequation in Fourier space only couples wave vectors differ-
point groupG of the potentiaV is that subgroup of the point ing by a vector ofL, so solutions are of the form
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- It follows from the definition(12) and the group compat-
¢q(f)=k%|_ Po(k)e'arior, (6) ibility condition (4) that

— - 2midy(k
The general eigenvalue problem separates into independent U(g)U(h)=e 2m*sknlu(gh). (15
problems for each generalized Bloch wave vecfowith an  The U(g) are said to constitute a unitargy representation
effective Hamiltonianh, given in the momentum represen- of the little groupG, with factor system
tation by _

N(g,h)=e 2™ Pglkn), (16)

Since eachiJ(g) commutes withh,, a nondegenerate elec-
The Hamiltonianh, acts on the spack, spanned by plane tronic level constitutes a one-dimensional invariant subspace
waves with wave vectors from. For fixedq we investigate  of this ray representation; conversely the energy levels,of
whether this eigenvalue problem has any degeneracies stemill be necessarily degenerate if and only if this ray repre-
ming from the behavio(3) of the potentialV under rota- sentation of the little group has no one-dimensional invariant
tions, and from the rotational invariance of the kinetic energysubspace.
t: At this point the analysis makes contact with the conven-
tional theory of ray representations:! The novelty of the
t(gk) =t(k). (8)  aperiodic case consists of the relevance of ray representa-
i ) tions (15) for “noncrystallographic” point groups and/or the
If we define unitary operatorg/(g) on H, that permute possibility of novel ray representations for point groups of

(klhglk"y=t(k+q) &k +V(k=K"). @)

the vectorsk of L by rotationsg in the point groupG, periodic crystals when the ranR exceeds 3. We do not
_ pursue this further here, focusing instead on a simple and
W(g)[k)=|gk), ©) important necessary condition for the existence of nondegen-
then we have erate levels.
Let g andh be two elements of the little grou@, that
(k|W(g)"ThqW(g)|k") commute It follows from Eq.(15) that
=(gk|hg|gk") U(g)U(h)=e 2"k~ ®nkgly(h)U(g).  (17)

=t(gk+q)5kk,+e2”iq’g<"*k’>V(k—k’). (10) But since the combined action af(g) and U(h) on any
onedimensional invariant subspace must be independent of

Because of the phase acquired by the potential energy anfle order in which they are applied, if such a subspace exists
the shift in wave vector acquired by the kinetic enehg¥(g) then

fails to be a symmetry dfi,. One can, however, remove the
phase factor from the potential energy without altering the D y(kp) = Pp(kg)=0. (18)
kinetic energy by an additional unitary transformation, diag-
onal in the basigk). And if the wave vectoq has the special

property that Dy(kp)—Pp(ky)#0 (19

kgy=0—9q (1D for two commuting elements of the little group, then all lev-
els of hy must be degenerate. We call such a degeneracy a

is in L, then one can remove the shift in wave vector frompecessarylegeneracy. Note that under a change of gdfige
the kinetic energy without altering the potential energy by a

further unitary transformation that shiftsby —kg. Thus the D g(kp) — Pp(kg) = Dy(ky) — Pr(kg) + x(hgg—ghag),

Consequently, if

unitary operatotJ(g) defined by (20
U k)= 27 ®g(K)| gk — k) 12 so ifg andh.commute thgn the co.mbinat.io_n of phase func-
(9)[k)=e""%4")|g o) (12 tions appearing in the critical conditid@9) is invariant over
can be directly verified to satisfy gauge equivalence classes.
In Fourier space crystallography up to now the only such
U(g)"hqU(g)=h,. (13)  invariant phases of direct physical interest have been the val-

) ) ues of a phase functiot at vectors ofL in the invariant
The set of all operations froi® for which the momentum  space ofg. Nonzero values require the extinction of the
space translatiofiL1) is a vector ofL (which could be Dis  Bragg peaks associated with such wave vectboFor com-

thelittle group G, of g. The little group is a subgroup @:  mutingg andh in the little group of a wave vectag not in
if kg andky, are inL then so iskgyy,, sincel is closed under || the combination

addition and under operatiogsof G, and
@ 4(q—ha)—Pr(q—gaq) (21)

emerges here as another distinct example of a physically rel-
The complete expression of the point-group symmetry of theevant invariant phase, whose nonvanishingpdulo unity
potential at the level of the effective Hamiltonidg is that  requires the degeneracy of all electronic levels with wave-
h, commutes with the unitary operatdggg) for all g inthe  vectorq moduloL. Note that(21) necessarily vanishes &
subgroupGy . itself is in L, as a consequence of the group compatibility

kgh:kg+gkh' (14)
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condition(4) applied togh=hg. Necessary degeneracies do  With these phase functions we have, for example,
not occur at wave vectors ih. We conclude with two ex-

amples, one periodic and one more general, of such neces- @, (ki )~ P (ki )F0. 27
sary degeneracies. ) ]

Non-symmorphic space groups without extinctiofise S_lncera andr, commute, it follows from the _general analy-
space group2,2,2, and the space groug®,;3 to which it SIS above that_ the Ievels_dn‘q_ are necessarily deg_enefate.
expands when the orthorhombic symmetry degenerates tbhiS nonzero linear combination of phases appearing in Eq.
cubic are unigue among the 230 symmetry types of threel27) is pregsely the gauge-independent linear combination
dimensional periodic crystals in being nonsymmorphic spac®ulled, as it were, out of a hat, on p. 33 of Ref. 3 to demon-
groups that give rise to no Bragg-peak extinctions. In theStrate thai2,2,2; was nonsymmorphic in spite of the ab-
language of Fourier-space crystallography there is no phas€nce of any gauge-independent nonzero values of individual
function ®, with any nonzero values fdk in the invariant ~Phase functions. The nonsymmorphicityl@2,2, (and, by
subspace ofj, and there are therefore no extinctions. Yet@ su_mlar arggmenﬂ,213) manifests itself not in extinctions,
there is no gauge in which all phase functions are zero, so teut in the existence of necessary degeneracies.
space-group symmetry is nonsymmorphit the special Centro-symmetric space groups with mirror planggce
language of periodic crystals, every point-group operatiorfne inversioni commutes with any other point-group ele-
leaves the density invariant without the need for an addiMment, opportunities to satisfy conditioi9) for necessary
tional translation when applied about some appropriate oridégeneracies are easy to find in space groups with cen-
gin, but there is no single origin about which every point- trosymmetric point group&. Note that because
group operation leaves the density invariant. .

The nonsymmorphic character I&f;2,2, is concisely es- ik=—k, (28)

tablished in Ref. 3 by the display of a gauge-independeng ®;#0 for some wave vectork, then with a change of

linear combination of phase functions which is nonzero, evenyauge(5) that takes as the gauge functiges 3@, , one can
though any one of those phase functions vanishes in somgye '

gauge. There is no obvioggometricainterpretation to such

a combination of phase functions associated with more than ®(k)=0 (29)

a single point-group operation, but, as noted below, it does

have a directphysical interpretation in terms of condition forallk in L. Within this gauge all other phase functions are

(19) for a necessary degeneracy. restricted to have the values 0 ér This follows from ex-
The basis of the face-centered-orthorhombic reciprocapanding both sides of the identitly;;=®,4 using the group

lattice L consists of the three vectols ,b,,bs that can be compatibility condition(4).

expressed in terms of three mutually orthogonal vectors Consider as an example the case wi@ralso contains a

a,b,c of different lengths as mirror m, and consider a wave vectqrthat has both andm
in its little groupG,. If i is in G, thenk;=q—igq=2q must
b;=b+c, b,=c+a, bz=atb. (22)  beinL, so we are restricted to wave vectaysof the form

The generators of the point gro@= 222 can be taken to be q=1k (30)
the two twofold rotations , andr,, about the axes andb. 2

These commute and the rotation abous their producty.  for anyk in L. If the mirror m is also to be inG, thenk,
=ralp. The wave vector =(q—mqg must also be irL. The vectoik,,, however, is just
the componenk, of 2q=k normal to the plane aih. But if

-1 -1
q=3(b1,by,bg)=3(at+b+c), @3 yandits componerk, normal to the plane afn are both in
(called the ‘R point”) has the entire point group L then so is its componet in the invariant plane of.
The wave vectorg that have andm in their little group
G=222={e,ry,rp,rc} (24 are therefore just those of the form
as its little groupG,. The reciprocal-lattice vectors,=
groupi p rlsg a q=%(kJ_+k||), (3D

—gq are easily verified to be
wherek, andk| are any vectors of (including 0, respec-
tively, perpendicular to and contained in the invariant plane

The phase functions for the twofold rotations can be taken ipf m.

an appropriate gauge to lgsee Table XVII of Ref. B In the gauge in whichb; vanishes, conditiom19) for a
necessary degeneracy at such aeduces simply to

kra: bl, krb:bz, er:b3. (25)

@, (b)=3, @ (b)=3 @ (by)=0,
Q (ki) =P(20) =Pk, )+ Pry(k#0. (32
®, (b))=0, @, (by)=3 &, (by)=3, 26
ro(P2) r(P2) = r(Pa) = 29 For both of the centrosymmetric nonsymmorphic rank-6
®, (by)=3%, @, (b,)=0, @, (bs)=1. icosahedral space groug®53(2/g) and I*53(2/q), as
¢ ¢ ¢ well as for all the centrosymmetric nonsymmorphic rank-3
[This can easily be confirmed by checking tk26) satisfies  cubic space groups it can be shown that the mirror phases at
the group compatibility conditiofd) for all possible choices vectorsk, of L perpendicular to the mirror vanish in the
of g andh from (24).] gauge in which®;=0. For example, in the case of
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P53(2/q) Table VIl in Ref. 3 gives the following phases tion condition for the component oftin the plane oin. So

on a basis of vectors along the six fivefold axes,..,Ve: a vectorg will have necessarily degenerate energy levels if it
1 is half of a vectork of L whose projection into the plane of
P n=720000. (33 mis an extinguished vector df.
The vectors ot perpendicular to the plane of in this basis The more general conditic32) is relevant in some of the
are all the integral linear combinations of nonsymmorphic space groups of periodic orthorhombic crys-
tals, where theb ,, need not vanish on reciprocal-lattice vec-
Vz3t+vg and v4tvs, (34  tors normal to the plane ofm. Considerations along the

to both of which Eq.(33) assigns a vanishing mirror phase above lines offer a straightforward way to understand level
q 9 9 P " degeneracies in crystals with nonsymmorphic symmetry,

Tables II-VIII in Ref. 3 lead to the same conclusion for the hile developing that subiect in a way that apolies uniforml
other centrosymmetric rank-3 cubic and rank-6 icosahedr 3 developing that subj y PP y
0 periodic and aperiodic crystals.

space groups. So for these cubic and icosahedral space
groups we haveb(k,)=0, and the rule for degeneracies  This work is supported by the National Science Founda-
reduces to the conditio (k) #0. This is just the extinc- tion, Grant No. DMR9531430.
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