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Electronic level degeneracy in nonsymmorphic periodic or aperiodic crystals

Anja König and N. David Mermin
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

~Received 11 August 1997!

The theory of space-group representations is extended to aperiodic crystals by reformulating it as the theory
of symmetry-required degeneracies of electronic levels that emerges from the Fourier-space approach to crystal
symmetry. As an illustration it is shown that the nonvanishing of a simple linear combination of phase
functions belonging to commuting elements from the little group ofq requires the degeneracy of all levels with
generalized Bloch wave vectorq. This condition is applied to all cubic and icosahedral centrosymmetric
nonsymmorphic space groups, and to the two nonsymmorphic space groups of periodic crystals that have no
systematic extinctions.@S0163-1829~97!00146-X#
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One of the more subtle applications of the theory of gro
representations in solid-state physics is the demonstra
that in nonsymmorphic crystals the orbital electronic ene
levels at certain wave vectors are necessarily degenerate
have reformulated that analysis in a manner that makes
use of translational symmetry, applying equally well to pe
odic or aperiodic crystals. Our reformulation is based on
Fourier-space approach to crystal symmetry discovered
Bienenstock and Ewald,1 and extended to aperiodic crysta
by Rokhsar, Wright, and Mermin.2 The link between non-
symmorphic crystal symmetry and level degeneracy eme
so directly when that symmetry is characterized in terms
the ‘‘phase-functions’’ of Fourier-space crystallography, th
our analysis may also be of use to those interested onl
periodic crystals.

Consider the orbital levels of an electron in a poten
V(r ) produced by a periodic or quasiperiodic array of io
with charge densityr(r ):

V~r !5E d3r 8v~r2r 8!r~r 8!, ~1!

or in Fourier space,

V~k!5v~k!r~k!. ~2!

If v(r ) is taken to be the bare Coloumb interaction thenv(k)
will depend only on the magnitude ofk, but if a screened
interaction is used it might have lower symmetry. In wh
follows we shall assume thatv(k) is at least invariant unde
every operationg in the point group of the ionic densityr.
This ensures that the Fourier coefficients of the one-elec
potentialV(k) have all the symmetry-related properties po
sessed by the ionic Fourier coefficientsr(k). We review
these properties in the next paragraph.~A more extensive
review can be found in Sec. II of Ref. 3.!

TheV(k) are zero except on a setL of three-dimensiona
wave vectors consisting of all integral linear combinations
D integrally independent wave vectors, for someD>3,
known as therank of L. WhenD53 the potential is periodic
and the set of wave vectorsL is the familiar reciprocal lat-
tice. WhenD exceeds 3, the potential is quasiperiodic. T
point groupG of the potentialV is that subgroup of the poin
560163-1829/97/56~21!/13607~4!/$10.00
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groupGL of L under which theV(k) are invariant except for
an appropriate change of phase:

V~gk!5e2p iFg~k!V~k!. ~3!

The V(k) acquire this property from the analogous prope
for the Fourier coefficientsr(k) and the invariance of the
interactionv(k) under the operations inG. Thephase func-
tionsFg are linear~modulo unity! on L and satisfy thegroup
compatibility condition

Fgh~k![Fg~hk!1Fh~k! ~4!

~where ‘‘[ ’’ denotes equality modulo unity.! These restric-
tions on the phase functions are necessary and sufficien
the potential~or the ionic density! to have its positionally
averaged autocorrelation functions of all orders invariant
der all operations ofG. Two sets of phase functionsF and
F8 characterize the same symmetry type and are said to
gauge equivalentif there is a gauge functionx, linear
~modulo unity! on L, such that

Fg8~k![Fg~k!1x~gk2k!. ~5!

The existence of such a gauge function is necessary and
ficient for the two sets of phase functions to character
potentials with identical autocorrelation functions of all o
ders. In the periodic caseFg(k) must be of the formag•k
whereag is a translation that combines withg to leave the
potential identical to what it was beforeg was applied, and a
change of gauge is simply the change inag brought about by
a change in the origin about whichg acts. In the aperiodic
case point-group symmetry is defined entirely in terms
positionally averaged autocorrelation functions so no ori
is relevant. No translation of the rotated quasiperiodic pot
tial is identical to its unrotated form, and the more gene
formulation in terms of phase and gauge functions is nec
sary. Space-group types are specified in terms of gau
equivalence classes of phase functions, and have been
lated for a variety of cases in Refs. 3 and 4.

As in the periodic case, the one-electron Schro¨dinger
equation in Fourier space only couples wave vectors dif
ing by a vector ofL, so solutions are of the form
13 607 © 1997 The American Physical Society
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cq~r !5 (
k in L

cq~k!ei ~q1k!•r. ~6!

The general eigenvalue problem separates into indepen
problems for each generalized Bloch wave vectorq, with an
effective Hamiltonianhq given in the momentum represen
tation by

^kuhquk8&5t~k1q!dk,k81V~k2k8!. ~7!

The Hamiltonianhq acts on the spaceHL spanned by plane
waves with wave vectors fromL. For fixedq we investigate
whether this eigenvalue problem has any degeneracies s
ming from the behavior~3! of the potentialV under rota-
tions, and from the rotational invariance of the kinetic ene
t:

t~gk!5t~k!. ~8!

If we define unitary operatorsW(g) onHL that permute
the vectorsk of L by rotationsg in the point groupG,

W~g!uk&5ugk&, ~9!

then we have

^kuW~g!†hqW~g!uk8&

5^gkuhqugk8&

5t~gk1q!dkk81e2p iFg~k2k8!V~k2k8!. ~10!

Because of the phase acquired by the potential energy
the shift in wave vector acquired by the kinetic energy,W(g)
fails to be a symmetry ofhq . One can, however, remove th
phase factor from the potential energy without altering
kinetic energy by an additional unitary transformation, dia
onal in the basisuk&. And if the wave vectorq has the specia
property that

kg5q2gq ~11!

is in L, then one can remove the shift in wave vector fro
the kinetic energy without altering the potential energy b
further unitary transformation that shiftsL by 2kg . Thus the
unitary operatorU(g) defined by

U~g!uk&5e2p iFg~k!ugk2kg&, ~12!

can be directly verified to satisfy

U~g!†hqU~g!5hq . ~13!

The set of all operations fromG for which the momentum
space translation~11! is a vector ofL ~which could be 0! is
the little group Gq of q. The little group is a subgroup ofG:
if kg andkh are inL then so iskgh , sinceL is closed under
addition and under operationsg of G, and

kgh5kg1gkh . ~14!

The complete expression of the point-group symmetry of
potential at the level of the effective Hamiltonianhq is that
hq commutes with the unitary operatorsU(g) for all g in the
subgroupGq .
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It follows from the definition~12! and the group compat
ibility condition ~4! that

U~g!U~h!5e22p iFg~kh!U~gh!. ~15!

The U(g) are said to constitute a unitaryray representation
of the little groupGq with factor system

l~g,h!5e22p iFg~kh!. ~16!

Since eachU(g) commutes withhq , a nondegenerate elec
tronic level constitutes a one-dimensional invariant subsp
of this ray representation; conversely the energy levels ohq
will be necessarily degenerate if and only if this ray rep
sentation of the little group has no one-dimensional invari
subspace.

At this point the analysis makes contact with the conve
tional theory of ray representations.5–11 The novelty of the
aperiodic case consists of the relevance of ray represe
tions ~15! for ‘‘noncrystallographic’’ point groups and/or th
possibility of novel ray representations for point groups
periodic crystals when the rankD exceeds 3. We do no
pursue this further here, focusing instead on a simple
important necessary condition for the existence of nondeg
erate levels.

Let g and h be two elements of the little groupGq that
commute. It follows from Eq. ~15! that

U~g!U~h!5e22p i @Fg~kh!2Fh~kg!#U~h!U~g!. ~17!

But since the combined action ofU(g) and U(h) on any
one-dimensional invariant subspace must be independen
the order in which they are applied, if such a subspace ex
then

Fg~kh!2Fh~kg![0. ~18!

Consequently, if

Fg~kh!2Fh~kg![” 0 ~19!

for two commuting elements of the little group, then all le
els of hq must be degenerate. We call such a degenera
necessarydegeneracy. Note that under a change of gauge~5!

Fg8~kh!2Fh8~kg!5Fg~kh!2Fh~kg!1x~hgq2ghq!,
~20!

so if g andh commute then the combination of phase fun
tions appearing in the critical condition~19! is invariant over
gauge equivalence classes.

In Fourier space crystallography up to now the only su
invariant phases of direct physical interest have been the
ues of a phase functionFg at vectors ofL in the invariant
space ofg. Nonzero values require the extinction of th
Bragg peaks associated with such wave vectors.12 For com-
muting g andh in the little group of a wave vectorq not in
L, the combination

Fg~q2hq!2Fh~q2gq! ~21!

emerges here as another distinct example of a physically
evant invariant phase, whose nonvanishing~modulo unity!
requires the degeneracy of all electronic levels with wa
vectorq moduloL. Note that~21! necessarily vanishes ifq
itself is in L, as a consequence of the group compatibil
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condition~4! applied togh5hg. Necessary degeneracies d
not occur at wave vectors inL. We conclude with two ex-
amples, one periodic and one more general, of such ne
sary degeneracies.

Non-symmorphic space groups without extinctions.The
space groupI212121 and the space groupI213 to which it
expands when the orthorhombic symmetry degenerate
cubic are unique among the 230 symmetry types of thr
dimensional periodic crystals in being nonsymmorphic sp
groups that give rise to no Bragg-peak extinctions. In
language of Fourier-space crystallography there is no ph
function Fg with any nonzero values fork in the invariant
subspace ofg, and there are therefore no extinctions. Y
there is no gauge in which all phase functions are zero, so
space-group symmetry is nonsymmorphic.~In the special
language of periodic crystals, every point-group operat
leaves the density invariant without the need for an ad
tional translation when applied about some appropriate
gin, but there is no single origin about which every poin
group operation leaves the density invariant.!

The nonsymmorphic character ofI212121 is concisely es-
tablished in Ref. 3 by the display of a gauge-independ
linear combination of phase functions which is nonzero, e
though any one of those phase functions vanishes in s
gauge. There is no obviousgeometricalinterpretation to such
a combination of phase functions associated with more t
a single point-group operation, but, as noted below, it d
have a directphysical interpretation in terms of condition
~19! for a necessary degeneracy.

The basis of the face-centered-orthorhombic recipro
lattice L consists of the three vectorsb1 ,b2 ,b3 that can be
expressed in terms of three mutually orthogonal vect
a,b,c of different lengths as

b15b1c, b25c1a, b35a1b. ~22!

The generators of the point groupG5222 can be taken to b
the two twofold rotationsr a and r b about the axesa andb.
These commute and the rotation aboutc is their product,r c
5r ar b . The wave vector

q5 1
4 ~b1 ,b2 ,b3!5 1

2 ~a1b1c!, ~23!

~called the ‘‘R point’’ ! has the entire point group

G52225$e,r a ,r b ,r c% ~24!

as its little groupGq . The reciprocal-lattice vectorskg5q
2gq are easily verified to be

kr a
5b1 , kr b

5b2 , kr c
5b3 . ~25!

The phase functions for the twofold rotations can be take
an appropriate gauge to be~see Table XVII of Ref. 3!

F r a
~b1!5 1

2 , F r a
~b2!5 1

2 , F r a
~b3!50,

F r b
~b1!50, F r b

~b2!5 1
2 , F r b

~b3!5 1
2 , ~26!

F r c
~b1!5 1

2 , F r c
~b2!50, F r c

~b3!5 1
2 .

@This can easily be confirmed by checking that~26! satisfies
the group compatibility condition~4! for all possible choices
of g andh from ~24!.#
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With these phase functions we have, for example,

F r a
~kr b

!2F r b
~kr a

![” 0. ~27!

Sincer a andr b commute, it follows from the general analy
sis above that the levels ofhq are necessarily degenerat
This nonzero linear combination of phases appearing in
~27! is precisely the gauge-independent linear combinat
pulled, as it were, out of a hat, on p. 33 of Ref. 3 to demo
strate thatI212121 was nonsymmorphic in spite of the ab
sence of any gauge-independent nonzero values of indivi
phase functions. The nonsymmorphicity ofI212121 ~and, by
a similar argument,I213) manifests itself not in extinctions
but in the existence of necessary degeneracies.

Centro-symmetric space groups with mirror planes.Since
the inversioni commutes with any other point-group ele
ment, opportunities to satisfy condition~19! for necessary
degeneracies are easy to find in space groups with
trosymmetric point groupsG. Note that because

ik52k, ~28!

if F iÓ0 for some wave vectorsk, then with a change of
gauge~5! that takes as the gauge functionx5 1

2 F i , one can
take

F i~k![0 ~29!

for all k in L. Within this gauge all other phase functions a
restricted to have the values 0 or1

2. This follows from ex-
panding both sides of the identityFgi[F ig using the group
compatibility condition~4!.

Consider as an example the case whereG also contains a
mirror m, and consider a wave vectorq that has bothi andm
in its little groupGq . If i is in Gq thenk i5q2 iq52q must
be in L, so we are restricted to wave vectorsq of the form

q5 1
2 k ~30!

for any k in L. If the mirror m is also to be inGq thenkm
5q2mq must also be inL. The vectorkm , however, is just
the componentk' of 2q5k normal to the plane ofm. But if
k and its componentk' normal to the plane ofm are both in
L then so is its componentki in the invariant plane ofm.

The wave vectorsq that havei andm in their little group
are therefore just those of the form

q5 1
2 ~k'1ki!, ~31!

wherek' andki are any vectors ofL ~including 0!, respec-
tively, perpendicular to and contained in the invariant pla
of m.

In the gauge in whichF i vanishes, condition~19! for a
necessary degeneracy at such aq reduces simply to

Fm~k i ![Fm~2q![Fm~k'!1Fm~ki![” 0. ~32!

For both of the centrosymmetric nonsymmorphic rank
icosahedral space groupsP 5̄ 3̄ (2/q) and I * 5̄ 3̄ (2/q), as
well as for all the centrosymmetric nonsymmorphic rank
cubic space groups it can be shown that the mirror phase
vectorsk' of L perpendicular to the mirror vanish in th
gauge in which F i[0. For example, in the case o
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P 5̄ 3̄ (2/q) Table VIII in Ref. 3 gives the following phase
on a basis of vectors along the six fivefold axes,v1 ,..,v6:

Fm5 1
2

1
2 0000. ~33!

The vectors ofL perpendicular to the plane ofm in this basis
are all the integral linear combinations of

v31v6 and v41v5 , ~34!

to both of which Eq.~33! assigns a vanishing mirror phas
Tables II–VIII in Ref. 3 lead to the same conclusion for t
other centrosymmetric rank-3 cubic and rank-6 icosahe
space groups. So for these cubic and icosahedral s
groups we haveFm(k')50, and the rule for degeneracie
reduces to the conditionFm(ki)Ó0. This is just the extinc-
e

ht,

n
ll
al
ce

tion condition for the component of 2q in the plane ofm. So
a vectorq will have necessarily degenerate energy levels i
is half of a vectork of L whose projection into the plane o
m is an extinguished vector ofL.

The more general condition~32! is relevant in some of the
nonsymmorphic space groups of periodic orthorhombic cr
tals, where theFm need not vanish on reciprocal-lattice ve
tors normal to the plane ofm. Considerations along the
above lines offer a straightforward way to understand le
degeneracies in crystals with nonsymmorphic symme
while developing that subject in a way that applies uniform
to periodic and aperiodic crystals.

This work is supported by the National Science Foun
tion, Grant No. DMR9531430.
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