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Self-consistent Thomas-Fermi calculation of potential and current distributions
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The electrostatics of a two-dimensional, in-plane—gate-defined Hall bar is investigated by imposing the
electrochemical equilibrium within the Thomas-Fermi approximation. We calculate the electrostatic potential
self-consistently with the electron distribution and examine associated magnetic-field-induced compressible
and incompressible regions as a function of temperature, bare screening length, and gate voltage with and
without nondissipative currents. We find that the widths of the incompressible and compressible regions
depend strongly on temperature and bare screening length. At very low temperature and small screening length,
our results agree with an analytical work by Chklovskii, Matveev, and Shklovskii. For a small current applied
on the Hall bar, the electron distribution is found to be slightly deformed while the width of the incompressible
regions is not changed. Neglecting diamagnetic currents, we find that the current densities are distributed over
the whole region occupied by electron$0163-18207)06343-1

[. INTRODUCTION In this paper we study the local potential and current dis-
tributions of a two-dimensional electron gas in a narrow wire
The local potential and current distributions of the two- struc'gure under a strong magn.g-tic field within the Thorrlas-
dimensional electron gd@DEG) in a Hall bar have been the Fermi approximation. Chklovskii, Matveev, and Shklov&kii
subject of intense study because they are key factors in utCMS) examined the formation of the edge channels and
derstanding the quantum Hall efféct: In the presence of a associated potential distribution for this structure and pre-
perpendicular magnetic field, the local potential of the 2DEGSeNted analytic exp(eSS|pn§ofor the electrostatics. In their
is determined by the peculiar screening properties of the€lectrostatic approximation™ they used plausiblad hoc
electron system combined with the bare confinement poterfSSUmptions for the electrostatic boundary conditions. Spe-
tial of the Hall bar. Within the Thomas-Fermi approximation ¢ifically. they assumecperfect screening, leading to a con-
and at very low temperature, the area occupied by the 2DE tant electrostatic potential, within the two-dimensional elec-

can be divided to two types of regions, compressible an fon system even in the absence ‘?f a magnetic ﬁeld.
. . ) ' urthermore, thegssumedhat the resulting electron density
incompressible regions. Due to the bare confinement poten-

tial of the Hall bar, there are “compressible” regions where profile ny(x) is changed by a strong magnetic field only near

e : ) ositions of integer filling factors, where “incompressible”
a Landau level is pinned at the chemical potential. In thes g g P

. i egions with constantg(x) occur. In a self-consistent theory
regions, electrons show a perfect screening, because they ¢ electrochemical equilibriurion the other hand, the elec-

b_e easily red_istribute(_j, and the potential is_nearly flat_. In_thqron density profile is uniquely determined by the electro-
“incompressible” regions, where the chemical potential lies gtatic potential and vice versa, and ad hocassumptions
in the gap between two successive Landau levels, electronge necessary. In such a theory, the screening of electrons
do not contribute to Screening because a redistribution iaepends on the presence of the magnetic field and tempera_
energetically impossible. In these regions the electron denure as well as the bare two-dimensional screening length, as
sity is constant while the potential exhibits a large variation.has been shown by Wudt al1* within a Hartree calculation.
Various experimental attempts to measure the compress- The purpose of the present work is twofold. First, we
ible and incompressible regions in the Hall bar have beemxtend the CMS approach to more realistic situations such as
made>~’ Knott et al.? imaged the local potential distribu- finite temperature and finite screening length, and we require
tions of the 2DEG induced by currents with a scanning po-electrochemical equilibrium. To keep the calculations
larization optical microscope based on the linear electrosimple, we determine the electron distribution for a given
optical effect. They found that the potential profile showselectrostatic potential within the Thomas-Fermi approxima-
nonlinear behavior in the range of the quantum Hall plateadion and follow the ideas of CMS to calculate the electro-
whereas it is usually linear. On the other hand, Eetsal?  static potential for given charge distribution. We also exam-
examined edge channels of the Hall bar using magnetoplasae the effect of in-plane gate voltages on the position of
mons which can be excited with a short voltage pulse. Byincompressible regions in accordance with a recent experi-
time-resolved observation of the pulse propagation, theynental investigation? Second, we apply a nondissipative
found three edge magnetoplasmon modes, which can be wellrrent, and investigate the change of the potential, charge,
described in terms of a finite width of the compressible re-and current distributions by employing a generalized equilib-
gions near the edges. However, for a better understanding eium density operator. The understanding of the current dis-
the experimental results, it is necessary to know the detailetfibution in a Hall bar is still controversial. Chahigstated
potential and electron density distribution in the Hall bar. that a current can flow only along the incompressible regions
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because in a compressible region the electrostatic potential teostatic potential in the form o¥ (x,z) =V4(x,2) + V(X,2)

flat and, therefore, a drift velocity of electrons is identically whereV; andV, satisfy simpler boundary conditions.

zero. On the other hand, according to the numerical results The potentialV,(x,z) is restricted only by the boundary

obtained by Pfannkuche and Hajtithe equilibrium current  values ofV, andVj in each gate region,

is distributed over the whole sample rather than only in a

localized region. Under the picture of the LandauéttiRar Vi, x<-d

transport theors* where both ends of the Hall bar are in Vl(x,z=0)=‘V x>d @

contact with reservoirs at slightly different electrochemical R ’

potential, the nonequilibrium current is predicted to be in theand, otherwise, satisfies the two-dimensional Laplace equa-

compressible regions by BeenakRer. tion. The solution ofV4(x,z) can be found by the conven-
The combination of the Thomas-Fermi approximationtional theory of analytic function¥’,

with analytic treatment of the electrostatics of a geometry

with in-plane gates is close in spirit to a calculation in Ref. 3, V| —Vg 4

where the 2DEG occupying a half plane was considered. Vi(x,2)=Vrt+ —— Imlnka— v¢©ld _1]' 3

Here we want to investigate the effect of a gate voltage

across and a net current along a Hall bar geometry and ther@ith a complex variablg=x+iz. For |x|<d andz=0 one

fore consider the 2DEG in a narrow wire confined by twofinds from Eq.(3),

in-plane gates. In Sec. Il, we solve the electrostatics for a

two-dimensional electron gas which is contained in a gate-

defined Hall bar. Within the Thomas-Fermi approximation,

the charge density is expressed in terms of the potential and

the applied current by employing a generalized equilibriumAS one can expect, different gate potentMd}s# V, give rise

density operator. In the case of zero current, our Seh‘_to an asymmetric potential distribution. OtherWise, the Po-

consistent potential and charge distributions are discussed fgntial V1(x,z) is constant all over the space.

Sec. Ill and compared with those of CMS. In Sec. IV, we The potentiaV,(x,z) depends on the boundary condition

present results for the compressible and incompressible réesulting from the displacement field of the charge density

gions when a nondissipative current is applied. A brief sum(X), i.e., for[x|<d,

mary is given in Sec. V.

VetV V.-V

Vi(x)= 5 - Rarcsir(x/d). 4

oV AYA
ket (X,2=07) — k2 (x,2= = 07) = —4mp(x),

Il. FORMULATION OF ELECTROSTATICS Jz
We consider a two-dimensional split-gate structure real- ©
ized on the interface between two semiconductors which ocand satisfies/,(x,0)=0 for |x|>d. Using the conventional
cupy the half spaces>0 andz<0 with dielectric constants theory of analytic functionsy,(x,z) can be represented as
k-~ and k_, respectively. Two semi-infinite metal gates ex- the imaginary part of a holomorphic functi¢hin the com-
tended atx<—d andx>d with constant potentialy/, and  plex planeVy(x,z) =ImF({). SincedV,/dx=ImdF/d{ and
Vg, respectively, define the Hall bar along thelirection on ~ dV./dz=RedF/d{, F({) satisfies the following boundary

the interface %-y plane. We assume that electrons are dis-conditions:
tributed on the Hall bar together with a uniform positive

background in the presence of a magnetic field applied along d _
thez direction. Then, the charge density is only a function of Re(f g:mm_ r(x), for |x|<d
x andz and has a formp(x) 8(z). The surface charge density
p(X) is expressed as, dF
Im—— =0, for |x|>d, (6)
p(x)=e[no—ng(x)], (D) A2l crior

whereng(x) and ng are surface densities of electrons andwhere r(x)=—4mp(x)/(k=+«.) and dV,(x,—0%)/9z
positively charged particles, respectively. Although our Hall=— gV,(x,0")/dz has been anticipated. The above boundary
bar is symmetric about=0, an asymmetric charge density conditions define the discontinuity of the imaginary part of
p(x) can be obtained by applying a gate voltage— Vg  the auxiliary function,
#0 between the metal gates.

Since our system has translational invariance along/the . s
direction, the electrostatic potenti{x,z) is determined by h({)=ivd“—¢ 9 ()
a two-dimensional Laplace equation in tkez plane with
suitable boundary conditions. Two kinds of the boundaryalong the real axis and give rise to
conditions are imposed on the electrostatic potential in our

system. First, the electrostatic potential should\ke and Imh(x+i0*)= r(x)yd?—x* for |x|<d 8
VR, respectively, in the regions of the metal gates. Second, mh(x+i07)= 0 for |x|>d, (8)

inside the Hall bar, the normal derivative of the electrostatic

potential should be given by the surface charge depgity.  where Jd%2= 22 is holomorphic, except for the branch cut,
Since the two boundary conditions are independent of eacfix|>d). Then, in all of spaceh(¢) can be obtained using
other, we can treat them separately and write down the ele¢he Schwartz integral as
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ho e 1F g |mh(x+io+)+ — 1 fd d 13
(é“)—; B XT c =24 7dns(X) X. (13
_1lgd dxr(X)de—X2 N © According to Eq.(12), the electron densitpg(x) at a posi-
)y X—{ ¢ tion x depends on the electrostatic potential only at that po-

sition. This fact leads to a simple real-space picture of
with a real constant of integration. Then, the solution of screening at very low temperature.
V,(x) is found from Eq.(9) by straightforward integration, When electrons are completely depleted in the Hall bar,
i.e., ng(x)=0, we can find the electrostatic potential energy
1 (d analytically from Eq.(10);
Vo(X)=— ;f ddtr(t)K(x,t),

Uz(x)=—eV2(x)=—Eo\/l—ledz, (149

2_ 2 2__ 42 2_
K(x,t)zln‘\/(d x%)(d?2—t2)+d tx\

x=0d k (10

whereEy=4me?nyd/(«x-+ k) is a pinch-off energy. This
For a given charge density(x), the potentialV,(x) is po.terlltial result; from th'e'positive background and has an
uniquely determined by Eq(10). For an arbitrary charge e!l|pt|c shape with the minimum value at=0._The voItgg_e
densityp(x), we find that Eq(10) cannot be evaluated ana- difference between the gates serves to shift the minimum

lytically. We use a numerical method to obtaia(x) in this ~ POsition of the electrostatic potential energyx).
work. Once electrons start to occupy the Hall bar, the electro-

Since our system is ideal and no dissipation occurs, th&tatics depends on various parameters; applied curtgnt (
surface electron density,(x) is obtained from the equilib- Magnetic fields B), temperature T), gate voltages

rium density operatop through the relation, (Vr,V,), and average electron_ densi_ty)(. Another _impor-
tant parameter is the two-dimensional screening length

. ap=(k-+k.)I4me’D,, where Dg=m*/7#? is the two-
ns(x) =Tr (X—X)p], (1) dimensional density of states without a magnetic field. For
. . k~=k., the two-dimensional screening length becomes
where Tr means the sum over all diagonal matrix eIementsaO:a,é/Z’ with a% = x_#2/e?m* the effective Bohr radius.

H_er_e, the equilibrium density operﬁlt)’ori_S gi\_/en by maxi-  gjnce the chemical potenti@l is directly related to the av-
mizing the entropy of the system, taking into account all

additive conserved quantities: the total energy, the number of.ode electron densnyn(), we investigate the glectrostaﬂcs
; . of the Hall bar for a given set of the above six parameters.
electrons, and the total momentum of electrons inythai-

rection. In a strong perpendicular magnetic fildthe ma- The determination olU(x) and n(x) constitutes a self-
. : rong perp . g consistent problem because the surface electron density
trix elements in Eq(11) are easily evaluated. If the electro- . . ; : .
. : . . ng(x) is uniquely determined from a electrostatic potential
static potentialV(x) varies smoothly in the plane of the U(x) by Eq.(12) while the electrostatic potential is given b
2DEG, i.e., on a characteristic length much larger than th y EQ- P 9 y

magnetic lengtH,,= J#%/eB, the spatial extent of the wave Eq. (10. Using a numerical method, we solve the self-

: consistent problem exactly. In the following we measure
functlons can be neglected' on the scdland the Hartree length and energy in units a and E,, respectively, and
approximation for evaluating Eq(11) reduces to the

Th Fermi ati - the elect q .t)Present calculated results in dimensionless parameters such

omas--ermi -approximation. Then, the electron densi asay/d andeVg/Ey. We choose an energy reference for our
ng(x) is related to the total potential energy of an electron,System a¥/,_ =0 without a loss of generality. So, for the case
U$Xt).: gl(x) FU2(x)=—e[Va(x) +Vo(x)] through the ¢ complete depletion of electrons, the minimum value of the
relation, electrostatic potential energy(x) is —Eg at Vg=0.

ns(x):f dED(E)H{{E+U(x)—hvx/13— u]/ksT}, ll. POTENTIAL AND ELECTRON DISTRIBUTIONS
(12) WITHOUT A CURRENT

First, we discuss the calculated potential and electron dis-
tributions of the 2DEG in the Hall bar without an imposed
current, i.e., the charge density is calculated in @§) with
v=0. For solving the self-consistent problem we start with
solutions of zero magnetic field at=0.

with f(€)=1/[1+exp()] the Fermi functionu the electro-
chemical potential, and@ the temperature. Her& (E) rep-
resents the two-dimensional density of statd3(E)
=(94/2m3) S/ oS{E—fiwg(j+1/2)} where g=2 takes
into account the spin degeneracy ang=eB/m* the cyclo-
tron frequency. The quantib?;'vxllﬁ1 represents a kinetic en-
ergy of the drift motion at each point and depends linearly on A. Results forB=0 and T=0

X because a Landau level centeredatx, has a momentum ForB=0 andT=0, the surface electron density is given
of hxollfn. The parametep is fixed by the total current in  as n(x)=Dy[Er—U(X)]6[Ef—U(X)], where the Fermi

they direction, | =2envd wheren is the average electron energy isEr and 6(x) the unit step function. Then, ELO)
density in the Hall bar, reduces to the linear integral equation,
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x/d FIG. 2. (a) Maximum value of the electron density(x) and(b)

- ) half width of the region occupied by electroa& are depicted as a
FIQ. 1. The(a) electron densitiesig(x) and (b) elec_trostatlc function of a/d for Wn0=0.668 (dashedl 0.458 (solid), and
potentialsU(x) at B=0 and T=0, are plotted for various bare g 579 (qotted with Vy=0. Calculated results are compared as a
screening lengtha, /d=0.5 (dot-dashel] 0.1 (dashedl and 0.01  nction of Vg in (c) and (d) for different sets of the parameters

(solid). Here, the average _electron densityri7$n0=0.45'8 with [n/ng,a,/d]=[0.458, 0.001 (solid), [0.458, 0.01 (dotted, and
Vg=0.0. The long-dashed lines represent the results Wi 0.2. [0.279, 0.07 (dashedl In (d), lines with a positive slope de-
See the text for the dotted lines. (b), the horizontal lines describe scribea/d.

the corresponding values of the Fermi enekgy.
exhibits a similar behavior to the potential of Ed4), where
x2 1 (a there is no screening due to a lack of electrons. The associ-
Uy(X)=—Eg\/1— —2+—J’ [EE—U(t)]K(x,t)dt, ated electron density is found to be distributed over a rela-
d® @oJ-b tively broad region. However, as the rat&/d becomes
(15 smaller, the potential becomes flatter in the region occupied
where electrons are assumed to be distributed in the regidpy electrons, and the electron density is distributed over a
—b<x<a. By writing U(x) andng(x) in units ofE, andn,  narrower region because electrons screen the positive back-
in Eg. (15), our problem depends on only dimensionless paground more effectively. Eventually, in the limit a/d=0,
rametersay/d, e Vg/Eq, andn/ng. As shown in Eq(14), the ~ the self-consistent electron density is found to approach
first term in Eq.(15) is the contribution of the positive back- NS(X)=Noy(b?—x?)/(d?~x?) [the dotted line in Fig. @],
ground when electrons are completely depleted. As we inwhich was obtained by CMS. The charge densiyx) is a
crease the number of electrons, the second term of .  solution of the electrostatic problem, whegx) is assumed
becomes important in determining the potential profile ando be perfectly flat in the regiopx|<b as shown in Fig. (b).
tends to flatten the potential shape due to the screening by For different values of the average electron denityve
electrons in the occupied region. However, the flatness deind a similar behavior for the electrostatics as a function of
pends on the two-dimensional screening lengghand the  a,/d. We show the maximum value ofy(x) and the half
average electron density. width of the region occupied by electroredd, as a function
To examine effects of, andn on the electrostatics, we Of @/d in Fig. 2 (upper panglfor three different values of
first consider zero gate voltagés=0. Then, one expects a n/ng. As the ratioa,/d decreases, the screening by electrons
symmetrical geometry wita=b. For given values o&,/d  becomes more effective, independentlyrngh,, leading to a
and n/ng, Eq. (15 determines the width I2 of the region larger maximum value of the electron density(x) and
occupied by electrons. With a typical value mfn,=0.458, Smallera/d. When, for a fixed value oé,/d, the average
we compare the calculated potentia{x) and electron den- electron densityn/n, increases we find that the electron
sity ng(x) in Fig. 1 for several values daf,/d. The average screening also becomes more effective and the electron den-
electron densityn/ny=0.458 is chosen to give a value of Sity Ns(x) is closer tond(x). Thus, the electron densit(x)
b/d=0.75 ata,/d=0.01. The calculated potentigli(x) and  ©obtained by CMS applies to a Hall bar with sufficiently large
electron densityng(x) demonstrate that the electrostatics de-values ofd/ay and n/n,.
pends crucially on the ratiag/d. When the bare screening Now we consider a finite gate potentislz# 0, leading to
length ay is comparable tad, the self-consistent potential an asymmetric electron distribution, i.@#b in Eq. (15),
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because electrons are redistributed to screen the potential di- 5
ference between the gates. We find that the overall shape ¢
the electron density is shifted from the case\Vf=0 and,

-0.36
0.6 -

therefore, the maximum value of the electron denaiffx) \‘io"‘ 0.38
occurs away fromx=0 (long-dashed lines in Fig.)1How- = 02

ever, the width of the region occupied by electrons, 00

(a+b)/d is nearly independent dfz while the maximum 02 o5 o0 o5 1o 0%
value of the electron densityy(x) becomes larger with an x/d

increase ol for given average electron dens@and bare 08 036
screening lengtl,/d. In the lower panel of Fig. 2, we show 06

the maximum value ofis(x), a/d, andb/d as a function of So4

gate voltage/y for several sets ofi anday/d. With a given Fo2 038
average electron densiuWn0=0.458, the maximum value 0.0

of the electron densityng(x) with ay/d=0.001 (solid) is 02k 0.40

found to increase more rapidly than witty/d=0.01 (dot-

ted) as a function of gate voltagéz . Comparing the dotted
and dashed lines in Fig(®, we find that the variation of the
maximum value ohy(x) with increasingvg shows the same
increasing rate regardless of the average electron densit § 04

n/ny with a given value ofay/d. The width of the region <02

0.8
0.6

-0.36

occupied by electronsa(+b)/d is found to be nearly inde- 00 7
pendent ofVz as can be easily seen from Figld2 This 02 OC) e a1, %
means that an asymmetric shape of the electron densit ’ Y '

causes the variation of its maximum value with varying gate
voltageVg. This fact is found to be responsible for the se-  FIG. 3. For»(0)=1.5 (a), 2.05 (b), and 3.0(c), we plot the
vere change of the electrostatic potential in the center of thelectron densitieag(x) and electrostatic potential$(x) calculated
Hall bar at finite magnetic field, as discussed in the followingyith v=0.0, ks T/E,=0.005, n/ny,=0.458, anda,/d=0.01[E,
section. is equal to a cyclotron energy at the occupation nunm§e)=2.0].

The dotted linegleft column represent the difference between the

B. Compressible and incompressible regions electron densities with and without magnetic fields. The dashed and

dotted linegright column describe the chemical potential and Lan-

qut ﬂr]['te g:agn_etlc field anl_d tem[ieratulre, tht_e Self'aau levels, respectively. The electron densitigx) atay/d=0.05
consistent problem is now a nonlinear integral equation, and . .iso shown with dashed lines.

must be solved by a numerical iteration method. For this,

starting with the self-consistent potential a0 andB=0, . ¢ th h . ber is i
we first “heat” the electronic system sufficiently high and, given set of the parameters the occupation number is in-

then, cool it slowly to the desired temperature. At each temYersely proportional to the magnetic field and indicates the

perature step we ensure fully converged results by empbyfgppearance 9f the incompressible region%}lo. We expect

ing the Newton-Raphson method to solve the nonlineafh@t at even integer values o{0) the chemical potentiak

equation of Eqs(10) and (12). Is about to drop into the gap between two successive Landau
In the presence of a magnetic field, screening by electron§Vels atx=0 (T=0) and, therefore, an incompressible re-

is drastically changed due to theshaped density of states 9i0n iS about to be formed near=0. To understand the
D(E) in Eq. (12). According to Wulfet al,** an effective effects of the magnetic field more easily, we first discuss

screening length for finite magnetic field and temperature i§esults calculated for a very low temperatugT/E;=0.005

given as [E, is equal to a cyclotron energy at the occupation number
v(0)=2.0]. The electrostatics at higher temperatures and its

kgT 4 temperature dependence will be shown in a later paragraph.

aT:h_wC mao: (16) Figure 3 shows the potentials and electron densities of the

Hall bar calculated for several magnetic fields at low tem-
wherep is the filling factoryy modulo 2 andv, is the local  perature. In Fig. @), we plot the electron density,(x) (left
filling factor defined asvy(x)=ng(x)/n_, with a Landau pane) and electrostatic potential energh(x) (right pane) at
level degeneracy, = 1/2w12,. Thus, one expects a periodic a very strong magnetic field of(0)= 1.5, where the chemi-
change of the screening property as a function of the mageal potentialdot-dashed lingis pinned at the lowest Landau
netic field. There is essentially no screening when the chemievel and the compressible region extends over the whole
cal potentialu lies in the gap between two successive Lan-sample. In this case, a change in a screening ability due to
dau levels, i.e.p=0. Otherwise, i.e., whep is pinned in a the magnetic field is easily examined. According to CMS
Landau level, electrons show a nearly perfect screening at@ne should expect no change in the electron densifx)
low temperature. from the results for zero magnetic field, because a perfect

In this work, we express the magnetic field as the occuscreening is assumed even for zero magnetic field. In our
pation numbew(0)=n(0)/n_, wheren(0) is the maximum case, however, the calculated electron densifx) shows a
of the electron densityng(x)|.—o at B=T=Vz=0. For a  slight difference depending on the presence of the magnetic
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field. The dotted line in the left panel of Fig. 3 shows the 5.0
difference between the electron densities with and without (a)
magnetic field at the same temperature. In the presence of the 40
magnetic field, we find that electrons are distributed over

smaller region and, therefore, the maximum of the electron §3_0
density increases slightly. This means that the screening by >
electrons is more effective due to the magnetic field, as ex-

pected by Eq(16). The potentialgsolid lines in the right 2.0
pane) also become flatter in the presence of the magnetic

T
LTI

field. _ _ _ 210 05 0.0 0.5 1.0
As the occupation number(0) in the center increases, or x/d

the magnetic field is reduced from the case of Fig),3 flat

region in the electron density starts to appear in the center of 1.0

the Hall bar because the chemical potential there is about to
lie between the first and second Landau levels. Whereas the 0.8
first appearance of the flat region for zero temperature is

expected atr(0)=2.0, we find that it starts at about 306
v(0)=1.99 due to the finite temperature. Figur@)3shows &S(M
the results av(0)=2.03, where the chemical potentialot- ‘
dashed ling lies in the gap between two Landau levels 02 W+
around the center of the Hall bar. As a result, we find an i

incompressible region, where the electron density is constant 0.0 L L
and the local filling factowy(x) has an integer value, around 0.000 0.005 ao/d 0.010 0.015

the center of the Hall bar. The potential shows a large spatial

variation, of aboutiw., due to a lack of a screening in the . . . o
incompressible region. By increasing the occupation number FIG. 4. (&) Incompressible regions with parameters as in Fig. 3,
»(0) further, the central incompressible region becomeé’r?‘wn in thev(O)-coordlnate space. The dotted Il_nes show b_ound-
larger until the chemical potential touches the upper unocci@'es predicted by CMSb) Maximum width of the incompressible
pied Landau level and, then, is divided into two regions bystrip around»(0)=2.0 as a function ofao/d for n/n,=0.458
the appearance of another compressible region, in the centdgircle) and 0.27%(squarg. The solid and dotted lines describe re-
Figure 3c) shows the result at(0)=3.0, where a central sults obtained by CMS for each average density,.

compressible region is bounded by two incompressible re- . o .
This discrepancy results from the oversimplified assumption

ions. i S
g In the left column of Fig. 3, we also show the electron of CMS that the central compressible region is narrower than
i two adjacent incompressible regions. This assumption also

density(dashed linesfor the larger value of,/d=0.05. To ) ) ; ) ; )

compare the results with the caseagf/d=0.01, the occu- 9IVES rise, to a dlfferent maximum quth of the central in-

pation numbery(0)=n(0)/n, is defined with the electron compressmle_ region from ours. In Flg(b% we palculatg
maximum widths of the central incompressible region

density n(0)=ng(x)|=o at ap/d=0.05. So, we expect a _ i
similar formation of compressible and incompressible re-around»(0)=2.0 as a function of,/d for n/ny=0.458
gions. At»(0)=1.5, we find the same result as for the case(solid) and 0.279(dotted. According to the approach by

of a;/d=0.01 because the screening of electrons is perfec¢MS, the maximum width of the central incompressible strip
all over the region. However, at other valuesgD), the IS proportional to &,/d)™>. In our case, the calculated re-
compressible and incompressible regions have differentults atT=0 are obtained by a linear extrapolation method
widths from the case ofi,/d=0.01; As the ratica,/d be- from values at finite temperature, and exhibit a similar be-
comes larger, the calculated width of the incompressible rebavior as a function o&,/d. However, our calculated results
gion increases at the same occupation number while that ghow smaller values than those by CMS over the whole
the compressible region decreases. range ofag/d for both n/ny=0.458 and 0.279.

In Fig. 4(a), we show the position of the incompressible  For an asymmetric caséz# 0, the width of the incom-
regions for different values af(0), where the same param- pressible region also depends on the gate poteviial We
eters as in Fig. 3 are used. The dotted lines represent ttehow typical results for the electron density(x) and the
boundaries predicted by CMS. The incompressible regionslectrostatic potentidl (x) atVg=0.2 in Figs. %a) and 5b),
start to appear at aboutf0)=2.0 and 4.0 at the center of the respectively. Compared to the result\4=0, the electron
Hall bar and become larger @$0) increases. Then, eventu- density is shifted with a slightly changed width of the incom-
ally, they split into two incompressible regions which move pressible regions, and the electrostatic potential exhibits a
to the edges a%(0) increases. This behavior is in good strongly asymmetric shape. As we vary the gate volidge
agreement with that obtained by CMS arour(®)=2.0 and a drastic change is found in the central incompressible re-
4.0, i.e., around the center of the Hall Has shown Fig. gions, which is related to the maximum value of the electron
4(a)], despite the finite temperature used in our calculationdensity ng(x). As already shown in Fig. 2, the maximum
Near the edges, however, our results for the boundaries afalue of the electron density increases with an increase of the
the incompressible regions disagree with the prediction ofate voltage. Thus, for a given magnetic field, the ratio of the
CMS with respect to both their positions and their widths.maximum electron density to the Landau level degeneracy
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FIG. 5. Fory(0)=23.99,(a) the electron densities,(x) and(b) 0.00 c 1 L -
electrostatic potentiald (x) are compared afr=0 (solid) and 0.2 -1.0 03 )(c)/(c)i 0.5 10

(dotted. We also show the incompressible regions in the

Vg-coordinate space for the occupation numbe¢8)=3.99 (c) FIG. 6. () The electrostatic ; . :
" . 6. potentiald(x) in units of E, plot-

and 4.035 (d). T_he parameters used area,/d=0.01, ted for temperaturelsg T/A w .= 0.005, 0.01, 0.06, 0.1, and 0.5 with
kg T/E,=0.005, andn/no=0.458. 1(0)=4.035, a,/d=0.01, n/ny=0.458, andVx=0.0. A thicker

solid line describes a higher temperatufie. The incompressible

n_ or effective occupation number(0) becomes larger as region in the temperature-coordinate space.

the gate voltag®/ increases. Figured® and §d) show the ) . .
over a relatively wide region of the Hall bar. Thus, we expect

position of incompressible regions in th¥g versus ! i ey !
that this potential variation with respect to the temperature

x-coordinate diagram, at occupation numbet$)=3.99 : > : !
and 4.035, respectively. We find that the incompressible re¢a@n be measured experimentally using the scanning polariza-

. R . . . 8
gions increase as the gate voltage becomes larger. tion optical microscopé: _ _ _
In Fig. 6b), we show evolutions of the incompressible

Now we discuss the effect of temperature on the electro- "' _ f
region in the temperature versus tkeoordinate diagram.

static potential energy (x) and electron distributiomg(x). > ‘ !
According to Eq(16), the screening length increases linearly At Very low temperatures, the width of the incompressible

with increasing temperature, because electrons can be redf&gions is found to vary linearly with the temperature. Based
tributed by a thermal excitation to unoccupied Landau levelsOn this fact, we use the results at finite temperatures to obtain
Thus, one expects that the potential becomes less flat in tH8€ width of the central incompressible regioffat 0 in Fig.

compressible regions. Numerically, we examine the tempera(b) by interpolating linearly. As the temperature increases,
e central incompressible strip becomes smaller more rap-

ture dependence of the electrostatics for various sets of thi >1Tla
parameters/ N a- and 1(0). A typical result for self idly than those at edges and, eventually, spilts into two parts.

. Ry =~ <0 ' ; - This splitting of the incompressible region is caused by a
consistent potential and E)rrespondmg electron density | ermafl) excgation of electropns. The tem?aerature at Whichythe
shown in Fig. 6 foVg=0, n=0.458, anda,/d=0.01. Note g5t gpjitting occurs depends on the energy differea¢)
that the electrostatic .potentlal energy is expres;ed in units Q§anveen the chemical potentialand the lowest unoccupied
E, for easy comparison. The magnetic field is chosen {q 5nqay level. Since, foNg=0, the electrostatic potential
yield »(0)=4.035, where an incompressible strip is formedy, a5 3 minimum value at=0 in the central incompressible
at the centerhas vlveII asfn(re]ar the ed,gle,s' Vx'th an mcrea_lgle gion,A(x) has the smallest value at that point and the first
temperaturethe slope of the potential in the compressible 5 5,04rance of the splitting occurs there. The temperature de-
regionis found toincreaseproportional to temperatutiesT,  yendence of the local filling factar, in the incompressible
because the screening by electrons becomes less effecti gion follows from Eq(12);

On the other handhe width of the incompressible regid R

found todecreasdinearly with increasing temperature. As a 1
result, the potential distribution shows strongly changed vh(X) =k+ T+ exg A kaT]" 17

shapes. A drastic change of the electrostatic potential due to
the temperature is found around the boundaries of the centralhere k is the number of occupied Landau levels. Even

incompressible region, a/d~ = 0.3 in Fig. Ga). There, as though the energy differena®(x) also depends on the tem-
the temperature is varied frokgT/E,=0.005 to 0.5, the perature, our calculated result fits well to the above equation
change of the potential distribution is an orderfob. at  with a constani\(x), especially at the point of the maximum
x/d~=0.3. In addition, a similar potential variation occurs electron density X=0).
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FIG. 7. For occupation numbens(_Q)=2.05 @, 3'_0 (b_)’ e_tnd_ FIG. 8. The induced potentials by both current and magnetic
4.05(c), the calculated electron densities and potential dlStFIbUtIOﬂ%ield in units of E, are shown in(a across the Hall bar for
are drawn when _smaII drift velocity=0.200_y (solid) is imposed, 1(0)=2.05 (dashed 3.0 (dotted, and 4.05(solid) with the same
and compared with results f®r=g(dotted ling. Parameters used parameters as in Fig. 7. Ifb), the temperature dependence of the
arekgT/E;=0.005,8,/d=0.01, n/n=0.458, andVg=0.0. The  jnduced potential atr(0)=4.05 is shown for temperatures;
dot-dashed linegright column represent the effective chemical po- k,T/E,=0.005 (solid), 0.06 (dotted, 0.1 (dashed, and 0.5
tential x(x). (dot-dasheyl

For other sets of the parameters1 we find behavior Sim”at'ributions are drastica"y different from the case of zero cur-
to the above results, a|th0ugh the width and position of théent indicated by dotted lines. With this modified electro-
compressible and incompressible regions are different fron§tatic potential, the electron density(x) is determined by
case to case. For instance, as we decrease theagtip an effective chemical potentia(x)=u+fivx/13 (dot-
keeping the other parameters as in Fig. 6, the maximunglashed ling as shown in Eq(12). The calculated electron
variation of the electrostatic potential with respect to thedensity (solid line) is found to be shifted by the applied
temperature occurs at a smaller point thad~0.3, as al- current, however, the overall shapes remain the same as in
ready expected in Fig. 4. However, we find that the changéhe case of zero current, as shown in the left column of Fig.
of the potential distribution is still of ordetw. over the 7.
temperature change &§T/E,=0.5. An important effect of the applied current is that an en-

ergy difference between both edges develops, which is di-
rectly related to the Hall voltage. The Hall voltage is defined

IV. COMPRESSIBLE AND INCOMPRESSIBLE STRIPS as the potential difference between energies of an injected

UNDER FINITE CURRENT and removed electron at each edge, respectively. We exam-
ine the Hall voltaggHall-resistancgas a function of mag-
netic field, by calculating the potential difference between
the two points where the effective chemical potentiék) is

Now we consider the Hall bar under a finite current, i.e.,
v#0 in Eq.(12). In this case, the drift motion of electrons

nder magnetic fiel iv ri n electric fiel i .
Li_de ag etg eld gives rise to a eec_t ¢ fie dequal to the electrostatic potentidi(x). The obtained Hall
E=(—vB,0) which transfers electrons from one side of the ggjstance of our system does not show any plateau, but a

Hall bar to the other. Thus, one expects an asymmetrignqar pehavior over the whole range of the magnetic fields.
charge density induced by the current even for the case Qiging the Hartree approximation, Pfannkuche and Hajdu ob-
VL=Vg. For a small drift velocity, v=0.200 (vo tained structured behavior of the magnetoresistance, how-
=1/4whDoay), the calculated potentidl(x) and electron  gyer they also could not produce any quantized vAlue.
density ny(x) are depicted in Fig. 7 witha,/d=0.01, The induced potential by both current and magnetic field
n/ny=0.458, ankgT/E,=0.005. At each occupation num- is found to show a strong position dependence. For several
ber, we compare the results with the case of zero currentalues of the magnetic field, the induced potentials are drawn
The transfer of electrons leads to additional contributions tan Fig. 8a) with the same parameters as in Fig. 7. The charge
the potential distribution proportional t*ouxllﬁ1 as shown in  transfer over the Hall bar causes additional peaks in the in-
the right column of Fig. 7. Thus, the resulting potential dis-duced potential at abow/d~ = 0.75. Comparing with the
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the induced potential shows linear behavior at high tempera-
ture kg T/h w.=0.5). Besides the linearly varying shape, the
induced potential shows very similar behavior to the case of
zero current. The variation of the induced potential is still of
the order offw. around the center of the Hall bar as the
temperature is changed frokgT/% w.=0.005-0.5.

We also examine the current density which is defined as,

i(X) Iﬁq U n(x), | fd i(x)dx (18
02,3 05 0.0 0.5 1.0 i ox ' d '
x/d for various temperatures and occupation numbers. Figure
0.03 ' 9(a) shows, at very low temperature, the current densities
‘ ' ' i(x) for the occupation numberg(0)=2.05, 3.0, and 4.05
for a small drift velocityv =0.2vy. The current densities
show a broad distribution modulated with large peaks which
appear in the incompressible region. In the incompressible
region, the quantitygU(x)/dx gives rise to a large value
(i.e., large diamagnetic currgnthowever, the net contribu-
tion to the current vanishes due to the opposing signs at
opposite edges. Thus, neglecting diamagnetic currents in the
incompressible regions, we find that the current densities are
-1.0 -0.5 0.0 0.5 1.0 broadly distributed over the region occupied by electrons. In
x/d Fig. 9b), we show a symmetrized current densityfx)
=[i(x—x¢) +i(x;—X)]/2, wherex, is the center of mass of
the electron distribution. The calculated result is rather simi-
lar to that obtained by Pfannkuche and Hafdhowever,
aqontradictory to the prediction of Chaligthat the current
can flow only along the incompressible strips.
For a positivev which means the current flows along the
é)ositivey direction, the electron distribution is shifted to the
positive x direction due to the Lorentz force. An additional

14
o
o
=

T

FIG. 9. (a) The current densitiex) in units ofiy=eEy/27hd
plotted for the occupation numberg(0)=2.05 (dotted, 3.0
(dashed, and 4.05solid) with the same parameters as in Fig(h).
The symmetrized current density drawn for each of these occup
tion numbers.

electron density for zero current, the lack of charges at th

left edge makes a dip at~—0.75 while a peak appears at " o . :
x~0.75 by excess charges. Around the center of the Hall b ?h'ﬂ of the electron deng,lty is possible by the gat_e potential
(R Under a small applied current, we can obtain a nearly

as well as near the edges, the potential distribution depen tric electron distributioral= b) by adiusting th N
strongly on the occupation number. When the chemical po§ymme fic electron distribu 'OFH(— ) by adjus Ing the gate
oltage Vg. From our numerical results, we find that the

tential is pinned at the Landau level around the cente . . . :
[»(0)=3.0 and 5.0 the potential distribution varies electron densiyn,(x) with a=b is obtained when the ap-

smoothly across the Hall bar due to a wide compressibl@"ed current and magnetic field are related to the gate volt-
region. However, at the magnetic fields suchi1é6)=2.0 ageVr through,

and 4.0, we find a nonlinear shape of the potential resulting

from poor screening in the incompressible regions. Very V= —7v
similar behavior to this has been observed by Kretal®

who measured the voltage drop using a contactless method — . . ]
based on the electro-optical effect. By varying the magneti®vhereRy=B/en andy is a numerical constant depending
field they observed that in a plateau region of the Hall volt-on ay/d, n/ng and kgT/E,. For various sets ofi/ny and
age[i.e., v(0) is about 2.0 the potential shows nonlinear ay/d, we find that our results are well fitted by the above
behavior across the Hall bar while in the transition region theequation with y=2d/7b at the temperaturekgT/fw,
potential drop was found to be distributed linearly. However,=0.005, leading tdbVgz/d= —Ryl, where D is the width of
the measured potentials do not show any potential peakifie area occupied by electrons.

caused by the incompressible strips as well as the small

Wﬁvd_ WyR | 19
E|2 - 2 H!» ( )
m

peaks near the edges resulting from the charge transfer. We V. SUMMARY
think that the absence of the detailed structure in the induced . . ) )
potential is due to low resolution in the experiment. In conclusion, we have investigated the local potential,

Under a given equilibrium current, the effect of the mag_e!ectron, and current distributio_ns_ of the idealized two-
netic field on the induced potential is found to becomedimensional Hall bar geometry within the Thomas-Fermi ap-
smaller as the temperature increases. In Fif),8ve show Proximation. By solving a self-consistent problem, the for-
the induced potential for various temperatures when the odnation of compressible and incompressible regions is
cupation number corresponds tg0)=4.05. The reduced €xamined for various parameters; curreh)t, (nagnetic field
screening of electrons with increasing temperature gives riseB), gate potential {Vg), average electron densityn{, bare
to a smaller width of the incompressible region and, thusscreening lengthgy), and temperaturel(). For zero current,
peaks in the induced potential become smaller. Eventuallypur results are compared with those of CMS. At very low
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temperature and small screening length, the analytic exprethe applied current transfers electrons from one side of the
sion of CMS is in good agreement with our results. ForHall bar to the other due to the Lorentz force, the resulting
larger screening length, however, we find that the widths opotential distribution is drastically different from the case of
the central incompressible strips show smaller values thapero current. However, the shape of the electron distribution
those by CMS. Considering the effect of the gate voltaggs found to be nearly invariant while its center of mass is
Vg#0, a drastic change is found in the central incompressshifted. We find that the shift of the electron distribution can
ible regionS, which reflects the variation of the electron diS'be canceled by app|y|ng a suitable gate V0|tage_ The current
tribution. With an increase of temperature, the slope of thejensity shows a broad distribution modulated with large
potential in the compressible region is found to increase propeaks which appear in the incompressible region. Neglecting
portional to temperature while the width of the incompress-giamagnetic currents, however, we find that the current den-

ible region decreases. As a result, when the temperature ities are distributed over the whole region occupied by elec-
varied largely, the potential variation around the center of therons without any preferred region.

Hall bar is found to be of order df w. and should be mea-

surable experimentally. Using a generalized equilibrium den-

sity operator, we describe a nondissipative equilibrium cur- ACKNOWLEDGMENTS

rent flowing along the Hall bar. Under a small nondissipative

current, we have shown the calculated electrostatic potential We thank U. Gossmann and Dr. D. Pfannkuche for help-
and electron density as well as the current distribution. Sincéul discussions.
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