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Self-consistent Thomas-Fermi calculation of potential and current distributions
in a two-dimensional Hall bar geometry

J. H. Oh and Rolf R. Gerhardts
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Federal Republic of Germany

~Received 1 May 1997!

The electrostatics of a two-dimensional, in-plane–gate-defined Hall bar is investigated by imposing the
electrochemical equilibrium within the Thomas-Fermi approximation. We calculate the electrostatic potential
self-consistently with the electron distribution and examine associated magnetic-field-induced compressible
and incompressible regions as a function of temperature, bare screening length, and gate voltage with and
without nondissipative currents. We find that the widths of the incompressible and compressible regions
depend strongly on temperature and bare screening length. At very low temperature and small screening length,
our results agree with an analytical work by Chklovskii, Matveev, and Shklovskii. For a small current applied
on the Hall bar, the electron distribution is found to be slightly deformed while the width of the incompressible
regions is not changed. Neglecting diamagnetic currents, we find that the current densities are distributed over
the whole region occupied by electrons.@S0163-1829~97!06343-1#
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I. INTRODUCTION

The local potential and current distributions of the tw
dimensional electron gas~2DEG! in a Hall bar have been th
subject of intense study because they are key factors in
derstanding the quantum Hall effect.1–4 In the presence of a
perpendicular magnetic field, the local potential of the 2DE
is determined by the peculiar screening properties of
electron system combined with the bare confinement po
tial of the Hall bar. Within the Thomas-Fermi approximatio
and at very low temperature, the area occupied by the 2D
can be divided to two types of regions, compressible a
incompressible regions. Due to the bare confinement po
tial of the Hall bar, there are ‘‘compressible’’ regions whe
a Landau level is pinned at the chemical potential. In th
regions, electrons show a perfect screening, because the
be easily redistributed, and the potential is nearly flat. In
‘‘incompressible’’ regions, where the chemical potential li
in the gap between two successive Landau levels, elect
do not contribute to screening because a redistribution
energetically impossible. In these regions the electron d
sity is constant while the potential exhibits a large variatio

Various experimental attempts to measure the compr
ible and incompressible regions in the Hall bar have b
made.5–7 Knott et al.,8 imaged the local potential distribu
tions of the 2DEG induced by currents with a scanning
larization optical microscope based on the linear elec
optical effect. They found that the potential profile sho
nonlinear behavior in the range of the quantum Hall plate
whereas it is usually linear. On the other hand, Ernstet al.9

examined edge channels of the Hall bar using magnetop
mons which can be excited with a short voltage pulse.
time-resolved observation of the pulse propagation, t
found three edge magnetoplasmon modes, which can be
described in terms of a finite width of the compressible
gions near the edges. However, for a better understandin
the experimental results, it is necessary to know the deta
potential and electron density distribution in the Hall bar.
560163-1829/97/56~20!/13519~10!/$10.00
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In this paper we study the local potential and current d
tributions of a two-dimensional electron gas in a narrow w
structure under a strong magnetic field within the Thom
Fermi approximation. Chklovskii, Matveev, and Shklovski10

~CMS! examined the formation of the edge channels a
associated potential distribution for this structure and p
sented analytic expressions for the electrostatics. In t
‘‘electrostatic approximation’’10 they used plausiblead hoc
assumptions for the electrostatic boundary conditions. S
cifically, they assumedperfect screening, leading to a con
stant electrostatic potential, within the two-dimensional el
tron system even in the absence of a magnetic fie
Furthermore, theyassumedthat the resulting electron densit
profile ns(x) is changed by a strong magnetic field only ne
positions of integer filling factors, where ‘‘incompressible
regions with constantns(x) occur. In a self-consistent theor
of electrochemical equilibrium,3 on the other hand, the elec
tron density profile is uniquely determined by the elect
static potential and vice versa, and noad hocassumptions
are necessary. In such a theory, the screening of elect
depends on the presence of the magnetic field and temp
ture as well as the bare two-dimensional screening length
has been shown by Wulfet al.11 within a Hartree calculation.

The purpose of the present work is twofold. First, w
extend the CMS approach to more realistic situations suc
finite temperature and finite screening length, and we req
electrochemical equilibrium. To keep the calculatio
simple, we determine the electron distribution for a giv
electrostatic potential within the Thomas-Fermi approxim
tion and follow the ideas of CMS to calculate the electr
static potential for given charge distribution. We also exa
ine the effect of in-plane gate voltages on the position
incompressible regions in accordance with a recent exp
mental investigation.12 Second, we apply a nondissipativ
current, and investigate the change of the potential, cha
and current distributions by employing a generalized equi
rium density operator. The understanding of the current d
tribution in a Hall bar is still controversial. Chang13 stated
that a current can flow only along the incompressible regi
13 519 © 1997 The American Physical Society
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13 520 56J. H. OH AND ROLF R. GERHARDTS
because in a compressible region the electrostatic potent
flat and, therefore, a drift velocity of electrons is identica
zero. On the other hand, according to the numerical res
obtained by Pfannkuche and Hajdu,4 the equilibrium current
is distributed over the whole sample rather than only in
localized region. Under the picture of the Landauer-Bu¨ttiker
transport theory14 where both ends of the Hall bar are
contact with reservoirs at slightly different electrochemic
potential, the nonequilibrium current is predicted to be in
compressible regions by Beenakker.15

The combination of the Thomas-Fermi approximati
with analytic treatment of the electrostatics of a geome
with in-plane gates is close in spirit to a calculation in Ref.
where the 2DEG occupying a half plane was consider
Here we want to investigate the effect of a gate volta
across and a net current along a Hall bar geometry and th
fore consider the 2DEG in a narrow wire confined by tw
in-plane gates. In Sec. II, we solve the electrostatics fo
two-dimensional electron gas which is contained in a ga
defined Hall bar. Within the Thomas-Fermi approximatio
the charge density is expressed in terms of the potential
the applied current by employing a generalized equilibri
density operator. In the case of zero current, our s
consistent potential and charge distributions are discusse
Sec. III and compared with those of CMS. In Sec. IV, w
present results for the compressible and incompressible
gions when a nondissipative current is applied. A brief su
mary is given in Sec. V.

II. FORMULATION OF ELECTROSTATICS

We consider a two-dimensional split-gate structure re
ized on the interface between two semiconductors which
cupy the half spacesz.0 andz,0 with dielectric constants
k. andk,, respectively. Two semi-infinite metal gates e
tended atx,2d andx.d with constant potentialsVL and
VR , respectively, define the Hall bar along they direction on
the interface (x-y plane!. We assume that electrons are d
tributed on the Hall bar together with a uniform positiv
background in the presence of a magnetic field applied al
thez direction. Then, the charge density is only a function
x andz and has a formr(x)d(z). The surface charge densit
r(x) is expressed as,

r~x!5e@n02ns~x!#, ~1!

where ns(x) and n0 are surface densities of electrons a
positively charged particles, respectively. Although our H
bar is symmetric aboutx50, an asymmetric charge densi
r(x) can be obtained by applying a gate voltageVL2VR
Þ0 between the metal gates.

Since our system has translational invariance along thy
direction, the electrostatic potentialV(x,z) is determined by
a two-dimensional Laplace equation in thex-z plane with
suitable boundary conditions. Two kinds of the bounda
conditions are imposed on the electrostatic potential in
system. First, the electrostatic potential should beVL and
VR , respectively, in the regions of the metal gates. Seco
inside the Hall bar, the normal derivative of the electrosta
potential should be given by the surface charge densityr(x).
Since the two boundary conditions are independent of e
other, we can treat them separately and write down the e
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trostatic potential in the form ofV(x,z)5V1(x,z)1V2(x,z)
whereV1 andV2 satisfy simpler boundary conditions.

The potentialV1(x,z) is restricted only by the boundar
values ofVL andVR in each gate region,

V1~x,z50!5H VL , x,2d

VR , x.d,
~2!

and, otherwise, satisfies the two-dimensional Laplace eq
tion. The solution ofV1(x,z) can be found by the conven
tional theory of analytic functions,16

V1~x,z!5VR1
VL2VR

p
Im lnH z

d
2Az2/d221J , ~3!

with a complex variablez5x1 iz. For uxu,d andz50 one
finds from Eq.~3!,

V1~x!5
VR1VL

2
2

VL2VR

p
arcsin~x/d!. ~4!

As one can expect, different gate potentialsVRÞVL give rise
to an asymmetric potential distribution. Otherwise, the p
tential V1(x,z) is constant all over the space.

The potentialV2(x,z) depends on the boundary conditio
resulting from the displacement field of the charge dens
r(x), i.e., for uxu,d,

k.

]V2

]z
~x,z501!2k,

]V2

]z
~x,z5201!524pr~x!,

~5!

and satisfiesV2(x,0)50 for uxu.d. Using the conventiona
theory of analytic functions,V2(x,z) can be represented a
the imaginary part of a holomorphic functionF in the com-
plex plane,V2(x,z)5ImF(z). Since]V2 /]x5ImdF/dz and
]V2 /]z5RedF/dz, F(z) satisfies the following boundary
conditions:

Re
dF

dz U
z5x1 i01

5r ~x!, for uxu,d

Im
dF

dz U
z5x1 i01

50, for uxu.d, ~6!

where r (x)524pr(x)/(k.1k,) and ]V2(x,201)/]z
52]V2(x,01)/]z has been anticipated. The above bound
conditions define the discontinuity of the imaginary part
the auxiliary function,

h~z!5 iAd22z2
]F

]z
~7!

along the real axis and give rise to

Imh~x1 i01!5H r ~x!Ad22x2 for uxu,d

0 for uxu.d,
~8!

whereAd22z2 is holomorphic, except for the branch cu
(uxu.d). Then, in all of space,h(z) can be obtained using
the Schwartz integral as
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h~z!5
1

pE2`

`

dx
Imh~x1 i01!

x2z
1c

5
1

pE2d

d

dx
r ~x!Ad22x2

x2z
1c, ~9!

with a real constant of integrationc. Then, the solution of
V2(x) is found from Eq.~9! by straightforward integration,

V2~x!52
1

pE2d

d

dtr~ t !K~x,t !,

K~x,t !5 lnUA~d22x2!~d22t2!1d22tx

~x2t !d
U. ~10!

For a given charge densityr(x), the potentialV2(x) is
uniquely determined by Eq.~10!. For an arbitrary charge
densityr(x), we find that Eq.~10! cannot be evaluated ana
lytically. We use a numerical method to obtainV2(x) in this
work.

Since our system is ideal and no dissipation occurs,
surface electron densityns(x) is obtained from the equilib-
rium density operatorr̂ through the relation,

ns~x!5Tr@d~x2 x̂!r̂#, ~11!

where Tr means the sum over all diagonal matrix eleme
Here, the equilibrium density operatorr̂ is given by maxi-
mizing the entropy of the system, taking into account
additive conserved quantities: the total energy, the numbe
electrons, and the total momentum of electrons in they di-
rection. In a strong perpendicular magnetic fieldB, the ma-
trix elements in Eq.~11! are easily evaluated. If the electro
static potentialV(x) varies smoothly in the plane of th
2DEG, i.e., on a characteristic length much larger than
magnetic lengthl m5A\/eB, the spatial extent of the wav
functions can be neglected on the scaled and the Hartree
approximation for evaluating Eq.~11! reduces to the
Thomas-Fermi approximation. Then, the electron den
ns(x) is related to the total potential energy of an electro
U(x)5U1(x)1U2(x)52e@V1(x)1V2(x)# through the
relation,4

ns~x!5E dED~E! f $@E1U~x!2\vx/ l m
2 2m#/kBT%,

~12!

with f (e)51/@11exp(e)# the Fermi function,m the electro-
chemical potential, andT the temperature. Here,D(E) rep-
resents the two-dimensional density of states,D(E)
5(gs/2p l m

2 )( j 50
` d$E2\vc( j 11/2)% where gs52 takes

into account the spin degeneracy andvc5eB/m* the cyclo-
tron frequency. The quantity\vx/ l m

2 represents a kinetic en
ergy of the drift motion at each point and depends linearly
x because a Landau level centered atx5x0 has a momentum
of \x0 / l m

2 . The parameterv is fixed by the total current in

the y direction, I 52e n̄vd where n̄ is the average electro
density in the Hall bar,
e

s.

ll
of

e

y
,

n

n̄5
1

2dE2d

d

ns~x!dx. ~13!

According to Eq.~12!, the electron densityns(x) at a posi-
tion x depends on the electrostatic potential only at that
sition. This fact leads to a simple real-space picture
screening at very low temperature.

When electrons are completely depleted in the Hall b
i.e., ns(x)50, we can find the electrostatic potential ener
analytically from Eq.~10!;

U2~x!52eV2~x!52E0A12x2/d2, ~14!

whereE054pe2n0d/(k.1k,) is a pinch-off energy. This
potential results from the positive background and has
elliptic shape with the minimum value atx50. The voltage
difference between the gates serves to shift the minim
position of the electrostatic potential energyU(x).

Once electrons start to occupy the Hall bar, the elec
statics depends on various parameters; applied currentI ),
magnetic fields (B), temperature (T), gate voltages
(VR ,VL), and average electron density (n̄ ). Another impor-
tant parameter is the two-dimensional screening len
a05(k.1k,)/4pe2D0, where D05m* /p\2 is the two-
dimensional density of states without a magnetic field. F
k.5k,, the two-dimensional screening length becom
a05aB* /2, with aB* 5k,\2/e2m* the effective Bohr radius.
Since the chemical potentialm is directly related to the av-
erage electron density (n̄ ), we investigate the electrostatic
of the Hall bar for a given set of the above six paramete
The determination ofU(x) and ns(x) constitutes a self-
consistent problem because the surface electron den
ns(x) is uniquely determined from a electrostatic potent
U(x) by Eq.~12! while the electrostatic potential is given b
Eq. ~10!. Using a numerical method, we solve the se
consistent problem exactly. In the following we measu
length and energy in units ofd and E0, respectively, and
present calculated results in dimensionless parameters
asa0 /d andeVR /E0. We choose an energy reference for o
system asVL50 without a loss of generality. So, for the ca
of complete depletion of electrons, the minimum value of t
electrostatic potential energyU(x) is 2E0 at VR50.

III. POTENTIAL AND ELECTRON DISTRIBUTIONS
WITHOUT A CURRENT

First, we discuss the calculated potential and electron
tributions of the 2DEG in the Hall bar without an impose
current, i.e., the charge density is calculated in Eq.~12! with
v50. For solving the self-consistent problem we start w
solutions of zero magnetic field atT50.

A. Results for B50 and T50

For B50 andT50, the surface electron density is give
as ns(x)5D0@EF2U(x)#u@EF2U(x)#, where the Fermi
energy isEF andu(x) the unit step function. Then, Eq.~10!
reduces to the linear integral equation,
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13 522 56J. H. OH AND ROLF R. GERHARDTS
U2~x!52E0A12
x2

d2
1

1

a0
E

2b

a

@EF2U~ t !#K~x,t !dt,

~15!

where electrons are assumed to be distributed in the re
2b,x,a. By writing U(x) andns(x) in units ofE0 andn0
in Eq. ~15!, our problem depends on only dimensionless
rametersa0 /d, eVR /E0, andn̄ /n0. As shown in Eq.~14!, the
first term in Eq.~15! is the contribution of the positive back
ground when electrons are completely depleted. As we
crease the number of electrons, the second term of Eq.~15!
becomes important in determining the potential profile a
tends to flatten the potential shape due to the screenin
electrons in the occupied region. However, the flatness
pends on the two-dimensional screening lengtha0 and the
average electron densityn̄ .

To examine effects ofa0 and n̄ on the electrostatics, we
first consider zero gate voltageVR50. Then, one expects
symmetrical geometry witha5b. For given values ofa0 /d
and n̄ /n0, Eq. ~15! determines the width 2b of the region
occupied by electrons. With a typical value ofn̄ /n050.458,
we compare the calculated potentialU(x) and electron den-
sity ns(x) in Fig. 1 for several values ofa0 /d. The average
electron densityn̄ /n050.458 is chosen to give a value o
b/d50.75 ata0 /d50.01. The calculated potentialU(x) and
electron densityns(x) demonstrate that the electrostatics d
pends crucially on the ratioa0 /d. When the bare screenin
length a0 is comparable tod, the self-consistent potentia

FIG. 1. The ~a! electron densitiesns(x) and ~b! electrostatic
potentialsU(x) at B50 and T50, are plotted for various bare
screening lengtha0 /d50.5 ~dot-dashed!, 0.1 ~dashed!, and 0.01

~solid!. Here, the average electron density isn̄ /n050.458 with
VR50.0. The long-dashed lines represent the results withVR50.2.
See the text for the dotted lines. In~b!, the horizontal lines describe
the corresponding values of the Fermi energyEF .
on

-

-

d
by
e-

-

exhibits a similar behavior to the potential of Eq.~14!, where
there is no screening due to a lack of electrons. The ass
ated electron density is found to be distributed over a re
tively broad region. However, as the ratioa0 /d becomes
smaller, the potential becomes flatter in the region occup
by electrons, and the electron density is distributed ove
narrower region because electrons screen the positive b
ground more effectively. Eventually, in the limit ofa0 /d50,
the self-consistent electron density is found to appro
ns

0(x)5n0A(b22x2)/(d22x2) @the dotted line in Fig. 1~a!#,
which was obtained by CMS. The charge densityns

0(x) is a
solution of the electrostatic problem, whereU(x) is assumed
to be perfectly flat in the regionuxu,b as shown in Fig. 1~b!.

For different values of the average electron densityn̄ , we
find a similar behavior for the electrostatics as a function
a0 /d. We show the maximum value ofns(x) and the half
width of the region occupied by electrons,a/d, as a function
of a0 /d in Fig. 2 ~upper panel! for three different values of
n̄ /n0. As the ratioa0 /d decreases, the screening by electro
becomes more effective, independently ofn̄ /n0, leading to a
larger maximum value of the electron densityns(x) and
smallera/d. When, for a fixed value ofa0 /d, the average
electron densityn̄ /n0 increases we find that the electro
screening also becomes more effective and the electron
sity ns(x) is closer tons

0(x). Thus, the electron densityns
0(x)

obtained by CMS applies to a Hall bar with sufficiently larg
values ofd/a0 and n̄ /n0.

Now we consider a finite gate potential,VRÞ0, leading to
an asymmetric electron distribution, i.e.,aÞb in Eq. ~15!,

FIG. 2. ~a! Maximum value of the electron densityns(x) and~b!
half width of the region occupied by electronsa/d are depicted as a

function of a0 /d for n̄ /n050.668 ~dashed!, 0.458 ~solid!, and
0.279 ~dotted! with VR50. Calculated results are compared as
function of VR in ~c! and ~d! for different sets of the parameter

@ n̄ /n0 ,a0 /d#5@0.458, 0.001# ~solid!, @0.458, 0.01# ~dotted!, and
@0.279, 0.01# ~dashed!. In ~d!, lines with a positive slope de
scribea/d.
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56 13 523SELF-CONSISTENT THOMAS-FERMI CALCULATION OF . . .
because electrons are redistributed to screen the potentia
ference between the gates. We find that the overall shap
the electron density is shifted from the case ofVR50 and,
therefore, the maximum value of the electron densityns(x)
occurs away fromx50 ~long-dashed lines in Fig. 1!. How-
ever, the width of the region occupied by electron
(a1b)/d is nearly independent ofVR while the maximum
value of the electron densityns(x) becomes larger with an
increase ofVR for given average electron densityn̄ and bare
screening lengtha0 /d. In the lower panel of Fig. 2, we show
the maximum value ofns(x), a/d, andb/d as a function of
gate voltageVR for several sets ofn̄ anda0 /d. With a given
average electron densityn̄ /n050.458, the maximum value
of the electron densityns(x) with a0 /d50.001 ~solid! is
found to increase more rapidly than witha0 /d50.01 ~dot-
ted! as a function of gate voltageVR . Comparing the dotted
and dashed lines in Fig. 2~c!, we find that the variation of the
maximum value ofns(x) with increasingVR shows the same
increasing rate regardless of the average electron de
n̄ /n0 with a given value ofa0 /d. The width of the region
occupied by electrons (a1b)/d is found to be nearly inde
pendent ofVR as can be easily seen from Fig. 2~d!. This
means that an asymmetric shape of the electron den
causes the variation of its maximum value with varying g
voltageVR . This fact is found to be responsible for the s
vere change of the electrostatic potential in the center of
Hall bar at finite magnetic field, as discussed in the followi
section.

B. Compressible and incompressible regions

For finite magnetic field and temperature, the se
consistent problem is now a nonlinear integral equation,
must be solved by a numerical iteration method. For th
starting with the self-consistent potential atT50 andB50,
we first ‘‘heat’’ the electronic system sufficiently high an
then, cool it slowly to the desired temperature. At each te
perature step we ensure fully converged results by emp
ing the Newton-Raphson method to solve the nonlin
equation of Eqs.~10! and ~12!.

In the presence of a magnetic field, screening by electr
is drastically changed due to thed-shaped density of state
D(E) in Eq. ~12!. According to Wulf et al.,11 an effective
screening length for finite magnetic field and temperatur
given as

aT5
kBT

\vc

4

p~22p!
a0 , ~16!

wherep is the filling factornH modulo 2 andnH is the local
filling factor defined asnH(x)5ns(x)/nL , with a Landau
level degeneracynL51/2p l m

2 . Thus, one expects a period
change of the screening property as a function of the m
netic field. There is essentially no screening when the che
cal potentialm lies in the gap between two successive La
dau levels, i.e.,p50. Otherwise, i.e., whenm is pinned in a
Landau level, electrons show a nearly perfect screening
low temperature.

In this work, we express the magnetic field as the oc
pation numbern(0)[n(0)/nL , wheren(0) is the maximum
of the electron density,ns(x)ux50 at B5T5VR50. For a
if-
of
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given set of the parameters the occupation number is
versely proportional to the magnetic field and indicates
appearance of the incompressible region atx50. We expect
that at even integer values ofn(0) the chemical potentialm
is about to drop into the gap between two successive Lan
levels atx50 (T50) and, therefore, an incompressible r
gion is about to be formed nearx50. To understand the
effects of the magnetic field more easily, we first discu
results calculated for a very low temperature,kBT/E250.005
@E2 is equal to a cyclotron energy at the occupation num
n(0)52.0#. The electrostatics at higher temperatures and
temperature dependence will be shown in a later paragra

Figure 3 shows the potentials and electron densities of
Hall bar calculated for several magnetic fields at low te
perature. In Fig. 3~a!, we plot the electron densityns(x) ~left
panel! and electrostatic potential energyU(x) ~right panel! at
a very strong magnetic field orn(0)51.5, where the chemi-
cal potential~dot-dashed line! is pinned at the lowest Landa
level and the compressible region extends over the wh
sample. In this case, a change in a screening ability du
the magnetic field is easily examined. According to CM
one should expect no change in the electron densityns(x)
from the results for zero magnetic field, because a per
screening is assumed even for zero magnetic field. In
case, however, the calculated electron densityns(x) shows a
slight difference depending on the presence of the magn

FIG. 3. For n(0)51.5 ~a!, 2.05 ~b!, and 3.0~c!, we plot the
electron densitiesns(x) and electrostatic potentialsU(x) calculated

with VR50.0, kBT/E250.005, n̄ /n050.458, anda0 /d50.01 @E2

is equal to a cyclotron energy at the occupation numbern(0)52.0#.
The dotted lines~left column! represent the difference between th
electron densities with and without magnetic fields. The dashed
dotted lines~right column! describe the chemical potential and La
dau levels, respectively. The electron densitiesns(x) at a0 /d50.05
are also shown with dashed lines.
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13 524 56J. H. OH AND ROLF R. GERHARDTS
field. The dotted line in the left panel of Fig. 3 shows t
difference between the electron densities with and with
magnetic field at the same temperature. In the presence o
magnetic field, we find that electrons are distributed o
smaller region and, therefore, the maximum of the elect
density increases slightly. This means that the screening
electrons is more effective due to the magnetic field, as
pected by Eq.~16!. The potentials~solid lines in the right
panel! also become flatter in the presence of the magn
field.

As the occupation numbern(0) in the center increases, o
the magnetic field is reduced from the case of Fig. 3~a!, a flat
region in the electron density starts to appear in the cente
the Hall bar because the chemical potential there is abou
lie between the first and second Landau levels. Whereas
first appearance of the flat region for zero temperature
expected atn(0)52.0, we find that it starts at abou
n(0)51.99 due to the finite temperature. Figure 3~b! shows
the results atn(0)52.03, where the chemical potential~dot-
dashed line! lies in the gap between two Landau leve
around the center of the Hall bar. As a result, we find
incompressible region, where the electron density is cons
and the local filling factornH(x) has an integer value, aroun
the center of the Hall bar. The potential shows a large spa
variation, of about\vc , due to a lack of a screening in th
incompressible region. By increasing the occupation num
n(0) further, the central incompressible region becom
larger until the chemical potential touches the upper unoc
pied Landau level and, then, is divided into two regions
the appearance of another compressible region, in the ce
Figure 3~c! shows the result atn(0)53.0, where a centra
compressible region is bounded by two incompressible
gions.

In the left column of Fig. 3, we also show the electr
density~dashed lines! for the larger value ofa0 /d50.05. To
compare the results with the case ofa0 /d50.01, the occu-
pation numbern(0)5n(0)/nL is defined with the electron
density n(0)5ns(x)ux50 at a0 /d50.05. So, we expect a
similar formation of compressible and incompressible
gions. Atn(0)51.5, we find the same result as for the ca
of a0 /d50.01 because the screening of electrons is per
all over the region. However, at other values ofn(0), the
compressible and incompressible regions have diffe
widths from the case ofa0 /d50.01; As the ratioa0 /d be-
comes larger, the calculated width of the incompressible
gion increases at the same occupation number while tha
the compressible region decreases.

In Fig. 4~a!, we show the position of the incompressib
regions for different values ofn(0), where the same param
eters as in Fig. 3 are used. The dotted lines represen
boundaries predicted by CMS. The incompressible regi
start to appear at aboutn(0)52.0 and 4.0 at the center of th
Hall bar and become larger asn(0) increases. Then, eventu
ally, they split into two incompressible regions which mo
to the edges asn(0) increases. This behavior is in goo
agreement with that obtained by CMS aroundn(0)52.0 and
4.0, i.e., around the center of the Hall bar@as shown Fig.
4~a!#, despite the finite temperature used in our calculati
Near the edges, however, our results for the boundarie
the incompressible regions disagree with the prediction
CMS with respect to both their positions and their width
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This discrepancy results from the oversimplified assumpt
of CMS that the central compressible region is narrower th
two adjacent incompressible regions. This assumption a
gives rise to a different maximum width of the central i
compressible region from ours. In Fig. 4~b!, we calculate
maximum widths of the central incompressible regi
aroundn(0)52.0 as a function ofa0 /d for n̄ /n050.458
~solid! and 0.279~dotted!. According to the approach by
CMS, the maximum width of the central incompressible st
is proportional to (a0 /d)1/3. In our case, the calculated re
sults atT50 are obtained by a linear extrapolation meth
from values at finite temperature, and exhibit a similar b
havior as a function ofa0 /d. However, our calculated result
show smaller values than those by CMS over the wh
range ofa0 /d for both n̄ /n050.458 and 0.279.

For an asymmetric caseVRÞ0, the width of the incom-
pressible region also depends on the gate potentialVR . We
show typical results for the electron densityns(x) and the
electrostatic potentialU(x) at VR50.2 in Figs. 5~a! and 5~b!,
respectively. Compared to the result atVR50, the electron
density is shifted with a slightly changed width of the incom
pressible regions, and the electrostatic potential exhibit
strongly asymmetric shape. As we vary the gate voltageVR ,
a drastic change is found in the central incompressible
gions, which is related to the maximum value of the electr
density ns(x). As already shown in Fig. 2, the maximum
value of the electron density increases with an increase of
gate voltage. Thus, for a given magnetic field, the ratio of
maximum electron density to the Landau level degener

FIG. 4. ~a! Incompressible regions with parameters as in Fig.
drawn in then(0)-coordinate space. The dotted lines show bou
aries predicted by CMS.~b! Maximum width of the incompressible

strip aroundn(0)52.0 as a function ofa0 /d for n̄ /n050.458
~circle! and 0.279~square!. The solid and dotted lines describe r

sults obtained by CMS for each average densityn̄ /n0.
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nL or effective occupation numbern(0) becomes larger a
the gate voltageVR increases. Figures 5~c! and 5~d! show the
position of incompressible regions in theVR versus
x-coordinate diagram, at occupation numbersn(0)53.99
and 4.035, respectively. We find that the incompressible
gions increase as the gate voltage becomes larger.

Now we discuss the effect of temperature on the elec
static potential energyU(x) and electron distributionns(x).
According to Eq.~16!, the screening length increases linea
with increasing temperature, because electrons can be r
tributed by a thermal excitation to unoccupied Landau lev
Thus, one expects that the potential becomes less flat in
compressible regions. Numerically, we examine the temp
ture dependence of the electrostatics for various sets of
parametersVR , n̄ , a0, and n(0). A typical result for self-
consistent potential and corresponding electron densit
shown in Fig. 6 forVR50, n̄50.458, anda0 /d50.01. Note
that the electrostatic potential energy is expressed in unit
E2 for easy comparison. The magnetic field is chosen
yield n(0)54.035, where an incompressible strip is form
at the center as well as near the edges. With an increas
temperature,the slope of the potential in the compressib
region is found toincreaseproportional to temperaturekBT,
because the screening by electrons becomes less effe
On the other hand,the width of the incompressible regionis
found todecreaselinearly with increasing temperature. As
result, the potential distribution shows strongly chang
shapes. A drastic change of the electrostatic potential du
the temperature is found around the boundaries of the ce
incompressible region, atx/d;60.3 in Fig. 6~a!. There, as
the temperature is varied fromkBT/E250.005 to 0.5, the
change of the potential distribution is an order of\vc at
x/d;60.3. In addition, a similar potential variation occu

FIG. 5. Forn(0)53.99,~a! the electron densitiesns(x) and~b!
electrostatic potentialsU(x) are compared atVR50 ~solid! and 0.2
~dotted!. We also show the incompressible regions in t
VR-coordinate space for the occupation numbersn(0)53.99 ~c!
and 4.035 ~d!. The parameters used area0 /d50.01,

kBT/E250.005, andn̄ /n050.458.
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over a relatively wide region of the Hall bar. Thus, we expe
that this potential variation with respect to the temperat
can be measured experimentally using the scanning pola
tion optical microscope.5,8

In Fig. 6~b!, we show evolutions of the incompressib
region in the temperature versus thex-coordinate diagram.
At very low temperatures, the width of the incompressib
regions is found to vary linearly with the temperature. Bas
on this fact, we use the results at finite temperatures to ob
the width of the central incompressible region atT50 in Fig.
4~b! by interpolating linearly. As the temperature increas
the central incompressible strip becomes smaller more
idly than those at edges and, eventually, spilts into two pa
This splitting of the incompressible region is caused by
thermal excitation of electrons. The temperature at which
first splitting occurs depends on the energy differenceD(x)
between the chemical potentialm and the lowest unoccupie
Landau level. Since, forVR50, the electrostatic potentia
has a minimum value atx50 in the central incompressibl
region,D(x) has the smallest value at that point and the fi
appearance of the splitting occurs there. The temperature
pendence of the local filling factornH in the incompressible
region follows from Eq.~12!;

nH~x!5k1
1

11exp@D~x!/kBT#
, ~17!

where k is the number of occupied Landau levels. Ev
though the energy differenceD(x) also depends on the tem
perature, our calculated result fits well to the above equa
with a constantD(x), especially at the point of the maximum
electron density (x50).

FIG. 6. ~a! The electrostatic potentialsU(x) in units ofE2 plot-
ted for temperatureskBT/\vc50.005, 0.01, 0.06, 0.1, and 0.5 wit

n(0)54.035, a0 /d50.01, n̄ /n050.458, andVR50.0. A thicker
solid line describes a higher temperature.~b! The incompressible
region in the temperature-coordinate space.
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For other sets of the parameters, we find behavior sim
to the above results, although the width and position of
compressible and incompressible regions are different f
case to case. For instance, as we decrease the ratioa0 /d
keeping the other parameters as in Fig. 6, the maxim
variation of the electrostatic potential with respect to t
temperature occurs at a smaller point thanx/d;0.3, as al-
ready expected in Fig. 4. However, we find that the cha
of the potential distribution is still of order\vc over the
temperature change ofkBT/E250.5.

IV. COMPRESSIBLE AND INCOMPRESSIBLE STRIPS
UNDER FINITE CURRENT

Now we consider the Hall bar under a finite current, i.
vÞ0 in Eq. ~12!. In this case, the drift motion of electron
under magnetic field gives rise to an electric fie
EW 5(2vB,0) which transfers electrons from one side of t
Hall bar to the other. Thus, one expects an asymme
charge density induced by the current even for the cas
VL5VR . For a small drift velocity, v50.2v0 (v0
51/4p\D0a0), the calculated potentialU(x) and electron
density ns(x) are depicted in Fig. 7 witha0 /d50.01,
n̄ /n050.458, andkBT/E250.005. At each occupation num
ber, we compare the results with the case of zero curr
The transfer of electrons leads to additional contributions
the potential distribution proportional to\vx/ l m

2 as shown in
the right column of Fig. 7. Thus, the resulting potential d

FIG. 7. For occupation numbersn(0)52.05 ~a!, 3.0 ~b!, and
4.05~c!, the calculated electron densities and potential distributi
are drawn when small drift velocityv50.2v0y ~solid! is imposed,
and compared with results forv50 ~dotted line!. Parameters used

are kBT/E250.005, a0 /d50.01, n̄ /n050.458, andVR50.0. The
dot-dashed lines~right column! represent the effective chemical po
tential m(x).
r
e
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m

e
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of
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tributions are drastically different from the case of zero c
rent indicated by dotted lines. With this modified electr
static potential, the electron densityns(x) is determined by
an effective chemical potentialm(x)5m1\vx/ l m

2 ~dot-
dashed line!, as shown in Eq.~12!. The calculated electron
density ~solid line! is found to be shifted by the applie
current, however, the overall shapes remain the same a
the case of zero current, as shown in the left column of F
7.

An important effect of the applied current is that an e
ergy difference between both edges develops, which is
rectly related to the Hall voltage. The Hall voltage is defin
as the potential difference between energies of an injec
and removed electron at each edge, respectively. We ex
ine the Hall voltage~Hall-resistance! as a function of mag-
netic field, by calculating the potential difference betwe
the two points where the effective chemical potentialm(x) is
equal to the electrostatic potentialU(x). The obtained Hall
resistance of our system does not show any plateau, b
linear behavior over the whole range of the magnetic fiel
Using the Hartree approximation, Pfannkuche and Hajdu
tained structured behavior of the magnetoresistance, h
ever, they also could not produce any quantized value.4

The induced potential by both current and magnetic fi
is found to show a strong position dependence. For sev
values of the magnetic field, the induced potentials are dra
in Fig. 8~a! with the same parameters as in Fig. 7. The cha
transfer over the Hall bar causes additional peaks in the
duced potential at aboutx/d;60.75. Comparing with the

s
FIG. 8. The induced potentials by both current and magn

field in units of E2 are shown in~a! across the Hall bar for
n(0)52.05 ~dashed!, 3.0 ~dotted!, and 4.05~solid! with the same
parameters as in Fig. 7. In~b!, the temperature dependence of t
induced potential atn(0)54.05 is shown for temperatures
kBT/E250.005 ~solid!, 0.06 ~dotted!, 0.1 ~dashed!, and 0.5
~dot-dashed!.
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electron density for zero current, the lack of charges at
left edge makes a dip atx;20.75 while a peak appears a
x;0.75 by excess charges. Around the center of the Hall
as well as near the edges, the potential distribution depe
strongly on the occupation number. When the chemical
tential is pinned at the Landau level around the cen
@n(0)53.0 and 5.0#, the potential distribution varies
smoothly across the Hall bar due to a wide compress
region. However, at the magnetic fields such asn(0)52.0
and 4.0, we find a nonlinear shape of the potential resul
from poor screening in the incompressible regions. V
similar behavior to this has been observed by Knottet al.8

who measured the voltage drop using a contactless me
based on the electro-optical effect. By varying the magn
field they observed that in a plateau region of the Hall vo
age @i.e., n(0) is about 2.0# the potential shows nonlinea
behavior across the Hall bar while in the transition region
potential drop was found to be distributed linearly. Howev
the measured potentials do not show any potential pe
caused by the incompressible strips as well as the s
peaks near the edges resulting from the charge transfer
think that the absence of the detailed structure in the indu
potential is due to low resolution in the experiment.

Under a given equilibrium current, the effect of the ma
netic field on the induced potential is found to becom
smaller as the temperature increases. In Fig. 8~b!, we show
the induced potential for various temperatures when the
cupation number corresponds ton(0)54.05. The reduced
screening of electrons with increasing temperature gives
to a smaller width of the incompressible region and, th
peaks in the induced potential become smaller. Eventua

FIG. 9. ~a! The current densitiesi (x) in units of i 05eE0/2p\d
plotted for the occupation numbersn(0)52.05 ~dotted!, 3.0
~dashed!, and 4.05~solid! with the same parameters as in Fig. 7.~b!
The symmetrized current density drawn for each of these occ
tion numbers.
e

ar
ds
-
r

le

g
y

od
ic
-

e
,
ks
all

e
d

-

c-

se
,
y,

the induced potential shows linear behavior at high tempe
ture (kBT/\vc50.5). Besides the linearly varying shape, t
induced potential shows very similar behavior to the case
zero current. The variation of the induced potential is still
the order of\vc around the center of the Hall bar as th
temperature is changed fromkBT/\vc50.005–0.5.

We also examine the current density which is defined

i ~x!5
l m
2

\

]U~x!

]x
n~x!, I 5E

2d

d

i ~x!dx, ~18!

for various temperatures and occupation numbers. Fig
9~a! shows, at very low temperature, the current densi
i (x) for the occupation numbers,n(0)52.05, 3.0, and 4.05
for a small drift velocity v50.2v0. The current densities
show a broad distribution modulated with large peaks wh
appear in the incompressible region. In the incompress
region, the quantity]U(x)/]x gives rise to a large value
~i.e., large diamagnetic current!, however, the net contribu
tion to the current vanishes due to the opposing signs
opposite edges. Thus, neglecting diamagnetic currents in
incompressible regions, we find that the current densities
broadly distributed over the region occupied by electrons
Fig. 9~b!, we show a symmetrized current densityi s(x)
5@ i (x2xc)1 i (xc2x)#/2, wherexc is the center of mass o
the electron distribution. The calculated result is rather si
lar to that obtained by Pfannkuche and Hajdu,4 however,
contradictory to the prediction of Chang13 that the current
can flow only along the incompressible strips.

For a positivev which means the current flows along th
positivey direction, the electron distribution is shifted to th
positive x direction due to the Lorentz force. An addition
shift of the electron density is possible by the gate poten
VR . Under a small applied current, we can obtain a nea
symmetric electron distribution (a5b) by adjusting the gate
voltage VR . From our numerical results, we find that th
electron densityns(x) with a5b is obtained when the ap
plied current and magnetic field are related to the gate v
ageVR through,

VR52g
p\vd

elm
2

52
pg

2
RHI , ~19!

whereRH5B/e n̄ and g is a numerical constant dependin
on a0 /d, n̄ /n0 and kBT/E0. For various sets ofn̄ /n0 and
a0 /d, we find that our results are well fitted by the abo
equation with g52d/pb at the temperaturekBT/\vc
50.005, leading tobVR /d52RHI , where 2b is the width of
the area occupied by electrons.

V. SUMMARY

In conclusion, we have investigated the local potent
electron, and current distributions of the idealized tw
dimensional Hall bar geometry within the Thomas-Fermi a
proximation. By solving a self-consistent problem, the fo
mation of compressible and incompressible regions
examined for various parameters; current (I ), magnetic field
(B), gate potential (VR), average electron density (n̄ ), bare
screening length (a0), and temperature (T). For zero current,
our results are compared with those of CMS. At very lo

a-
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temperature and small screening length, the analytic exp
sion of CMS is in good agreement with our results. F
larger screening length, however, we find that the widths
the central incompressible strips show smaller values t
those by CMS. Considering the effect of the gate volta
VRÞ0, a drastic change is found in the central incompre
ible regions, which reflects the variation of the electron d
tribution. With an increase of temperature, the slope of
potential in the compressible region is found to increase p
portional to temperature while the width of the incompre
ible region decreases. As a result, when the temperatu
varied largely, the potential variation around the center of
Hall bar is found to be of order of\vc and should be mea
surable experimentally. Using a generalized equilibrium d
sity operator, we describe a nondissipative equilibrium c
rent flowing along the Hall bar. Under a small nondissipat
current, we have shown the calculated electrostatic pote
and electron density as well as the current distribution. Si
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the applied current transfers electrons from one side of
Hall bar to the other due to the Lorentz force, the result
potential distribution is drastically different from the case
zero current. However, the shape of the electron distribu
is found to be nearly invariant while its center of mass
shifted. We find that the shift of the electron distribution c
be canceled by applying a suitable gate voltage. The cur
density shows a broad distribution modulated with lar
peaks which appear in the incompressible region. Neglec
diamagnetic currents, however, we find that the current d
sities are distributed over the whole region occupied by e
trons without any preferred region.
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