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Theoretical study of Landau-Zener tunneling at theM + N level crossing
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Two rules have been analytically obtained for the well-known problem of Landau-Zener tunneling at the
M+ N level crossing. Both rules are valid for the arbitrary crossing rate, level splitting vectors, and mixing
matrix. The first rule is given by a simple expression for an arbitrary diagonal element 8frtrarix. The
second rule is that th8 matrix has M —1)X(M—1) and N—1) X (N—1) triangles of zeros in it81 XM
and NXN submatrices, i.e., some interlevel transitions are strictly forbidden. Some other features of the
off-diagonal elements are also studied, using+a22level crossing as an example. Numerical and analytical
results of the 2-2 crossing show difference from a+12 level, and we conclude that thé+ N level crossing
cannot be expressed as a mere compositiontof level crossings except for the above two rules. Finally we
discuss the possibility of a single-electron operation using these rdSMs63-18207)00844-8

I. INTRODUCTION 2 2t

o
A=dia%Al+T, ...,AM+? as Ai<Aj for i<j,
Landau-Zener tunneling has been widely studied in the )
context of inelastic atomic collisions, and others. It is also

important for the field of solid-state physics and electronics,

2 2
commonly called “single electronics{for general reviews, B:d|a€{ B,— a_t' L. 'BN_a_t as Bi<Bj for i<j,
see Refs. 193 Single electronics is based on the tunnel h h
transfer of single electrons from one small conducting region ©)

(“island” ) to another under “Coulomb blockade” condi- asA;<A,, B;<B; for i<j. Here, thea is the crossing rate
tions when a single tunneling event leads to a considerablgarameter with the dimension of energy. The couplig
change in the voltage between the islands. When the electronM matrix T is in general arbitrary, because the overlap of
energy spectra of the islands are quasicontinuous, the singlése corresponding eigenfunctions may be a very intricate
electron transfer may be analyzed using the so-called “orfunction of their energies, especially in islands with complex
thodox” theory with simple master equations for the geometries. The general solution of the Landau-Zener prob-
tunneling? However, if the islands are formed in two- lem may be expressed in the form of &matrix relating
dimensional2D) electron gas in semiconductor heterostruc-(M +N)-long vectors of the initial and finite eigenstates of
tures, the discreteness of the electron energy levels may cof€ system.

siderably affect the tunnel transf&® Moreover, maturing Landad and Zenel® obtained simpleS-matrix elements
nanofabrication techniques make smaller and smaller island8r the 1+1 level crossing:

possible, so that the energy quantization effects become no-

ticeable even in 3D semiconductand metalli€ structures. 1S1?=|S,0%=p; and |S;1?°=|S,0%°=0q:, (4

This development makes a return to the old problem of

) . where p,=exp(—|T;4)% «?) andq,;=1—p,. Demkov and
:_natlgflea;l: Zener tunneling at thé + N level crossing of great oy, 11 generalized this solution to the+IN case. Their

. . . result may be expressed as follows:
Let us consider the basic process of single-electron tun-

neling between two conducting islandsandB, each with a

set of discrete energy levels for the conductivity electrons Sul®=p1---Pn. [Swneal®=P1- - Poo1b,

[Fig. 1(@]. An external electric field applied to this system

(created either by external signals or by similar single- 1Sh+112=AnPns1 - - - P

electron deviceés’) changes the mutual position of the level )
sets, while leaving each level set intact. Assuming that near ) ) )
the transition point the energy shift is linear in tim&E Sn+1n+1l*=Pny  [Sme1n+al*=0, and[Syimeal

=(2a%/h)t, we arrive at the well-known problem of =Qp P 1q
Landau-Zener transitiofs® between the sets dfl and N mEmEL s En N
levels, described by the Hamiltonian where m<n, p,=exp( T4 and gq,=1—p,. This
solution shows that regardless of the coupling strength and
interlevel spacing, th& matrix has the same form as if the
A Tt spacing is very large, i.e., the process may be considered asa
H:( ) 1) set of sequenpal Landau-Zener tunneling events between in-
T B dividual crossing levels.
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’ . XT'(Ug)T(Ug—1)eXd 0(Uy +Uy_1)]
. B
B, t

atu,,,1=|Uol|. At this point, we assume that the elements of
Saa are the analytic function of—2. To avoid logarithmic
divergence of the following calculation, we can formally
change the mixing matri{¥ to T exp(ou), where the small

_For theM+N level crossing withM>1 andN>1, the  j,hing factoro satisfies the conditions lim0Ue=0
picture becomes much more complex, because the energy 0

diagram[Fig. 1(b)] acquires closed loops. This means thatand limyg| (= In[o])/In|ug|<e. The variablesy in Eq. (8)
different paths of the system evolution may interfere destruccan be transformed to variablgsandy,, where
tively or constructively, depending on the difference of quan-

FIG. 1. M+N level crossing(a) Two conducting islands with
discrete energy levelgb) Diabatic energy diagram.

tum phase accumulation along the path§ This interfer- A K
ence results in the so-called ‘Skelberg oscillation$ of X 1=]U Xi=u I V.
some elements of th® matrix as functions of the interlevel k+l o AT =7V
spacing(see, e.g., numerical plots in Ref.)15

It may seem that these fast oscillations strip us of any Yi=Uy_1— Uy +ay,

hope of obtaining simple analytical results for the+N
level crossing problem wittM>1 andN>1. The goal of and

our work is to show that even under these conditions some

important components of th® matrix behave very simply 1
and in particular do not depend on the interlevel spacing. In
Sec. I, we will derive these simple expressions. In Sec. lll,
we will discuss numerical results for other matrix elements
in the case of 22 level crossing. A summary and discus-
sion will be given in Sec. IV.

q = Mnm ™ Tnm_; = — Z(Aml_Aml—l)'

By using the above variables, an element of the m&fikis
expressed as follows:

[SRA(UO) Im,m,
Il. ANALYSIS OF M+N LEVEL CROSSING
We start with using a simple unitary transformation to 1\ N M
remove diagonal elements frokh of Eq. (1): . 2
az nl‘...’nk ml""‘mk*l

k
~ (0 T = - x |1j[1 T:|m|T“|m|1exd_i(7]ﬁ|m|_nﬁ|m|1)])
H= F 0 v Tam= TomeXA —1(U"=2Un,m)], B

(6) y

where,u= at/f, 7,m=(B,—Am)/(2a). By using Eq.(6),
we can write Xexp —i

k
yi+ 77n|m|+ 77n|m|_1+2_ 2 yi) }

j=1+1

k

. o xex;{'c?lzl
=1+ > (ia)—kﬂf H(updu (7) )
k=1 i=1 J - +O(R™ 1), ©

( SAA SAB
Sea  Ses

,_ e B
atu,. =0, where theS matrix is expressed as a composite yvherey| =Y +io. (The lower bound-R<0 of the multiple

iofi iti i -1_
of four partial matrices[In this work, the product sign is |.ntegral byy, satisfies the conditions l'ml—”ﬁR =0, and
defined ad1f_,H(u)=H(uy) . ..H(u;).] In particular, the limjy | —=R/Ue=0) Eor a large|u|, we can ignore the ex-
M XM matrix Sya in Eq. (7) is given by ponential factor ofo in the end of the first term, and the
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second termrO(R™ 1) in the right-hand side of Eq9). By k
calculating the multi-integral of variables, Eq. (9) is re- X H T Tom exp[—i(nﬁ m nﬁ m )]
duced to =1 1 =L 1m 1m—1

K ay a; . 2
[ A,&(Uo)]mkm0 X fﬁRdYk' - JleyleX —i(yxt - +y1)

. B”k , B”l At
_q\k N M Yty | fe ) (10)
B 2i a? ng,--me=1mg,--m_q=1 and

2i si2luol(yi+---+y()] It exst2ilugl(yy, ot Y]]

k
f(yk1 e 1yl):E E

(11)
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whereLW=(L,, ... L;) for 1=L;<---<L;<k. Note that Eq(11) oscillates with high-frequency &tip|>1. The multiple
integral with this high frequency factor strongly depends on the upper bound paranetkethe integral, e.g., when all
parametersy <0, the multiple integral become(|ug| 1) at|ug|>1. In general, the multiple integral does not contribute to
the element ofS{)(— ), when even an integdr as I<h<j satisfies thaElLﬂtrll_lmsO andEIL:hti_1|a||¢0 asLj 1=k
+1 (see the Appendix

Whenm,=mg, only the terms withm,=m,_,=---=m; (i.e.. all upper bound parameteas=0) contribute to Eq(10),
and other terms ar®[|ug| ~*(iln[o|)*"2]—0 as|ug|— . The significant terms reduces the E8) asu,— — = to

k N I : ’
-1\ 14 (° 2 sin(y;|uo|)
[§Ak><—w>]momo=(—2 lim | T 1y 24 Tomg | 22 - [ Tumy | 2N l_—,( I1 f dy,—————
a ug— —oofljlly+---+In=k!;=0} j=1ljs\1=1 J-R Y
lj 2 B, lj
X —i +i|l =— /
ex i IZ Yi i Zagl Yi
1{—7\K
=H(2 S| U Tamgl 1 Tamg |24+ - + [ Ty D% (12)
Immediately, we obtain the diagonal elementsSgf,:
- N ElBys_ Diabatic limit *Ft(r’:;ls?:lliﬁ
(San)mm=€" 7Am, 7Am=_22 |Tnm|2- (13 : -
2a°n=1 . \ > exp(-2 Yai)
For Sgg, similarly, Bls R /?
v :x:'..' :l:.
- .
(Sgg)nn=6€" 78", 7Bn:_z |Tnm|2- (14 AM/ : \ = 1-exp(-2 Ya)
2a2m=1 / RN
Whenm,>m,, i.e.,Er:1a|<0, all terms in Eq(10) are A,% -
o~ . . t t
O(|ug| ~*(iln[a]) H)—0 as|ug|—=. We thus obtain a “for- A rabate M N
bidden transition” rule for the off-diagonal elements: t
(Saa)mmy =0, m>m’. (15 FIG. 2. Schematic presentation of the analytical results. If only
level A; is initially occupied, the transitions to upper levels of the
For Sgg, same group are completely forbidden. The diagonal probability can
be expressed as products of successitd level transitions. In the
(Sag)nr=0, n<n’ (16) diabatic limit (a®—), only level A is finally occupied, while, in
nn/ - y .

the adiabatic limit @>—0), only levelB; is finally occupied.
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(2) Eqgs.(13) and(14): the numerical error is less than 10 The
calculated probability of process, which is analytically
forbidden [see Eqgs.(15) and (16)] has been found to be

, extremely low(less than 10%9).

! Processes andvi in Fig. 3(@ are apparently similar to
those in the 3 2 level crossing problem, for which the prob-
abilities are given by Eq5):

v

Pi1*2=1—p, PI*P=p(1-p), p=exp—=T%a?).

08K (b) | K(c) P i (17
e However, the actual probabilities in ther2 crossing have a
0.6 i \ i substantial dependence on the level splitting, though they do

" 142 crossing | not oscillate—see Fig.(8). The difference between the 2
+2 and 1+2 crossings(dashed linesis largest at B,
r 7 —B,)/T—0. This result obviously shows that an ambiguous

Probability
=}
'

02 - 3 picture as “independent crossing” isot correct in general.
_/ \./iv \J 7 v This statement may be proven as follows. For Iarge splitting,
o M NA b1 IR S i.e.,, (B,—B,)/T>1, we can separate the crossings Byr
0 10 200 10 20 andB.. In this limit, the “independent crossing” is certainly

(Br-BOT (BrB/T correct, and the probabilities ofandvi converge with those
of Eq. (17). On the other hand, for small splitting we cannot

FIG. 3. Numerical results of the-22 crossing(a) Six different ~ N€glect the transitions betwe&) andB, even far from the
processes corresponding to 16 elements oftheatrix. (b) and(c) ~ Crossings, because a mixing betweenghevels through the
Nonvanishing probabiliies as functions of the normalized levelA levelsA, is large even ifa?t/#i>T. Note that the mixing
splitting (B,— B,)/T at a2/ T2=3 and A,—A,)/T=2. The dashed  €effects have the order &fT%/[ &*t(B,—B;)]. We can fortu-
lines in (c) show probabilities of transitions at the+2 crossing,  hately study the details in the vicinity &, =B, because the
topologically similar to processesanduvi. Hamiltonian in this case can be reduced to the21crossing

problem:
Equations(13)—(16) are our most important results. Equa-
tions (13) and (14) show that, exactly as in the4IN level 2F*, 0
case'! the diagonal probabilities can be expressed as prod- 1
ucts of successivet1 level transitions, and thus are inde- 0
pendent of level splitting#\; and B;. Equations(15) and _ 27, 0
(16) show that the transitions between energy levels of the UlHU, = - - 1z
same set are forbidd&hif they would go in the energy di- \/ET11 \/ET12
rection opposite to that of the energy evolution of the second 0
set(Fig. 2.

. (19

IIl. NUMERICAL AND ANALYTICAL RESULTS as
FOR 2+2 LEVEL CROSSING

Other S-matrix elements do depend on level splittings if
M>1 andN>1. We investigated their behavior numerically 1
for the simplest nontrivial 2 2 level case withT=T,: U. = E
m,n=1,2. In this case, 16 elements of tBematrix are re- 1
duced to only six different elements characterizing the pro- 1 1
cesses shown in Fig.(&. The Schrdinger equation was E _E
reduced to a system of difference equations by the midpoint
method, and they were numerically solvésimilarly to our ~ Accordingly, we can use the results of the-2 crossing,
former calculations of the lattice mod8l under an addi- namely, theS matrix for Eq.(18), given by
tional technical modification that the coupling parameter

p (1-p?e'™  py1-p’’ 0

il =

(19

slowly increasesdecreasesfor u<—1 (us>1).
Figures 3b) and 3c) show the transition probabilities as

functions of theB-site splitting B,—B4)/T ratio at fixed ql+2_ 0 p Vi-p%% 0
@?/T?=3 and @A,—A,)/T=2. Each of the processes de- “| JI=pPet pyi-_pZei®s p2 ol
noted as andii in Fig. 3(a) has two paths and thus shows

clear Stikelberg oscillations. The period of the oscillations 0 0 0 1

is very close to the area of the loop at the energy diagram (20

even for small level splitting. The probability of procdsis ~ where p=exp(—#T%a?), and 0; is phase factor. Further-
is in perfect agreement with the analytical results given bymore, theS matrix is transformed to
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p (1-pYe'™  c*pyl-p%’ s*pyl-pe’
0 p c* /1_p29i03 s* /1_p2ei03

U,Stt2ul= . . , 21
2 2| cy1-p2eifs cpyi—pZei?®s  |c[?p?+]|s]?  —cst(1-p?) @D
sy1-p%e'?% spJ1—p2eifs —c*s(1-p?  |s|?p?+]c|?
|
where mixing matrix, crossing rate, and level splitting, and have
1 0 found two exact results. First, diagonal elements of $he

s* matrix are independent of energy splitting, and can be ex-
U2=| 4 as [c|?+|s]?’=1. (22  pressed by successive application of the Landau-Zener for-
mula for each individual level crossing unexpectedly. Sec-
s —c* ond, some transitions, namely, the transitions within the

same site in the direction opposite to that of the crossing are
completely forbidden. Note that the other elements are not
mere compositions of the two-level crossing, as mentioned in
Sec. lll.

These analytical results provides an ideal relation between
an operation speed and an operation error of the simplified
0§ingle-electron device, and suggest a possibility about single-
electron operation. In quite low temperatures, we can con-
sider that the electron of the initial state localizes only at the
lowest level of the island\ if the single-electron system is
sufficiently relaxed before the operation. A diagonal element
of Eq. (13) for the lowest level can be applied to a survival
probability at the islandA after crossing the energy levels,
since transitions to the upper levels of the islahare for-

If U,=U,, the transformeds matrix of Eq.(21) expresses
the scattering just @,=B,. The transforme® matrix also
shows that the four matrix elements within the islahal-
ways break the rules given by Eq44) and (16), as is evi-
dent from the condition in Eq3). To estimate the probabili-
ties approachin®,=B,, we try to determine the parameter
[c|?, so that the other 12 elements keep the properties f
B,>B;. One of the properties is that the sum of two prob-
abilities, i.e.,P3;+ P3,, is equal to + p? when the subscript
corresponds to the elements of E21). Accordingly, we can
chose|c|?=1/(1+ p?), and obtain the probabilities for the
processes—vi in (B,—B;)/T—0 as follows:

p*(1—p?)
Pi(2+2)= , Pi(i2+2)=(1_p2)2! P(-2+2)=p2,

1+p? iii bidden by Eq(15). The single-electron device may have an
exponentially small error-rate derived from Ed.3) when
2+2) (2+2) 1—p? (2+2) p?(1-p?) the operation speed is slow, although we should rigorously
P, =0, P, Y= L=

Tio2’ vi 112 (23)  discuss the electron transfer within the finite swing on the
P P picture of the adiabatic potentia®.

These are consistent with the numerical results in the vicinity Accordingly this work brightens up the operation of the

of B,=B, (see Fig. 3 As (B,—B;)/T—0, we can analyti- single-electron devices, and may be also useful for the phys-

cally obtain a difference between the cases ef2and 1  ics of Rydberg atont$ and optical physic$? However, for
+ 2 crossings: tunneling in real single-electron systems and others, a cou-

pling to the environmentneglected in this workmay be

(1+2) p(1-p)? important, especially in the adiabatic linfit.
2

P(02+2)_P5)1+2):_(P£?+2)_Pvl ):—' (24)
1+p
where p=exp( #T?o?). This difference is independent of ACKNOWLEDGMENTS
the level splitting for the islandd, and so the difference
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IV. SUMMARY AND DISCUSSION APPENDIX: ESTIMATION OF MULTI-INTEGRAL

We have investigated generalized Landau-Zener tunnel- We estimate the multi-integral in E¢10), and focus on
ing at theM + N level crossing with arbitrary parameters for the following integral:

A a2 2 . exd —i(ys+- - +VYi) ol
f dYK"'J dyzf dy;exp{—i[(y1+ - Ty +Cry1t -+ Cyill— = , ,
R -R "7J-R (it Y (Yat - +Yiod)- oY1
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0 . exf —i (W + ay)|ug|] O 0
:f dwyex — i (Wg+cwy) ] - dwi_1--- | dwy
=) Wk+ oy Wy Wo

Xexq_ickfl(wkfl_*' oy-1)] o exd —icy(wyi+oq)]

! !
W11 0k-1 Wit o

+O(R™ 1Y), (A1)

where

k
y’=y+i0, Wi =Yx— g, Wj:yj_aj+Wj+1, Wj,:Wj+(i0)j, CjZE C|, o=

a.
=] I=1

The following integral can be estimated directly:

0  exg-—-ic(w+o)]

fdw =0(w) for o#0, (A2)

w w'+o
and

0 exp(—lcw o2 \]? (=) -
f dw——— ——= || t|5 $O(In|o|). (A3)
w w2+ 0? 2

Furthermore, we summarize two hyperfunctiomo{—wo) in the following table:

Integral/Hyperfunction W ()= cogy|ug)) )= sin(y|ug|)

W iy +io) V=TT
f‘y|y () W)y (y)dy — msign(@) £(0)+O(|ug| Y 7£(0)+O(lug| ™Y
s yol (V) W0, () dy £(0)O(In[o])+O(|ug| ™)

—f(O)+O(|u0| Y
TR2H(Y) ¥ g (y)dy O(|uol ™) O(|uol ™)

From Egs.(A2) and (A3), and results of the above hyperfunctions, we can estimate the multi-integré\Eqgfor ¢,<0.
FOI’ O'k:O, |0-k*1|+ LR +|0-l|¢0’

(Info])*~2
Eq.(A1)<O T —0 as |ug|—c.
0

For O'k<0, Og—1= """ :(71:0,
(In[o)**
Eq.(A1)<O T —0 as |U0|—>°°.
0
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