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Theoretical study of Landau-Zener tunneling at theM 1N level crossing
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Two rules have been analytically obtained for the well-known problem of Landau-Zener tunneling at the
M1N level crossing. Both rules are valid for the arbitrary crossing rate, level splitting vectors, and mixing
matrix. The first rule is given by a simple expression for an arbitrary diagonal element of theS matrix. The
second rule is that theS matrix has (M21)3(M21) and (N21)3(N21) triangles of zeros in itsM3M
and N3N submatrices, i.e., some interlevel transitions are strictly forbidden. Some other features of the
off-diagonal elements are also studied, using a 212 level crossing as an example. Numerical and analytical
results of the 212 crossing show difference from a 112 level, and we conclude that theM1N level crossing
cannot be expressed as a mere composition of 111 level crossings except for the above two rules. Finally we
discuss the possibility of a single-electron operation using these results.@S0163-1829~97!00844-8#
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I. INTRODUCTION

Landau-Zener tunneling has been widely studied in
context of inelastic atomic collisions, and others. It is a
important for the field of solid-state physics and electroni
commonly called ‘‘single electronics’’~for general reviews,
see Refs. 1–3!. Single electronics is based on the tunn
transfer of single electrons from one small conducting reg
~‘‘island’’ ! to another under ‘‘Coulomb blockade’’ cond
tions when a single tunneling event leads to a consider
change in the voltage between the islands. When the elec
energy spectra of the islands are quasicontinuous, the sin
electron transfer may be analyzed using the so-called ‘
thodox’’ theory with simple master equations for th
tunneling.2 However, if the islands are formed in two
dimensional~2D! electron gas in semiconductor heterostru
tures, the discreteness of the electron energy levels may
siderably affect the tunnel transfer.4–6 Moreover, maturing
nanofabrication techniques make smaller and smaller isla
possible, so that the energy quantization effects become
ticeable even in 3D semiconductor7 and metallic8 structures.
This development makes a return to the old problem
Landau-Zener tunneling at theM1N level crossing of grea
interest.

Let us consider the basic process of single-electron
neling between two conducting islandsA andB, each with a
set of discrete energy levels for the conductivity electro
@Fig. 1~a!#. An external electric field applied to this syste
~created either by external signals or by similar sing
electron devices1,2! changes the mutual position of the lev
sets, while leaving each level set intact. Assuming that n
the transition point the energy shift is linear in time,DE
5(2a2/\)t, we arrive at the well-known problem o
Landau-Zener transitions9,10 between the sets ofM and N
levels, described by the Hamiltonian

H5S A T†

T B D , ~1!
560163-1829/97/56~20!/13360~7!/$10.00
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A5diagFA11
a2t

\
, . . . ,AM1

a2t

\ G as Ai,Aj for i , j ,

~2!

B5diagFB12
a2t

\
, . . . ,BN2

a2t

\ G as Bi,Bj for i , j ,

~3!

asAi,Aj , Bi,Bj for i , j . Here, thea is the crossing rate
parameter with the dimension of energy. The couplingN
3M matrix T is in general arbitrary, because the overlap
the corresponding eigenfunctions may be a very intric
function of their energies, especially in islands with compl
geometries. The general solution of the Landau-Zener pr
lem may be expressed in the form of anS matrix relating
(M1N)-long vectors of the initial and finite eigenstates
the system.

Landau9 and Zener10 obtained simpleS-matrix elements
for the 111 level crossing:

uS11u25uS22u25p1 and uS11u25uS22u25q1 , ~4!

wherep15exp(2puT11u2/a2) and q1512p1. Demkov and
Osherov11 generalized this solution to the 11N case. Their
result may be expressed as follows:

uS11u25p1 . . . pN , uS1n11u25p1 . . . pn21qn ,

uSn111u25qnpn11 . . . pN ,
~5!

uSn11n11u25pn , uSm11 n11u250, and uSn11 m11u2

5qmpm11 . . . pn21qn ,

where m,n, pn5exp(2puTn1u2/a2) and qn512pn . This
solution shows that regardless of the coupling strength
interlevel spacing, theS matrix has the same form as if th
spacing is very large, i.e., the process may be considered
set of sequential Landau-Zener tunneling events between
dividual crossing levels.
13 360 © 1997 The American Physical Society
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For theM1N level crossing withM.1 andN.1, the
picture becomes much more complex, because the en
diagram@Fig. 1~b!# acquires closed loops. This means th
different paths of the system evolution may interfere destr
tively or constructively, depending on the difference of qua
tum phase accumulation along the paths.12,13 This interfer-
ence results in the so-called Stu¨ckelberg oscillations14 of
some elements of theS matrix as functions of the interleve
spacing~see, e.g., numerical plots in Ref. 15!.

It may seem that these fast oscillations strip us of a
hope of obtaining simple analytical results for theM1N
level crossing problem withM.1 andN.1. The goal of
our work is to show that even under these conditions so
important components of theS matrix behave very simply
and in particular do not depend on the interlevel spacing
Sec. II, we will derive these simple expressions. In Sec.
we will discuss numerical results for other matrix eleme
in the case of 212 level crossing. A summary and discu
sion will be given in Sec. IV.

II. ANALYSIS OF M 1N LEVEL CROSSING

We start with using a simple unitary transformation
remove diagonal elements fromH of Eq. ~1!:

H̃5S 0 T̃†

T̃ 0
D , T̃nm5Tnmexp@2 i ~u222uhnm!#,

~6!

where,u5at/\, hnm5(Bn2Am)/(2a). By using Eq.~6!,
we can write

S SAA SAB

SBA SBB
D 511 (

k51

`

~ ia!2k)
l 51

k E
2`

ul 11
H̃~ul !dul ~7!

at uk115`, where theS matrix is expressed as a compos
of four partial matrices.@In this work, the product sign is
defined as) l 51

k H̃(ul)[H̃(uk) . . . H̃(u1).# In particular, the
M3M matrix SAA in Eq. ~7! is given by

FIG. 1. M1N level crossing:~a! Two conducting islands with
discrete energy levels.~b! Diabatic energy diagram.
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SAA511 (
k51

`

SAA
~k!~2`!,

SAA
~k!~u0!5S 21

a2 D k

)
l 51

k E
u0

u2l 11
du2lE

u0

u2l
du2l 21

3T̃†~u2l !T̃~u2l 21!exp@ õ~u2l1u2l 21!#
~8!

at u2k115uu0u. At this point, we assume that the elements
SAA are the analytic function ofa22. To avoid logarithmic
divergence of the following calculation, we can formal
change the mixing matrixT to T exp(õu), where the small
damping factorõ satisfies the conditions limuu0u→` õu050

and limuu0u→`(2 lnuõu)/lnuu0u,`. The variablesul in Eq. ~8!

can be transformed to variablesxl andyl , where

xk115uu0u, xl5u2l1
Aml

a
2 (

j 5 l 11

k

yj ,

yl5u2l 212u2l1al ,

and

al5hnlml
2hnlml 21

52
1

2a
~Aml

2Aml 21
!.

By using the above variables, an element of the matrixSAA
(k) is

expressed as follows:

@SAA
~k!~u0!#mkm0

5S 21

a2 D k

(
n1 ,•••,nk

N

(
m1 ,•••,mk21

M

3S )
l 51

k

Tnlml
* Tnlml 21

exp@2 i ~hnlml

2 2hnlml 21

2 !# D
3S )

l 51

k E
2R

al
dylE

u0

xl 11
dxl D

3expH 2 i S (
j 51

k

yj D 2

1 i F (
j 51

k S Bnj

a
22xj D yj8G J

3expF õ(
l 51

k S yl1hnlml
1hnlml 21

12 (
j 5 l 11

k

yj D G
1O~R21!, ~9!

whereyl85yl1 i õ . ~The lower bound2R,0 of the multiple
integral byyl satisfies the conditions limuu0u→`R2150, and

limuu0u→`R/u050.! For a largeuu0u, we can ignore the ex-

ponential factor ofõ in the end of the first term, and th
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second termO(R21) in the right-hand side of Eq.~9!. By
calculating the multi-integral of variablesxl , Eq. ~9! is re-
duced to

@SAA
~k!~u0!#mkm0

5S 21

2ia2D k

(
n1 ,•••,nk51

N

(
m1 ,•••,mk2151

M

3S )
l 51

k

Tnlml
* Tnlml 21

exp@2 i ~hnlml

2 2hnlml 21

2 !# D
3E

2R

ak
dyk•••E

2R

a1
dy1expF2 i ~yk1•••1y1!2

1 i S Bnk

a
yk81•••1

Bn1

a
y18D G f ~yk , . . . ,y1! ~10!

and
l
to
f ~yk , . . . ,y1!5(
j 51

k

(
L ~ j !

2i sin@2uu0u~yk81•••1yL j
8 !#

~yk81•••1yL j
8 !•••~yL j 118 1yL j

8 !yL j
8

)
h51

j 21 exp@2i uu0u~yLh11218 1•••1yLh
8 !#

~yLh11218 1•••1yLh
8 !•••~yLh118 1yLh

8 !yLh
8

, ~11!

whereL ( j )5(L1 , . . . ,L j ) for 15L1,•••,L j<k. Note that Eq.~11! oscillates with high-frequency atuu0u@1. The multiple
integral with this high frequency factor strongly depends on the upper bound parameteral of the integral, e.g., when al
parametersal,0, the multiple integral becomesO(uu0u21) at uu0u@1. In general, the multiple integral does not contribute
the element ofSAA

(k)(2`), when even an integerh as 1<h< j satisfies that( l 5Lh

Lh1121al<0 and( l 5Lh

Lh1121ual uÞ0 asL j 115k

11 ~see the Appendix!.
Whenmk5m0, only the terms withmk5mk215•••5m1 ~i.e.. all upper bound parametersal50) contribute to Eq.~10!,

and other terms areO@ uu0u21( i lnuõu)k22#→0 asuu0u→`. The significant terms reduces the Eq.~9! asu0→2` to

@SAA
~k!~2`!#m0m0

5S 21

a2 D k

lim
u0→2`

(
$I j uI 11•••1I N5k,I j>0%

uT1m0
u2I 1uT2m0

u2I 2
•••uTNm0

u2I N)
j 51

N
1

I j !
S )

l 51

I j E
2R

0

dyl

2 sin~yl8uu0u!

yl8
D

3expF2 i S (
i 51

I j

yi D 2

1 i S Bj

2a(
i 51

I j

yi8D G
5

1

k! S 2p

2a2D k

~ uT1m0
u21uT2m0

u21•••1uTNm0
u2!k. ~12!
nly
e

can
Immediately, we obtain the diagonal elements ofSAA :

~SAA!mm5e2gAm, gAm5
p

2a2(n51

N

uTnmu2. ~13!

For SBB , similarly,

~SBB!nn5e2gBn, gBn5
p

2a2 (m51

M

uTnmu2. ~14!

Whenmk.m0, i.e., ( l 51
k al,0, all terms in Eq.~10! are

O(uu0u21( i lnuõu)k21)→0 asuu0u→`. We thus obtain a ‘‘for-
bidden transition’’ rule for the off-diagonal elements:

~SAA!mm850, m.m8. ~15!

For SBB ,

~SBB!nn850, n,n8. ~16!
FIG. 2. Schematic presentation of the analytical results. If o
level Ai is initially occupied, the transitions to upper levels of th
same group are completely forbidden. The diagonal probability
be expressed as products of successive 111 level transitions. In the
diabatic limit (a2→`), only levelAi is finally occupied, while, in
the adiabatic limit (a2→0), only levelBi is finally occupied.
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Equations~13!–~16! are our most important results. Equ
tions ~13! and ~14! show that, exactly as in the 11N level
case,11 the diagonal probabilities can be expressed as p
ucts of successive 111 level transitions, and thus are ind
pendent of level splittingsAj and Bj . Equations~15! and
~16! show that the transitions between energy levels of
same set are forbidden16 if they would go in the energy di-
rection opposite to that of the energy evolution of the sec
set ~Fig. 2!.

III. NUMERICAL AND ANALYTICAL RESULTS
FOR 212 LEVEL CROSSING

Other S-matrix elements do depend on level splittings
M.1 andN.1. We investigated their behavior numerical
for the simplest nontrivial 212 level case withT5Tnm :
m,n51,2. In this case, 16 elements of theS matrix are re-
duced to only six different elements characterizing the p
cesses shown in Fig. 3~a!. The Schro¨dinger equation was
reduced to a system of difference equations by the midp
method, and they were numerically solved~similarly to our
former calculations of the lattice model17! under an addi-
tional technical modification that the coupling parameterT
slowly increases~decreases! for u!21 (u@1).

Figures 3~b! and 3~c! show the transition probabilities a
functions of theB-site splitting (B22B1)/T ratio at fixed
a2/T253 and (A22A1)/T52. Each of the processes d
noted asi and i i in Fig. 3~a! has two paths and thus show
clear Stu¨ckelberg oscillations. The period of the oscillatio
is very close to the area of the loop at the energy diag
even for small level splitting. The probability of processi i i
is in perfect agreement with the analytical results given

FIG. 3. Numerical results of the 212 crossing.~a! Six different
processes corresponding to 16 elements of theS matrix. ~b! and~c!
Nonvanishing probabilities as functions of the normalized le
splitting (B22B1)/T at a2/T253 and (A22A1)/T52. The dashed
lines in ~c! show probabilities of transitions at the 112 crossing,
topologically similar to processesv andv i .
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e

d

-

nt

m

y

Eqs.~13! and~14!: the numerical error is less than 1027. The
calculated probability of processiv, which is analytically
forbidden @see Eqs.~15! and ~16!# has been found to be
extremely low~less than 10219).

Processesv andv i in Fig. 3~a! are apparently similar to
those in the 112 level crossing problem, for which the prob
abilities are given by Eq.~5!:

Pv
~112!512p, Pv i

~112!5p~12p!, p[exp~2pT2/a2!.
~17!

However, the actual probabilities in the 212 crossing have a
substantial dependence on the level splitting, though they
not oscillate—see Fig. 3~c!. The difference between the
12 and 112 crossings~dashed lines! is largest at (B2
2B1)/T→0. This result obviously shows that an ambiguo
picture as ‘‘independent crossing’’ isnot correct in general.
This statement may be proven as follows. For large splitti
i.e., (B22B1)/T@1, we can separate the crossings forB1
andB2. In this limit, the ‘‘independent crossing’’ is certainl
correct, and the probabilities ofv andv i converge with those
of Eq. ~17!. On the other hand, for small splitting we cann
neglect the transitions betweenB1 andB2 even far from the
crossings, because a mixing between theB levels through the
A levelsA2 is large even ifa2t/\@T. Note that the mixing
effects have the order of\T2/@a2t(B22B1)#. We can fortu-
nately study the details in the vicinity ofB25B1, because the
Hamiltonian in this case can be reduced to the 112 crossing
problem:

U1
†H̃U15S A2T̃ 11* 0

0

A2T̃ 12* 0

A2T̃11 A2T̃12

0

0 0

D , ~18!

as

U15S 1 0

1

A2

1

A2

0
1

A2
2

1

A2

D . ~19!

Accordingly, we can use the results of the 112 crossing,
namely, theS matrix for Eq.~18!, given by

S~112!5S p ~12p2!eiu1 pA12p2eiu2 0

0 p A12p2eiu3 0

A12p2eiu4 pA12p2eiu5 p2 0

0 0 0 1

D ,

~20!

where p5exp(2pT2/a2), and u j is phase factor. Further
more, theS matrix is transformed to

l
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U2S~112!U2
†5S p ~12p2!eiu1 c* pA12p2eiu2 s* pA12p2eiu2

0 p c* A12p2eiu3 s* A12p2eiu3

cA12p2eiu4 cpA12p2eiu5 ucu2p21usu2 2cs* ~12p2!

sA12p2eiu4 spA12p2eiu5 2c* s~12p2! usu2p21ucu2

D , ~21!
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U25S 1 0

c s*

0

s 2c*
D as ucu21usu251. ~22!

If U25U1, the transformedS matrix of Eq. ~21! expresses
the scattering just atB25B1. The transformedS matrix also
shows that the four matrix elements within the islandB al-
ways break the rules given by Eqs.~14! and ~16!, as is evi-
dent from the condition in Eq.~3!. To estimate the probabili
ties approachingB25B1, we try to determine the paramete
ucu2, so that the other 12 elements keep the properties
B2.B1. One of the properties is that the sum of two pro
abilities, i.e.,P311P32, is equal to 12p2 when the subscrip
corresponds to the elements of Eq.~21!. Accordingly, we can
choseucu251/(11p2), and obtain the probabilities for th
processesi –v i in (B22B1)/T→0 as follows:

Pi
~212!5

p4~12p2!

11p2
, Pii

~212!5~12p2!2, Piii
~212!5p2,

Piv
~212!50, Pv

~212!5
12p2

11p2
, Pv i

~212!5
p2~12p2!

11p2
. ~23!

These are consistent with the numerical results in the vici
of B25B1 ~see Fig. 3!. As (B22B1)/T→0, we can analyti-
cally obtain a difference between the cases of 212 and 1
12 crossings:

Pv
~212!2Pv

~112!52~Pv i
~212!2Pv i

~112!!5
p~12p!2

11p2
, ~24!

where p5exp(2pT2/a2). This difference is independent o
the level splitting for the islandA, and so the difference
always exists in the processesv and v i . Furthermore, the
numerical results in Fig. 3~b! clearly show that the mixing
betweenB levels also affects the amplitude of oscillations
the processesi and i i . Consequently, processesi i i and iv
expressed by Eqs.~13!–~16! are a unique exception when th
‘‘independent crossing’’ picture may be used.

IV. SUMMARY AND DISCUSSION

We have investigated generalized Landau-Zener tun
ing at theM1N level crossing with arbitrary parameters f
or
-

y

l-

mixing matrix, crossing rate, and level splitting, and ha
found two exact results. First, diagonal elements of theS
matrix are independent of energy splitting, and can be
pressed by successive application of the Landau-Zener
mula for each individual level crossing unexpectedly. S
ond, some transitions, namely, the transitions within
same site in the direction opposite to that of the crossing
completely forbidden. Note that the other elements are
mere compositions of the two-level crossing, as mentione
Sec. III.

These analytical results provides an ideal relation betw
an operation speed and an operation error of the simpli
single-electron device, and suggest a possibility about sin
electron operation. In quite low temperatures, we can c
sider that the electron of the initial state localizes only at
lowest level of the islandA if the single-electron system i
sufficiently relaxed before the operation. A diagonal elem
of Eq. ~13! for the lowest level can be applied to a surviv
probability at the islandA after crossing the energy levels
since transitions to the upper levels of the islandA are for-
bidden by Eq.~15!. The single-electron device may have a
exponentially small error-rate derived from Eq.~13! when
the operation speed is slow, although we should rigorou
discuss the electron transfer within the finite swing on
picture of the adiabatic potentials.16

Accordingly this work brightens up the operation of th
single-electron devices, and may be also useful for the ph
ics of Rydberg atoms12 and optical physics.18 However, for
tunneling in real single-electron systems and others, a c
pling to the environment~neglected in this work! may be
important, especially in the adiabatic limit.19
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APPENDIX: ESTIMATION OF MULTI-INTEGRAL

We estimate the multi-integral in Eq.~10!, and focus on
the following integral:
E
2R

ak
dyk•••E

2R

a2
dy2E

2R

a1
dy1exp$2 i @~y11•••1yk!

21C1y11•••1Ckyk#%
exp@2 i ~y11•••1yk!z0#

~y181•••1yk8!~y181•••1yk218 !•••y18
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5E
2R

0

dwkexp@2 i ~wk
21ckwk!#

exp@2 i ~wk1sk!uu0u#

wk81sk
E

wk

0

dwk21•••E
w2

0

dw1

3
exp@2 ick21~wk211sk21!#

wk218 1sk21

•••

exp@2 ic1~w11s1!#

w181s1

1O~R21!, ~A1!

where

y85y1 i õ , wk5yk2ak , wj5yj2aj1wj 11 , wj85wj1~ i õ ! j , cj5(
l 5 j

k

Cl , s j5(
l 51

j

al .

The following integral can be estimated directly:

E
w

0

dw
exp@2 ic~w1s!#

w81s
5O~w! for sÞ0, ~A2!

and

U E
w

0

dw
exp~2 icw!

w8
U<U E

w

0

dw
1

w8
U<F1

4F lnS õ2

w21 õ2D G 2

1S p

2 D 2J 1/2

<O~ lnu õ u!. ~A3!

Furthermore, we summarize two hyperfunctions (uu0u→`) in the following table:

Integral/Hyperfunction Cuu0u~y!5
cos~yuu0u!

i~y1iõ!
Cuu0u~y!5

sin~yuu0u!

y1iõ

*
2uy0u
uy0u f (y)C uu0u(y)dy 2psign(õ) f (0)1O(uu0u21) p f (0)1O(uu0u21)

*2uy0u
0 f (y)C uu0u(y)dy f (0)O(lnuõu)1O(uu0u21) p

2
f (0)1O(uu0u21)

* uy1u
uy2u f (y)C uu0u(y)dy O(uu0u21) O(uu0u21)

From Eqs.~A2! and ~A3!, and results of the above hyperfunctions, we can estimate the multi-integral Eq.~A1! for sk<0.
For sk50, usk21u1•••1us1uÞ0,

Eq. ~A1!<OS ~ lnu õ u!k22

uu0u D→0 as uu0u→`.

For sk,0, sk215•••5s150,

Eq. ~A1!<OS ~ lnu õ u!k21

uu0u D→0 as uu0u→`.
n
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