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Edge magnetoplasmons for very low temperatures and sharp density profiles
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A treatment of edge magnetoplasmdB&d1P), based on anicroscopicevaluation of the local contributions
to the current density, is presented. It is valid in the quantum Hall regime for filling faetdror 2 and low
temperatures when the dissipation is localized near the edge. The confining potential, flat in the interior of the
channel, is assumed smooth on the magnetic lerigtbcale, but sufficiently steep at the edges that the density
profile is sharp and the dissipation considered results only from eleicti@edge-intralevetransitions due to
scattering by piezoelectrical phonons. For wide channels there exist independent EMP modes spatially
metric or antisymmetriavith respect to the edge. Certain of these modes can propagate nearly undamped, even
when the dissipation is strong, and are thus termdge heliconsin contrast with well-known results for a
spatially homogeneous dissipation within the channel, we obtain that the damping of the fundamental EMP is
not quantized and varies a8 or T8, whereT is the temperature, in the high- and low-frequency limits,
respectively. The characteristic length of the resulting dispersion relation and of the charge density distortion
is /5. The screening of the metallic gates, when present, is taken into ac€80t63-18207)01744-X

I. INTRODUCTION is larger than the speed of sousdAs for dissipation in the
bulk, it is exponentially suppressed fér- 0. Given that and
In the past few years there has been considerable interetite fact that the dissipation, when deriving Efj, occurs in
in edge magnetoplasmofiEMP’s) as well as in other edge the bulk, we expect the properties of the EMP to be strongly
excitations of two-dimensiondPD) electron systems in the modified when the dissipation is localized near the edges.
presence of a magnetic fieBl1='? For a 2D system with a The above expectation is further supported by the results
vertical conductivity drop at the boundaries, it has beerof Ref. 11, which pertain to EMP’s for a smooth, unper-
showrt that the dissipation can determine the EMP disperturbed electron density profile which contrasts sharply with
sion relation and the spatial structure in an essential mannd¢hat of Ref. 1 where the density drops vertically at the edges.
even in the regime of the quantum Hall effé@HE). In this  In addition to the modes of Ref. 1, acoustic EMP’s were
work the properties of the EMP are expressed in terms of thebtained in Ref. 11. Further, our results, despite their partial
components of the magnetoconductivity tensor of an infinitesimilarity with those of Refs. 1 and 11, show significant
2D system. Moreover, due the very low frequeneyf the  differences from them even when the dissipation is very
EMP, the dispersion relation could be written in terms of theweak. For the very low temperatures that we consider here,
static magnetoconductivity tensor. kgT<fivy//, and the assumed smooth confining potential
The distance of the “center of gravity” of the EMP on the scale of’y (v4>s), the unperturbed electron density
charge from the edge, which coincides with the characteristiag(y), normalized to the bulk valuey, drops essentially, on
length over which the transverse to the edge electric figld the scale o, only near the edge. More explicitly, for the
of the EMP decreases, is given, féx,/,|<1, by* potential that is specified at the beginning of Sec. I, we
calculate ng(y)/ng={1+®[(Ye—Y)//0l}/2, wherey, is
2 the coordinate of the right edge, adu(y) the probability
In(W) +1 ' 1) integral. In Fig. 1 we show this calculated density profile
v (short-dashed curydgogether with those assumed in Refs. 1
Here oy, and oy are the conductivity components of an (solid curve and 11(long-dashed curyeThe profile of Ref.
infinite 2D systemk, is the EMP wave vector, and, de- 11 is obtained wittngy(y)/ny=(2/7)arctan/(y,.—y)/a and
notes a characteristic length determined by @4) of Ref.  a//,=20; it corresponds approximately to=2000 A. As
1. In the QHE regime for typically observe@&MP, Eq.(1) can be seen, the three density profiles are very different from
gives/ =<1 um. In Ref. 13 we showed theoretically, and in each other. As will be shown in this paper, combining our
agreement with experimental observations, that in the QHHElensity profile with the localization of the dissipation near
regime and for sufficiently smooth confinement the dissipathe edge leads to strong modifications of the EMP results.
tion is due to intralevel-intraedge transitions of electrons These modifications, as well as new EMP’s resulting from
scattered by piezoelectrical phonons and occurs mainly nedine microscopic treatment of the problem, are the subject of
the edges of channels. In the linear-response regime this this work. The description of the inhomogeneous current
the main dissipation for channels of widii<100 um and density in the quasistatic regime is carried out using the re-
temperature3 <1 K if the group velocity of edge states,, sults of Ref. 14. We consider the QHE regime, maimnly
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w.=|e|B/m* is the cyclotron frequency. Further, we will
approximatew = (w2+Q?)? by w,.

Because the EMP is practically quasistatic and its wave-
lengthA=1 cm is very large, we expect, in analogy with
well-known results that follow from Maxwell's equatiofs,
the associated electric field,(x,y,t) to have a smooth de-
pendence ony on the scale of/,=(A/m*w.)? i.e.,

E (X,y,t)=E,(y)exd —i(wt—kX)]. Physically is clear: the

050 —— _ dependence ofE,(x,y,t) ony, as expressed through Max-
well’'s equations, is related to that enwhich has a charac-
teristic scalex. Thus E,(y) should have the same scale

0.25 ~ and be definitely smooth on th€, scale. This is a general
h Nk result and applies to the case treated in Ref. 1. Then using
'\ the results of Ref. 14, we obtain the components of the cur-
00 T ' l rent density in the forms
-20.0 -15.0 -10.0 -5.0 0.0 5.0
y/ty Iy (V)= 0y () Ey(y) + oy (Y)EX(Y), @

C o _ 0
FIG. 1. Unperturbed electron density(y), normalized to the WY) = 0l YIBAY) = 0y YIBy(Y) Fogp(@,kyy). (3)

bulk valuen,, as a function ofy//, measured from the right edge Here we suppressed the exponential factof ex@vt—k,x)]
taken as the origin. The solid and long-dashed curves are obtainggbmmon to all terms in Eq¢2) and(3). It is understood that
from the models of Refs. 1 and 11, respectively, as explained in th& ,(y) depends o andk,. As follows from Refs. 13 and
text. The short-dashed curve is the profile of the present work. 14, a,(Yy) is strongly (exponentially localized at the edge,
within a distance</, from it, for ivy>kgT/. The last
=1 and partlyr=2, for samples with sufficiently large in- term on the right-hand side of E¢3), absent in Ref. 14,
plane dimensions, as is typical in EMP experiments, thatepresents a convection contribution to the current density
interedge electron transitions and the interedge Coulomb imalongx, associated with the wave, and is due to a distortion
teraction can be neglected. dp of the charge localized near the edge; we denote it by
In Sec. Il we start with expressions for the inhomoge-p(w,k,,y) in order to simplicify the notation as it occurs
neous current densities and conductivities, and derive thfrequently. Notice that in Ref. 14 the contributions to the
integral equation for EMP’s. In Sec. Il we derive the disper-components of the current density are microscopically ob-
sion relation for very low temperatures, and in Sec. IV wetained for the electric field components smooth on the scale
describe in detail the new edge waves. Finally, in Sec. V wef /,. This condition holds for the contributionsE,(y) in
compare our theory with the experiment and make concludEgs. (2) and(3), but is not well justified for those: Ey(y).
ing remarks. We assume that the latter can be reasonably approximated by
those obtained microscopically whéi(y) is smooth on the
scale of/y. The assumption is equivalent to neglecting pos-
sible nonlocal contributions to the current density
«fdy’ o,,(y,y')E,(y'). Then it follows thato},=—oy,.
For v=1 we hav

Il. BASIC RELATIONS
A. Inhomogeneous current density in quasistatic regime

We consider a two-dimensional electron ga®EG), of
width W, of lengthL,=L, and of thickness zero, in the pres-
ence of a strong magnetic fieRl parallel to thez axis. The
2DEG is confined along thg axis. For simplicity we take
the confining potential as parabolic at the edgés=0, for . . .
V<Y<Y, g/;lp: m*QZ(y—F;/r)le for y>yr>g,é)$z:nd v, Whereaz{o,kxa}, Yoa=""3Kxa» ¥n(y) is a harmonic oscil-
=m*Q?(y—y,)?%/2 for y<y,<0. Because in real EMP ex- lator:  function, —and f40="fo(Kxy) = 1M1+ exf (Euo.
perimentsW=0.1 cm. we can assumN—(y, —y;)]/W I—EFIO)/kBT]) |fs the rI:erm|-D|racfflr,|1nc:|t|onEFO |Is thg Fermi
<1. Moreover, we will assume thit,|Ws> 1, such that it is cve cciunted rom the bottom of the owesteectncosubband.
possible to consider an EMP along the right edge of thé:or 2T—O and near the /\nght edge we. have,,(y)
channel, of the formA(w,k, ,y)ex —i(wt—kx)], totally in- (€ /4_7Tﬁ){1+q)[(yf¢2_ )I7ol}, whereclb(x) is the Oprob—
dependent of the left edge. We consider only linear re2bility integral,y=/gkp, andfo(kie)=3z. That is, ay,(y)
sponses. For definiteness, we take the background dielectfté@r the edge decreases on the scal€pfand behaves as
constante to be spatially homogeneous. We considgr the densn_y of the short-dashed curve of Fig. 1..C.on5|der|ng
strong enough that only the=0 Landau levelLL) is occu- iny the right edge and the flat part of the confining poten-
pied. For thev=2 QHE regime we will neglect the spin 1@l for yi<Yo,<y: we haveE,,=fiw./2 and foryo,=y;
splitting. As for thev=1 QHE, we will assume that the spin W& obtain
splitting, caused by many-body effects, is strong enough to _ _ * ()2 2
ngglec? the contribﬁtion r)élatedywith the upper sgin-splitgLL. E.0=Eo(Kuo) = wc/2+m* Q%(yo,—y,)/2.  (5)

We assume a lateral confinement smooth on the scale of th&e consider only the interaction of electrons with phonons,
magnetic length’y= (A/m* w)'? such thatl<w., where  and neglect that with impurities, since the former is the most

e? (=
oY) = 5= J ~_dYouf a0 ¥ 5y~ Yoa), 4
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essential for the assumed conditidAdgSecause of the very

smooth dependence d,(y) on /,, we can assume that

ay(Y) can be approximated hy,(y), which follows from
Eq. (16) of Ref. 14 as

2 4

e/
)= FrTigT e, | Cal O folkxe = 80~ Tolkya) ]

X O[Eo(Kygy) — Eo(Kyo=0x) — ﬁwa]e%qimi)/glz

wsinh?| 2294 | g2ty v kg
2|(BT 0 y yO( Xa qx]

+ WY~ Yo(Kya) 1} (6)

For the low temperatures pertinent to the quantum Hall ef-/0 from the right edge ay, .=y, +Ay,.

fect, we consider only the standard acousti€) or piezo-

electrical (PA) phonons for whichw,=sq, wheres is the
speed of sound, andq—\/qxz+qy2+ q2. Then |Cql?
=(c'/LyLyL,)q"!, where +1 is for DA and —1 for PA
phonons respectlvely

B. Integral equation for EMP’s with dissipation at the edges

Using Egs.(2)—(4), and(6), we can write the continuity
equation, linearized idp(w,k,,y)=p(w,k,y), as

_i(w_kxvg)p(wakx:y)+ikx[0'xx(y)Ex(kax Y)
1%
_ng(y)Ey(waany)]+ W[Uyy(Y)Ey(kawy)

+ oy (V) Ex(w,ky,y)]=0. ()

In terms of the potentiakp(w,k,,y) the electric-field

components are E,(w,ky,y)=—iks¢(w,k,,y) and
Ey(w,Kky,y)=—(3/3y) d(w,ky,y). Then Eq.(7) gives
—i(w—kxvgm(w,kx,y>+k§axx<y>¢<w,kx,y>
ayy(y) o ¢(w Ke:Y)
. J 5
_IkX¢(w1kX1y)Wayx(y):0 (8)
Now using Poisson’s equation we obtain
2 * ! ! !
tokey)== [ dyKollklly=y Dok, v,
©)

whereKy(x) is the modified Bessel functiorp and p per-
tain to the 2D plane. From Eq$8) and (9) we obtain the
following integral equation fop(w,ky,y):
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. 2 2 . d 0
_l(w_kxvg)P(wrkx -Y)+ ; kxo'xx(y)_ |kxa/[0'yx(y)]

2

d d
- a'yy(y) ﬁ - a,[o'yy(y)]a/

% | ayKotlkdly-y hptokeyn=0. o)

The value ofay,(y) is significantly different from zero only
near the edges of the channel. The same holds for the values
of o, (y) and ofdagx(y)/dy; for ivy>/okgT this can be
seen from Eqgs(4) and (6) which show thatoy,(y) and

do?® yx(Y)/dy are exponentially localized within a distance
We haveAy,
=/?ke, wherek,=(w¢/%Q)2m* A¢ is the characteristic
wave vector associated with an edge statg;=E(,
—hwef2, andW=2y,,. Fork,,=k.=Yy,//3+k,, we have

fo(k) =3 and
1 9Eo(ki) _ 7%k, _ [ 2A¢ vz "
VAT m*w? | m* ¢ (1D

Equation(11) can also be written as,=E./B, whereE,
=0+2m* A¢/|e] is the electric field describing the influence
of the confining potential. For a dissipationless, 2D classical
electron liquid we have, for finitew, ayy(y) oY)
=ie no(y)w/m (0*—wg) and oy (y)=—e’ny(y)oc/

m* (w? wc) where ng is the electron density. Then Eq.
(10) becomes identical with Eq4) of Ref. 11. In addition, if
we assume that the conductivity components in @Q) are
independent ofy, for |y|<W/2, and o, (y)=0ou(y), EQ.
(10) takes the form of Eq(15) of Ref. 1 after integration
overz.

Equationg9) and(10) apply to a 2DEG in the absence of
metallic gates. Sometimes a metallic gate is placed on the top
of the sampl¥ at a distancel from the 2DEG. As shown in
the Appendix, for a gated sample the kerifg| in Egs.(9)
and (100 is replaced by Ry=Kq(|kily—y’'])

—Ko(lkd V(y—y")?+4d?). If this gate is replaced by air,
then K, is replaced by R,=Kqy(lkJly=Y'|)

+[(e=1)/(e+1)1Ko([ky V(y—Y’)2+4dZ)-

lll. EMP DISPERSION RELATION

We consider very low temperatures that satisfy the in-
equalityivg>/okgT. From Eqgs.(4) and(6) it follows that
dayx(y)/dy——(e2/2wﬁ)\lfo(y Yre); also, oy (y) and
oyw(y) behave aslfo(y Vo), and hence are strongly con-
centrated near the edge. It follows from ELO) that
p(w,ky,y) is also concentrated near the edge. Integrating
Eq. (10) overy, fromy,.— Ay to y,+ Ay with Ay~ /", we
obtain
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_(w_kxvg)

f_xdy p(w-kx -Y)

+S f_mdyr\lfé(y' — Vi Ko([kelly=y’]) [=0;
(12

here S=(2/e)(— ki oyt kyasy), av,=€?/2mh is the Hall
conductivity in the bulk as follows from Eq4), and'EM

=0W(y)/\lf§[y—yo(kre)], u=X andy. Using Eq.(6) for
vg>S We obtain

3e?/3c'K3T3
Oxx~ 0y~ e a1

13
27245 SS a3

Equation(13) coincides withjqW/E,, given by Eq.(32) of
Ref. 13a), for E,—0. Forv,<s the contribution too is

exponentially suppressed and has an activated beh&vior.

For vi>s? we have oy,=e?/ 3¢’ kgT?/\ 275y, if 1
>kgT/olhvg>sl\2vy, and Eq.(13) if 1>kgT/o/hvy
<s/\2vy.

Notice that the terms in Eq10) related too,(y) are
totally absent in Eq(12). Now, in Eqg. (12) we havel|y

13 255

w(v=2)_ In2
w(v=1)_2 1_2[In(1/|kx/0|)+3/4] ’

(16)

where/, corresponds te=1. Fork,/,~10"®, the second

term inside the curly brackets represents a 2% correction.
Equation (15) is valid for an ungated sample. If the

sample is gated, repeating the procedure leads again to Eq.

(15) with the factor[ ] replaced by[In(2d//|) +2/w]. If

the gate is replaced by air, this factor is replaced by

[In(1/&Zd/ o)) 1.

IV. EDGE WAVES AT VERY LOW TEMPERATURES

From Eg. (10) it follows that, even for T—0,
p(@,ky,y)=p (0, k) TF(y), wherey =y -y, is only an
approximate solution of this equation. A more accurate solu-
tion is obtained by the expansion

p(o,ky ,y>=\1f3<WnZO p™(w,k)Hn(Y/70)

=n§0 2" p™M(w, k)W (Y)Po(y), (17)

—y'|~/ and|k,| /o~ 10"®; then we can make the approxi- whereH(x) are the Hermite polynomials. Due to their or-

mation Ko(lklly—y'[)=In(2/ky/ol) = y=In(ly—=y'|//0),

thonormality Eq.(17) is the exact expression fal( w,k,,y).

wherey is the Euler constant. The value of the integral over'Notice that this expansion is specific to the case when only

y' in Eq. (12) is In(21ky /o) — y— (L) f* . dt e CIn|t

—(y—VY.0)! 7. For the gated sample and that with air above
z=d, 4d2>/§, the corresponding approximations in the

long-wavelength limit areRg~In(2d//0)—In(|y—y/|//0)
and, withe>1, R,~In(2k2d/ o) —2y—In(ly—y'|/ /), re-
spectively.

Now for T—0 we havea,,—0, oy,,—0, and Eq.(10)
shows thatp(w,k,,y) behaves essentially ak?,(y—y,e).

Then the value related to the integral overan be evaluated
and gives a small contribution compared to that of the term

In(1/|ky| /). The result is

| 1 N 3
n—; -
/ol 4

{—(w—kxvg)—FS

| ayptwkey=o
14

From Eqg.(14) it follows that the EMP dispersion relation,

with strong dissipation at the edges andKgim <#vy// g, is
given by[ w(k,)=w]

3

2 0 .o~
o=Kw,+ E[kx"'yx_ ik owxl

the lowest LL is occupied. In addition, the terms=0, n
=1, n=2, etc. correspond to the monopole, dipole, quadru-
pole, etc. expansions of{ w,k, ,y) relative toy=y,.

We now multiply Eq.(10) by H,(y//,) and integrate
overy fromy,.— Ay toy,.+ Ay. Taking into account that for
very low temperaturesfiv >/ okgT) day,(y)/dy, ayy(y),
and o,,(y) behave agP3(y), we obtain

—(0—kog)p™(w,k)+(S+mS)

2N 1/2
XI'IZO (me') amn(kx)P(n)(w:kx)zoa (18)

where
k) =ann(k) = [ dx W00 W)

Xf_wwdx' Ko([kul [x=x"]) Wn(x")Wo(x")
(19

and S'=—4io,,/e/§. Notice that form=0 Eq. (18) is

For »=2 the EMP dispersion relation will again be given by €quivalent to Eq(12) and, correspondingly, the terms related
Eq. (19, with the conductivity components multiplied by a to o, are absent. From Eq&l7)—(19) it follows that there

factor of 2. In addition, because, has the~1/B depen-
dence, cf. Eq(11), it will be multiplied, for v=2, by a factor

of 2 if the edge fieldE, is the same. As a result, fer=2 the

frequencyw will be approximately twice as large as for

exist independent wave modes, spatiallfymmetric
p3(w,ky,y), and antisymmetric p?(w,k,,y), with respect
to y=y,.. They are given by Eq$17) and(18) with n even
and odd, respectively. Notice that in Eq19) due to the

=1. More exactly, the value of the ratio of these frequenciesassumptiork,/y<1 we can writeKy(|x|) ~In(2/|x|) — y for

IS

the ungated sample. For the gated sample we simply replace
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the kernel K, in Eq. (19) by Rg=In(2d//)—In(|y
—y'|17), and for that with air byR,~In(2/k2d/ o) — 2y
—In(ly—=y /7).

A. Symmetric modes

Considering only the terrm=0 in the expression for
pS(w,ky,y), Eqg. (18) for m=0 gives

[~ (0—kewg)+Saplp'”(,k) =0, (20

where agg(ky)=—In(|k,|/ o) +3/4. With this value of
ago(ky) andp@(w,k,)#0, Eq.(20) gives the dispersion re-
lation (15). Because®(w,k, ,y) behaves spatially alifg(y)
in this approximation, we will refer to it as the dispersion
relation of the monopole EMP. For the sample with a gat
we simply have to replacay, by ad,=[In(2d// o)+ 2/m] in
Eq. (20) and for that with air bya3,=In(1/k2/od).
Corrections to Eq(20) and furthersymmetricbranches
are obtained by keeping only the terms=0 and 2 in the
expression fops(w,k,,y), which gives

p(,ke,y)=p(w,k)W3(y)

+242p 2 (@, k) Wo(y) Wo(y).
From Eq.(18) for m=0 we obtain

(21)

[~ (0—kewg) +Sanlp¥(w,ky) +212S 80 (w,k,) =0,

(22)
and, form=2,
[—(0— kxvg) +(S+ Zsr)azz-lp(Z)(wakx)
+[(S+25")/2y2]agp @ (w,ky) =0, (23)

where we writea,,,(k,) =a,,, in order to simplify the nota-
tion. For a nontrivial solution of the system of E¢22) and
(23) the 2x2 determinant of the coefficients must vanish.
This gives two branches?® (k,) and w® (k). For |k,
<1 a numerical evaluation gives,= —0.353,a,,=0.250,
and a3,=1/8. All a, values remain the same for gated
samples or those with air, excepty, which changes as
indicated above. If we neglect the coupling terms, by for-
mally settingays(k,) =0, Eqg.(22) gives the monopole EMP
dispersion relation(15) and Eq.(23) the pure quadrupole
EMP dispersion relation

o=Kwyt+(S+25')/4
~ o
Kuooy— iKZorgx— 4i = |
2

=kwgyt P

(24)

If we neglectk,v, and the dissipative terms, E@®4) takes
the form of Eq.(14) of Ref. 11 for thej =4 branch, which
has five charge oscillations. As it stands, E4) corre-

sponds to only three oscillations. The difference is to be~
ascribed to the very different density profile used in Ref. 11

VASILOPOULOS

0% =Kwg+ 5 [S(aget az) +25'ay)

+1\[S(agy— azp) — 25’ ay,]?+4S(S+2S')a’,.
(25

If we putag,=0, i.e., if we neglect the coupling between the
branches, then the® (k,) branch is given by Eq(24) and
the w® (k,) branch coincides with Eq15). It can be shown
that the terna3, under the square root sign is much smaller
than the other term. Then from E®5) we obtain

S(S+2S')a3,
Say—(S+25)a,,

o5 =Kk g+ Saygt (26)

@nd

S(S+25')a3,
Saoo_ (S+ Zsl)azzl

wi=kxvg+(5+ 28,)a22_ (27)

Further, for very low temperatures we can distinguish be-
tween(i) strong dissipation, for whick,ay,<4ay,//5; and
(i) weak dissipation, for whictk,o9,>4a,,//5. Notice
that the damping of the purely quadrupole EMP—EQ.
(24—is such that in casdi) we have |Imw|>|Rew|,
whereas in cas@i) the opposite inequality holds. The damp-
ing of Eq. (24) is determined by the dissipative conductivi-
ties oyy(y) and o,(y). The two contributions differ by a
very small factorkZ/2. As a result, the damping of the

wave, ka;f'z;xx, can be usually neglected. Notice that Egs.
(22)—(27) are valid for gated or “air” samples as well, with
ago replaced byag, or a,.

For definiteness in numerical estimates, we will use pa-
rameters pertinent to GaAs/As@a, _,As heterostructures.
As will be shown below, both casdp and (ii) are experi-
mentally realized depending on the valuesygfand T. For
vg=s the damping in Eq(24) is exponentially suppressed.
The conditionv4<s requires a smooth energy dispersion
near the edges. This possibility exists in the Hartree approxi-
mation for the confining potential but not in the Hartree-Fock
approximation, where the exchange leads to a logarithmi-
cally divergent® vgy. However, when correlations are taken
into account, a smooth energy dispersion results near the
edges and is smalll® In GaAs-based heterostructures, the
most common case igg>s=2.5X 10° cm/s. In this case
using Eq.(13) for v=1, ¢’ =A(ehyy)?/2pys,hy,=1.2x 10
V/cm, andpy=5.31 gm/cnt, we obtain

g ~
—2-=0.16T°
,/QO'yX

B ¥, ", (28)
where T=T/1 K, B=B/(10 T), and v,=v4/s. Equation
(28) is valid for v=2 as well, because of the scaled quanti-
ties. For T=1, B=1, and vy=2, Eq. (28 gives

Tyl 0090yl 0o9=10"2. The estimated field E,

for a compressible liquid in a very wide strip. Notice that Eq.leads, forB=1, tovg~4x10°cm/s >s. Further, if we as-

(24) is valid for samples with gate or air as well.
For finite ay, the two branches resulting from Eq22)
and(23) are given by

sume thatEyy//O gives approximately the value of the di-
agonal conductivity in the edge strip of widti,~80 A,
then, because for strong magnetic fieldso f*>1)
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ayyl/ 0o~ llw,m =102, we obtain an effective scatter-
ing rate 1#* ~wc'5yy//ocrsx~2.6>< 10%Ys in this strip. This

is approximately ten times larger than the scattering rate for

a mobility u=10° cm?/V s.
From Eqg.(24) we obtain

Rew| o3k

Imol 45,17,

~1.5T *B 3%k o, (29
where we assumed again that the tergk, can be neglected.
Then, forT=1B=1, andv,=2, the right-hand side of Eq.
(29 is approximately equal to 2&|/,. Only for 1
>|k,|/o>4%10"? does the quadrupole EMP become
weakly dissipative. FoB=1, lower temperaturél =0.1,
and steeper confinement?)'g=4, Eq. (29 gives
|Rew|/[Imw|~5x10°|k,|/,. In this case the quadrupole
wave is very weakly damped for 1.23.0° cm !>k, />2.5
cm~ L In this region the implicit low-frequency condition
|o|<w, is well satisfied, since it corresponds [to|<1.6
x 10" em™ 1.

B. Edge helicons

We now analyze further the general formulas of Sec
IVA. We first assume thatry,|k/K>oy,//5. Then Eq.
(27) gives

ZK) ' (30

where K =ago— 1/4=In(1/k,| /o) + 1/2; for gated or “air”
samplesay in K is replaced byad, and a,, respectively.
Because In(1k,|/p)>1, we see that the coupling with the

1
w® =kt (S+ 28’)( 1-
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For oy, |k K>y, /75, Eq.(26) gives

S
wi=kxvg+S(K+1/4) +R' (32

It ek 174

As can be seen, taking into account the coupling with the
quadrupole EMP changes the phase velocity of the monopole
EMP by a very small amount<0.1%) but it makes an
important new contribution to the damping in comparison
with Eqg. (15). Now the 5 branch, for the typical EMP
condition k| /o~ 10"®, has a damping o, // 3K which is
much stronger than that'z;xxk)z(K of the pure monopole
EMP.

The wave described by E¢32) can be called a quasimo-
nopole EMP because it follows from E@R2) that

p'9(w,ky) B 16\/§a020§’XkXK
pP(w,k) oo ke—diayyl/F

and, due toK>1, we have|p®@(w,k)/p@(w,k)|>1.
Now, for weak dissipation ¢3k.>40y,//5) we have
pO(w,k,)/p®(w,k)~—8K and for strong dissipation
(og kK> Ty 1 /55 00 Kyld) pO(w,k,) pP(w,ky)
~ —2i(0).k §/o,y)K. Thus, if the phases of the two com-
ponents are shifted by in the first case, in which we call
the »%. branch described by E¢32) a modified monopole
EMP (MMEMP), they are shifted byr/2 in the last one. This
last case corresponds to the frequency regiod ™
>vrolm>[wS /(4K +1)], and the frequency’. can still
be considered as high compared te*1/In this frequency
region we call thew®. branch the high-frequenagdge heli-
con (HFEH) and denote it byo,. In this region, due to the
almostr/2 shift betweerp(® andp®, we obtain the follow-

(33

monopole EMP does not change the dispersion almost at alg remarkable property of HFEH described by E8Q). If

as compared with that given by ER4). As a result the
quasiquadrupole EMP, described by EH®O), is weakly
damped for o),|k,|>40,,//% and strongly damped for
4oyl /5> a9 |k|>0yy//FK. We call the wave described
by Eq. (30) a quasiquadrupole EMP because it follows from
Eq. (23) that

pP(w,k)

—_—= —2\/§a02K=K>1;
p(o)(a),kx)

(31)

the HFEH charge<Re{pS(wih Ky, Y) R4 (X,1)} alongy has

a pure quadrupole charactefp(®)| for some phase of the
running waveR  (x,t) =exd —i(wft—k,x)], then after ap-
proximately a* #/2 shift it acquires a pure monopole char-
acter «<|p]: pS(wl . ky,y) is given by Eq.(21). This
HFEH showsthree charge oscillations along whereas the
relevant branches of Refs. 1 and 11 with
Rewxk,In(1/k,) resembling RegF, of the HFEH, show only
oneoscillation.

Notice that Re® , given by Eq.(32) is independent oT

that is, p@(w,k,) is the dominant term on the right-hand Whereas Im)iocﬁ or T2 if 1>kB_T/0/ﬁvg>S/\/§Ug; That
side of Eq.(21). The same holds for the “air” sample. How- 1S; in contrast with Ref. 1, we find that _the damping of the
ever, for the gated sample the monopole and quadrupo®MEMP and that of the HFEH scale with temperature and
terms are comparable K,=<3. The condition of very weak are not quantized in thg _QHE platea-\us.. In .addltlon, these
damping for the wavé30) can also be expressed a§ waves have a characteristic length Whl((:)h is d_|fferent than
>uro/ar, where ro=e?ehw./y For v=1 we typically the length/, of Ref. 1; also, the tgrmc ayx IS dn‘fe_rent than
have ro~1. This condition resembles the high-frequencyth"?‘t of Ref. 1 in the factor containing the logarithm. In ad-
limit used in Ref. 1. However, here* is related to dissipa- dition, Zo(v=2)//o(v=1)= V2 here whereas /(v

tion processes only near the edge. In addition, in contrast 2)//,(v=1)=4 in the high-frequency limit of Ref. 1.
with Ref. 1, we consider an essential decrease of the condudloreover, fore—x it follows that /,(v=1)—0 whereas
tivity components and of the electron density over a finite” o iS independent ok. S

length A, from the edge. For very low temperaturdg,T We now consider the case of very strong dissipation,
<hvgl/ o, we haveA~ /", which is much smaller than the
length over which the densityy(y) decreases substantially
in the model of Ref. 11.

175> 0} [k K. (34)

Oyy
Then Eq.(27) gives
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1 ~
0l =kwg+ - [Boyk—4ioy, /). (35 10

This is again a quasiquadrupole wave, since . \

1p®(w,k)/pO(w, k)|~ Tyl a0,lke/5>1. Also, although os A .
Rew® /k, is essentially larger than in E¢B0), Eq. (34) gives ' - \,’ N\~
an aperiodic damping|Rew® |<|Imw?® |. Further, assuming 7 YA
that Eq.(34) is valid, we obtain from Eq(26) the dispersion 7o) TEENEN
relation of a wave that we call a low-frequenegige helicon §p oo _ G e
(LFEH), ! /

LF _ _1y_ _ -1
wgp=Kev g+ S(K— 7) p ;yy//(z)(K ). (36 05 \ !

Despite the strong dissipation conditi¢d4), which entails /
wEh ™ <vro/m=1, the LFEH is very weakly damped since Vi,
|Rewgh|>|Imwg|. The frequency range of the LFEH is 10 | |
similar to the low-frequency limit of Ref. 1, but heré is 30 15 00 18 30
related to strong dissipation processes only near the edge v/t

Also, Rengh/k, differs little from Reawii/k, or that of Eq.

(15. However, the damping of the LFEH
x(a0ke 0)2IN(1K,/ )/ Ty, has a very different form than

F bl
Imwey, of Eq. (32)_0r Imw c_)f Eq. (15). of y// (solid curve. The dotted curve representg(y)/ny. The

V\{E further notice that, in contrast to Ref. 1, the real paryasheqd and long-dashed curves are the pure monopole and quadru-
Rewgy is independent of temperature whereas the Im"’u:“lm""r}ﬂole contributions, respectively. The oscillatory behaviopgfi(y)

LF . . . . .
part Imwgy, i.e., the damping, is not quantized and varies asear the edge is in sharp contrast with the “usual” EMP of Refs. 1

T2 or T"% the T2 behavior occurs ifv;>s® and 1 and 11.

>kBT/0/ﬁvg>s/\/§ug. That is, the LFEH has a character-

istic length very different thaw, in the low-frequency limit.  the numerically obtained value ofa;; is 0.5. For

It follows from Eq. (22) that pM(w, k) #0 Eq. (39 gives the dispersion relation of the
pure dipole EMP as

FIG. 2. Dimensionless charge density profilg.(y) of the low-
frequency edge helicofi. FEH) described by Eq(38) as a function

(0)( tF k)
’3@(%%_4@%2: 2, (37) -,
P (wen k) =K g+ (Le)[Keag,—2iayy /5], (40)

With this result. and Eq(?l), we obtain the dlme23|onless It we neglectk,v, and the dissipative term, Eq40) wil
charge _density pr(()ggle OF the LFEH, pen(y)  take the form of Eq(14) of Ref. 11 forj =2, which shows
=1/ op™ (@ k Y) PO wEp Ky, as three charge oscillations, whereas F40) corresponds to
o L only two oscillations. However, in contrast to Ref. 11, be-
Pen(Y)=Va o[ Wi(y)+\2W,(y)Wo(y)]. (38  sides the ternk,v, and the microscopically treated dissipa-
tive term, the Hall conductivityfgX is quantized fov=1 or
2.

In Fig. 2 we showp solid curve, its monopole
g pen(y) ( 0 b Corrections to Eq94:39) and(40), and further antisymmet-

t W2, short-dashed dit dru- . ;
componentterm = short-dashed curygand its quadru ric branches, are obtained by keeping only thel andn

pole componenfterm<¥ ¥, long-dashed curyeFor con- '~ ; : S
trast, the dotted curve represents the normalized unperturbe_d3 terms in the expression f@"Y(w,ky,y). Then

electron densityng(y)/ng. As can be seen the monopole and
qguadrupole contributions are of the same order of magnitude, 02w,k ,y) = \/Ep(l)(w,kx)‘l’l(y)‘lfo( )

and the resultan'ﬁEH(y) has an oscillatory behavior with

two oscillations, one to the right and one to the left of the +43p¥(w, k) W4a(y)¥o(y). (42)
edge aty=y,.. This is in sharp contrast with the “usual”
EMPs of Ref. 1, and th¢=0 mode of Ref. 11. From Egs.(18) and(19), for m=1, we obtain

C. Antisymmetric modes [—(w—kyg) +(S+ S’)alﬂp(l)(w,kx)
Considering only the terrm=1 in the expression for
p®(w,ky,y), and using Eq(18) for m=1, we obtain +2\6(S+S" a1 (w,k) =0, (42

[~ (0—kwg)+(S+S)anlpP(w,k)=0; (39  and, form=3,
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[—(0—kewg)+(S+ 35" )ags)p®(w,ky) sion relation for the pure dipole EMP, E@0), and Eq.(43)
& o that for the octupole EMP,
+(1/2\/6)(S+3S" ) a3 (w,k)=0. (43 - ,
! x 0=k gt (1/3€)[ koD~ 6i Ty /2], (44)

_ o ) _ If we neglectk,vy and the dissipative term, E¢44) takes
Again the vanishing of the 2 determinant of the coeffi- he form of Eq.(14) of Ref. 11 for thej=6 branch that
cients gives the two branches® and . In the long-  shows seven charge oscillations. As it stands, &d) cor-
wavelength limit we numerically evaluatg;=—0.204 and  responds only to four charge oscillations.
as;3=0.166=3. If we neglect the coupling between the  For finite a;5 the two branches resulting from Eqg2)
modes, by formally setting,3=0, Eq.(42) gives the disper- and(43) are given by

0PT=kwgt [S(ait+agy) +S (ay+3az) ]+ 3 V[S(aj1—agy) + S’ (a11— 3agy) |°+4aiy(S+S')(S+3S'). (45

If we seta;3=0, 0% and w® give the dipole and octupole p®(w,k,)

branches given above by Eqgl0) and (44), respectively. SOYIRE " =2.109/2\/5~ 1/\/5; (50
For weak dissipation we havgay,>4ay,//5, and, if we p(@ke

neglect damping, we obtain the corresponding result f&Mo(y)Ezis(y) is

as._ 0 _ _ _ _ _
kgt (B5e) oy (49 DoY) = 27/ o[ (Y T oY)+ 20 5(Y )T o(Y)].

and (52

In Fig. 4 we plot the same quantities as in Fig. 3 but now for

pmo(Y). As can be seen, the spatial behaviorpgfo(y) is
We call the waves corresponding to E@6) and(47) modi-  quantitatively different only than that of the pure octupole
fied dipole (MDEMP) and octupoleMOEMP) EMP’s, re- EMP. The phase velocities of these two EMP’s, as follow
spectively. As we now show, some of their properties ardrom the dispersion relations, are substantially different. No-
essentially different than those of the pure dipde|. (40] tice that for strong dissipatiork,ob,<4a,,//3, both %

and octupoldEq. (44)] EMP’s. branches are strongly damped.
Then from Eq.(42) for the MDEMP, we calculate

w*~Ky g+ (1/7€) o) Ky . (47

(1)

P (w,ky) 15
——=20y6a,3=—10.0. (48)

P (w,ky)

With this ratio and Eq.(41) the dimensionless charge-
density  profile  p¥¥ (0% ky,y)= V7 0p™ (0 ky,y)/ Ny
pM (% ky,y) of the MDEMP takes the form 1./, \

Pup(Y)=pF(Y)=V2m/ o[ W1(y)Wo(y) R o /

—3Wa(y)Vo(y)l. (49) 2

In Fig. 3 we showpp(y) (solid curve, its dipole compo- . )
nent[term «W¥,(y)¥,(y), short-dashed curjeand its oc- L
tupole componerftermec W 5(y) W o(y) long-dashed cunje

Again the dotted curve represents the normalized unpei
turbed electron densityy(y)/ng. As can be seen, the dipole s | |

and octupole contributions typ(y) are of the same order 30 15 0.0 15 3.0

of magnitude, thouglw?*= wyp , given by Eq.(46), is a bit

different (<20%) than Re of the pure dipole EMP given y/to

by Eq. (40). As seen in Fig. 3, the MDEMP has four charge

oscillations, whereas the dipole EMP has two. Thus, the cor- FIG. 3. Dimensionless charge-density profig,o(y) of the

responding density profiles are qualitatively different al-MDEMP described by Eq49) as a function ofy//, (solid curve.

though the phase velocities are close to each other. The dashed and long-dashed curves are the pure dipole and octu-
For the MOEMP, given by Eq(47), we calculate, from pole contributions, respectively. The dotted curve represents

Eq. (43), No(Y)/No.
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10—

dp 00

sible because the conditionk,/W=>1 is not satisfied
(|kx|W~1)-

The sample of Ref. 8 is a circular mesa with diaméer
=540 um and height~1 um, in the middle of a wide
GaAs/ALGa _,As chip with thicknessdg=500 um. The
condition 3k,|d;>1 is well satisfied even fok,,=2/D
=37 cm™ ; the minimum value ok, , Kymin, involved in the
experiment satisfie&,,i=Kk,o. As a result, the conditions
2Kyminds>1 andk,minW=1 are well satisfied as well. Be-
cause the square “pulser” gate, of width,=10 um, was

much smaller than the circumferened, the initial charge
distribution can be assumed to have a rectangular form, and
o therefore to have an essential contribution from kyg=

- Voo +nk,, n=1,2,..., modes distributed in the intervél

v/ <|kyn|<7/L,. It is natural to assume that the typidal

e =|kynd = /2L ; for a rectangular form of the charge distor-
tion alongx, we have approximately a 50% contribution to
the total spectral density fdk,,/<Kk,;. The model of the
“air” sample, described briefly in the Appendix, fits per-
y/lo fectly to the experimerit.The distancel at which the 2DEG

is situated beneath the surface is not given but from the mesa
height it can be estimated to ke=~1000 A. This gives

Ka(ky)~10.5 forB=5.1 T. Further, assuminagzz, ie.,
vg=5%10° cm/s, usingB=0.51, T=0.3, andv=1, in the
middle of a wide chip, obtained from the parameters of the

We have introduced a realistic model for the Conﬁningexperiment and using EG28), we obtain'&yy//oao ~75
) ) 4 yx .

potential V.(y), and treated mainly the case where 1 in 4 _ 2.
the interior part of the channel and the formation of dipolar% 107 It follows that K/ oKq(Ke) ~1.6X10 %> ayy/

strips® near the edges is impossible in the assumed QHI‘:S[O‘TSX which corresponds to the first condition treated in
regime. We have take¥ (y) sufficiently steep at the edge ec. IVB. -
that LL flattening can be neglecté®:?’ As for v=2, we Notice that here ky/o~1.5x10 <40, //40p,~3
neglected the spin splitting. This is a reasonable approximax 10>, i.e., we are dealing with the case of strong dissipa-
tion in the bulk of the channel but its validity near the edgestion as detailed after E¢27). It follows that all modes, apart
is not clear in view of the work of Refs. 16 and 21. Thoughfrom the HFEH, are strongly damped. For instance, both the
we have used a simple form faf(y), near the edge, the pure dipole[Eq.(40)] and quasiquadrupo[&g. (30)] modes
results remain valid for potential,(y) of different form  have Imu~3.4x10'%s which is a very large value com-
that are smooth on the scale Sf. In such a case, e.g., the pared to the damping rate of the experimentshn2 x 10°/s
last term on the right-hand side of E&) should be replaced for »=1. Moreover, during the observed period for the travel
by Ve(Yoa), andv 4 will be given again by Eq(11), with ke a_round the edg@e%3.5><.10*9 sec the ampIitude_of the qua-
determined byf o(k,o) = 2. Thusu, is the only parameter re- siquadrupole EMP or dipole EMP should practically vanish
lated to the form ofV/, that influences these edge waves. due to the exponentially small facterexp(—100). We are
For a comparison of the theory with the experiment, theleft with the high-frequency edge helicons described by Egs.
details of the sample geometry are necessary, but often thé$2 and (33). Equation (32) gives a decay rate lafy,
are not given. For instance, the thicknelgof the sample is  ~1.9x10°s which is in good agreement with the
not given in Ref. 6; it is also not given neither in Ref. 22, observation§. The corresponding group velocity for the
where the bottom of the sample is metallized, nor in Ref. 9HFEH, obtained from Eq. (32, is wvgy(ky)
Now concerning Ref. 5 it can be seen thiat=400 um for  ~(2/e)oy,[IN(1kE/0d)—2], and gives a period T
the sample with perimetedP=1.7 cm, and the observations = wD/v y(ky)~3.4X 10" %/s which is in excellent agreement
were made af=0.4 K andB=13 T (v=1). As we now with the experimental value. Because after the first trip the
show, the first three edge helicon modeg=2n/P, k,;  pulse became 700 ps wider, we can estimate the range of
= 2Ky, and k,»,=3k,q do not lead to an equidistant spec- Ak, , aroundk,,, which gives the most essential contribution
trum. Indeed, in addition to the case of the sample with aito the pulse. Subtracting q(ky+AK,/2) from vg(Kky
treated above, there is air fax —d, (a foam plastic base —Ak,/2) leads, after some calculations, Ak,/2k,~0.4.
with small dielectric constantThen for x,d,<1 we arrive  This then gives approximateKyma—=1.4k,; and Kymin
at Eq.(9) with e~1, cf. Ref. 23, which should be substituted =0.6k,;.
in all formulas involving a homogeneousfor 2k, ds>1 we Another important ingredient of our theory is the calcu-
obtain the case of the “air” sample treated above. Takinglated damping rates. As shown above, they agree well with
into account that Rod,=4mds/P~0.3, 2,,ds~0.6, and the observed ratésThe effectiver* for the work of Ref. 8
2k,,d<~0.9, we can explain qualitatively the observed, notis approximately 2.510 ! s. This is several decades
equidistant spectrum. A quantitative comparison is imposshorter than that extracted from QHE measurements, which

20 | T
-3.0 -1.5 0.0 15 3.0

FIG. 4. As in Fig. 3, but forpyo(y) as described by Eq51).

V. DISCUSSION AND CONCLUDING REMARKS



56 EDGE MAGNETOPLASMONS FOR VERY LOW ... 13261

is of the order of 10° s** The difference is to be ascribed to wherek?=KkZ+k. Forz<0 we have

the fact that in our model the dissipation is localized near the

edges, whereas in that of Ref. 1 the dissipation occurs b (0. K, ,2)=A(w,k, k) e (A2)
throughout the channel homogeneously. The latter is a rea- ey e '

sonable assumption for relatively high temperatures, whictand, for O<z<d,

have not been considered in the present work.

The results of Sec. IV have been obtained by considering
only two terms, even or odd, in the sum ovem Eg. (17).
Retaining further terms leads to somewhat wider but still
osqi!latory charge-density profiles. The resulting phase Vetwo boundary conditions ares, (,k,,k,,d)=0 and
locities of the HFEH and LFEH are nearly unchanged and¢+(w,kx,ky,+0):¢>,(w,kx,ky,—0). Intggrating Eq.

the qualitative behavior of their damping rates is not af'(Al) from z=—0 to z= + 0 gives the third condition
fected.
z—O}

b (,Ky ky,2)=B(w,Ky ky) e+ C(w,ky k) €72
(A3)

Finally, it is worth noting that in our microscopically cal-

culated dispersion relations the quantized Hall conductivity

(3’¢>+(w,kx,ky,z) 8¢,(a),kx,ky,z)

Oyy= (T?,X appears explicitly. Though not shown here graphi- € 9z 9z
cally, this accounts for the existence of plateaus in the transit z=+0
times of the signals, as a function of magnetic field, observed =~ dmp(wke k). (A4)

recently in Ref. 22 and accounted for with the replacement of
the quantitye?n,/m* w.) by the experimentally determined
ayx. The present theory holds when only the=0 LL is
occupied. The coupling between edge excitations of different

LL's will certainly affect the EMP modes presented here, d)(w,kx,ky,z=0)=277p(w,kx,ky)(l—e‘zkd)/ek,
and an appropriate extension of the theory is being planned. (A5)

From Eqgs.(A2)—(A4) and the first two conditions, we obtain
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APPENDIX

2 o
As a model of a gated sample, we consider a 2DE@ at =ZJ_W{K°(|kX||y_y D

=0 with a metallic gate placed at a distarrzed away from

it and with a dielectric constant for z<d. Taking the Fou- — K[|k (Y =y )2+ 4d? k. v') dv
rier transform, forz<d, with respect to,y, andt, of Pois- ol [k Vy=y") Bp(ekcy’) dy-
son’s equation for the time-dependent charge density (AB)

p(x,y,z,t) gives i - .
Notice that, ford—, Eq. (A6) coincides with Eq(9).

If the gate is replaced by air, foe>d, a similar

92 . .
2_ % _ calculation leads again to Eq. (A6),
E[k azzld)(w'kx'ky’z) amp(wkky) o(2), with the kernel replaced by Ry,=K(|kdly—y’'])

(AL +[(e—1)/(e+ 1)Kol [k y—y)?+4d?].
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