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Edge magnetoplasmons for very low temperatures and sharp density profiles
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A treatment of edge magnetoplasmons~EMP!, based on amicroscopicevaluation of the local contributions
to the current density, is presented. It is valid in the quantum Hall regime for filling factorn51 or 2 and low
temperatures when the dissipation is localized near the edge. The confining potential, flat in the interior of the
channel, is assumed smooth on the magnetic lengthl 0 scale, but sufficiently steep at the edges that the density
profile is sharp and the dissipation considered results only from electronintraedge-intraleveltransitions due to
scattering by piezoelectrical phonons. For wide channels there exist independent EMP modes spatiallysym-
metricor antisymmetricwith respect to the edge. Certain of these modes can propagate nearly undamped, even
when the dissipation is strong, and are thus termededge helicons. In contrast with well-known results for a
spatially homogeneous dissipation within the channel, we obtain that the damping of the fundamental EMP is
not quantized and varies asT3 or T23, whereT is the temperature, in the high- and low-frequency limits,
respectively. The characteristic length of the resulting dispersion relation and of the charge density distortion
is l 0. The screening of the metallic gates, when present, is taken into account.@S0163-1829~97!01744-X#
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I. INTRODUCTION

In the past few years there has been considerable inte
in edge magnetoplasmons~EMP’s! as well as in other edge
excitations of two-dimensional~2D! electron systems in the
presence of a magnetic fieldB.1–12 For a 2D system with a
vertical conductivity drop at the boundaries, it has be
shown1 that the dissipation can determine the EMP disp
sion relation and the spatial structure in an essential ma
even in the regime of the quantum Hall effect~QHE!. In this
work the properties of the EMP are expressed in terms of
components of the magnetoconductivity tensor of an infin
2D system. Moreover, due the very low frequencyv of the
EMP, the dispersion relation could be written in terms of t
static magnetoconductivity tensor.

The distance of the ‘‘center of gravity’’ of the EMP
charge from the edge, which coincides with the characteri
length over which the transverse to the edge electric fieldEy
of the EMP decreases, is given, forukxl vu!1, by1

l vc5
ul vu
p F lnS 2

ukxl vu D11G5U syy

kxsyx
U. ~1!

Here syy and syx are the conductivity components of a
infinite 2D system,kx is the EMP wave vector, andl v de-
notes a characteristic length determined by Eq.~10! of Ref.
1. In the QHE regime for typically observed7 EMP, Eq.~1!
givesl vc&1 mm. In Ref. 13 we showed theoretically, and
agreement with experimental observations, that in the Q
regime and for sufficiently smooth confinement the dissi
tion is due to intralevel-intraedge transitions of electro
scattered by piezoelectrical phonons and occurs mainly
the edges of channels. In the linear-response regime th
the main dissipation for channels of widthW&100 mm and
temperaturesT&1 K if the group velocity of edge states,vg ,
560163-1829/97/56~20!/13252~11!/$10.00
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is larger than the speed of sounds. As for dissipation in the
bulk, it is exponentially suppressed forT→0. Given that and
the fact that the dissipation, when deriving Eq.~1!, occurs in
the bulk, we expect the properties of the EMP to be stron
modified when the dissipation is localized near the edge

The above expectation is further supported by the res
of Ref. 11, which pertain to EMP’s for a smooth, unpe
turbed electron density profile which contrasts sharply w
that of Ref. 1 where the density drops vertically at the edg
In addition to the modes of Ref. 1, acoustic EMP’s we
obtained in Ref. 11. Further, our results, despite their par
similarity with those of Refs. 1 and 11, show significa
differences from them even when the dissipation is v
weak. For the very low temperatures that we consider h
kBT!\vg /l 0, and the assumed smooth confining poten
on the scale ofl 0 (vg.s), the unperturbed electron densi
n0(y), normalized to the bulk valuen0, drops essentially, on
the scale ofl 0, only near the edge. More explicitly, for th
potential that is specified at the beginning of Sec. II,
calculate n0(y)/n05$11F@(yre2y)/l 0#%/2, where yre is
the coordinate of the right edge, andF(y) the probability
integral. In Fig. 1 we show this calculated density profi
~short-dashed curve! together with those assumed in Refs.
~solid curve! and 11~long-dashed curve!. The profile of Ref.
11 is obtained withn0(y)/n05(2/p)arctanA(yre2y)/a and
a/l 0520; it corresponds approximately toa52000 Å. As
can be seen, the three density profiles are very different f
each other. As will be shown in this paper, combining o
density profile with the localization of the dissipation ne
the edge leads to strong modifications of the EMP result

These modifications, as well as new EMP’s resulting fro
the microscopic treatment of the problem, are the subjec
this work. The description of the inhomogeneous curr
density in the quasistatic regime is carried out using the
sults of Ref. 14. We consider the QHE regime, mainlyn
13 252 © 1997 The American Physical Society
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56 13 253EDGE MAGNETOPLASMONS FOR VERY LOW . . .
51 and partlyn52, for samples with sufficiently large in
plane dimensions, as is typical in EMP experiments, t
interedge electron transitions and the interedge Coulomb
teraction can be neglected.

In Sec. II we start with expressions for the inhomog
neous current densities and conductivities, and derive
integral equation for EMP’s. In Sec. III we derive the dispe
sion relation for very low temperatures, and in Sec. IV
describe in detail the new edge waves. Finally, in Sec. V
compare our theory with the experiment and make conc
ing remarks.

II. BASIC RELATIONS

A. Inhomogeneous current density in quasistatic regime

We consider a two-dimensional electron gas~2DEG!, of
width W, of lengthLx5L, and of thickness zero, in the pre
ence of a strong magnetic fieldB parallel to thez axis. The
2DEG is confined along they axis. For simplicity we take
the confining potential as parabolic at the edges:Vy850, for
yl,y,yr , Vy85m* V2(y2yr)

2/2 for y.yr.0, and Vy8
5m* V2(y2yl)

2/2 for y,yl,0. Because in real EMP ex
perimentsW*0.1 cm, we can assume@W2(yr2yl)#/W
!1. Moreover, we will assume thatukxuW@1, such that it is
possible to consider an EMP along the right edge of
channel, of the formA(v,kx ,y)exp@2i(vt2kxx)#, totally in-
dependent of the left edge. We consider only linear
sponses. For definiteness, we take the background diele
constante to be spatially homogeneous. We considerB
strong enough that only then50 Landau level~LL ! is occu-
pied. For then52 QHE regime we will neglect the spi
splitting. As for then51 QHE, we will assume that the spi
splitting, caused by many-body effects, is strong enough
neglect the contribution related with the upper spin-split L
We assume a lateral confinement smooth on the scale o
magnetic lengthl 05(\/m* vc)

1/2 such thatV!vc , where

FIG. 1. Unperturbed electron densityn0(y), normalized to the

bulk valuen0, as a function ofȳ /l 0 measured from the right edg
taken as the origin. The solid and long-dashed curves are obta
from the models of Refs. 1 and 11, respectively, as explained in
text. The short-dashed curve is the profile of the present work.
t
n-

-
e

-

e
-

e

-
tric

to
.
he

vc5ueuB/m* is the cyclotron frequency. Further, we wi
approximateṽ5(vc

21V2)1/2 by vc .
Because the EMP is practically quasistatic and its wa

length l*1 cm is very large, we expect, in analogy wi
well-known results that follow from Maxwell’s equations,15

the associated electric fieldEx(x,y,t) to have a smooth de
pendence ony on the scale ofl 05(\/m* vc)

1/2, i.e.,
Ex(x,y,t)5Ex(y)exp@2i(vt2kxx)#. Physically is clear: the
dependence ofEx(x,y,t) on y, as expressed through Max
well’s equations, is related to that onx which has a charac
teristic scalel. Thus Ex(y) should have the same scalel
and be definitely smooth on thel 0 scale. This is a genera
result and applies to the case treated in Ref. 1. Then u
the results of Ref. 14, we obtain the components of the c
rent density in the forms

j y~y!5syy~y!Ey~y!1syx
0 ~y!Ex~y!, ~2!

j x~y!5sxx~y!Ex~y!2syx
0 ~y!Ey~y!1vgr~v,kx ,y!. ~3!

Here we suppressed the exponential factor exp@2i(vt2kxx)#
common to all terms in Eqs.~2! and~3!. It is understood that
Em(y) depends onv andkx . As follows from Refs. 13 and
14, syy(y) is strongly~exponentially! localized at the edge
within a distance&l 0 from it, for \vg@kBTl 0. The last
term on the right-hand side of Eq.~3!, absent in Ref. 14,
represents a convection contribution to the current den
alongx, associated with the wave, and is due to a distort
dr of the charge localized near the edge; we denote it
r(v,kx ,y) in order to simplicify the notation as it occur
frequently. Notice that in Ref. 14 the contributions to t
components of the current density are microscopically
tained for the electric field components smooth on the sc
of l 0. This condition holds for the contributions}Ex(y) in
Eqs. ~2! and ~3!, but is not well justified for those}Ey(y).
We assume that the latter can be reasonably approximate
those obtained microscopically whenEy(y) is smooth on the
scale ofl 0. The assumption is equivalent to neglecting po
sible nonlocal contributions to the current dens
}*dy8smy(y,y8)Ey(y8). Then it follows thatsxy

0 52syx
0 .

For n51 we have14

syx
0 ~y!5

e2

2p\E2`

`

dy0a f a0C0
2~y2y0a!, ~4!

wherea[$0,kxa%, y0a5l 0
2kxa , Cn(y) is a harmonic oscil-

lator function, and f a0[ f 0(kxa)51/„11exp@(Ea0
2EF0)/kBT#… is the Fermi-Dirac function.EF0 is the Fermi
level counted from the bottom of the lowest electric subba
For T50 and near the right edge we havesyx

0 (y)
5(e2/4p\)$11F@(yre2y)/l 0#%, whereF(x) is the prob-
ability integral,yre5l 0

2kre, and f 0(kre)5 1
2. That is,syx

0 (y)
near the edge decreases on the scale ofl 0, and behaves as
the density of the short-dashed curve of Fig. 1. Consider
only the right edge and the flat part of the confining pote
tial, for yl<y0a<yr we haveEa05\vc/2 and fory0a>yr
we obtain

Ea0[E0~kxa!5\vc/21m* V2~y0a2yr !
2/2. ~5!

We consider only the interaction of electrons with phono
and neglect that with impurities, since the former is the m

ed
e
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13 254 56O. G. BALEV AND P. VASILOPOULOS
essential for the assumed conditions.13 Because of the very
smooth dependence ofEx(y) on l 0, we can assume tha
sxx(y) can be approximated bysyy(y), which follows from
Eq. ~16! of Ref. 14 as

syy~y!5
pe2l 0

4

4\LkBT(
kxaq

uCqu2qx
2@ f 0~kxa2qx!2 f 0~kxa!#

3d@E0~kxa!2E0~kxa2qx!2\vqW #e
2~qx

2
1qy

2
!l 0

2/2

3sinh22S \vqW

2kBTD $C0
2@y2y0~kxa2qx!#

1C0
2@y2y0~kxa!#%. ~6!

For the low temperatures pertinent to the quantum Hall
fect, we consider only the standard acoustical~DA! or piezo-
electrical ~PA! phonons for whichvq5sq, wheres is the
speed of sound, andq5Aqx

21qy
21qz

2. Then uCqu2

5(c8/LxLyLz)q
61, where 11 is for DA and 21 for PA

phonons, respectively.

B. Integral equation for EMP’s with dissipation at the edges

Using Eqs.~2!–~4!, and ~6!, we can write the continuity
equation, linearized indr(v,kx ,y)[r(v,kx ,y), as

2 i ~v2kxvg!r~v,kx ,y!1 ikx@sxx~y!Ex~v,kx ,y!

2syx
0 ~y!Ey~v,kx ,y!#1

]

]y
@syy~y!Ey~v,kx ,y!

1syx
0 ~y!Ex~v,kx ,y!#50. ~7!

In terms of the potentialf(v,kx ,y) the electric-field
components are Ex(v,kx ,y)52 ikxf(v,kx ,y) and
Ey(v,kx ,y)52(]/]y)f(v,kx ,y). Then Eq.~7! gives

2 i ~v2kxvg!r~v,kx ,y!1kx
2sxx~y!f~v,kx ,y!

2
]

]yFsyy~y!
]

]y
f~v,kx ,y!G

2 ikxf~v,kx ,y!
]

]y
syx

0 ~y!50. ~8!

Now using Poisson’s equation we obtain

f~v,kx ,y!5
2

eE2`

`

dy8K0~ ukxuuy2y8u!r~v,kx ,y8!,

~9!

whereK0(x) is the modified Bessel function;f andr per-
tain to the 2D plane. From Eqs.~8! and ~9! we obtain the
following integral equation forr(v,kx ,y):
f-

2 i ~v2kxvg!r~v,kx ,y!1
2

e H kx
2sxx~y!2 ikx

d

dy
@syx

0 ~y!#

2syy~y!
d2

dy2
2

d

dy
@syy~y!#

d

dyJ
3E

2`

`

dy8K0~ ukxuuy2y8u!r~v,kx ,y8!50. ~10!

The value ofsyy(y) is significantly different from zero only
near the edges of the channel. The same holds for the va
of sxx(y) and ofdsyx

0 (y)/dy; for \vg@l 0kBT this can be
seen from Eqs.~4! and ~6! which show thatsyy(y) and
dsyx

0 (y)/dy are exponentially localized within a distanc
'l 0 from the right edge atyre5yr1Dyr . We haveDyr

5l 0
2ke , whereke5(vc /\V)A2m* DF is the characteristic

wave vector associated with an edge state,DF5EF0

2\vc/2, andW52yre. For kxa[kre5yr /l 0
21ke , we have

f 0(kre)5 1
2 and

vg5
1

\

]E0~kre!

]kxa
5

\V2ke

m* vc
2

5S 2DF

m*
D 1/2

V

vc
. ~11!

Equation~11! can also be written asvg5Ee /B, whereEe

5VA2m* DF/ueu is the electric field describing the influenc
of the confining potential. For a dissipationless, 2D class
electron liquid we have, for finitev, syy(y)5sxx(y)
5 ie2n0(y)v/m* (v22vc

2) and syx
0 (y)52e2n0(y)vc /

m* (v22vc
2), where n0 is the electron density. Then Eq

~10! becomes identical with Eq.~4! of Ref. 11. In addition, if
we assume that the conductivity components in Eq.~10! are
independent ofy, for uyu,W/2, and syy(y)5sxx(y), Eq.
~10! takes the form of Eq.~15! of Ref. 1 after integration
over z.

Equations~9! and~10! apply to a 2DEG in the absence o
metallic gates. Sometimes a metallic gate is placed on the
of the sample10 at a distanced from the 2DEG. As shown in
the Appendix, for a gated sample the kernelK0 in Eqs. ~9!
and ~10! is replaced by Rg5K0(ukxuuy2y8u)
2K0(ukxuA(y2y8)214d2). If this gate is replaced by air
then K0 is replaced by Ra5K0(ukxuuy2y8u)
1@(e21)/(e11)#K0(ukxuA(y2y8)214d2).

III. EMP DISPERSION RELATION

We consider very low temperatures that satisfy the
equality\vg@l 0kBT. From Eqs.~4! and ~6! it follows that
dsyx

0 (y)/dy52(e2/2p\)C0
2(y2yre); also, syy(y) and

sxx(y) behave asC0
2(y2yre), and hence are strongly con

centrated near the edge. It follows from Eq.~10! that
r(v,kx ,y) is also concentrated near the edge. Integrat
Eq. ~10! over y, from yre2Dy to yre1Dy with Dy;l 0, we
obtain
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E
2`

`

dy r~v,kx ,y!F2~v2kxvg!

1S E
2`

`

dy8C0
2~y82yre!K0~ ukxuuy2y8u!G50;

~12!

here S5(2/e)(2 ikx
2s̃xx1kxsyx

0 ), syx
0 5e2/2p\ is the Hall

conductivity in the bulk as follows from Eq.~4!, and s̃mm

5smm(y)/C0
2@y2y0(kre)#, m5x and y. Using Eq.~6! for

vg.s we obtain

s̃xx's̃yy5
3e2l 0

4c8kB
3T3

2p2\6vg
4s

. ~13!

Equation~13! coincides withj dW/Ey , given by Eq.~32! of
Ref. 13~a!, for Ey→0. For vg,s the contribution tos̃xx is
exponentially suppressed and has an activated behav13

For vg
2@s2 we have s̃xx5e2l 0

3c8kB
2T2/A2p5/2\5vg

4 , if 1
@kBTl 0 /\vg.s/A2vg , and Eq. ~13! if 1 @kBTl 0 /\vg

,s/A2vg .
Notice that the terms in Eq.~10! related tosyy(y) are

totally absent in Eq.~12!. Now, in Eq. ~12! we have uy
2y8u;l 0 andukxul 0;1026; then we can make the approx
mation K0(ukxuuy2y8u)' ln(2/ukxl 0u)2g2 ln(uy2y8u/l 0),
whereg is the Euler constant. The value of the integral ov
y8 in Eq. ~12! is ln(2/ukxul 0)2g2(1/Ap)*2`

` dt e2t2lnut
2(y2yre)/l 0u. For the gated sample and that with air abo
z5d, 4d2@l 0

2, the corresponding approximations in th

long-wavelength limit areRg' ln(2d/l 0)2 ln(uy2y8u/l 0)
and, withe@1, Ra' ln(2/kx

2dl 0)22g2 ln(uy2y8u/l 0), re-
spectively.

Now for T→0 we haves̃xx→0, s̃yy→0, and Eq.~10!
shows thatr(v,kx ,y) behaves essentially asC0

2(y2yre).
Then the value related to the integral overt can be evaluated
and gives a small contribution compared to that of the te
ln(1/ukxul 0). The result is

H 2~v2kxvg!1S F ln
1

ukxl 0u
1

3

4G J E
2`

`

dy r~v,kx ,y!50.

~14!

From Eq. ~14! it follows that the EMP dispersion relation
with strong dissipation at the edges and forkBT!\vg /l 0, is
given by @v(kx)[v#

v5kxvg1
2

e
@kxsyx

0 2 ikx
2s̃xx# F ln

1

ukxl 0u
1

3

4G . ~15!

For n52 the EMP dispersion relation will again be given b
Eq. ~15!, with the conductivity components multiplied by
factor of 2. In addition, becausevg has the;1/B depen-
dence, cf. Eq.~11!, it will be multiplied, forn52, by a factor
of 2 if the edge fieldEe is the same. As a result, forn52 the
frequencyv will be approximately twice as large as forn
51. More exactly, the value of the ratio of these frequenc
is
.

r

s

v~n52!

v~n51!
52H 12

ln2

2@ ln~1/ukxl 0u!13/4#J , ~16!

wherel 0 corresponds ton51. Forkxl 0;1026, the second
term inside the curly brackets represents a 2% correctio

Equation ~15! is valid for an ungated sample. If th
sample is gated, repeating the procedure leads again to
~15! with the factor@ # replaced by@ ln(2d/l 0u)12/p#. If
the gate is replaced by air, this factor is replaced
@ ln(1/kx

2dl 0u)#.

IV. EDGE WAVES AT VERY LOW TEMPERATURES

From Eq. ~10! it follows that, even for T→0,
r(v,kx ,y)5r (0)(v,kx)C0

2( ȳ ), whereȳ 5y2yre, is only an
approximate solution of this equation. A more accurate so
tion is obtained by the expansion

r~v,kx ,y!5C0
2~ ȳ ! (

n50

`

r~n!~v,kx!Hn~ ȳ /l 0!

5 (
n50

`

A2nn!r~n!~v,kx!Cn~ ȳ !C0~ ȳ !, ~17!

whereHn(x) are the Hermite polynomials. Due to their o
thonormality Eq.~17! is the exact expression forr(v,kx ,y).
Notice that this expansion is specific to the case when o
the lowest LL is occupied. In addition, the termsn50, n
51, n52, etc. correspond to the monopole, dipole, quad
pole, etc. expansions ofr(v,kx ,y) relative toy5yre.

We now multiply Eq.~10! by Hm( ȳ /l 0) and integrate
overy from yre2Dy to yre1Dy. Taking into account that for
very low temperatures (\vg@l 0kBT) dsyx

0 (y)/dy, syy(y),

andsxx(y) behave asC0
2( ȳ ), we obtain

2~v2kxvg!r~m!~v,kx!1~S1mS8!

3 (
n50

` S 2nn!

2mm!
D 1/2

amn~kx!r
~n!~v,kx!50, ~18!

where

amn~kx!5anm~kx!5E
2`

`

dx Cm~x!C0~x!

3E
2`

`

dx8 K0~ ukxuux2x8u! Cn~x8!C0~x8!

~19!

and S8524i s̃yy /el 0
2. Notice that for m50 Eq. ~18! is

equivalent to Eq.~12! and, correspondingly, the terms relate
to s̃yy are absent. From Eqs.~17!–~19! it follows that there
exist independent wave modes, spatiallysymmetric,
rs(v,kx ,y), and antisymmetric, ras(v,kx ,y), with respect
to y5yre. They are given by Eqs.~17! and~18! with n even
and odd, respectively. Notice that in Eq.~19! due to the
assumptionkxl 0!1 we can writeK0(uxu)' ln(2/uxu)2g for
the ungated sample. For the gated sample we simply rep
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13 256 56O. G. BALEV AND P. VASILOPOULOS
the kernel K0 in Eq. ~19! by Rg' ln(2d/l 0)2 ln(uy
2y8u/l 0), and for that with air byRa' ln(2/kx

2dl 0)22g

2 ln(uy2y8u/l 0).

A. Symmetric modes

Considering only the termn50 in the expression for
rs(v,kx ,y), Eq. ~18! for m50 gives

@2~v2kxvg!1Sa00#r
~0!~v,kx!50, ~20!

where a00(kx)52 ln(ukxul 0)13/4. With this value of
a00(kx) andr (0)(v,kx)Þ0, Eq.~20! gives the dispersion re
lation ~15!. Becausers(v,kx ,y) behaves spatially asC0

2( ȳ )
in this approximation, we will refer to it as the dispersio
relation of the monopole EMP. For the sample with a g
we simply have to replacea00 by a00

g 5@ ln(2d/l 0)12/p# in
Eq. ~20! and for that with air bya00

a 5 ln(1/kx
2l 0d).

Corrections to Eq.~20! and furthersymmetricbranches
are obtained by keeping only the termsn50 and 2 in the
expression forrs(v,kx ,y), which gives

rs~v,kx ,y!5r~0!~v,kx!C0
2~ ȳ !

12A2r~2!~v,kx!C2~ ȳ !C0~ ȳ !. ~21!

From Eq.~18! for m50 we obtain

@2~v2kxvg!1Sa00#r
~0!~v,kx!12A2Sa02r

~2!~v,kx!50,
~22!

and, form52,

@2~v2kxvg!1~S12S8!a22#r
~2!~v,kx!

1@~S12S8!/2A2#a02r
~0!~v,kx!50, ~23!

where we writeamn(kx)[amn in order to simplify the nota-
tion. For a nontrivial solution of the system of Eqs.~22! and
~23! the 232 determinant of the coefficients must vanis
This gives two branchesv1

s (kx) and v2
s (kx). For ukxul 0

!1 a numerical evaluation givesa02520.353,a2250.250,
and a02

2 51/8. All amn values remain the same for gate
samples or those with air, excepta00, which changes as
indicated above. If we neglect the coupling terms, by f
mally settinga02(kx)50, Eq.~22! gives the monopole EMP
dispersion relation~15! and Eq. ~23! the pure quadrupole
EMP dispersion relation

v5kxvg1~S12S8!/4

5kxvg1
1

2eF kxsyx
0 2 ikx

2s̃xx24i
s̃yy

l 0
2 G . ~24!

If we neglectkxvg and the dissipative terms, Eq.~24! takes
the form of Eq.~14! of Ref. 11 for thej 54 branch, which
has five charge oscillations. As it stands, Eq.~24! corre-
sponds to only three oscillations. The difference is to
ascribed to the very different density profile used in Ref.
for a compressible liquid in a very wide strip. Notice that E
~24! is valid for samples with gate or air as well.

For finite a02 the two branches resulting from Eqs.~22!
and ~23! are given by
e

.

-

e
1
.

v6
s 5kxvg1 1

2 @S~a001a22!12S8a22#

6 1
2 A@S~a002a22!22S8a22#

214S~S12S8!a02
2 .

~25!

If we put a0250, i.e., if we neglect the coupling between th
branches, then thev2

s (kx) branch is given by Eq.~24! and
the v1

s (kx) branch coincides with Eq.~15!. It can be shown
that the term}a02

2 under the square root sign is much smal
than the other term. Then from Eq.~25! we obtain

v1
s 5kxvg1Sa001

S~S12S8!a02
2

Sa002~S12S8!a22

~26!

and

v2
s 5kxvg1~S12S8!a222

S~S12S8!a02
2

Sa002~S12S8!a22

. ~27!

Further, for very low temperatures we can distinguish b
tween~i! strong dissipation, for whichkxsyx

0 !4s̃yy /l 0
2 ; and

~ii ! weak dissipation, for whichkxsyx
0 @4s̃yy /l 0

2 . Notice
that the damping of the purely quadrupole EMP—E
~24!—is such that in case~i! we have uImvu@uRevu,
whereas in case~ii ! the opposite inequality holds. The dam
ing of Eq. ~24! is determined by the dissipative conductiv
ties syy(y) and sxx(y). The two contributions differ by a
very small factorkx

2l 0
2 . As a result, the damping of th

wave, }kx
2s̃xx , can be usually neglected. Notice that Eq

~22!–~27! are valid for gated or ‘‘air’’ samples as well, with
a00 replaced bya00

g or a00
a .

For definiteness in numerical estimates, we will use
rameters pertinent to GaAs/AsAlxGa12xAs heterostructures
As will be shown below, both cases~i! and ~ii ! are experi-
mentally realized depending on the values ofvg andT. For
vg&s the damping in Eq.~24! is exponentially suppressed
The conditionvg,s requires a smooth energy dispersio
near the edges. This possibility exists in the Hartree appr
mation for the confining potential but not in the Hartree-Fo
approximation, where the exchange leads to a logarith
cally divergent16 vg . However, when correlations are take
into account, a smooth energy dispersion results near
edges andvg is small.16 In GaAs-based heterostructures, t
most common case isvg.s52.53105 cm/s. In this case
using Eq.~13! for n51, c85\(eh14)

2/2rVs,h1451.23107

V/cm, andrV55.31 gm/cm3, we obtain

s̃yy

l 0syx
0

50.16T̃3B̃23/2ṽ g
24 , ~28!

where T̃5T/1 K, B̃5B/(10 T!, and ṽ g5vg /s. Equation
~28! is valid for n52 as well, because of the scaled quan
ties. For T̃51, B̃51, and ṽg52, Eq. ~28! gives
s̃yy /l 0syx

0 s̃yy /l 0syx
0 51022. The estimated17 field Ee

leads, forB̃51, to vg'43105cm/s .s. Further, if we as-
sume thats̃yy /l 0 gives approximately the value of the d
agonal conductivity in the edge strip of widthl 0'80 Å,
then, because for strong magnetic fields (vct* @1)
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s̃yy /l 0syx
0 '1/vct* 51022, we obtain an effective scatter

ing rate 1/t* 'vcs̃yy /l 0syx
0 '2.631011/s in this strip. This

is approximately ten times larger than the scattering rate
a mobility m5106 cm2/V s.

From Eq.~24! we obtain

uRevu
uImvu

'
syx

0 ukxul 0

4s̃yy /l 0

'1.5T̃23B̃23/2ṽ g
4ukxul 0 , ~29!

where we assumed again that the termvgkx can be neglected
Then, for T̃51,B̃51, andṽ g52, the right-hand side of Eq
~29! is approximately equal to 25ukxul 0. Only for 1
@ukxul 0.431022 does the quadrupole EMP becom
weakly dissipative. ForB̃51, lower temperatureT̃50.1,
and steeper confinementṽ g54, Eq. ~29! gives
uRevu/uImvu'53105ukxul 0. In this case the quadrupol
wave is very weakly damped for 1.253106 cm21@ukxu.2.5
cm21. In this region the implicit low-frequency conditio
uvu!vc is well satisfied, since it corresponds toukxu!1.6
3107 cm21.

B. Edge helicons

We now analyze further the general formulas of S
IV A. We first assume thatsyx

0 ukxuK@s̃yy /l 0
2 . Then Eq.

~27! gives

v2
s 5kxvg1 1

4 ~S12S8!S 12
1

2K D , ~30!

whereK5a0021/45 ln(1/ukxul 0)11/2; for gated or ‘‘air’’
samples,a00 in K is replaced bya00

g and a00
a , respectively.

Because ln(1/ukxul 0)@1, we see that the coupling with th
monopole EMP does not change the dispersion almost a
as compared with that given by Eq.~24!. As a result the
quasiquadrupole EMP, described by Eq.~30!, is weakly
damped for syx

0 ukxu.4s̃yy /l 0
2 and strongly damped fo

4s̃yy /l 0
2.syx

0 ukxu@s̃yy /l 0
2K. We call the wave describe

by Eq. ~30! a quasiquadrupole EMP because it follows fro
Eq. ~23! that

r~2!~v,kx!

r~0!~v,kx!
522A2a02K5K@1; ~31!

that is, r (2)(v,kx) is the dominant term on the right-han
side of Eq.~21!. The same holds for the ‘‘air’’ sample. How
ever, for the gated sample the monopole and quadru
terms are comparable ifKg<3. The condition of very weak
damping for the wave~30! can also be expressed asv2

s t*
@nr 0 /p, where r 05e2/e\vcl 0. For n51 we typically
have r 0;1. This condition resembles the high-frequen
limit used in Ref. 1. However, heret* is related to dissipa-
tion processes only near the edge. In addition, in cont
with Ref. 1, we consider an essential decrease of the con
tivity components and of the electron density over a fin
length Ly from the edge. For very low temperatures,kBT
!\vg /l 0, we haveLy'l 0, which is much smaller than th
length over which the densityn0(y) decreases substantial
in the model of Ref. 11.
r

.

all

le

st
c-

For syx
0 ukxuK@s̃yy /l 0

2 , Eq. ~26! gives

v1
s 5kxvg1S~K11/4!F11

1

8K~K11/4!G1
S8

4K
. ~32!

As can be seen, taking into account the coupling with
quadrupole EMP changes the phase velocity of the mono
EMP by a very small amount (<0.1%) but it makes an
important new contribution to the damping in comparis
with Eq. ~15!. Now the v1

s branch, for the typical EMP

conditionukxul 0;1026, has a damping}s̃yy /l 0
2K which is

much stronger than that}s̃xxkx
2K of the pure monopole

EMP.
The wave described by Eq.~32! can be called a quasimo

nopole EMP because it follows from Eq.~22! that

r~0!~v,kx!

r~2!~v,kx!
5

16A2a02syx
0 kxK

syx
0 kx24i s̃yy /l 0

2
, ~33!

and, due toK@1, we have ur (0)(v,kx)/r
(2)(v,kx)u@1.

Now, for weak dissipation (syx
0 kx@4s̃yy /l 0

2) we have
r (0)(v,kx)/r

(2)(v,kx)'28K and for strong dissipation
(syx

0 kxK@s̃yy /l 0
2@syx

0 kx/4) r (0)(v,kx)/r
(2)(v,kx)

'22i (syx
0 kxl 0

2/s̃yy)K. Thus, if the phases of the two com
ponents are shifted byp in the first case, in which we cal
the v1

s branch described by Eq.~32! a modified monopole
EMP ~MMEMP!, they are shifted byp/2 in the last one. This
last case corresponds to the frequency regionv1

s t*
@nr 0 /p@@v1

s t* /(4K11)#, and the frequencyv1
s can still

be considered as high compared to 1/t* . In this frequency
region we call thev1

s branch the high-frequencyedge heli-
con ~HFEH! and denote it byvEH

HF . In this region, due to the
almostp/2 shift betweenr (0) andr (2), we obtain the follow-
ing remarkable property of HFEH described by Eq.~32!. If
the HFEH charge}Re$rs(vEH

HF ,kx ,y)R1(x,t)% along y has
a pure quadrupole character}ur (2)u for some phase of the
running waveR1(x,t)5exp@2i(vEH

HFt2kxx)#, then after ap-
proximately a6p/2 shift it acquires a pure monopole cha
acter }ur (0)u; rs(vEH

HF ,kx ,y) is given by Eq. ~21!. This
HFEH showsthree charge oscillations alongy whereas the
relevant branches of Refs. 1 and 11 wi
Rev}kxln(1/kx) resembling RevEH

HF of the HFEH, show only
oneoscillation.

Notice that Rev1
s , given by Eq.~32! is independent ofT

whereas Imv1
s }T3 or T2 if 1 @kBTl 0 /\vg@s/A2vg . That

is, in contrast with Ref. 1, we find that the damping of t
MMEMP and that of the HFEH scale with temperature a
are not quantized in the QHE plateaus. In addition, th
waves have a characteristic lengthl 0 which is different than
the lengthl v of Ref. 1; also, the term}syx

0 is different than
that of Ref. 1 in the factor containing the logarithm. In a
dition, l 0(n52)/l 0(n51)5A2 here whereas l v(n
52)/l v(n51)54 in the high-frequency limit of Ref. 1
Moreover, fore→` it follows that l v(n51)→0 whereas
l 0 is independent ofe.

We now consider the case of very strong dissipation,

s̃yy /l 0
2@syx

0 ukxuK. ~34!

Then Eq.~27! gives
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v2
s 5kxvg1

1

2e
@3syx

0 kx24i s̃yy /l 0
2#. ~35!

This is again a quasiquadrupole wave, sin
ur (2)(v,kx)/r

(0)(v,kx)u's̃yy /syx
0 ukxul 0

2@1. Also, although
Rev2

s /kx is essentially larger than in Eq.~30!, Eq. ~34! gives
an aperiodic damping, uRev2

s u!uImv2
s u. Further, assuming

that Eq.~34! is valid, we obtain from Eq.~26! the dispersion
relation of a wave that we call a low-frequencyedge helicon
~LFEH!,

vEH
LF 5kxvg1S(K2 1

4 )2
i

e

@syx
0 kx#

2

s̃yy /l 0
2 ~K2 1

4 !. ~36!

Despite the strong dissipation condition~34!, which entails
vEH

LFt* !nr 0 /p&1, the LFEH is very weakly damped sinc
uRevEH

LF u@uImvEH
LF u. The frequency range of the LFEH i

similar to the low-frequency limit of Ref. 1, but heret* is
related to strong dissipation processes only near the ed
Also, RevEH

LF /kx differs little from RevEH
HF/kx or that of Eq.

~15!. However, the damping of the LFEH
}(syx

0 kxl 0)2ln(1/kxl 0)/s̃yy has a very different form than
ImvEH

HF of Eq. ~32! or Imv of Eq. ~15!.
We further notice that, in contrast to Ref. 1, the real p

RevEH
LF is independent of temperature whereas the imagin

part ImvEH
LF , i.e., the damping, is not quantized and varies

T23 or T22; the T22 behavior occurs ifvg
2@s2 and 1

@kBTl 0 /\vg@s/A2vg . That is, the LFEH has a characte
istic length very different thanl v in the low-frequency limit.
It follows from Eq. ~22! that

r~0!~vEH
LF ,kx!

r~2!~vEH
LF ,kx!

'24A2a0252. ~37!

With this result and Eq.~21!, we obtain the dimensionles
charge density profile of the LFEH, r̃ EH(y)
5Apl 0rs(vEH

LF ,kx ,y)/r (0)(vEH
LF ,kx), as

r̃ EH~y!5Apl 0@C0
2~ ȳ !1A2C2~ ȳ !C0~ ȳ !#. ~38!

In Fig. 2 we showr̃ EH(y) ~solid curve!, its monopole
component~term }C0

2, short-dashed curve!, and its quadru-
pole component~term}C0C2, long-dashed curve!. For con-
trast, the dotted curve represents the normalized unpertu
electron densityn0(y)/n0. As can be seen the monopole a
quadrupole contributions are of the same order of magnitu
and the resultantr̃ EH(y) has an oscillatory behavior with
two oscillations, one to the right and one to the left of t
edge aty5yre. This is in sharp contrast with the ‘‘usual’
EMPs of Ref. 1, and thej 50 mode of Ref. 11.

C. Antisymmetric modes

Considering only the termn51 in the expression for
ras(v,kx ,y), and using Eq.~18! for m51, we obtain

@2~v2kxvg!1~S1S8!a11#r
~1!~v,kx!50; ~39!
e

es.

t
ry
s

ed

e,

the numerically obtained value ofa11 is 0.5. For
r (1)(v,kx)Þ0 Eq. ~39! gives the dispersion relation of th
pure dipole EMP as

v5kxvg1~1/e!@kxsyx
0 22i s̃yy /l 0

2#. ~40!

If we neglectkxvg and the dissipative term, Eq.~40! will
take the form of Eq.~14! of Ref. 11 for j 52, which shows
three charge oscillations, whereas Eq.~40! corresponds to
only two oscillations. However, in contrast to Ref. 11, b
sides the termkxvg and the microscopically treated dissip
tive term, the Hall conductivitysyx

0 is quantized forn51 or
2.

Corrections to Eqs.~39! and~40!, and further antisymmet-
ric branches, are obtained by keeping only then51 andn
53 terms in the expression forras(v,kx ,y). Then

ras~v,kx ,y!5A2r~1!~v,kx!C1~ ȳ !C0~ ȳ !

14A3r~3!~v,kx!C3~ ȳ !C0~ ȳ !. ~41!

From Eqs.~18! and ~19!, for m51, we obtain

@2~v2kxvg!1~S1S8!a11#r
~1!~v,kx!

12A6~S1S8!a13r
~3!~v,kx!50, ~42!

and, form53,

FIG. 2. Dimensionless charge density profiler̃ EH(y) of the low-
frequency edge helicon~LFEH! described by Eq.~38! as a function

of ȳ /l 0 ~solid curve!. The dotted curve representsn0(y)/n0. The
dashed and long-dashed curves are the pure monopole and qu

pole contributions, respectively. The oscillatory behavior ofr̃ EH(y)
near the edge is in sharp contrast with the ‘‘usual’’ EMP of Refs
and 11.



-

e

56 13 259EDGE MAGNETOPLASMONS FOR VERY LOW . . .
@2~v2kxvg!1~S13S8!a33#r
~3!~v,kx!

1~1/2A6!~S13S8!a13r
~1!~v,kx!50. ~43!

Again the vanishing of the 232 determinant of the coeffi
cients gives the two branchesv2

as and v1
as. In the long-

wavelength limit we numerically evaluatea13520.204 and
a3350.1665 1

6. If we neglect the coupling between th
modes, by formally settinga1350, Eq.~42! gives the disper-
ar

-

pe
e
r

e
o

al
sion relation for the pure dipole EMP, Eq.~40!, and Eq.~43!
that for the octupole EMP,

v5kxvg1~1/3e!@kxsyx
0 26i s̃yy /l 0

2#. ~44!

If we neglectkxvg and the dissipative term, Eq.~44! takes
the form of Eq.~14! of Ref. 11 for the j 56 branch that
shows seven charge oscillations. As it stands, Eq.~44! cor-
responds only to four charge oscillations.

For finite a13 the two branches resulting from Eqs.~42!
and ~43! are given by
v6
as5kxvg1 1

2 @S~a111a33!1S8~a1113a33!#6 1
2 A@S~a112a33!1S8~a1123a33!#

214a13
2 ~S1S8!~S13S8!. ~45!
for

le
w
o-

octu-
nts
If we set a1350, v1
as and v2

as give the dipole and octupole
branches given above by Eqs.~40! and ~44!, respectively.
For weak dissipation we havekxsyx

0 @4s̃yy /l 0
2 , and, if we

neglect damping, we obtain

v1
as'kxvg1~6/5e!syx

0 kx ~46!

and

v2
as'kxvg1~1/7e!syx

0 kx . ~47!

We call the waves corresponding to Eqs.~46! and~47! modi-
fied dipole ~MDEMP! and octupole~MOEMP! EMP’s, re-
spectively. As we now show, some of their properties
essentially different than those of the pure dipole@Eq. ~40!#
and octupole@Eq. ~44!# EMP’s.

Then from Eq.~42! for the MDEMP, we calculate

r~1!~v,kx!

r~3!~v,kx!
520A6a135210.0. ~48!

With this ratio and Eq.~41! the dimensionless charge
density profile r̃ 6

as(v6
as,kx ,y)5Apl 0ras(v6

as,kx ,y)/
r (1)(v6

as,kx ,y) of the MDEMP takes the form

r̃ MD~y![ r̃ 1
as~y!5A2pl 0@C1~ ȳ !C0~ ȳ !

2 1
2 C3~ ȳ !C0~ ȳ !#. ~49!

In Fig. 3 we showr̃ MD(y) ~solid curve!, its dipole compo-
nent @term }C1( ȳ )C0( ȳ ), short-dashed curve#, and its oc-
tupole component@term}C3( ȳ )C0( ȳ ) long-dashed curve#.
Again the dotted curve represents the normalized un
turbed electron densityn0(y)/n0. As can be seen, the dipol
and octupole contributions tor̃ MD(y) are of the same orde
of magnitude, thoughv1

as[vMD , given by Eq.~46!, is a bit
different (,20%) than Rev of the pure dipole EMP given
by Eq. ~40!. As seen in Fig. 3, the MDEMP has four charg
oscillations, whereas the dipole EMP has two. Thus, the c
responding density profiles are qualitatively different
though the phase velocities are close to each other.

For the MOEMP, given by Eq.~47!, we calculate, from
Eq. ~43!,
e

r-

r-
-

r~3!~v,kx!

r~1!~v,kx!
52.109/2A6'1/A6; ~50!

the corresponding result forr̃ MO(y)[ r̃ 2
as(y) is

r̃ MO~y!5A2pl 0@C1~ ȳ !C0~ ȳ !12C3~ ȳ !C0~ ȳ !#.
~51!

In Fig. 4 we plot the same quantities as in Fig. 3 but now
r̃ MO(y). As can be seen, the spatial behavior ofr̃ MO(y) is
quantitatively different only than that of the pure octupo
EMP. The phase velocities of these two EMP’s, as follo
from the dispersion relations, are substantially different. N
tice that for strong dissipation,kxsyx

0 !4s̃yy /l 0
2 , both v6

as

branches are strongly damped.

FIG. 3. Dimensionless charge-density profiler̃ MD(y) of the

MDEMP described by Eq.~49! as a function ofȳ /l 0 ~solid curve!.
The dashed and long-dashed curves are the pure dipole and
pole contributions, respectively. The dotted curve represe
n0(y)/n0.
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V. DISCUSSION AND CONCLUDING REMARKS

We have introduced a realistic model for the confini
potentialVc(y), and treated mainly the case wheren51 in
the interior part of the channel and the formation of dipo
strips18 near the edges is impossible in the assumed Q
regime. We have takenVc(y) sufficiently steep at the edg
that LL flattening can be neglected.18–20 As for n52, we
neglected the spin splitting. This is a reasonable approxi
tion in the bulk of the channel but its validity near the edg
is not clear in view of the work of Refs. 16 and 21. Thou
we have used a simple form forVc(y), near the edge, the
results remain valid for potentialsVc(y) of different form
that are smooth on the scale ofl 0. In such a case, e.g., th
last term on the right-hand side of Eq.~5! should be replaced
by Vc(y0a), andvg will be given again by Eq.~11!, with kre
determined byf 0(kre)5 1

2. Thusvg is the only parameter re
lated to the form ofVc that influences these edge waves.

For a comparison of the theory with the experiment,
details of the sample geometry are necessary, but often
are not given. For instance, the thicknessds of the sample is
not given in Ref. 6; it is also not given neither in Ref. 2
where the bottom of the sample is metallized, nor in Ref
Now concerning Ref. 5 it can be seen thatds5400 mm for
the sample with perimeterP51.7 cm, and the observation
were made atT50.4 K andB513 T (n51). As we now
show, the first three edge helicon modeskx052p/P, kx1
52kx0, and kx253kx0 do not lead to an equidistant spe
trum. Indeed, in addition to the case of the sample with
treated above, there is air forz,2ds ~a foam plastic base
with small dielectric constant!. Then for 2kxds!1 we arrive
at Eq.~9! with e'1, cf. Ref. 23, which should be substitute
in all formulas involving a homogeneouse; for 2kxds@1 we
obtain the case of the ‘‘air’’ sample treated above. Tak
into account that 2kx0ds54pds /P;0.3, 2kx1ds;0.6, and
2kx2ds;0.9, we can explain qualitatively the observed, n
equidistant spectrum. A quantitative comparison is imp

FIG. 4. As in Fig. 3, but forr̃ MO(y) as described by Eq.~51!.
r
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sible because the conditionukxuW@1 is not satisfied
(ukxuW;1).

The sample of Ref. 8 is a circular mesa with diameterD
5540 mm and height;1 mm, in the middle of a wide
GaAs/AlxGa12xAs chip with thicknessds5500 mm. The
condition 2ukxuds@1 is well satisfied even forkx052/D
537 cm21; the minimum value ofkx , kxmin , involved in the
experiment satisfieskxmin@kx0. As a result, the conditions
2kxminds@1 andkxminW@1 are well satisfied as well. Be
cause the square ‘‘pulser’’ gate, of widthLp510 mm, was
much smaller than the circumferencepD, the initial charge
distribution can be assumed to have a rectangular form,
therefore to have an essential contribution from thekxn5
6nkx0 , n51,2, . . . , modes distributed in the intervalkx0
<ukxnu,p/Lp . It is natural to assume that the typicalkxt
5ukxntu'p/2Lp ; for a rectangular form of the charge disto
tion alongx, we have approximately a 50% contribution
the total spectral density forukxnu<kxt . The model of the
‘‘air’’ sample, described briefly in the Appendix, fits pe
fectly to the experiment.8 The distanced at which the 2DEG
is situated beneath the surface is not given but from the m
height it can be estimated to bed'1000 Å. This gives
Ka(kxt)'10.5 for B55.1 T. Further, assumingṽ g52, i.e.,

vg553105 cm/s, usingB̃50.51, T̃50.3, andn51, in the
middle of a wide chip, obtained from the parameters of
experiment, and using Eq.~28!, we obtains̃yy /l 0syx

0 '7.5

31024. It follows that kxtl 0Ka(kxt)'1.631022@s̃yy /
l 0syx

0 which corresponds to the first condition treated
Sec. IV B.

Notice that here kxtl 0'1.531023,4s̃yy /l 0syx
0 '3

31023, i.e., we are dealing with the case of strong dissip
tion as detailed after Eq.~27!. It follows that all modes, apar
from the HFEH, are strongly damped. For instance, both
pure dipole@Eq. ~40!# and quasiquadrupole@Eq. ~30!# modes
have Imv'3.431010/s which is a very large value com
pared to the damping rate of the experiment Imv'23108/s
for n51. Moreover, during the observed period for the trav
around the edgeTe'3.531029 sec the amplitude of the qua
siquadrupole EMP or dipole EMP should practically vani
due to the exponentially small factor,exp(2100). We are
left with the high-frequency edge helicons described by E
~32! and ~33!. Equation ~32! gives a decay rate ImvEH

HF

'1.93108/s which is in good agreement with th
observations.8 The corresponding group velocity for th
HFEH, obtained from Eq. ~32!, is vg(kxt)
'(2/e)syx

0 @ ln(1/kxt
2 l 0d)22#, and gives a period T

5pD/vg(kxt)'3.431029/s which is in excellent agreemen
with the experimental value. Because after the first trip
pulse became 700 ps wider, we can estimate the rang
Dkx , aroundkxt , which gives the most essential contributio
to the pulse. Subtractingvg(kxt1Dkx/2) from vg(kxt
2Dkx/2) leads, after some calculations, toDkx/2kxt'0.4.
This then gives approximatelykxmax51.4kxt and kxmin
50.6kxt .

Another important ingredient of our theory is the calc
lated damping rates. As shown above, they agree well w
the observed rates.8 The effectivet* for the work of Ref. 8
is approximately 2.5310211 s. This is several decade
shorter than that extracted from QHE measurements, wh



o
th
u
re
ic

rin

ti
ve
n

af

l-
it

hi
ns
ve
t o
d

e
re
e

o.
up

at

si

n

56 13 261EDGE MAGNETOPLASMONS FOR VERY LOW . . .
is of the order of 1023 s.24 The difference is to be ascribed t
the fact that in our model the dissipation is localized near
edges, whereas in that of Ref. 1 the dissipation occ
throughout the channel homogeneously. The latter is a
sonable assumption for relatively high temperatures, wh
have not been considered in the present work.

The results of Sec. IV have been obtained by conside
only two terms, even or odd, in the sum overn in Eq. ~17!.
Retaining further terms leads to somewhat wider but s
oscillatory charge-density profiles. The resulting phase
locities of the HFEH and LFEH are nearly unchanged a
the qualitative behavior of their damping rates is not
fected.

Finally, it is worth noting that in our microscopically ca
culated dispersion relations the quantized Hall conductiv
syx[syx

0 appears explicitly. Though not shown here grap
cally, this accounts for the existence of plateaus in the tra
times of the signals, as a function of magnetic field, obser
recently in Ref. 22 and accounted for with the replacemen
the quantitye2n0 /m* vc) by the experimentally determine
syx . The present theory holds when only then50 LL is
occupied. The coupling between edge excitations of differ
LL’s will certainly affect the EMP modes presented he
and an appropriate extension of the theory is being plann
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APPENDIX

As a model of a gated sample, we consider a 2DEGz
50 with a metallic gate placed at a distancez5d away from
it and with a dielectric constante for z,d. Taking the Fou-
rier transform, forz,d, with respect tox,y, and t, of Pois-
son’s equation for the time-dependent charge den
r(x,y,z,t) gives

eFk22
]2

]z2Gf~v,kx ,ky ,z!54pr~v,kx ,ky!d~z!,

~A1!
.

.
H

ald
e
rs
a-
h

g

ll
-

d
-

y
-
it
d
f

nt
,
d.

-

ty

wherek25kx
21ky

2 . For z<0 we have

f2~v,kx ,ky ,z!5A~v,kx ,ky! ekz, ~A2!

and, for 0<z,d,

f1~v,kx ,ky ,z!5B~v,kx ,ky!ekz1C~v,kx ,ky! e2kz.
~A3!

Two boundary conditions aref1(v,kx ,ky ,d)50 and
f1(v,kx ,ky ,10)5f2(v,kx ,ky ,20). Integrating Eq.
~A1! from z520 to z510 gives the third condition

eF ]f1~v,kx ,ky ,z!

]z U
z510

2
]f2~v,kx ,ky ,z!

]z U
z520

G
524pr~v,kx ,ky!. ~A4!

From Eqs.~A2!–~A4! and the first two conditions, we obtai

f~v,kx ,ky ,z50!52pr~v,kx ,ky!~12e22kd!/ek,
~A5!

which gives

f~v,kx ,y!5
1

2pE2`

`

eikyyf~v,kx ,ky ,z50!dky

5
2

eE2`

`

$K0~ ukxuuy2y8u!

2K0@ ukxuA~y2y8!214d2#%r~v,kx ,y8! dy8.

~A6!

Notice that, ford→`, Eq. ~A6! coincides with Eq.~9!.
If the gate is replaced by air, forz.d, a similar

calculation leads again to Eq. ~A6!,
with the kernel replaced by Ra5K0(ukxuuy2y8u)
1@(e21)/(e11)#K0@ ukxuA(y2y8)214d2#.
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