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Nonlinear transport through coupled double-quantum-dot systems
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We investigate transport via sequential tunneling through a semiconductor double quantum dot structure by
combining a simple one-dimensional microscopic quantum confinement model with a Mott-Hubbard-type
correlation model. We calculate nonperturbatively the evolution of the Coulomb blockade oscillations as a
function of the interdot barrier conductance, obtaining qualitative agreement with the experimental data over
the whole tunneling regime from the weak-coupling individual dot to the strong-coupling coherent double-dot
molecular system.@S0163-1829~97!06844-6#
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I. INTRODUCTION

By tuning the tunnel barrier between the individual do
of a voltage-biased semiconductor double-quantum-dot
tem, it has recently been possible1 to observe the formation
of an artificial double-dot molecule~with each dot as its
atomic constituents! in Coulomb blockade transpor
experiments.1–3 As the interdot tunneling is increased, th
series of linear conductance peaks of the two individual ne
identical dots1–3 changes continuously to a series of sp
peaks which then form a well-defined Coulomb blocka
oscillation series with twice the individual Coulomb bloc
ade period. This period doubling transition in the Coulom
blockade oscillations closely follows the energetics of
transition of two fully isolated dots into a single compos
dot due to enhanced interdot tunneling. This transition ra
important general questions on how the parameters that
be uniquely defined for the isolated system would renorm
ize in the transparent composite system. For example, to
an electron to a single dot requires energy in excess of
intradot interaction energyu11. For two isolated dots in se
ries in a double-dot system, supplying the required ene
u11 corresponds to the addition of one electron to each of
dots. With the increased ‘‘transparency’’ of the system d
to enhanced tunneling, the energyu11 required to add an
electron changes as the doubling in the periodicity of
linear conductance Coulomb peaks demonstrates. The p
nent theoretical question is how to characterize the increa
‘‘transparency’’ of the composite system. The classical
pacitive charging model attributes this transition to the int
dot electrostatic coupling energyu12. In this model each do
is considered to contain an integer number of electrons.
splitting of the individual Coulomb blockade peak is propo
tional to the interdot couplingu12. The saturation of the
splitting in the strong-coupling limit is explained by the in
crease ofu12 to the value ofu11/2 with all the other system
parameters assumed constant.1 The energyu12 is taken to
arise from the capacitive coupling between the two do
which is classically determined by the fixed geometrical
rangement of the dots. Thus, within the classical capaci
charging model the fixed geometrical arrangement of the
dots in the experimental system provides no physical rea
for the increase ofu12 necessary to account for the saturati
of the observed peak splitting. It has also been noted1 that the
560163-1829/97/56~20!/13235~7!/$10.00
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classical capacitance values needed to quantitatively exp
the observed peak splitting are unphysically high.

A recent fully quantum theory4,5 of charge fluctuations
between the two dots formulates the double-dot problem
terms of the dimensionless interdot conductance per tun
ing channelg5Gint /(Nche

2/h) and the number of interdo
tunneling channelsNch. In the limit of the tunneling band-
width being much larger than the intradot charging ener
each dot is treated as an infinite charge reservoir for the o
dot. A perturbation analysis ing or in (12g) reproduces the
weak and strong interdot coupling limits of the peak sp
ting. This multichannel perturbative analysis does not ap
in the intermediate regime where 0!g!1. The charge fluc-
tuation perturbative analysis has not yet been extended to
nonlinear transport regime, which is a main focus of o
work.

In this paper we study the transition from degenerate o
dot Coulomb blockade oscillation to the coherent molecu
double-dot oscillation by using a two-site generalized Mo
Hubbard model within a simple physically motivated micr
scopic confinement potential describing the double-dot s
tem. A Hubbard-type model of linear transport through t
single-particle states of quantum dots6–8 predicts the distinct
phases in the conductance pattern characterized by an
crease of the interdot tunneling strengtht. In the strong tun-
neling limit the Mott-Hubbard insulator-metal transitio
opens a transmission channel through an array of quan
dots.6 To characterize the dependence of the Hubbard mo
parameters on the value of the interdot conductanceg, we
use a one-dimensional phenomenological step-well mo
for the confinement potential profile of the double-dot sy
tem. Using the values of the Mott-Hubbard parameters
termined by our model confinement potential for all valu
of the interdot conductanceg we calculate the nonlinear cur
rent through the double-dot system for the whole range
the interdot coupling in the system. Thus our Mott-Hubba
approach to the double-dot system is in the spirit of
molecular-orbital theories that are widely used in chemis
Our nonperturbativecalculation is complementary in natur
to the existing perturbative4,5 analyses of the problem: in
contrast to the multichannel continuum of states assume
Refs. 4 and 5, and we use a finite number of single-part
states participating in the conduction through the double-
system. Our model should be regarded as a simple non
13 235 © 1997 The American Physical Society
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13 236 56R. KOTLYAR AND S. DAS SARMA
turbative phenomenological picture of the double-dot sys
in the limit of few conducting channels. In spite of this pi
ture’s simplicity, our calculation reproduces qualitatively t
main experimental observations for both linear and nonlin
transport experiments. Our calculated finite temperature s
pression of the linear current also agrees qualitatively w
the experimental observation.2

The rest of the paper is organized as follows. We desc
our Mott-Hubbard molecular-orbital model in Sec. II, al
explaining our transport calculation within the master eq
tion formalism. Our phenomenological double-dot confin
ment potential and the associated microscopic calculatio
the Mott-Hubbard parameters are described in Sec. III. S
tions IV and V give our calculated linear and nonlinear tra
port results, respectively, and we conclude in Sec. VI.

II. MODEL

The capacitive model of the experimental circuit config
ration for the double-dot system1–3 is shown in Fig. 1. We
consider a symmetrical configuration of two identical Ga
dots with the same electrostatic couplings to the comm
back gate and to the bias leads, i.e.,Cg15Cg25Cg ,
C15C25C, Vg15Vg25Vg , and common self-capacitance
C0 . The interdot capacitor with the capacitanceCint provides
the electrostatic coupling between the two dots. Follow
the experiments, we set an asymmetric bias across the
tem, i.e.,V15V, V250. We express the electrostatic part
the free energy of the system using the classical capacit
matrix9 formalism. In the usual final step of going into th
quantum-mechanical description we replace the classica
cess charge on a dot by the charge-density operator. The
operator for the electrostatic free energy of the coupled s
tem of the double dot and leads is

FIG. 1. Variation of the Hubbard model parametersu11, u12, t,
and «1 with soft interdot conductanceg. The conductanceg is in
units of 2e2/h. Insets:~left! the equivalent circuit of the double-do
system under study: the values of the capacitancesC15C2538aF,
the other parameters are defined in the text;~right! the step-well
model as defined in the text.
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Fe5u11~N̂1
21N̂2

2!1u12N̂1N̂21eV~xb1N̂11xb2N̂2!

1eVgxg~N̂11N̂2!. ~1!

In Eq. ~1! the Hubbard parameters are expressed through
elements of the capacitance matrix, i.e.,

u115e2
CS

2d
, u125e2

Cint

d
, xg5

Cg

e2 ~2u111u12!,

xb15
C

e2 ~2u11!, xb25
C

e2 ~u12!,

whereCS5C01Cg1C1Cint , andd5CS
22Cint

2. We as-
sume that the characteristic sizea of each dot is much
greater than the Bohr radiusaB of the bulk GaAs material.
This allows us to use the effective-mass band description
the electron energies within a dot. All electron-electron
teraction and lattice effects of aneutral dot are absorbed in
the electron effective massm* . The band of interest in eac
neutral dot is the empty GaAs conduction band near its z
minimum. The bottom of the conduction band, considered
be the same in all GaAs electrodes in the system, is take
the reference. Due to quantum confinement in the dot
continuous conduction band for an excess quasiparticle
comes a discrete series of single-particle energy levels«a ,
wherea denotes the confined single-particle stateca includ-
ing spin. We consider spin-degenerate single-particle lev
in the dot. The quasiparticles are allowed to tunnel betw
the single-particle states in the two dots with the tunnel
amplitude ta . In the occupation number second-quantiz
basis of single-particle statesca we can write the total free-
energy operator, including the kinetic energy in each dot a
the tunneling energy, as

F05Fe1 (
i 51,2,a

« iac†
iacia2(

a
~ tac†

1ac2a1H.c.!.

~2!

The indices 1,2 denote the spatial positions of the two d
and N̂i5(ac†

iacia is the density operator, wherec†
ia(cia)

is a creation~annihilation! operator for a quasiparticle on th
i th dot in a statea. Thus the applied bias voltageV modifies
the potential landscape of the double dot by lowering
intradot single-particle energies through the capacitive c
pling to the bias lead terms in Eq.~2!. The gate voltageVg
plays the role of the chemical potential, and determines
total number of excess charges in the system at equilibri
This Hamiltonian describes the two-dot system as a sin
coherent system at any strength of tunneling between
dots. As mentioned in the Introduction, this is exactly t
spirit of the molecular-orbital theory in quantum chemistr
which we are adapting here for an artificial two-dot quantu
molecule.

The double dot is isolated from the leads so that it
coupled to them only electrostatically and through~very
weak! tunneling matrix elementsta

1,2. The conductance o
the dot to the leadsGlead50.02e2/h(!e2/h) is kept constant
throughout. ~The lead-dot tunneling strengthst1

1,2

;«1@Glead/(2e2/h)#1/2 are estimated to be 3meV.! The tun-
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56 13 237NONLINEAR TRANSPORT THROUGH COUPLED DOUBLE- . . .
neling hybridization energy between the double-dot and
bias leads is treated as a weak perturbationHT :

HT
1,25(

ka
~ ta

1,2c†
kc1,2a1H.c.!, ~3!

where the indexk denotes a quasiparticle state in the lea
Using Eqs.~1!–~3! we calculate the finite temperatur

current through the double dot system. We use the ma
equation approach and generalize the existing single
formalism10,9 to calculate the current through the double d
treating it as a single system described by Eqs.~1!–~3!, un-
der the assumptions of sequential tunneli
@kT@\G5\(G11G2)# and weak coupling to the outsid
leads. Our master equation based transport calcula
should be valid within our model provided that the lev
separationDF in the double dot system is much less than
width of the transmission resonance\(G11G2), whereG1

(G2) are the tunneling rates from the double dot through
first ~second! junction. We consider the energy relaxatio
time t to be much smaller than the lifetime of a quasiparti
in the double dot, i.e.t!1/G. Similar to a single-dot10 sys-
tem, the probability distribution for the double dot to be
one of its excited states retains its equilibrium form, wher
the probabilityPNTOT

to find NTOT number of quasiparticles
in the double dot is determined by a stationary solution of
kinetic equation. The current through the double dot is th
given by

I 52e (
NTOT

PNTOT
~^GNTOTNTOT11

1 &2^GNTOTNTOT21
1 &!, ~4!

where the angular brackets in the rates denote

^GNTOTNTOT11
1~2! &[(

i j
geqNTOTiGNTOTiNTOT11 j

1~2! , ~5!

and

^GNTOT11NTOT

1~2! &[(
i j

geqNTOT11iGNTOT11iNTOTj
1~2! . ~6!

In the Eqs.~5! and ~6! GNTOT11iNTOTj
1(2) andGNTOTiNTOT11 j

1(2) are

the tunneling rates of a quasiparticle in thei th excited state
rd
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from the NTOT11-excess-electron double dot through t
first or second junction, leaving the double dot withNTOT
excess electrons in one of itsj th excited states, and similarl
for the reverse process. These rates are calculated usin
Fermi golden rule:

GNTOTiNTOT11 j
1~2! 5

2p

\ (
a

u^NTOT11 j ut1~2!
ac†

1~2!auNTOTi &u2

3r1~2!~F0
NTOT11 j2F0

NTOTi2eV1~2!!

3 f ~F0
NTOT11 j2F0

NTOTi2eV1~2!!, ~7!

GNTOTiNTOT21 j
1~2! 5

2p

\ (
a

u^NTOTi ut1~2!
ac†

1~2!auNTOT21 j &u2

3r1~2!~F0
NTOTi2F0

NTOT21 j2eV1~2!!~1

2 f ~F0
NTOTi2F0

NTOT21 j2eV1~2!!. ~8!

In Eqs. ~7! and ~8! r1,2 is the density of states in the lead
which we take to be energy independent. The Fermi-Di
distribution functionf (D) gives the probability to find a qua
siparticle in the lead at the energyD5F0

NTOTi

2F0
NTOT21 j2eV1(2) . The equilibrium probabilitygeqNTOTi

to find a NTOT excess electron double dot in one of itsi th
excited states is given in the canonical ensemble by

geqNTOTi5
exp2bFNTOTi

0

(
i

exp2bFNTOTi
0

, ~9!

whereFNTOTi
0 is the i th excited state energy of the operat

F̂0 in Eq. ~2! evaluated in the Hilbert space ofNTOT .
Using Eqs. ~1!–~9! we calculate the nonlinear curren

through the double dot. In particular, the Coulomb gapDVgap
and the normalized peak splitting1 f defined as the ratio o
the additional energy needed to increase the number of
siparticles by one to its maximum~saturation! value are, re-
spectively, given by~with the total number of particles bein
1 or 2!
DVgap54F ~22b2!~u111«1!2Ab1
2~u111«1!21@~22b2!22b1

2#t2

@~22b2!22b1
2#

G , ~10!
ical
ys-

ac-

he
all
f 5@u111u12/212t2A~u112u12/2!212t2#/~U/2!,
~11!

where u and t are those appearing in the Mott-Hubba
model defined through Eqs.~1!–~3!, U is the intradot inter-
action energy of the isolated dot,b15xb12xb2 and
b25xb11xb2 . Thus a knowledge of the Mott-Hubbard p
rametersu11, u12, t, etc. allows us to obtain the comple
current-voltage characteristics of the double-dot sys
within our simple molecular-orbital-type phenomenologic
model.
m
l

III. A MICROSCOPIC MODEL FOR ESTIMATION
OF HUBBARD PARAMETERS

We construct a simple microscopic quantum-mechan
model to phenomenologically describe the double-dot s
tem depicted in the left inset of Fig. 1 atV50, Vg50.
@Within our model the finite bias and gate voltages are
counted for in the Hamiltonian in Eq.~2!.# Our microscopic
confinement model is shown as the right inset of Fig. 1. T
model uses two identical one dimensional infinite hard w
potential wells to describe the single-particle statesca in the
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13 238 56R. KOTLYAR AND S. DAS SARMA
two isolated dots. Each dot is represented by a two-step
~as shown in Fig. 1! with the lower step well of widtha ~a
region whereca are quasilocalized! representing the intrado
interaction energy of the individual dot, and the rectangu
barrier of potential heightVb and widthd representing the
~variable! tunnel barrier separating the two dots. When t
barrier Vb is large ~e.g.,Vb→`! the tunnel conductance i
vanishingly small and the two dot system is in the uncoup
‘‘atomic’’ limit whereas for smallVb ~e.g.,Vb→0! the di-
mensionless ‘‘tunnel’’ conductance approaches unity and
system is in the composite ‘‘molecular’’ limit. When th
barrier becomes ‘‘transparent’’ and no single-particle stata
satisfying«a,Vb exists, the model breaks down. Within o
one-dimensional confinement model the barrier of heightVb
and width d approximates the intradot constriction. Su
simple one dimensional potential confinement models h
earlier been used11 to study quantum tunneling characteri
tics in three-dimensional systems. We emphasize that
microscopic one dimensional quantum confinement mo
should be taken as a simple phenomenological~rather than a
realistic! description of the experimental double-dot syste

We evaluate the Mott-Hubbard interaction parametersu11
and u12 by taking the expectation values of the screen
Coulomb interaction using the potential confinement mo
for the lowest single-particle states in each dot. We take
Thomas-Fermi form of the screened Coulomb potentialVc
with the screening length as 220 Å. The short-ranged par
the Coulomb interaction is assumed unscreened and is
proximated by ad function potential. The form of the
screened Coulomb potential in the experimental system c
taining many electrodes isa priori unknown. We, therefore
treat the form of the screened Coulomb potential as an
justable fitting parameter for phenomenological convenien
Within our simplistic confinement model such a phenome
logical approach is reasonable. Then the intradot~interdot!
u11 (u12) energy is given by the overlap integral of the Co
lomb potential evaluated between states of the same~differ-
ent! dots:

u115
1

2 E E dydxc1
2~x!Vc~ ux2yu!c1

2~y!, ~12!

u125
1

2 E E dydxc1
2~x!Vc~ ux2yu!c2

2~y!. ~13!

The hopping parametert can be defined in several alternativ
ways within our microscopic model. We evaluatet as
t5Dsas/2, where Dsas is the so-called symmetric
antisymmetric energy gap between the two lowest sing
particle energy levels in our model double-well potenti
Conduction in the coupled dot system occurs through
single spin-degenerate quasiparticle statec1dot at the ground-
state energy«1 of the potential well. Finally, we need t
evaluate the interdot conductanceg within our microscopic
model in order to make direct contact between
experimental1–3 ~and earlier theoretical4,5! results and our
model calculations. The interdot conductanceg can of course
be exactly evaluated for our simple one-dimensional rec
gular barrier model of the point contact separating the t
dots. Because of our hard-wall potential confinement mo
however, the exactly calculated~‘‘hard’’ ! conductance for a
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tunnel barrier of heightVb and width d is a rather poor
approximation~even on a qualitative level! for the experi-
mental interdot point contact conductance. We have, th
fore, employed a ‘‘soft’’ conductance approximation using
WKB expression,g'exp$22@(2md2/\2)(Vb2«1)#

1/2%, which
we believe better represents~on a qualitative level! the adia-
batic confinement potential expected in the experimen
double-dot system. We find much better qualitative agr
ment between our theory and experiment using the ‘‘so
conductance model, which is what we will mostly present
this paper.

Within our highly simplified microscopic model for th
double-dot system, the gate-voltage-induced lowering of
interdot barrierVb causes the crossover from two isolat
dots~for largeVb! of sizea each separated by a distanced to
a single composite coherent double dot~for smallVb! of size
2a1d. Thus a single tunable parameterVb controls the
‘‘transparency’’ of the system and causes the transition.
stead of usingVb as the control parameter, however, w
follow the experimental procedure of using the interdot tu
nel conductanceg ~determined completely byVb in the
‘‘soft’’ and ‘‘hard’’ approximations as described above! as
the control parameter in depicting our results. AsVb is tuned
all the parameters of our model~e.g., t,«1 ,u11,u12,g! vary
as known functions ofVb . We fix the individual dot sizea
('350 nm) using the experimental1 value of the intradot
interaction energyu11'230 meV for the isolated dot. To
compare our model to experiments we take the width of
barrierd to be 10 times smaller thana. There is no particular
significance to this choice ofa510d except that we expec
the individual dot size to be substantially larger than t
barrier region.

Our calculated Hubbard model parameters~e.g.,
«1 ,t,u11,u12! are shown as functions of the correspondi
interdot soft conductanceg in Fig. 1. Althoughu11 andu12
approach each other asg increases, the simplicity of ou
microscopic model does not produceu115u12 for g51. This
is mainly due to the various approximations used in cal
lating the overlap integrals for the Coulomb energy. Th
discrepancy is the most severe quantitative limitation of
model.

We formulated our model in terms of interactionsu11 and
u12, which together define the value of the total capacitan
CS5C01Cg1C1Cint of each dot and the value of the in
terdot capacitanceCint . This leaves the ratioCg /C0 undeter-
mined. We assume it to remain fixed during the merg
transition, and set it to its experimental valueCg /C0'0.1
when the two-dot system is in the ‘‘atomic limit.’’

IV. LINEAR CONDUCTANCE

A. Double-dot peak splitting and Coulomb gap

In Fig. 2 we show our calculated Coulomb blockade o
cillations for the double-dot system~in the linear regime! for
four values of the soft interdot conductanceg50.16, 0.52,
0.8, and 0.99 atT587 mK (kbT!u11). Note that for the
sequential tunneling situation considered here, the width
the Coulomb blockade peaks arises entirely from therm
broadening. Our calculated evolution of the Coulomb bloc
ade oscillations from the degenerate single-dot oscillati
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~at low g! through peak splitting~intermediateg! to the
eventual period doubling~at largeg! of the Coulomb block-
ade oscillations is qualitatively similar to experimental o
servations~cf. Fig. 5 of Ref. 1!. To further quantify our re-
sults we show in Fig. 3 our calculated normalized pe
splitting f @Eq. ~10!# and the Coulomb gapDVgap @Eq. ~11!#
as functions of the interdot tunnel conductanceg, both for
soft and hard conductance models. The corresponding
perimental data1 for f show considerable scatter and our r
sults ~for the soft model! agree with experiment. The har
model, however, disagrees with the experimental results
reasons discussed above. We point out that the main qu
tative limitation of our model seems to be a weaker~stron-
ger! dependence of bothf andDVgap on the tunnel conduc

FIG. 2. The conductancegdd in units of e2/h through the
double-quantum-dot system versus the gate voltageVg for four val-
ues of the soft interdot conductanceg50.16, 0.52, 0.8, and 0.99 a
T587 mK in the linear regime (Vsd510meV). We use«2 /«152,
t2 /t151.2, andt2

1,2/t1
1,251.2 for the single-particle spin degenera

levels.

FIG. 3. Calculated normalized peak splittingf @Eq. ~11!# and the
Coulomb gapDVgap @Eq. ~10!# as functions of the interdot tunne
conductanceg ~top and bottom panels! for soft and hard~thick
lines! conductance models. The dashed lines show the bound
for the scatter of the experimental data~taken from Fig. 5 of the
second paper in Ref. 1!. The top thin line in the bottom panel show
the Coulomb gap forfixedvalues ofDVgap with u115227 meV and
u1250.11meV.
-

k

x-
-

or
ti-

tance g for small ~large! values of g than seen in
experiments. We want to emphasize here that due to
various~somewhat arbitrary! approximations that we use t
calculatea priori unknown phenomenological parameters
our microscopic model, we do not expect to get quantitat
agreement with the experimental results that the perturba
theories obtain4,5 @for g, (12g)!1#. The experiments were
apparently carried out in the regime of more than one sing
particle state per interdot conducting channel, making
continuum description of Refs. 4 and 5 appropriate for
calculation off . However, our model suggests a mechani
for the merging of two dots into one composite dot in t
limit of one single-particle state per conducting channel—
situation that cannot be covered by the perturbative theor
In principle, experiments can be performed in the regime
study, namely, when there is only one single-particle st
per conducting channel. Our calculated normalized splitt
f in Fig. 3 shows a qualitative agreement with the expe
mental data, suggesting that even the extreme limit stud
by us may be germane to real systems.

We should also note that the assumption that intradot
interdot interaction energies are fixed at values of isola
dots is inadequate within our model, as we find a small va
tion of the Coulomb gap calculated for this situation~see the
bottom panel of Fig. 3!.

B. Temperature dependence of linear conductance

In the linear bias voltage regime at charge degener
points@F0

0(NTOT)5F0
0(NTOT11)#, the two states withNTOT

andNTOT11 give the dominant contribution to conductanc
and the expression for current reduces to

I 52e (
NTOT

^GNTOTNTOT11
1 &^GNTOT11NTOT

2 &

^GNTOTNTOT11
1 &1^GNTOT11NTOT

2 &
. ~14!

For thermal energy smaller~larger! than the level separation
~the width of transmission resonance! in a double-dot the
conductance formula reduces to a single-dot result:10

gdd52e2 (
NTOT

GNTOTNTOT11
1 GNTOT11NTOT

2

GNTOTNTOT11
1 1GNTOT11NTOT

2 f 8@F0
0~NTOT11!

2F0
0~NTOT!#. ~15!

Thus the height of a conductance peak is inversely prop
tional to temperature, the width is linear in temperature, a
the line shape is given by the inverse hyperbolic cos
squared, i.e.,

gdd;
1

kT
cosh22S F0

0~NTOT11!2F0
0~NTOT!

2kT D .

This fairly strong temperature dependence of the linear c
ductance is a direct result of our assumption of one sing
particle state per conducting channel in our Mott-Hubba
molecular orbital model—by contrast, the perturbati
theories4,5 with a continuum of states predict extremely we
temperature dependence.

We show in Fig. 4 the directly numerically calculate
Coulomb blockade oscillations forg50.16 andg50.8 for
several temperatures in our theory. Note that the double-p

ies
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13 240 56R. KOTLYAR AND S. DAS SARMA
splitting is not resolved in Fig. 4 when
2kT'F0

0(NTOT11)2F0
0(NTOT);u1212t. The temperature

dependence of peak widths in Fig. 5~a! is described rathe

FIG. 4. The conductancegdd versus the gate voltageVg for two
values of the soft interdot conductanceg50.16 ~upper panel! and
g50.8 ~lower panel! is shown forT520, 30, 100, 400, and 600
~mK! temperatures from top to bottom in each panel.

FIG. 5. The widthsW ~a! and the heightsGpeak ~b! of the con-
ductance peaks at charge degeneracy pointsF0

0(NTOT52)
5F0

0(NTOT53) for soft g50.16 ~pluses!, g50.8 ~squares!, and
g50.92 ~triangles!; and at F0

0(NTOT53)5F0
0(NTOT54)

for g50.16 ~asterisks!, g50.8 (X), andg50.92 ~diamonds! as a
function of temperature.
well by Eq.~15!, i.e.,W52kT/xg . The slope of the tempera
ture dependence ofW in Fig. 5~a! is given byxg ~and there-
fore by the ratioCg /C0! which remains approximately un
changed during the transition to the composite system
agreement with our theoretical results as shown in Fig. 5~a!
the experimentally observed1 temperature dependence of th
peak widths is also linear in temperature.

As expected for a finite number of single-particle sta
participating in the conduction through the double-dot, t
conductance peak heights are suppressed in Fig. 5~b!. Ex-
perimentally the peak suppression is seen, but is not
strong as that predicted by Eq.~15!. The experimentally ob-
served peak height suppression indicates that for a rang
temperatures the experiments1,2 might have been performe
in the regime where a finite number of states per conduc
channel participate in tunneling. The continuu
description4,5 predicts no suppression of the conductan
peak height, in contrast to the experimental observation.

V. NONLINEAR SEQUENTIAL TUNNELING CURRENT

Finally, in Fig. 6 we show forg50.16, 0.8, and 0.99 ou
calculated nonlinear Coulomb blockade transport charac
istics for the double-dot system by plotting the calculat
current~in gray scales! as a function of both the source-dra
voltage and the gate voltage. Again, our results are in g
qualitative agreement with the experimental data2 with the
main quantitative discrepancy arising from the inadequac
our tunnel conductance valueg, which is relatively higher
than the corresponding experimental result.

In Fig. 7 we show a familiar Coulomb blockade stairca
structure at fixed values of gate voltageVg in Fig. 6. Each
new ground state of a double-dot with increased total num
of excess charges by one adds a step in the current se
this plot. The level separation between the excited state
comparable to thermal energy and is not resolved in Fig

FIG. 6. The nonlinear currentI through the double-dot system
~at T587 mK! is plotted versus the values of the gate voltageVg

and the bias voltageVSD for three values of the interdot soft con
ductanceg50.16, 0.8, 0.99. The brightest shades in the plots c
respond toI 559, 76, and 78 pA for the graphs from top to bottom
The states withN50 to N58 electrons in the double-dot syste
contribute toI in the shown parameter space.
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Overall our calculated nonlinear transport characteristics
in reasonably good qualitative agreement with the exp
mental observations.

VI. SUMMARY

In conclusion, using a simple single-parameter (Vb) one-
dimensional microscopic confinement model we calcul
nonperturbativelythe linear and nonlinear Coulomb block
ade characteristics of a double dot system as a function o
interdot tunnel conductance. Our results are in reason
qualitative agreement with the experimental results. We
obtain better quantitative agreement with experiment by
ing additional~e.g.,d anda! adjustable parameters in a two
dimensional depiction of a double dot, or by including t
dependence of all the Mott-Hubbard parameters on the
cited single-particle states in each dot, as well as by us
more refined definitions of the form of the screened Coulo
potential, but we feel that such ‘‘improvements’’ are not pa
ticularly meaningful within our simple model. Our approa
to nonlinear transport in the double-dot system for arbitr
interdot coupling strengths gives a physical justification

FIG. 7. Coulomb blockade staircase structure inI through the
double-dot system~at T587 mK! is shown for fixed values ofVg at
the centers of the linear bias regime stability regions in Fig. 6 o
double dot withNTOT52 and NTOT53 excess charges for thre
values of the interdot soft conductanceg50.16 ~dash dotted line!,
g50.8 ~dashed line!, andg50.99 ~solid line!.
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b
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y

the variation of all the model parameters with the strength
the interdot coupling alluded to in the classical chargi
models,1 without sacrificing the important charge fluctuatio
effects that are the main feature of the existing weak a
strong coupling perturbative quantum theories.4,5

We have emphasized throughout that our Mott-Hubb
Hamiltonian-based molecular-orbital approach iscomple-
mentaryto the perturbative charge fluctuation theory dev
oped earlier in Refs. 4 and 5. The perturbative calculati
incorporate a continuum of states whereas we have a fi
number~actually, one! of states per conducting channel. Th
perturbative theory is exact for smallg ~or 12g! whereas
the various uncontrolled approximations we use in calcu
ing our Mott-Hubbard parameters render our theory qua
tatively not particularly reliable in any limits. On the othe
hand, our calculation is nonperturbative and can be use
calculate nonlinear transport characteristics through
double-dot system. The fact that our calculated tempera
dependence of linear conductance is in reasonable agree
with experimental observations~the continuum perturbative
theories predict negligible temperature dependence! suggests
that, at least in some temperature regime, the experime
double dot system most likely is in an intermediate region
between the two theoretical limits of many states per c
ducting channel4,5 and just one state per channel as we use
our Mott-Hubbard description. We note that it is, in pri
ciple, possible6 for us to include more than one state p
channel in our numerical calculations, but for reasons
ready discussed it is unclear that such a calculation i
meaningful improvement within our simple model. We b
lieve that the most significant feature of our theory is t
explicit demonstration that a simple molecular-orbital-ty
model is capable of providing a good qualitative descript
for the linear and nonlinear transport properties of a doub
quantum-dot system over a wide range of bias voltage
temperature.
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