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Nonlinear transport through coupled double-quantum-dot systems
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We investigate transport via sequential tunneling through a semiconductor double quantum dot structure by
combining a simple one-dimensional microscopic quantum confinement model with a Mott-Hubbard-type
correlation model. We calculate nonperturbatively the evolution of the Coulomb blockade oscillations as a
function of the interdot barrier conductance, obtaining qualitative agreement with the experimental data over
the whole tunneling regime from the weak-coupling individual dot to the strong-coupling coherent double-dot
molecular system.S0163-18207)06844-9

[. INTRODUCTION classical capacitance values needed to quantitatively explain
the observed peak splitting are unphysically high.

By tuning the tunnel barrier between the individual dots A recent fully quantum theofy’ of charge fluctuations
of a voltage-biased semiconductor double-quantum-dot sysetween the two dots formulates the double-dot problem in
tem, it has recently been possible observe the formation terms of the dimensionless interdot conductance per tunnel-
of an artificial double-dot moleculéwith each dot as its ing channelg=G;,/(Ne?/h) and the number of interdot
atomic constituen)s in Coulomb blockade transport tunneling channel®,. In the limit of the tunneling band-
experiments—3 As the interdot tunneling is increased, the width being much larger than the intradot charging energy,
series of linear conductance peaks of the two individual neareach dot is treated as an infinite charge reservoir for the other
identical dot$~3 changes continuously to a series of splitdot. A perturbation analysis ig or in (1—g) reproduces the
peaks which then form a well-defined Coulomb blockadeweak and strong interdot coupling limits of the peak split-
oscillation series with twice the individual Coulomb block- ting. This multichannel perturbative analysis does not apply
ade period. This period doubling transition in the Coulombin the intermediate regime where<gy<1. The charge fluc-
blockade oscillations closely follows the energetics of thetuation perturbative analysis has not yet been extended to the
transition of two fully isolated dots into a single composite nonlinear transport regime, which is a main focus of our
dot due to enhanced interdot tunneling. This transition raisesork.
important general questions on how the parameters that can In this paper we study the transition from degenerate one-
be uniquely defined for the isolated system would renormaldot Coulomb blockade oscillation to the coherent molecular
ize in the transparent composite system. For example, to adgbuble-dot oscillation by using a two-site generalized Mott-
an electron to a single dot requires energy in excess of thelubbard model within a simple physically motivated micro-
intradot interaction energy,;. For two isolated dots in se- scopic confinement potential describing the double-dot sys-
ries in a double-dot system, supplying the required energyem. A Hubbard-type model of linear transport through the
uy; corresponds to the addition of one electron to each of theingle-particle states of quantum dbtpredicts the distinct
dots. With the increased “transparency” of the system duephases in the conductance pattern characterized by an in-
to enhanced tunneling, the energy,; required to add an crease of the interdot tunneling strengthn the strong tun-
electron changes as the doubling in the periodicity of theneling limit the Mott-Hubbard insulator-metal transition
linear conductance Coulomb peaks demonstrates. The pertipens a transmission channel through an array of quantum
nent theoretical question is how to characterize the increasedbts® To characterize the dependence of the Hubbard model
“transparency” of the composite system. The classical caparameters on the value of the interdot conductagjceve
pacitive charging model attributes this transition to the interuse a one-dimensional phenomenological step-well model
dot electrostatic coupling energy,. In this model each dot for the confinement potential profile of the double-dot sys-
is considered to contain an integer number of electrons. Theem. Using the values of the Mott-Hubbard parameters de-
splitting of the individual Coulomb blockade peak is propor-termined by our model confinement potential for all values
tional to the interdot couplingi;,. The saturation of the of the interdot conductanagwe calculate the nonlinear cur-
splitting in the strong-coupling limit is explained by the in- rent through the double-dot system for the whole range of
crease oluy, to the value ofu;4/2 with all the other system the interdot coupling in the system. Thus our Mott-Hubbard
parameters assumed constafthe energyu,, is taken to  approach to the double-dot system is in the spirit of the
arise from the capacitive coupling between the two dotsmolecular-orbital theories that are widely used in chemistry.
which is classically determined by the fixed geometrical ar-Our nonperturbativecalculation is complementary in nature
rangement of the dots. Thus, within the classical capacitivéo the existing perturbatiVeé analyses of the problem: in
charging model the fixed geometrical arrangement of the tweontrast to the multichannel continuum of states assumed in
dots in the experimental system provides no physical reasoRefs. 4 and 5, and we use a finite number of single-particle
for the increase ofi;, necessary to account for the saturationstates participating in the conduction through the double-dot
of the observed peak splitting. It has also been noieat the  system. Our model should be regarded as a simple nonper-
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In Eq. (1) the Hubbard parameters are expressed through the
elements of the capacitance matrix, i.e.,
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where Cy =Cy+ Cy+C+Ciy, and 6=Cs2—Ci,°>. We as-
0.0 02 0.4 06 08 1.0 sume that the cﬁaracteristic size of each dot is much
g greater than the Bohr radiwg; of the bulk GaAs material.
o This allows us to use the effective-mass band description of
FIG. 1. Variation of the Hubbard model parameteys, Uio. 1. the electron energies within a dot. All electron-electron in-

and e, with soft interdot conductancg. The conductancg is in
units of 2?/h. Insets:(left) the equivalent circuit of the double-dot
system under study: the values of the capacitafgesC,= 38aF,
the other parameters are defined in the téwght) the step-well
model as defined in the text.

teraction and lattice effects of reeutral dot are absorbed in

the electron effective mase*. The band of interest in each

neutral dot is the empty GaAs conduction band near its zone

minimum. The bottom of the conduction band, considered to

be the same in all GaAs electrodes in the system, is taken as

the reference. Due to quantum confinement in the dot the

turbative phenomenological picture of the double-dot systengontinuous conduction band for an excess quasiparticle be-

in the limit of few conducting channels. In spite of this pic- comes a discrete series of single-particle energy lexgls

ture’s simplicity, our calculation reproduces qualitatively thewhere« denotes the confined single-particle stétginclud-

main experimental observations for both linear and nonlineaing spin. We consider spin-degenerate single-particle levels

transport experiments. Our calculated finite temperature sugn the dot. The quasiparticles are allowed to tunnel between

pression of the linear current also agrees qualitatively wittthe single-particle states in the two dots with the tunneling

the experimental observatién. amplitudet,. In the occupation number second-quantized
The rest of the paper is organized as follows. We describ&asis of single-particle statefs, we can write the total free-

our Mott-Hubbard molecular-orbital model in Sec. Il, also €nergy operator, including the kinetic energy in each dot and

explaining our transport calculation within the master equathe tunneling energy, as

tion formalism. Our phenomenological double-dot confine-

ment potential and the associated microscopic calculation of —o_ e t _ t

the Mott-Hubbard parameters are described in Sec. Ill. Sec- F=F +i=§‘za FiaC iaCia Ea: (taC1aC2at H.C).

tions IV and V give our calculated linear and nonlinear trans- 2

port results, respectively, and we conclude in Sec. VI. o ) »
The indices 1,2 denote the spatial positions of the two dots,

andN;=3 c" c;, is the density operator, wheed, ,(ci,)
Il. MODEL is a creationannihilation) operator for a quasiparticle on the
ith dot in a stater. Thus the applied bias voltagémodifies
the potential landscape of the double dot by lowering the
intradot single-particle energies through the capacitive cou-
pling to the bias lead terms in E(). The gate voltage/,

The capacitive model of the experimental circuit configu-
ration for the double-dot systén? is shown in Fig. 1. We

consider a symmetrical configuration of two identical GaAs lays the role of the chemical potential, and determines the

dots with the same electrostatic couplings to the COMMON,a| hymber of excess charges in the system at equilibrium.
back gate and to the bias leads, i.€41=Cg=Cq,  Thijs Hamiltonian describes the two-dot system as a single
C,1=C,=C, Vy1=Vy=V,, and common self-capacitances coherent system at any strength of tunneling between the
Co. The interdot capacitor with the capacitari@g; provides  dots. As mentioned in the Introduction, this is exactly the
the electrostatic coupling between the two dots. Followingspirit of the molecular-orbital theory in quantum chemistry,
the experiments, we set an asymmetric bias across the sywhich we are adapting here for an artificial two-dot quantum
tem, i.e..V=V, V,=0. We express the electrostatic part of molecule.

the free energy of the system using the classical capacitance The double dot is isolated from the leads so that it is
matrix’ formalism. In the usual final step of going into the coupled to them only electrostatically and througrery
guantum-mechanical description we replace the classical exveak tunneling matrix eIementsﬁ;z. The conductance of
cess charge on a dot by the charge-density operator. Then ttge dot to the lead6.,=0.02%/h(<e?/h) is kept constant
operator for the electrostatic free energy of the coupled syshroughout. (The lead-dot tunneling strengthst}?

tem of the double dot and leads is ~&41[ Gjead/ (2€%/) V2 are estimated to be @eV.) The tun-
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neling hybridization energy between the double-dot and thérom the N1+ 1-excess-electron double dot through the

bias leads is treated as a weak perturbatign first or second junction, leaving the double dot withor
excess electrons in one of itth excited states, and similarly
H%’ZIZ (ti,chkclzaJr H.c), (3) for the reverse process. These rates are calculated using the
ka ' Fermi golden rule:

where the indeX denotes a quasiparticle state in the leads. o

Using Egs.(1)—(3) we calculate the finite temperature 1(2) = 1412 o1 V|2
current through the double dot system. We use the master torNtort 1 4 ; [(Nrort 3j1teCa(210lN7ori)|
equation approach and generalize the existing single-dot 12), 20 o B
formalism®®to calculate the current through the double dot, XPp T (F N+ 1)~ F g ~8Va2)
treating it as a single system described by Eds-(3), un- X f(FO CEO eV, %)
der the assumptions of sequential  tunneling Nror*t1i © Nrorl 127
[kKT>AT=A(I'1+T2?)] and weak coupling to the outside
leads. Our master equation based transport calculatiori,l(z) _ 2_77 S [(Nrori [t42) ¢t Neo— 1i)[2
should be valid within our model provided that the level = NroriNtor=1i7 7 < [(Nror [t4C12)al Nror— 1))
separatiom\F in the double dot system is much less than the

width of the transmission resonansél’*+1'?), wherel'? X prP(FO\ i = FONpo-1i— 8 Vi) (1
(I'?) are the tunneling rates from the double dot through the 0 0
first (second junction. We consider the energy relaxation T (F Nrori ~F N1~ 8Vag2)- ®)

time 7to be much smaller than the lifetime of a quasiparticle 1. ) )

in the double dot, i.er<1/T. Similar to a single-ddP sys- N EQs.(7) and(8) p™“is the density of states in the leads,
tem, the probability distribution for the double dot to be in Which we take to be energy independent. The Fermi-Dirac
one of its excited states retains its equilibrium form, whereadlistribution functionf (A) gives the probability to fm%a qua-
the probabilityPy___to find Nror number of quasiparticles siparticle in the lead at the energyA=F7y

in the double dot is determined by a stationary solution of the™ F"N;;-1j~€Vi(2). The equilibrium probabilitygeq, ;i
kinetic equation. The current through the double dot is therio find a Ntor excess electron double dot in one of iith

given by excited states is given in the canonical ensemble by
=- ; —(r exp—AFY .
| EN%T PNTOT(<F NyorNTor+ (T NromNToT— 1), @) Goaiog i = ToT! , 9
0
where the angular brackets in the rates denote i exp-p FNTOTi
1(2) _ 1(2) whereF?_ . is theith excited state energy of the operator
<FNTOTNTOT+ 1>_i2j geq\‘TOTiFNTOTiNTOT+ 1j> ) 0 Nror! . . a9y P
F* in Eq. (2) evaluated in the Hilbert space bdfg7.
and Using Egs.(1)—(9) we calculate the nonlinear current

through the double dot. In particular, the Coulomb dag,,,

and the normalized peak splittihg defined as the ratio of
the additional energy needed to increase the number of qua-
1(2) 12) sipart_icles by one to i_ts maximuisaturation valu_e are, re-

In the Eqs.(5) and(6) '/ . 1in,o, @NATN; Cinoo+1j @M€ spectively, given bywith the total number of particles being
the tunneling rates of a quasiparticle in tib excited state 1 or 2

(6)

Nror+INtor Nror+1iNtor -

1(2) — 1(2)
(TN >—; Jecyor+ il (

(2—D,)(Ugy+e1) — Vbi(Uyy+eq)2+[(2—Db,)2—Dbi]t2
[(2—b,)2—Db3] ’

AVg=4 (10)

F= [Upt Upp/2+ 2t— {Ugam Ugp12) 24 2C21/(U/2), lll. A MICROSCOPIC MODEL FOR ESTIMATION
(11) OF HUBBARD PARAMETERS

where u andt are those appearing in the Mott-Hubbard We construct a simple microscopic quantum-mechanical
model defined through Eqg$l)—(3), U is the intradot inter- model to phenomenologically describe the double-dot sys-
action energy of the isolated doth;=x,;—X,, and tem depicted in the left inset of Fig. 1 a&=0, V,=0.
b,=Xp1+Xy2. Thus a knowledge of the Mott-Hubbard pa- [Within our model the finite bias and gate voltages are ac-
rametersu;;, Uq,, t, etc. allows us to obtain the complete counted for in the Hamiltonian in Eq42).] Our microscopic
current-voltage characteristics of the double-dot systenconfinement model is shown as the right inset of Fig. 1. The
within our simple molecular-orbital-type phenomenologicalmodel uses two identical one dimensional infinite hard wall
model. potential wells to describe the single-particle staggsn the
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two isolated dots. Each dot is represented by a two-step wetunnel barrier of heigh, and widthd is a rather poor
(as shown in Fig. Lwith the lower step well of widtha (a  approximation(even on a qualitative levefor the experi-
region wherey, are quasilocalizeédepresenting the intradot mental interdot point contact conductance. We have, there-
interaction energy of the individual dot, and the rectangularffore, employed a “soft” conductance approximation using a
barrier of potential heigh¥,, and widthd representing the WKB expressiong~exp{—2[(2md/4?)(V,—&1) ¥4, which
(variable tunnel barrier separating the two dots. When thewe believe better represer{tsn a qualitative leveglthe adia-
barrierV,, is large(e.g., Vp,— =) the tunnel conductance is batic confinement potential expected in the experimental
vanishingly small and the two dot system is in the uncoupledlouble-dot system. We find much better qualitative agree-
“atomic” limit whereas for smallV, (e.g.,V,—0) the di- ment between our theory and experiment using the *“soft”
mensionless “tunnel” conductance approaches unity and theonductance model, which is what we will mostly present in
system is in the composite “molecular” limit. When the this paper.
barrier becomes “transparent” and no single-particle state Within our highly simplified microscopic model for the
satisfyinge , <V, exists, the model breaks down. Within our double-dot system, the gate-voltage-induced lowering of the
one-dimensional confinement model the barrier of height interdot barrierVy, causes the crossover from two isolated
and width d approximates the intradot constriction. Such dots(for largeV,) of sizea each separated by a distartte
simple one dimensional potential confinement models have single composite coherent double dfor smallV,) of size
earlier been uséd to study quantum tunneling characteris- 2a+d. Thus a single tunable parametéy, controls the
tics in three-dimensional systems. We emphasize that oditransparency” of the system and causes the transition. In-
microscopic one dimensional quantum confinement mode$tead of usingV, as the control parameter, however, we
should be taken as a simple phenomenolodiaher than a follow the experimental procedure of using the interdot tun-
realistig description of the experimental double-dot system.nel conductanceg (determined completely by, in the
We evaluate the Mott-Hubbard interaction parametggs  “soft” and “hard” approximations as described abovas
and uj;, by taking the expectation values of the screenedhe control parameter in depicting our results.\Asis tuned
Coulomb interaction using the potential confinement modehkll the parameters of our modé.g.,t,e4,U 1,U12,9) vary
for the lowest single-particle states in each dot. We take thas known functions o¥,,. We fix the individual dot sizex
Thomas-Fermi form of the screened Coulomb potentfal (~350 nm) using the experimentavalue of the intradot
with the screening length as 220 A. The short-ranged part ohteraction energyu;;~230 ueV for the isolated dot. To
the Coulomb interaction is assumed unscreened and is apempare our model to experiments we take the width of the
proximated by a¢d function potential. The form of the barrierd to be 10 times smaller tham There is no particular
screened Coulomb potential in the experimental system corsignificance to this choice af=10d except that we expect
taining many electrodes & priori unknown. We, therefore, the individual dot size to be substantially larger than the
treat the form of the screened Coulomb potential as an adbsarrier region.
justable fitting parameter for phenomenological convenience. Our calculated Hubbard model parameterg.g.,
Within our simplistic confinement model such a phenomeno<,,t,u;;,u;,) are shown as functions of the corresponding
logical approach is reasonable. Then the intra@aterdo)  interdot soft conductancg in Fig. 1. Althoughuy; andu,
uy; (Ugp) energy is given by the overlap integral of the Cou- approach each other &g increases, the simplicity of our
lomb potential evaluated between states of the satiffer- microscopic model does not produeg = u,, for g=1. This
eny dots: is mainly due to the various approximations used in calcu-
L lating the overlap integrals for the Coulomb energy. This
U11:§ J' J' dydxr 200V o([x—y) in2(y), (12 ?r:z%re(elPancy is the most severe quantitative limitation of our
We formulated our model in terms of interactiamg and
1 ) ) Uq,, Which together define the value of the total capacitance
Uso=> j j dydx*(OVe(Ix=yD#2*(y). (13 Cy=Cy+Cy+C+Ciy of each dot and the value of the in-
terdot capacitanc€;,. This leaves the rati€,/C, undeter-
The hopping parametércan be defined in several alternative mined. We assume it to remain fixed during the merging
ways within our microscopic model. We evaluateas transition, and set it to its experimental valGg/Cy~0.1
t=Agd2, where Ags is the so-called symmetric- when the two-dot system is in the “atomic limit.”
antisymmetric energy gap between the two lowest single-
particle energy levels in our model double-well potential.
Conduction in the coupled dot system occurs through a IV. LINEAR CONDUCTANCE
single spin-degenerate quasiparticle siatg,at the ground-
state energy, of the potential well. Finally, we need to
evaluate the interdot conductangewithin our microscopic In Fig. 2 we show our calculated Coulomb blockade os-
model in order to make direct contact between thecillations for the double-dot systefm the linear regimgfor
experimentd (and earlier theoretichf) results and our four values of the soft interdot conductange0.16, 0.52,
model calculations. The interdot conductagoean of course 0.8, and 0.99 af =87 mK (k,T<uq;). Note that for the
be exactly evaluated for our simple one-dimensional rectansequential tunneling situation considered here, the width of
gular barrier model of the point contact separating the twadhe Coulomb blockade peaks arises entirely from thermal
dots. Because of our hard-wall potential confinement modebroadening. Our calculated evolution of the Coulomb block-
however, the exactly calculatétihard” ) conductance for a ade oscillations from the degenerate single-dot oscillations

A. Double-dot peak splitting and Coulomb gap
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tance g for small (large values of g than seen in

T 0.02 g=,1° experiments. We want to emphasize here that due to the
=0 0.00 ] /\ /\ E various(somewhat arbitrapyapproximations that we use to
< 0.02F g = 52 : calculatea priori unknown phenomenological parameters in
iy ’ i ]\/\ /\/\ 3 our microscopic model, we do not expect to get quantitative
0.00 /\/\ : agreement with the experimental results that the perturbative
< 0.02F g=38 theories obtaih® [for g, (1—g)<1]. The experiments were
85 M M M : apparently carried out in the regime of more than one single-
0.00 : particle state per interdot conducting channel, making the
i 0.02F g=.99 - continuum description of Refs. 4 and 5 appropriate for the
af 3 M M M E calculation off. However, our model suggests a mechanism
0.00 for the merging of two dots into one composite dot in the
-12 -10 -8 -6 -4 -2 O limit of one single-particle state per conducting channel—a
V, (mv) situation that cannot be covered by the perturbative theories.

In principle, experiments can be performed in the regime we
FIG. 2. The conductancgyq in units of e/h through the  study, namely, when there is only one single-particle state
double-quantum-dot system versus the gate voltgger four val-  per conducting channel. Our calculated normalized splitting
ues of the _soft int(_erdot con_ductange:0.16, 0.52,0.8,and 0.99 at § i Fig. 3 shows a qualitative agreement with the experi-
T=87 mKiin the linear regime\(s;=10 ueV). We uses;/e1=2,  mental data, suggesting that even the extreme limit studied
t,/t;=1.2, andt}¥t}?=1.2 for the single-particle spin degenerate by us may be germane to real systems.
levels. We should also note that the assumption that intradot and
interdot interaction energies are fixed at values of isolated
(at low g) through peak splittingiintermediateg) to the  dots is inadequate within our model, as we find a small varia-
eventual period doublin¢at largeg) of the Coulomb block- tion of the Coulomb gap calculated for this situatisee the
ade oscillations is qualitatively similar to experimental ob-bottom panel of Fig. B
servations(cf. Fig. 5 of Ref. }. To further quantify our re-
sults we show in Flg 3 our calculated normalized peak B. Temperature dependence of linear conductance

splitting f [Eq. (10)] and the Coulomb gap Ve, [Bq. (11)] In the linear bias voltage regime at charge degeneracy

as functions of the interdot tunnel conductamgeboth for : 0 s :
soft and hard conductance models. The corresponding e?—omts[FO(NTO_T)_FO(NTOT+1)]’ the_two_ states wittNror
perimental datafor f show considerable scatter and our re-&"dNror+ 1 give the dominant contribution to conductance,

sults (for the soft model agree with experiment. The hard 2nd the expression for current reduces to

model, however, disagrees with the experimental results for (Fl )(F2 )
reasons discussed above. We point out that the main quanti- |=— lNTOTNTOT+l N;OT+ INror (14)
tative limitation of our model seems to be a weakstron- Nror (T Nygrrort 22 T Ny g+ INpop)

gen dependence of both andAVy,, on the tunnel conduc- )
For thermal energy smalldtargep than the level separation

(the width of transmission resonance a double-dot the
conductance formula reduces to a single-dot rédult:

1

1—‘N N Jrll—‘ﬁ + 1N
_ 2 TOT'TOT TOT TOT 0
Qu=—€2 > =1 2 f'[Fo(Ntort+1)

r +T
NtoT & NygiNortl NtottINToT

—FS(Nom)]. (15)

Thus the height of a conductance peak is inversely propor-
tional to temperature, the width is linear in temperature, and
the line shape is given by the inverse hyperbolic cosine
squared, i.e.,

‘ 1 [ Fo(Nror+1) = Fg(Nror)
0.0 0.2 0.4 06 0.8 1.0 9aa~ j COSh KT :

9 This fairly strong temperature dependence of the linear con-

FIG. 3. Calculated normalized peak splittifgEq. (1)] and the ~ ductance is a direct result of our assumption of one single-
Coulomb gapAV,, [Eq. (10)] as functions of the interdot tunnel particle state per conducting channel in our Mott—Hubb_ard
conductanceg (top and bottom panelsior soft and hardithick ~ Molecular orbital model—by contrast, the perturbative
lines conductance models. The dashed lines show the boundaridgeorie$ with a continuum of states predict extremely weak
for the scatter of the experimental ddtaken from Fig. 5 of the temperature dependence.
second paper in Ref)1The top thin line in the bottom panel shows ~ We show in Fig. 4 the directly numerically calculated
the Coulomb gap fofixedvalues ofAV,, with u;;=227 ueV and ~ Coulomb blockade oscillations fag=0.16 andg=0.8 for
Uy,=0.11 ueVv. several temperatures in our theory. Note that the double-peak
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FIG. 4. The conductanogyy versus the gate voltagé, for two
values of the soft interdot conductange: 0.16 (upper paneland
g=0.8 (lower panel is shown forT=20, 30, 100, 400, and 600
(mK) temperatures from top to bottom in each panel.

splitting is not resolved in Fig. 4 when
dependence of peak widths in Figiabis described rather
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FIG. 5. The widthsW (&) and the height$ e, () of the con-
ductance peaks at charge degeneracy poiﬁ&NTOT=2)
=F8(NTOT=3) for soft g=0.16 (pluses, g=0.8 (squares and
g=0.92 (triangles; and at FY(Nror=3)=F3(Ntor=4)
for g=0.16 (asterisky g=0.8 (X), andg=0.92 (diamond$ as a
function of temperature.
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FIG. 6. The nonlinear currentthrough the double-dot system
(at T=87 mK) is plotted versus the values of the gate voltage
and the bias voltag¥gp, for three values of the interdot soft con-
ductanceg=0.16, 0.8, 0.99. The brightest shades in the plots cor-
respond td =59, 76, and 78 pA for the graphs from top to bottom.
The states witiN=0 to N=8 electrons in the double-dot system
contribute tol in the shown parameter space.

well by Eq.(15), i.e., W= 2KT/x4. The slope of the tempera-
ture dependence & in Fig. a) is given byx, (and there-
fore by the ratioC,4/Cp) which remains approximately un-
changed during the transition to the composite system. In
agreement with our theoretical results as shown in Fig. 5
the experimentally observétemperature dependence of the
peak widths is also linear in temperature.

As expected for a finite number of single-particle states
participating in the conduction through the double-dot, the
conductance peak heights are suppressed in Fiy). Ex-
perimentally the peak suppression is seen, but is not as
strong as that predicted by E(.5). The experimentally ob-
served peak height suppression indicates that for a range of
temperatures the experimehtanight have been performed
in the regime where a finite number of states per conducting
channel participate in tunneling. The continuum
descriptiof® predicts no suppression of the conductance
peak height, in contrast to the experimental observation.

V. NONLINEAR SEQUENTIAL TUNNELING CURRENT

Finally, in Fig. 6 we show fog=0.16, 0.8, and 0.99 our
calculated nonlinear Coulomb blockade transport character-
istics for the double-dot system by plotting the calculated
current(in gray scalesas a function of both the source-drain
voltage and the gate voltage. Again, our results are in good
qualitative agreement with the experimental datdth the
main quantitative discrepancy arising from the inadequacy in
our tunnel conductance valug which is relatively higher
than the corresponding experimental result.

In Fig. 7 we show a familiar Coulomb blockade staircase
structure at fixed values of gate voltayg in Fig. 6. Each
new ground state of a double-dot with increased total number
of excess charges by one adds a step in the current seen in
this plot. The level separation between the excited states is
comparable to thermal energy and is not resolved in Fig. 7.
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the variation of all the model parameters with the strength of
the interdot coupling alluded to in the classical charging
models! without sacrificing the important charge fluctuation
effects that are the main feature of the existing weak and
strong coupling perturbative quantum theofiés.

We have emphasized throughout that our Mott-Hubbard
Hamiltonian-based molecular-orbital approach dsmple-
mentaryto the perturbative charge fluctuation theory devel-
oped earlier in Refs. 4 and 5. The perturbative calculations
‘ . ‘ incorporate a continuum of states whereas we have a finite

—600-400-200 O 200 400 600 number(aptually, 0n§3 of states per conducting channel. The
Vg (V) perturbative theory is exact for smajl (or 1—g) whereas
the various uncontrolled approximations we use in calculat-

FIG. 7. Coulomb blockade staircase structurd ithrough the  ing our Mott-Hubbard parameters render our theory quanti-
double-dot systertat T=87 mK) is shown for fixed values ofy at  tatively not particularly reliable in any limits. On the other
the centers of the linear bias regime stability regions in Fig. 6 of éhand, our calculation is nonperturbative and can be used to
double dot withNtor=2 andNror=3 excess charges for three calculate nonlinear transport characteristics through the
values of the interdot soft conductange0.16 (dash dotted line  double-dot system. The fact that our calculated temperature
9=0.8 (dashed ling andg=0.99(solid line). dependence of linear conductance is in reasonable agreement

with experimental observatiorshe continuum perturbative
Overall our calculated nonlinear transport characteristics arghegries predict negligible temperature dependesuggests
in reasonably good qualitative agreement with the experithat, at least in some temperature regime, the experimental
mental observations. double dot system most likely is in an intermediate region in
between the two theoretical limits of many states per con-
VI. SUMMARY ducting channél® and just one state per channel as we use in

. ] ) . our Mott-Hubbard description. We note that it is, in prin-
In conclusion, using a simple single-parametég)(one-  ciple, possibl@ for us to include more than one state per

dimensional microscopic confinement model we calculatehannel in our numerical calculations, but for reasons al-
nonperturbativelythe linear and nonlinear Coulomb block- ready discussed it is unclear that such a calculation is a
ade characteristics of a double dot system as a function of thﬁeaningfm improvement within our simple model. We be-
interdot tunnel conductance. Our results are in reasonablgve that the most significant feature of our theory is the
qualitative agreement with the experimental results. We ca@yplicit demonstration that a simple molecular-orbital-type
obtain better quantitative agreement with experiment by Usmodel is capable of providing a good qualitative description
ing additional(e.g.,d anda) adjustable parameters in a two- for the linear and nonlinear transport properties of a double-

dimensional depiction of a double dot, or by including the guantum-dot system over a wide range of bias voltage and
dependence of all the Mott-Hubbard parameters on the exemperature.

cited single-particle states in each dot, as well as by using

more refined definitions of the form of the screened Coulomb ACKNOWLEDGMENTS
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