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We show that the bond-length mismatch in magnetic solid al{difsted magnetic semiconductonesults
in fluctuations of the exchange constants between neighboring magnetic ions. We present the theory of these
fluctuations and analyze their effect on the broadening of magnetization steps observed in these materials. We
conclude that the effect is quantitatively comparable to the effect of the Dzyaloshinski-Moriya interaction, but
produces a different behavior of the magnetization curve, which gives a possibility to distinguish between these
mechanisms experimentall}S0163-18207)07544-9

[. INTRODUCTION DMS’s are solid alloys belonging to the family of 1I-VI
semiconductors, where some fraction of the cations are sub-
Peculiarities in the structure of random semiconductorstituted with transition magnetic ions from the iron group,
solid alloys, which can be represented by the general formulike Cd,_,Mn,Te.® The magnetic properties of DMS’s are
A;_,B,C (e.g., for the case of a ternary alloy like mainly attributed to the existence of an antiferromagnetic
Ga _,In,As or Cd _,Mn,Te), are mainly related to the ex- (AF) exchange interaction between the magnetic ions, and
istence of the difference between natural bond lengths anthe physical nature of this interaction is now well established
force constants for thé\-C and B-C bonds. Placed ran- to be superexchand®-*?It has been fourtd"**that the AF
domly in the alloy theA and B atoms try to achieve their exchange constant rapidly decreases with the distance be-
natural covalent radii, producing random compressions antiveen the two ions in the lattice, so that the most important
expansions across the alloy. It is important to note that thénteraction is between the ions which are nearest neighbors
length of a given bond depends not only on its local envi-(NN’s). The superexchange mechanism for NN interactions
ronment but also on the distribution of atoms in some macpredicts the strong dependence of the exchange constant on
roscopic surrounding volume, because of the long-rangéoth the theangleformed by the bonds connecting these ions
character of elastic forces. with the neighboring anion and on thHengths of these
Experimentally the meaA-C andB-C bond lengths of bonds. In particular, the mean Mn-Te-Mn angle is slightly
the alloy and their rms fluctuations are studied using thalifferent for different zinc-blende DMS compouni@d dif-
technique of extended x-ray absorption fine structurefers also from the perfect tetrahedral value ¢¢s 1/3)].
(XAFS) measurements:2 It has been found that the average The mean anglincreasesvhen one goes from Zn,Mn,Te
cation-anion distance in the ternary alloy and, correspondto Hg, _,Mn,Te and then to Cd ,Mn,Te, and this leads to
ingly, the average lattice constant, obeygded’s law? i.e.,  a decreasen the value of the Mn-Mn exchange constéht.
they vary linearly with compositior. At the same time the So, one could expect from these results that the disorder in
alloy exhibits a pronounced bimodal structure: where the avthe distribution of magnetic ions over the lattice sites and
erageA-C andB-C bond lengths remain close to their val- fluctuations in the geometry of different NN pairs of mag-
ues in the corresponding binary prefect crystals and varyetic ions in the alloy should produce fluctuations of the
only a little (also practically linearly with the composition exchange constaror different pairs of ions in a given DMS.
X. The linear dependencies of mean distances betwedbxperimentally, this nearest-neighbor exchange seems to fol-
neighbors in the lattice on the composition suggest that thiow closely the Mn-Mn distanceindependently of the
force constandisorder plays a rather insignificant role and ligand as shown in Fig. 1, and we will use this simple and
that thebond lengthdisorder is dominant. Neglecting the perhaps surprising result in this paper.
force constant disorder allows the possibility to elaborate the The physical phenomenon in DMS’s, which is sensitive to
theory of the alloy structure in a general analytic fotfrit  the above-mentioned fluctuations of the NN exchange con-
has been shown that the structure can be completely detant and which is under detailed consideration in this paper,
scribed by a set of topological rigidity constants that areis the magnetization steps observed in the magnetization
defined by the geometry of underlying lattice. These concurve of DMS’s in high magnetic fieldé&see, Ref. 14 and
stants were calculated in Ref. 6 for the zinc-blende latticereferences thereinThese steps appear because of the anti-
using the framework of the Kirkwood and Keating modefs. ferromagnetic nature of the exchange interaction between the
In this paper we discuss the possible effects of the strucions. In this case the NN pairs of Mn ions possess zero spin
tural disorder in magnetic semiconducting alloys, the soin low magnetic fields and do not contribute to the magneti-
called semimagnetic semiconductors or diluted magnetization of the alloy. As a result, the magnetization in low and
semiconductors(DMS’s), on their magnetic properties. moderate fields is mainly due to single ions, and it follows
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aZsS ' ' ' access the relative importance of each mechanism from the
] experimental data.

ZiSe The paper is organized in the following way. The theory
of strain fluctuations of NN pairs in a ternary alloy is devel-
L] Zng 55 My 5 Te] oped in Sec. Il below. Sec. Ill is devoted to the analysis of
", the mechanisms of additional broadening of the magnetiza-
G 5;Mn, (,Te CdTe | tion steps: interaction with distant neighbors, DM interaction
between the ions in the pair, and strain-induced broadening.
Finally, Sec. IV contains a discussion of the results and con-
clusions.
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FIG. 1. Showing the dependence of the nearest-neighbor ex-

change constant; between Mn-Mn pairs for different DMS com- We consider a ternary allok; _,B,C that in the absence
pounds. All the compounds shown are in the very dilute Mn con-of the bond-length mismatch for th&-C and B-C bonds
centration limit, except for the two samples marked. Thewould form a perfect zinc-blende lattice. The sites of this
dependence is adequately described by a straight line with a S|0F1§’erfect lattice are given by vectorgfor the sublattice con-
of —14 K/A. This figure is from J. K. Furdyngprivate communi-  taining A andB atoms; in what follows, this sublattice will
cation and based on data of Furdyna. be referred as the cation sublatli@ndj (for the anion sub-
lattice which contain€ atoms only. The bond-length mis-
that a Curie law is expected with an apparent saturation irmatch is usually small for known semiconductor solid alloys,
the region where single ions become completely polarized.e., the difference of natural bond length.= pa+ pe and
Additional increase of the magnetic field, however, breakd 3.=p3+ p2 (Wwherep) denotes the covalent radius of the
down the antiferromagnetic alignment of ions in a pair andatom, etc). is small compared to the mean cation-anion bond
the pairs begin to contribute to the magnetization. Thdength in the aIonLe=(1—x)LRC+ngC. In this case, the
change of the spin of each pair is quantized and is caused Hypical displacement§u,} of the atoms from their positions
the change in the nature of the ground state of the pair in & the perfect lattice are also small, and the strain-induced
magnetic field. When the magnetic field reaches the criticagnergyV({u,}) can be written as a quadratic form with re-
value 2J;/(gug), whereJ; is the absolute value of the NN spect to the displacements. Then, the equilibrium positions
exchange constarg~2 is theg factor of Mn, andug is the ~ ©Of the atoms are the same as in the case when there would be

Bohr magneton, the state of the pair with total spinl and & _per_fect crystal with random _forces_applie_d to the atoms.
its projectionu=—1 crosses the state wit8=0 and be- With |nteract|or]s of nearest e_mlon—canon neighbors only, the
comes the ground state. At this point the first step arises ifP'C€ 0N an anion can be written as

the magnetization curve. Then, at a field} 4(gug) the state

with S=2, u=—2 becomes the ground state and the second E=— az p_oF__ 1)
step appears, and so on. Since the Mion possesses a 5/2 . T

spin, a total of five steps due to NN pairs can be obsetved. o )

Experimentally observed steps are not sharp and their posjthere the notation(j) means the summation over the four
tions By, are shifted a little from those given above. This N€arest-neighboring cation sites of ik anion sitef, is
shift in the positions is due to the exchange interaction of th he_umt vector from siten to siten of the undgrl_ymg perfect
NN pairs with more distant Mn ions, in particular, with the attice, anda is a spring constant of the borid is assumed
next nearest neighbors of the ions belonging to the Bair. to be the same_foA-C and BTC bonds).. Note that random_
For the broadening of the magnetization steps, severf r_ces are applied to th_e anions only,.the forc_e on a cation
mechanisms have been discussed up to date. First is thé}?]ébsr%%lfs;?ftgﬁ(;?ng Qgt?rllseo&?seglg]cg;se?ﬁg%ni; l:r:)llgttlce'
ilrrgggian;h?):‘mtﬁle b;?e%d?i'&%' i;”}cﬁes%czoyr;?ogi?r?:;;-II/IO(;riig Neduced to the solution of the system of linear equations

. . o . . . 2mDom- Un=F,, whereD,, is the dynamical matrix of the
(DM) interaction, which is present for two ions in a pair _"_M" ™ nm .
. . A . crystal. It is perhaps surprising, but correct, that the dynami-
along with the dominant Heisenberg interactiri*'°Then, Y permap prising y

the int i Iy . i with distant neiahb tcal matrix D, has the full translational symmetry of the
€ Interaction ot 1ons in a pair wi IStant neighbors Mot g et virtual crystal. This is because force constant disorder
only shifts the positions of the step but also affects the ste

s_hapel.6 We show in this paper that there exists one addi- a?n?/g?t?nge'[?lliicé?}ﬂétion we have

tional mechanism for the step broadening. Namely, the

above-mentioned fluctuations of Mn-Mn distance, and, cor-

respondingly, the NN exchange constant, produce fluctua- Un=2 Gom Fin )
tions in the positions of the crossing point8;, m

(n=1,2,3,4,5), i.e., they result in an inhomogeneous broad-

ening of the steps. It turns out that each of these mechanismgth G, being the phonon Green function. Substituting Eq.
leads to different shapes of the steps and, what is most ind) into Eq.(2) we can write down the deviation of the dis-
portant, they possess substantially different dependences ¢@ance between an arbitrary pair of sites, sandm, from its
the step number, which gives the possibility to independentlyalue in the perfect lattice,,, (cf. Ref. 6:
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Lom— Lﬁm:rnm’(um_un)zzi Anm,iPj ©)

anm,i:a% an'(an_ij)'Fji . (4) ;

Disorder enters the expressi@) only through the cation
covalent radiug?, which takes the valug) if site i is oc- ‘
cupied by anA atom, and the valugg otherwise. The di-
mensionless three-point functiag,,, ; can be calculated, in
principle, using a given model for the phonon spectrum of
the crystal. It is seen from the definitiori4) that
&nm,i=amn,;i - It also follows from the translational symmetry
that a,,,; depends only on differencds-n andi—m and FIG. 2. Schematic representation of the isolated paB afoms
obeys the condition in A, _,B,C alloy. The Vg cluster discussed in the text is just these

two sites of the cation sublattice. For the pair to be isolated it is
2 A =0 5) necessary that all NN catiop sites for these_mbt_all 1) are occu- _
= onmi pied by theA atoms. The eighteen cation sites in the shell 1 will
then form theV, cluster. The second shell contains further 51 ad-
ditional A sites.

A. Conditional averaging

Equation(3) makes it possible to find general expressions om )
for the mean distance and its rms fluctuation for any two RYM=2 anmi- €)
atoms in the alloy. The expressions obtained in Ref. 6, how- v
ever, cannot be applied directly to the analysis of the geom-
etry of NN pairs. In particular, in calculating the mean dis- , i , i
tance between tw@® atoms which form a pair, we should mation of the lattice are independent of the concentration of

excludesituations when either one of these atoms has anMPurities as well as the size mismatgler se and they
other nearest-neighb@® atom, because then this would not represent a fundamental property of the lattice. This comes

be an isolated pair, but part of a larger cluster. In othelz;_lbout becauge the alloy is _considered as a perfect solid solu-
words, we have to perform averaging with tenditionthat 10N from which some particular clustes are selected for
this pair of B atoms is surrounded b atoms only. averaging. Any correlation between the atomic species
A generic statement of such a problem is as follows. LeLWOUId destroy the unlversallty of the lattice mtegrals_ and
us assume that there is a well-defined distributioA @indB mtrodu_ce a'dependenpe on size mismatch and atomic con-
atoms in some part of the alloy. Th& atoms of interest centrations into th_ese integrals. However, 11-VI ps_eudoblr_la-
occupy a subset of cation sitds and B atoms of interest ries, can be considered as good examples of solid solutions

o . and should be well described by the above equations.
occupy a subseVy. Superposition of, and Vg defines a T . .
clusterV. In particular, in the case of an isolated pairB®f In the case shown in Fig. 2, the isolated pairfoatoms,

stoms ', consisis Smpyof o nearestnefghborng s e POPAES o 1 8ee HGOlf 0 e vt et
the cation sublattice antd, could be cation sites in the first 9. 9

nearest-neighbor shell around this p@iee Fig. 2 All other size of theV, cluster. If we denote by, 4 the lattice integral

. : . . for the case of a pair isolated from oth&ratoms inside all
sites of the lattice are occupied at randomBatoms with Lo
probability x and byA atoms with probability (+x). Then, tghe ShI?”S up tohtEelgth sr?ell, the sutm_ r:cj.lé.?) |Irfnplleg thatt
performing the averaging of E@3) for sites outside of the 7nA will approach—=&g wnenn goes 1o infinity. ITwe denote
cluster and making use of the summation rEg we obtain by R,y the lattice integral for the fluctuations in a similar

the following expression for the mean distance between twd'ay then we show in the Appendlx thRtyy, will go tcz 32ero
arbitrary sitesn andm belonging to clustew ahs aapg)\l/ver of theth shell radiugRy|, namely, a3Ry| "~ for
the attice.

The lattice integral$7),(9) determining the average defor-

(LY =Le +(pa—pDIXG"—(1-X)Ga™,  (6)
B. Numerical simulations

g/rlm:,E anmi, Oam= Anmi» 7) In general, it is quite diﬁicult to _perform t_he lattice inte-

icVa icvg grals on the phonon Green’s functions as given by E4js.

: . . o 7), and(9). This is because in calculating of the ten
whereLy,, is again the distance between these sites in thérze enc(OL)Jnters integrals over the Brillo?n zone witﬂmn os-
virtual |att(I)CG Jven by ~mean lattice constant gjjating integrand. To illustrate this point we present the
Le=(1—X)patxpg+pc multiplied by the appropriate geo- gojytion for the 2D triangular lattice in the Appendix. For the
metrical scale factor. The fluctuation of th§}) also can be 3D zinc-blende lattice, however, an analytical integration is
found from Eq.(3) to be not feasible and we are left with two possible approaches: a

numerical integration or a direct measurement either from
(L= (Lo A =X(1=x)(pR— pB)*RY", (8  experimental data or numerical simulations. The latter ap-
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proach is much preferable since a single simulation is suffi- TABLE I. The lattice integrals involved in the calculation of the
cient for extracting all the Green’s-function integrals. Weaverage Mn-Te and Mn-Mn mean distances. The data are obtained
simply minimize the configurational energy of the given re-following the prescription given in the text, and are for exclusion
alization of a solid solution and then obtain the integral val-Zones around the magnetic pair of interest as described in the text.
ues by inverting Eq96) and(8). As the integrals themselves

are independent of concentration and size mismatch, the va- Bla
lidity of these equations can also be confirmed by varying 0.05 0.10 0.15
these parameters. Mn-Te

Simulations are performed on unit cells ofx§64)? Gon 0.00 0.00 0.00
=32 768 atoms with periodic boundary conditions. Atomsg1A — 0.09+0.01 —0.12+0.02 —0.13+0.01
are first distributed at random on a zinc-blende lattice, ag, 010-0.02 _012+0.05 010-0.02
appropriate to the concentration The atomic positions are % 0.84+0.01 0.74-0.01 0.67-0.01
then relaxed with an energy minimization conjugate—gradienﬁan_Mn o ' ' ' '

algorithm?® The setup is identical to previous wotka Kirk-

o . L 0.00 0.00 0.00
w ntial i nd the alloy on the fir lattice is*
ood potential is used and the alloy on the first sublattice %M ~015-015  -0.16+0.04  —0.14-0.04
considered to be a perfect solid solution. The Kirkwood po- 043+ 0.30 042+ 022 0.02-0.20
tential consists of separate two- and three-site harmonic irZ2n ) : ‘ ' ' '
0.65+0.02 0.56-0.02 0.48:0.01

teractions: B

a B Cd, _,Mn,Te, which reduces by more than half the number
E=~ > (Lj; —Lﬂ)2+ —L2> (cos; + 5)?, (100  of conjugate-gradieniCG) steps needed to achieve full con-
210 8 %m vergence.

For the pairs of interest in this paper, the quantity
where« is the same as in Eql) and 8 is an angular force Gg"=Gg is independent of the size of the exclusion zone for
constant. Values for the lattice integrals are functions of thestherB atoms around the pair, and is the same as the uncon-
topology of the lattice as well as of the rati®/«, which  ditional average. The quantitys is shown in Table | for the
determines the importance of angular forces versus the cerase where,m are nearest-neighbor Mn-Te pairs and when
tral forces. Our results are sensitive only to the radia, n,m are next-nearest-neighbor Mn-Mn paiiise., nearest-
and not to the absolute value af In II-VI semiconductor neighbor magnetic pairsFor the nearest-neighbor Mn-Te
compounds, this ratio is normally aroupda = 0.10(Ref. 5 and Mn-Mn distances, the lattice integ@ is the same for
and can go up to about 0.20 in Ill-V and IV-IV materid®  all such pairs and is equivalent &% (111) andaZ (220)
Although elastic constants vary with atomic species, theyf Ref. 6. The notation fon,m is the same as described
typically differ by at most 20%. As was shown previously, above, andGys, Gia, andG,, refer to no exclusion zone,
such small variations do not produce changes that are signifone-shell exclusion and two-shell exclusion, respectively.
cant or detectable when measuring structural propetties. \When there is no restriction on the environment of these

We are interested here in isolated atomic pdtte B pairs, Eqs(6) and(8) become identical to Eq20) of Ref. 6
atoms. It is therefore necessary to work at relatively 1ow andR,=b3% .

concentrationx so as to decrease the statistical We|ght of Tables | and |l give the numerical values for the lattice

large clusters. The total concentration ®fB pairs (which integrals(7) and (9) at three force constants ratios. As pre-
we will refer to asP0) on the lattice without any restriction djcted by the theory and verified numerically, these values
on their environment is ¥”. The total concentration @-B  are independent of the concentration and size mismatch. Er-
pairs, with noB atoms in the first-neighbor surrounding shell rors are estimated from the spread of values for different
(P1) goes as 8%(1—x)*8, while that forB-B pairs with no  realizations of disorder.

B atoms in either the first- or second-neighbor surrounding . ,
shell (P2) is 6X2(1_X)69 (cf. Ref. 21. The maximum for TABLE Il. The lattice integrals that determine the rms fluctua-

P1 is atx=0.10 and that folP2 is aroundx=0.03. Note tions in the Mn-Mn pair distance. These values are extracted from

- . o numerical simulation invoking Eq8) following the procedure de-
ghza;géxa_tc?';noi;ﬁ]ere are only six or sevef2 pairs in the scribed in the text, and for various sizes of the exclusion zone

- . . L . around the magnetic pair of interest.
To improve statistics, five realizations of disorder are av-

eraged for each value of the concentratiomnd the force Bla 0.10 0.15
constant ratigs/ «. For numerical efficiency, we select a size 0.05

mismatch much larger than for real materials: the conjugate
gradient algorithm limits the precision on the total energy toMn-Te

about 1 part in 18 given the size of our unit cells, it is Ro 0.0050+0.0010 ~ 0.013¢:0.0010  0.018&0.0040
important to enhance the cost of disorder as much as possiblé, 0.0011-0.0001  0.00230.0003  0.0031%0.0004
to obtain a good relaxation. Since the magnitude of the siz&, 0.0003:0.0001  0.000%0.0004  0.000%0.0003
mismatch does not enter in the lattice integrals, this numeriMn-Mn

cal trick does not affect the final solution as was also con®, 0.560 +0.087 0.421+0.025 0.283+0.068
firmed by comparing results for different size mismatches, 0.101 +0.011 0.066-+0.008 0.044+0.012
The final results discussed here were obtained for a size mig, 0.019 +0.010 0.019+0.012 0.010+0.003
match of 9.7%—about four times larger than for
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I1l. MAGNETIZATION STEPS 0.3 , , ; ,
Now we consider the broadening of the steps arising on
the magnetization curve of the DMS from the pairs of mag- 02
netic ions. The Hamiltonian of an isolated pair of Mn ions &
(possessing spirs; andS, with S;=S,=5/2) in a magnetic Q:{
field B applied along the& direction reads § 01
&S
Hy=23(S;- S;) +gus(B—Db)(S,+ Sp) +Hpum, (11
0.0
Hpom=2D:(5$,X$,). (12
Hereb>0 describes the antiferromagnetic exchange interac- Magnetic Field (T)
tion of a given pair with distant neighbdfsandHpy is the FIG. 3. Showing the shift and small additional broadening of

Dzyaloshinski-Moriya interaction between the idfisThe peaks in the derivativd M/dB of the average spin of Mn-Mn pair

axial vectorD in Eqg. (12) is perpendicular to the plane con- in Cd, odvin osTe (exchange constady=6.2 K) when the internal
taining these two Mn ions and the adjacent anion, and, sincéxchange field from distant neighbors is taken into acc¢smiid

the DM interaction is a relativistic effectD|<J. line). The dashed line shows the pure thermal broadening at
The contribution of a given pair to the magnetization of T=1.4 K. The exchange constants describing the coupling to dis-
the sample is proportional to its average spin, tant neighbors ard,=0.6 K, J3=0.3 K.

Tr{(S1,+S;)exp—H, /kT)}
B Tr{exp(—H,/kT)}

pairs possess slightly different exchange constants, as was
discussed in Sec. |, and are subject to different local ex-
change field®. The average value oh(B),

13

[a minus sign is introduced in E@13) for convenience, so
thatm>0]. The behavior ofn as a function of applied mag-
netic field at low temperaturek{(<J) is steplike* m is

close to zero for small fields, then changes sharply to 1, the\r)vith respect to fluctuations id andb exhibits steps with an

to 2, and so on, until it reaches its maximum value of 5. The dditional broadening. We will analyze these three effects in
appearance of these steps corresponds to the change of f 9 y

spin of the ground state of the Hamiltonighl). et in subsections that follow.
If one neglects the DM terrfiL2), the eigenstateS, u) of
H, can be classified by values of the total spin of the pair A. Interaction with distant neighbors

$=0,1,2,3,4,5, and the-componentu of the pair. The po-  The theory of internal exchange field acting on Mn-Mn
sitions of the step8n(b) can be found then from the condi- pairs in DMS was developed in Ref. 16. In this subsection
tion of crossing of thgS, —S) anﬂ|8+ 1,-(S+1)) energy e use the resuféand calculate the average si6) of the
levels. For thenth step one ha$ Mn-Mn pair primarily to show the qualitative differences
_ _ between this effect, DM and strain broadening mechanisms,
Bn(b)=n(2J/gug)+b, n=1234,5. (14 and for the sake of completeness.

The shape of each step in the dependen¢B) for a given The internal exchange field entering the pair Hamil-

given by a Fermi-distribution-like function, which reflects the pair under consideration and Mn ions occupying second,
the relative probabilities for the pair to be found in statesthird, etc. cation shells around these two ions. Because the
|S,—S) and |S+1,—(S+1)) near the crossing point. This Mn-Mn %ﬁgha.nge interaction decreases rapidly with the
thermal broadening is the same for all steps because the effistance)”**it is sufficient to take into account the antifer-
ergy differenceE(S+1,— (S+1))—E(S,—S)=2J—gugB  fomagnetic exchange with Mn ions in the second steddh
does not depend oB=n—1. solute value of exchange constandjg and with Mn ions in

Instead of analyzing the functian(B) it is more conve- the third shell(absolute value of exchange constanuis
nient to deal with its derivativejmvdB, which exhibits five ~ Only- In this caseb takes on a set of discrete valugehich
peaks as a function of the applied magnetic fiBldin the ~ &re linear combinations af; andJs) with probabilities be-
case when the separation between adjacent pedigig is  INg dependent on the concentration of the akoysing this
much greater than the peak width one can discuss each pegdjétribution function of internal field given by Table Il of
separately. In particular, the thermal width of thth peak ~ Ref. 16 we have convoluted the average spin of the Mn-Mn
can be characterized by the average valuéBof Bn(b))z,“ pair (13) and the result is shown on Fig. 3 For the calcula-
tion we have chosen DMS gd,Mn,Te with the smallest
A% w2 [ kT2 NN exchange constafii=J;=6.2 K (Ref. 15] and with a
W: 3 (ﬁ) , (19 concen_tration of Mn ionx=_0.05, which is the typical con-

centration for the magnetization steps measureméhis

where the main contribution to the integral is from an inter-relative contribution of pairs to the magnetization of the
val 2J/gug aroundB, and we assumef;<J. The experi- sample has its maximum at this pdiht The NNN exchange
mentally observed magnetization is the result of superposieonstants were taken according to the approximate relations
tion of m(B) from different pairs in the sample, and different J,=J,/10 (Refs. 23 and 24andJ;=J,/2.1°

M(B)=(m(B)), (16)

dm
f (B B,(b))? gudB=
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(where the anisotropy is the strongesthe anisotropy be-
comes bigger with decreasing temperature, but the difference
between the maximum value at the fifth peak RI100)
andB|[(112) is only a few percent af =0.2 K.
Because the results in Fig. 4 correspondtel.4 K, the
DM interaction affects only slightly the width of the peaks. It
does affect noticeably, however, theimplitudes And most
AR /A, E\V I remarkable in Fig. 4 is the fact that the effect depends on the
(V2NN VARV VAR number of the peak, contrary to the case of the broadening
00— 3% 4 %0 ?hue to irllteractti)on yvith <tjistant Peight;ﬁrs. 'rll'he de_perhdence ?n
- e peak number is not monotonic: the change in the ampli-
Magnetic Field (T) tude is tiny for the first peak, it increases rapidly from the
FIG. 4. The derivative of the average Sp|n of Mn-Mn pairs in SeCOI’]d to the fOUI’th peak, but the effeCt on the |aSt, f|fth peak
Cd,_,Mn,Te (exchange constad =6.2 K) in the presence of the IS approximately the same as on the fourth peak, or even a
DM interaction (12). The results were obtained for little bit smaller.
|D|=0.3 K=0.05]; (Refs. 11 and 18 The dashed line shows the  To understand this behavior we note that the DM interac-
pure thermal broadening(=0) at T=1.4 K. The difference be- tion leads to an additional broadening of the magnetization
tween the average spin of the pairs for two different orientations osteps because it mixes thH&,—S) and |S+1,—(S+1))
the applied magnetic field is shown in the ingste the tejt states of the pair near the crossing point, resulting in an
avoided crossing® The value of this effect is related to the
It follows from Fig. 3 that the interaction with distant matrix element oHp,, between these two states. It is seen
neighbors results mainly in the shift of the position of thefrom Eq. (12) that one has to calculate the following num-
peaks, but only slightly affects the peak widths is seen bers:
from the change in the peak amplituge$he value of the
shift, Be,— (2J/gug) = 0.91J,+ 4.56]; atx=0.058 is inde- ds;1=[(S+1,—(S+1[($1XS,)_IS,—9)|*, (18
pendent of the peak number. Ttmmal) change in the peak
width arising due to this mechanism is also the same for al
five peaks and can be described by introducing an effectiv%
temperaturel *, so that ax=0.05

<
o

dM/dB (1/T)
=)

hich can be written via the Clebsch-Gordan coefficients.
he calculations show that,, which defines the additional
roadening ohth peak, is indeed a nonmonotonous function
of n, explaining the behavior adM/dB in Fig. 4. Namely,
3 d,=35/6=5.8, d,=128/5=25.6, d3=729/14=52.1,
(KT*)2=(kT)?+ —(2.1Q03+1.330,J5+ 10.9512). d,=640/9=71.1, andds=125/2=62.5. Note that coeffi-
T cients increase at the beginning, lalitis smallerthand,,
(17 and this makes the height of the last peak slightly greater
then the amplitude of the fourth one.
B. DM interaction The second moment of the peaksdM/dB is infinite
because of a logarithmic divergence associated with the tails,

In spite of the fact that it is generally accepted that thej, the |imit when the peaks are well separated as happens
DM interaction (12) produces additional broadening of the it 5 smallD at low temperature. Thus it is not possible to

magnetization step,we did not find a detailed analysis of (afing an effective temperature as was done at the end of the

this effect in the literature. That is why in this s_ubs_ection Weprevious section. The full width at half the peak height scales
present the theory of the shape of the magnetization steps In. of course.

the presence of DM interaction.

It is clear from Eqs(11) and (12) that the energy spec-
trum of a given pair depends on the angbebetween the
applied magnetic field and the vectoD. Because Mn-Mn Now we come back to consideration of the fluctuations in
pairs are placed in a zinc-blende lattice, there are six possibliae geometry of Mn-Mn pairs and the inhomogeneous broad-
directions of the DM vectoD: (110), (101), (011, (110, ening of the magnetization steps due to related fluctuations in
(102, and(011). The spin of Mn-Mn pair(13) should thus Mn-Mn exchange constant. First of all, it worth noting
be averaged over the different directiondmfand the result from Table Il that fluctuations of Mn-Te distances in the
of such averaging will, in general, depend on the direction ofalloy are about an order of magnitude smaller than the fluc-
magnetic field. Indeed, in the casB|(1000 one has tuations of Mn-Mn distances. This is a consequence of the
cos(p)=0 for 25% of pairs, and cog)==1#2 for 75% of  strong inequality between radial and angular forees:g.
pairs; in the caseB|[(111) already 50% of pairs have The problem of finding the fluctuations in the exchange con-
cosh)=0, and cos$)=+/2/3 for the other 50%. stant is thus reduced to analyzing the one parameter depen-

In Fig. 4 we show the dependence of the averaged dence ofJ(L), whereL is Mn-Mn separation.
explained abovederivative of the magnetization on the ap-  Detailed information about the dependerd¢&) was ob-
plied magnetic field. The results were obtained by numericatained by means of inelastic neutron scattering from II-VI
diagonalization of the Hamiltoniari11),(12), which is a  diluted magnetic semiconductcias well as from the posi-
36X 36 matrix. The internal exchange fidbdwas omitted for  tions of the magnetization steps. It was discovered that if one
simplicity. It turned out that the anisotropy is quite small, astakes the values o for NN Mn-Mn pairs in different
is seen from the inset showing the maximum of the fifth peakbDMS’s and plot them as a function afeanMn-Mn distance

C. Strain broadening
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03 . . r T . IV. DISCUSSION AND CONCLUSIONS

Comparing Figs. 3-5 we can point out that the three
mechanisms of addition&lith respect to the pure thermal
broadening of the magnetization steps in DMS, nameg)y,
interaction of Mn-Mn pair with distant neighborgj) the
Dzyaloshinski-Moriya interaction between the ions in the
pair, and(iii) the strain induced fluctuations of the NN ex-

\ change constant, result in qualitatively different behaviors of

: ' . ' ' the dM/dB curve. The main consequence of the interaction
10 20 30 40 350 60 A ) "

Magnetic Field (T) with distant nelghbpfs is a shift in _the po§|t|ops of the peaks

e and only small additional broadening, which is the same for

FIG. 5. Showing the effect of fluctuations in the Mn-Mn ex- all five peaks and can be described by introducing an effec-
change constartin Cd,_,Mn,Te on thedM/dB curve(see expla- tive temperaturd* >T, as given by Eq(17). The two other
nations in the tejt The dashed line is the same as in Figs. 1 and 2mechanisms affect thdM/dB curve in a different way.
and shows the pure thermal broadeningTat1.4 K. The mean Their main effect is the change in the amplitude of the peaks,
value of the exchange constant(i$)=J,=6.2 K. Solid curves in  wjth the amplitude being dependent on the number of the
this figure correspond to root-mean-square fluctuations of the ®Xpeak. Differences between the DM broadening and strain-
change constangJ, equal t06)=0.2 K () and 61=0.3 K (b). induced broadening occurs mainly in the way they change

the amplitude of the last two peaks in curve. This circum-
in corresponding materials, the points fall on a very goodstance gives hope to better sort out the relative importance of
straight line2® as shown in Fig. 1. From the slope of this line each of these two mechanisms, and obtain more precise val-
one can find thatJ/dL=— 14 K/A. Note also that the de- ues of corresponding constanB,anddJ/dL. However, to
pendencel(L) defines the interaction between the spin ofdo it one will need to carry out the measurements at very low
Mn ions in a pair and the phonons in the system. The valuéemperatures and in stror{greferably statit applied mag-
[3/(dJ/dL)|=0.35 A was used in Ref. 26 when analyzing netic fields. Also, at low temperatures it seems to be possible
the spin relaxation, which leads to somewhat higher derivato extract information about the DM interaction by applying
tive, dJ/dL=—18 K/A for Cd,_,Mn,Te. From these data the magnetic field in different crystallographic directions, be-
and using Eq(8) and Table Il, we can find out the typical cause the DM effect is slightly anisotropic. The experimental
rms fluctuation of the NN Mn-Mn exchange constant in measurement of all the magnetization steps is not so easy as
CdyggMnggsTe to be about 0.2 Kthe values of covalent it involves the use of large pulsed magnetic fields that leads
radii entering Eq.(8) were taken asp=1.48 A and to (unknown heating in the sample, which is probably not
po=1.30 A (Refs. 27-29). even in thermal equilibrium. The experimental restilts

The strain-induced broadening of magnetization steps iare, therefore, not quite accurate enough to justify trying to
shown in Fig. 5. In calculatingM/dB we have convoluted make a detailed fit at this time, including all three mecha-
the average spin of the Mn-Mn paffl3) with a Gaussian njsms. We emphasize that all three mechanisms must be
distribution of EXChange constants. This was done haVing irbresent' are all equa”y important in somewhat different
mind that the distribution of cation-cation distances is closewayS' and the parameters are all known approximately from
to GaussianandJ andL are linearly related. It is seen from other experiments. The work of Larson, Haas, and
Fig. 5 that the case of strain broadening is similar to theygganyal® focused on the further neighbor interactions, to
Dzyaloshinski-Moriya one: the main effect is on the peakgy iy the peak widths in Cd/Mn compounds and conse-
amplitudes, but the b_ehaV|or of Fhe amplitude as a functloqquently obtained a value df, that is rather large and not
of th? peak numben IS monotonic The fact that the _peak consistent with other experimental determinations Jof
amplitude decrease_z; linearly wnthpan be understood if ON€ These authors did not consider the other two broadening
recalls that the pQS|t|on aith peak IS foun(_j from the relation mechanisms that we have discussed here, but it is hard to
B,=n(2J/gug) [i-e., from Eq.(14) in which we neglected o tand why their value of, was so large, as it was

the internal exchange fiel ] So, for a given fluctua_tlon n necessary to use this value to explain the uniform shift in all
the exchange constant, the corresponding fluctuations in t Be peaks.

positions of peaks, and thus the additional inhomogeneous In conclusion, we have suggested that in diluted magnetic

broadening of peaks, increase linearlyrin In the case of  gomiconductors there are fluctuations of exchange constant
low tempera’gures, when the' peaks are well separatgd, Ofetween neighboring magnetic ions. These fluctuations exist

can also define some effective temperature to describe tht?ue to the bond-length mismatch in the solid alloy, which
strain broadening of thath peak: results in fluctuations of the distance between the ions. The
theory of such fluctuations has been presented. We have
12 shown that the fluctuations of the exchange constant provide
2_ 2, =< 2 a new mechanism for the broadening of the magnetization
(KT)"=(kT)"+ wZ(né‘]) ' (19 steps, which are observed in these compounds from the pairs

of magnetic ions. This mechanis{the strain induced broad-
ening results in a qualitatively different behavior of the
where 8J is the rms fluctuation o8. dM/dB curve from the mechanisms known before.

o
o

o
-

dM/dB (1/T)

v Y

0.0
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APPENDIX A: 2D NETWORK ing expression:
We have added this appendix for two reasons. First, we Sy R . . .
want to show that the results similar to Ed8)—(9) take Fap= 2n)? fdke (T G(k)-Tp)4 sin(z Lek-t,)
place in the case when one has an alloy of dilubemds
And second, we want to present the exact solutions for the Xsin(3 Lek-Tp). (A8)
lattice integrals, which can be obtained explicitly for a two-
dimensional lattice. Here vectorR points from the middle of ther bond to the

We consider a 2D triangular net, the same as in Ref. 3oniddle of the,B bond,S; is the area of the Wigner-Zeitz cell,
The bonds in this net can be of two types: A with probability So=(2/3)LZ, and the integration over the wave veckois
(1—x) and B with probabilityx. The natural bond lengths restricted to the Brillouin zone. The tensB(k) reads
areL? and LY, respectively, and the mean bond length is

Le=(1—x)LS+xLY. The dynamical matrixD,, for this Gu=(A+B)/ID, Gyy=(A-B)/D, (A9)
network is° ~
Gyy=Gyx= —C/D (A10)
D,=3l, if I=m, AD  where
Dim==Fim:fim, if I is NN of n, (A2) A=3-cogk,Lo)—2cogk,L /2)cog V3k,L¢/2),
(A11)

wherel is the unitary tensor, and the force constant, which is
the common factor in these expressions, was omitted set
equal to unity for simplicity.

Let us suppose, as we did in Sec. Il, that we are interested
in the properties of 8 bond that connects neighboring sites
i andj, and that is surrounded by bonds. Thesé bonds

form agf;alnl thﬁ gl;ftez’* ’f gnd the ?Al\TIStﬁVB (;]onsl;stsdln _th'sh out how the factofk,, (A6) changes with increasing the size
C‘ﬁse 0 onytd O?] or interest. | L efo:] elr onhs;rgﬂft]. € of the cluster). The convergence of the integrals becomes
alloy are random. The average value of the length of Ehis q%gor with increasing of the distan¢®R| between ther and 8

B=cogk,L,)—cogkL/2)cogv3kLe/2), (A12)

C=V3sin(k,Le/2)sin(v3k,L/2). (A13)

We have calculated the integrdls8) numerically to find

bond, and its root-mean-square fluctuations, can be agal nds, and it is convenient to use the second relatis
expressed in terms of the Green function for the dynamica] .-, ’results in

matrix (Al),(A2). Because we consider the case of diluted
bonds, it turns out that it is more convenient to write the
answers via sum over bonds, not over sites as in Sec. Il. We Ry=a** — > F2. (A14)
denote the bonds using Greek letters and introduce the func- Aev
tion F,z, which is analog o, , If there is no restriction, i.e., all the bonds, except the
. . bond, are taken at random, then the cludteonsists of the

Fop=Tij (Gi+Gjmn—Gim—=Gj) I'm - (A3) & bond only, andRy=a** (1—a**)=0.2222. If the first
shell of bonds around the bond is filled with theA bonds
(i.e., when the), cluster consists of the ten bonds attached
to the @ bond directly, we haveR,;=0.1043. When the\
bonds occupy both the first and the second shell of bonds

In Eq. (A3) it is assumed thatr corresponds to thg bond,
and g corresponds to thien bond. Then, it can be shown that
the length of theB-bondL and its fluctuations are

surrounding thex bond(i.e., when theV, cluster consists of
(L>=Le+(L2 E FM) (1—x)Faa}, eighteen nearest bonds around the bond, we have
7€Va R,=0.0653.
(A4) It is important to understand what is the asymptotic be-
((L—(L))Z)zx(l—x)(Lg—Lg)ZRV, (A5) havior of R, for largen. If two bonds,a and B, are sepa

rated by a macroscopic distan/d®>L ., the main contribu-

tion to the integral(A8) comes from the region of small

Ro= F2 A6 wave yectord<. In this case we can perform the integration
- 2 ap (A6) analytically. The result is
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8 So. . |- (TR)(TgR) 2" S
Let us consider the case when théond(the B bond is Such slow decay of the fluctuations of the bond length is

placed in the center of the circle of the macroscopic radius general result. It is because the propagations of the strain in
R,. All the other bonds inside the circle atebonds, and the the lattice over macroscopic distances is governed by long-
bonds outside the circle are random. Substituting the aboveavelength acoustic phonons, and that is iy, for large
expression into EqA6) and replacing the summation over distances between the bonds has the form of a dipole-dipole
bonds with the integration over their position, we obtain theinteraction. It is clear from this consideration that for a 3D
asymptotic behavior oR,;: lattice R, decays aR; °.
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