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Strain broadening of the magnetization steps in diluted magnetic semiconductors
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We show that the bond-length mismatch in magnetic solid alloys~diluted magnetic semiconductors! results
in fluctuations of the exchange constants between neighboring magnetic ions. We present the theory of these
fluctuations and analyze their effect on the broadening of magnetization steps observed in these materials. We
conclude that the effect is quantitatively comparable to the effect of the Dzyaloshinski-Moriya interaction, but
produces a different behavior of the magnetization curve, which gives a possibility to distinguish between these
mechanisms experimentally.@S0163-1829~97!07544-9#
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I. INTRODUCTION

Peculiarities in the structure of random semiconduc
solid alloys, which can be represented by the general form
A12xBxC ~e.g., for the case of a ternary alloy lik
Ga12xInxAs or Cd12xMnxTe!, are mainly related to the ex
istence of the difference between natural bond lengths
force constants for theA-C and B-C bonds. Placed ran
domly in the alloy theA and B atoms try to achieve thei
natural covalent radii, producing random compressions
expansions across the alloy. It is important to note that
length of a given bond depends not only on its local en
ronment but also on the distribution of atoms in some m
roscopic surrounding volume, because of the long-ra
character of elastic forces.

Experimentally the meanA-C and B-C bond lengths of
the alloy and their rms fluctuations are studied using
technique of extended x-ray absorption fine struct
~XAFS! measurements.1–3 It has been found that the averag
cation-anion distance in the ternary alloy and, correspo
ingly, the average lattice constant, obey Ve´gard’s law,4 i.e.,
they vary linearly with compositionx. At the same time the
alloy exhibits a pronounced bimodal structure: where the
erageA-C andB-C bond lengths remain close to their va
ues in the corresponding binary prefect crystals and v
only a little ~also practically linearly! with the composition
x. The linear dependencies of mean distances betw
neighbors in the lattice on the composition suggest that
force constantdisorder plays a rather insignificant role an
that thebond lengthdisorder is dominant. Neglecting th
force constant disorder allows the possibility to elaborate
theory of the alloy structure in a general analytic form.5,6 It
has been shown that the structure can be completely
scribed by a set of topological rigidity constants that a
defined by the geometry of underlying lattice. These c
stants were calculated in Ref. 6 for the zinc-blende latt
using the framework of the Kirkwood and Keating models7,8

In this paper we discuss the possible effects of the st
tural disorder in magnetic semiconducting alloys, the
called semimagnetic semiconductors or diluted magn
semiconductors~DMS’s!, on their magnetic properties
560163-1829/97/56~20!/13094~9!/$10.00
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DMS’s are solid alloys belonging to the family of II-V
semiconductors, where some fraction of the cations are s
stituted with transition magnetic ions from the iron grou
like Cd12xMnxTe.9 The magnetic properties of DMS’s ar
mainly attributed to the existence of an antiferromagne
~AF! exchange interaction between the magnetic ions,
the physical nature of this interaction is now well establish
to be superexchange.10–12 It has been found10,13 that the AF
exchange constant rapidly decreases with the distance
tween the two ions in the lattice, so that the most import
interaction is between the ions which are nearest neighb
~NN’s!. The superexchange mechanism for NN interactio
predicts the strong dependence of the exchange consta
both the theangleformed by the bonds connecting these io
with the neighboring anion and on thelengths of these
bonds. In particular, the mean Mn-Te-Mn angle is sligh
different for different zinc-blende DMS compounds@and dif-
fers also from the perfect tetrahedral value cos21(21/3)#.
The mean angleincreaseswhen one goes from Zn12xMnxTe
to Hg12xMnxTe and then to Cd12xMnxTe, and this leads to
a decreasein the value of the Mn-Mn exchange constant12

So, one could expect from these results that the disorde
the distribution of magnetic ions over the lattice sites a
fluctuations in the geometry of different NN pairs of ma
netic ions in the alloy should produce fluctuations of t
exchange constantfor different pairs of ions in a given DMS
Experimentally, this nearest-neighbor exchange seems to
low closely the Mn-Mn distance~independently of the
ligand! as shown in Fig. 1, and we will use this simple a
perhaps surprising result in this paper.

The physical phenomenon in DMS’s, which is sensitive
the above-mentioned fluctuations of the NN exchange c
stant and which is under detailed consideration in this pa
is the magnetization steps observed in the magnetiza
curve of DMS’s in high magnetic fields~see, Ref. 14 and
references therein!. These steps appear because of the a
ferromagnetic nature of the exchange interaction between
ions. In this case the NN pairs of Mn ions possess zero s
in low magnetic fields and do not contribute to the magne
zation of the alloy. As a result, the magnetization in low a
moderate fields is mainly due to single ions, and it follow
13 094 © 1997 The American Physical Society
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56 13 095STRAIN BROADENING OF THE MAGNETIZATION . . .
that a Curie law is expected with an apparent saturation
the region where single ions become completely polariz
Additional increase of the magnetic field, however, brea
down the antiferromagnetic alignment of ions in a pair a
the pairs begin to contribute to the magnetization. T
change of the spin of each pair is quantized and is cause
the change in the nature of the ground state of the pair
magnetic field. When the magnetic field reaches the crit
value 2J1 /(gmB), whereJ1 is the absolute value of the NN
exchange constant,g'2 is theg factor of Mn, andmB is the
Bohr magneton, the state of the pair with total spinS51 and
its projectionm521 crosses the state withS50 and be-
comes the ground state. At this point the first step arise
the magnetization curve. Then, at a field 4J1 /(gmB) the state
with S52, m522 becomes the ground state and the sec
step appears, and so on. Since the Mn11 ion possesses a 5/
spin, a total of five steps due to NN pairs can be observe15

Experimentally observed steps are not sharp and their p
tions Bcn are shifted a little from those given above. Th
shift in the positions is due to the exchange interaction of
NN pairs with more distant Mn ions, in particular, with th
next nearest neighbors of the ions belonging to the pa16

For the broadening of the magnetization steps, sev
mechanisms have been discussed up to date. First is
simple thermal broadening. The second reason for an
creasing of the step width17 is the Dzyaloshinski-Moriya
~DM! interaction, which is present for two ions in a pa
along with the dominant Heisenberg interaction.18,11,19Then,
the interaction of ions in a pair with distant neighbors n
only shifts the positions of the step but also affects the s
shape.16 We show in this paper that there exists one ad
tional mechanism for the step broadening. Namely,
above-mentioned fluctuations of Mn-Mn distance, and, c
respondingly, the NN exchange constant, produce fluc
tions in the positions of the crossing pointsBcn
(n51,2,3,4,5), i.e., they result in an inhomogeneous bro
ening of the steps. It turns out that each of these mechan
leads to different shapes of the steps and, what is most
portant, they possess substantially different dependence
the step number, which gives the possibility to independe

FIG. 1. Showing the dependence of the nearest-neighbor
change constantJ1 between Mn-Mn pairs for different DMS com
pounds. All the compounds shown are in the very dilute Mn c
centration limit, except for the two samples marked. T
dependence is adequately described by a straight line with a s
of 214 K/Å. This figure is from J. K. Furdyna~private communi-
cation! and based on data of Furdyna.
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access the relative importance of each mechanism from
experimental data.

The paper is organized in the following way. The theo
of strain fluctuations of NN pairs in a ternary alloy is deve
oped in Sec. II below. Sec. III is devoted to the analysis
the mechanisms of additional broadening of the magnet
tion steps: interaction with distant neighbors, DM interacti
between the ions in the pair, and strain-induced broaden
Finally, Sec. IV contains a discussion of the results and c
clusions.

II. STRAIN EFFECTS

We consider a ternary alloyA12xBxC that in the absence
of the bond-length mismatch for theA-C and B-C bonds
would form a perfect zinc-blende lattice. The sites of th
perfect lattice are given by vectorsi ~for the sublattice con-
taining A andB atoms; in what follows, this sublattice wil
be referred as the cation sublattice! and j ~for the anion sub-
lattice which containsC atoms only!. The bond-length mis-
match is usually small for known semiconductor solid alloy
i.e., the difference of natural bond lengthsLAC

0 5rA
01rC

0 and
LBC

0 5rB
01rC

0 ~whererA
0 denotes the covalent radius of theA

atom, etc.! is small compared to the mean cation-anion bo
length in the alloyLe5(12x)LAC

0 1xLBC
0 . In this case, the

typical displacements$un% of the atoms from their positions
in the perfect lattice are also small, and the strain-indu
energyV($un%) can be written as a quadratic form with re
spect to the displacements. Then, the equilibrium positi
of the atoms are the same as in the case when there wou
a perfect crystal with random forces applied to the atom
With interactions of nearest anion-cation neighbors only,
force on an anion can be written as

Fj52a(
i~ j !

r i
0r̂ ji , ~1!

where the notationi~j ! means the summation over the fo
nearest-neighboring cation sites of thej th anion site,r̂mn is
the unit vector from sitem to siten of the underlying perfect
lattice, anda is a spring constant of the bond~it is assumed
to be the same forA-C andB-C bonds!. Note that random
forces are applied to the anions only; the force on a ca
Fi50, because of there is no disorder in the anion sublatt

The problem of finding out the displacements$un% is thus
reduced to the solution of the system of linear equatio
(mDnm•um5Fn , whereDnm is the dynamical matrix of the
crystal. It is perhaps surprising, but correct, that the dyna
cal matrix Dnm has the full translational symmetry of th
perfect virtual crystal. This is because force constant disor
has been neglected.

Inverting this equation we have

un5(
m

Gnm•Fm , ~2!

with Gnm being the phonon Green function. Substituting E
~1! into Eq. ~2! we can write down the deviation of the dis
tance between an arbitrary pair of sites, sayn andm, from its
value in the perfect latticeLnm

e ~cf. Ref. 6!:
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Lnm2Lnm
e 5 r̂ nm•~um2un!5(

i
anm,ir i

0 , ~3!

anm,i5a(
j ~ i!

r̂ nm•~Gnj2Gmj !• r̂ ji . ~4!

Disorder enters the expression~3! only through the cation
covalent radiusr i

0, which takes the valuerA
0 if site i is oc-

cupied by anA atom, and the valuerB
0 otherwise. The di-

mensionless three-point functionanm,i can be calculated, in
principle, using a given model for the phonon spectrum
the crystal. It is seen from the definition~4! that
anm,i5amn,i . It also follows from the translational symmetr
that anm,i depends only on differencesi2n and i2m and
obeys the condition

(
i

anm,i50. ~5!

A. Conditional averaging

Equation~3! makes it possible to find general expressio
for the mean distance and its rms fluctuation for any t
atoms in the alloy.6 The expressions obtained in Ref. 6, ho
ever, cannot be applied directly to the analysis of the geo
etry of NN pairs. In particular, in calculating the mean d
tance between twoB atoms which form a pair, we shoul
excludesituations when either one of these atoms has
other nearest-neighborB atom, because then this would n
be an isolated pair, but part of a larger cluster. In ot
words, we have to perform averaging with theconditionthat
this pair ofB atoms is surrounded byA atoms only.

A generic statement of such a problem is as follows.
us assume that there is a well-defined distribution ofA andB
atoms in some part of the alloy. TheA atoms of interest
occupy a subset of cation sitesVA and B atoms of interest
occupy a subsetVB . Superposition ofVA andVB defines a
clusterV. In particular, in the case of an isolated pair ofB
atoms,VB consists simply of two nearest-neighboring sites
the cation sublattice andVA could be cation sites in the firs
nearest-neighbor shell around this pair~see Fig. 2!. All other
sites of the lattice are occupied at random byB atoms with
probabilityx and byA atoms with probability (12x). Then,
performing the averaging of Eq.~3! for sites outside of the
cluster and making use of the summation rule~5!, we obtain
the following expression for the mean distance between
arbitrary sitesn andm belonging to clusterV:

^Lnm
~V!&5Lnm

e 1~rA
02rB

0 !@xGA
nm2~12x!GB

nm#, ~6!

GA
nm5 (

iPVA

anm,i , GB
nm5 (

iPVB

anm,i , ~7!

whereLnm
e is again the distance between these sites in

virtual lattice given by mean lattice consta
Le5(12x)rA

01xrB
01rC

0 multiplied by the appropriate geo
metrical scale factor. The fluctuation of theLnm

(V) also can be
found from Eq.~3! to be

^~Lnm
~V!2^Lnm

~V!& !2&5x~12x!~rA
02rB

0 !2RVnm , ~8!
f

s
o

-

n-

r

t

o

e

RVnm5(
i¹V

anm,i
2 . ~9!

The lattice integrals~7!,~9! determining the average defo
mation of the lattice are independent of the concentration
impurities as well as the size mismatchper se, and they
represent a fundamental property of the lattice. This com
about because the alloy is considered as a perfect solid s
tion from which some particular clustersV are selected for
averaging. Any correlation between the atomic spec
would destroy the universality of the lattice integrals a
introduce a dependence on size mismatch and atomic
centrations into these integrals. However, II-VI pseudobi
ries, can be considered as good examples of solid solut
and should be well described by the above equations.

In the case shown in Fig. 2, the isolated pair ofB atoms,
two properties of the lattice integrals~7!,~9! are worth men-
tioning, which concerns their behavior with increasing of t
size of theVA cluster. If we denote byGnA the lattice integral
for the case of a pair isolated from otherA atoms inside all
the shells up to thenth shell, the sum rule~5! implies that
GnA will approach2GB whenn goes to infinity. If we denote
by RnV the lattice integral for the fluctuations in a simila
way, then we show in the Appendix thatRnV will go to zero
as a power of thenth shell radiusuRnu, namely, asuRnu23 for
the 3D lattice.

B. Numerical simulations

In general, it is quite difficult to perform the lattice inte
grals on the phonon Green’s functions as given by Eqs.~4!,
~7!, and~9!. This is because in calculating of the tensorGnm
one encounters integrals over the Brilloin zone with an
cillating integrand. To illustrate this point we present t
solution for the 2D triangular lattice in the Appendix. For th
3D zinc-blende lattice, however, an analytical integration
not feasible and we are left with two possible approache
numerical integration or a direct measurement either fr
experimental data or numerical simulations. The latter

FIG. 2. Schematic representation of the isolated pair ofB atoms
in A12xBxC alloy. TheVB cluster discussed in the text is just the
two sites of the cation sublattice. For the pair to be isolated i
necessary that all NN cation sites for these two~shell 1! are occu-
pied by theA atoms. The eighteen cation sites in the shell 1 w
then form theVA cluster. The second shell contains further 51 a
ditional A sites.
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56 13 097STRAIN BROADENING OF THE MAGNETIZATION . . .
proach is much preferable since a single simulation is su
cient for extracting all the Green’s-function integrals. W
simply minimize the configurational energy of the given r
alization of a solid solution and then obtain the integral v
ues by inverting Eqs.~6! and~8!. As the integrals themselve
are independent of concentration and size mismatch, the
lidity of these equations can also be confirmed by vary
these parameters.

Simulations are performed on unit cells of 83(64)2

532 768 atoms with periodic boundary conditions. Atom
are first distributed at random on a zinc-blende lattice,
appropriate to the concentrationx. The atomic positions are
then relaxed with an energy minimization conjugate-gradi
algorithm.20 The setup is identical to previous work:5 a Kirk-
wood potential is used and the alloy on the first sublattice
considered to be a perfect solid solution. The Kirkwood p
tential consists of separate two- and three-site harmonic
teractions:

E5
a

2 (̂
i j &

~Li j 2Li j
0 !21

b

8
Le

2(
^ i j l &

~cosu i j l 1
1
3 !2, ~10!

wherea is the same as in Eq.~1! andb is an angular force
constant. Values for the lattice integrals are functions of
topology of the lattice as well as of the ratiob/a, which
determines the importance of angular forces versus the
tral forces. Our results are sensitive only to the ratiob/a,
and not to the absolute value ofa. In II-VI semiconductor
compounds, this ratio is normally aroundb/a50.10~Ref. 5!
and can go up to about 0.20 in III-V and IV-IV materials.5,22

Although elastic constants vary with atomic species, th
typically differ by at most 20%. As was shown previous
such small variations do not produce changes that are sig
cant or detectable when measuring structural properties.5

We are interested here in isolated atomic pairs~the B
atoms!. It is therefore necessary to work at relatively lo
concentrationsx so as to decrease the statistical weight
large clusters. The total concentration ofB-B pairs ~which
we will refer to asP0! on the lattice without any restriction
on their environment is 6x2. The total concentration ofB-B
pairs, with noB atoms in the first-neighbor surrounding sh
(P1) goes as 6x2(12x)18, while that forB-B pairs with no
B atoms in either the first- or second-neighbor surround
shell (P2) is 6x2(12x)69 ~cf. Ref. 21!. The maximum for
P1 is at x50.10 and that forP2 is aroundx50.03. Note
that atx50.05 there are only six or sevenP2 pairs in the
32 768 atom cell.

To improve statistics, five realizations of disorder are a
eraged for each value of the concentrationx and the force
constant ratiob/a. For numerical efficiency, we select a siz
mismatch much larger than for real materials: the conjug
gradient algorithm limits the precision on the total energy
about 1 part in 1010; given the size of our unit cells, it is
important to enhance the cost of disorder as much as pos
to obtain a good relaxation. Since the magnitude of the s
mismatch does not enter in the lattice integrals, this num
cal trick does not affect the final solution as was also c
firmed by comparing results for different size mismatch
The final results discussed here were obtained for a size
match of 9.7%—about four times larger than f
-

-
-

a-
g

s

t

is
-
n-

e

n-

y

ifi-

f

g

-

e-

ble
e
i-
-
.
is-

Cd12xMnxTe, which reduces by more than half the numb
of conjugate-gradient~CG! steps needed to achieve full con
vergence.

For the pairs of interest in this paper, the quant
GB

nm5GB is independent of the size of the exclusion zone
otherB atoms around the pair, and is the same as the unc
ditional average. The quantityGB is shown in Table I for the
case wheren,m are nearest-neighbor Mn-Te pairs and wh
n,m are next-nearest-neighbor Mn-Mn pairs~i.e., nearest-
neighbor magnetic pairs!. For the nearest-neighbor Mn-T
and Mn-Mn distances, the lattice integralGB is the same for
all such pairs and is equivalent toaBC** (111) andaBB** (220)
of Ref. 6. The notation forn,m is the same as describe
above, andG0A , G1A , andG2A refer to no exclusion zone
one-shell exclusion and two-shell exclusion, respective
When there is no restriction on the environment of the
pairs, Eqs.~6! and~8! become identical to Eq.~20! of Ref. 6
andR0[bBB,C** .

Tables I and II give the numerical values for the latti
integrals~7! and ~9! at three force constants ratios. As pr
dicted by the theory and verified numerically, these valu
are independent of the concentration and size mismatch.
rors are estimated from the spread of values for differ
realizations of disorder.

TABLE I. The lattice integrals involved in the calculation of th
average Mn-Te and Mn-Mn mean distances. The data are obta
following the prescription given in the text, and are for exclusi
zones around the magnetic pair of interest as described in the

b/a
0.05 0.10 0.15

Mn-Te
G0A 0.00 0.00 0.00
G1A 20.0960.01 20.1260.02 20.1360.01
G2A 20.1060.02 20.1260.05 20.1060.02
GB 0.8460.01 0.7460.01 0.6760.01
Mn-Mn
G0A 0.00 0.00 0.00
G1A 20.1560.15 20.1660.04 20.1460.04
G2A 20.4360.30 20.4260.22 0.0260.20
GB 0.6560.02 0.5660.02 0.4860.01

TABLE II. The lattice integrals that determine the rms fluctu
tions in the Mn-Mn pair distance. These values are extracted f
numerical simulation invoking Eq.~8! following the procedure de-
scribed in the text, and for various sizes of the exclusion zo
around the magnetic pair of interest.

b/a
0.05

0.10 0.15

Mn-Te
R0 0.005060.0010 0.013060.0010 0.018060.0040
R1 0.001160.0001 0.002360.0003 0.003160.0004
R2 0.000360.0001 0.000560.0004 0.000760.0003
Mn-Mn
R0 0.560 60.087 0.42160.025 0.28360.068
R1 0.101 60.011 0.06660.008 0.04460.012
R2 0.019 60.010 0.01960.012 0.01060.003
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III. MAGNETIZATION STEPS

Now we consider the broadening of the steps arising
the magnetization curve of the DMS from the pairs of ma
netic ions. The Hamiltonian of an isolated pair of Mn io
~possessing spinsS1 andS2 with S15S255/2! in a magnetic
field B applied along theẑ direction reads

Hp52J~S1•S2!1gmB~B2b!~S1z1S2z!1HDM , ~11!

HDM52D•~S13S2!. ~12!

Hereb.0 describes the antiferromagnetic exchange inte
tion of a given pair with distant neighbors16 andHDM is the
Dzyaloshinski-Moriya interaction between the ions.18 The
axial vectorD in Eq. ~12! is perpendicular to the plane con
taining these two Mn ions and the adjacent anion, and, s
the DM interaction is a relativistic effect,uDu!J.

The contribution of a given pair to the magnetization
the sample is proportional to its average spin,

m52
Tr$~S1z1S2z!exp~2Hp /kT!%

Tr$exp~2Hp /kT!%
~13!

@a minus sign is introduced in Eq.~13! for convenience, so
thatm.0#. The behavior ofm as a function of applied mag
netic field at low temperature (kT!J) is steplike:14 m is
close to zero for small fields, then changes sharply to 1, t
to 2, and so on, until it reaches its maximum value of 5. T
appearance of these steps corresponds to the change o
spin of the ground state of the Hamiltonian~11!.

If one neglects the DM term~12!, the eigenstatesuS,m& of
Hp can be classified by values of the total spin of the p
S50,1,2,3,4,5, and theẑ-componentm of the pair. The po-
sitions of the stepsBn(b) can be found then from the cond
tion of crossing of theuS,2S& and uS11,2(S11)& energy
levels. For thenth step one has16,14

Bn~b!5n~2J/gmB!1b, n51,2,3,4,5. ~14!

The shape of each step in the dependencem(B) for a given
pair with HDM50 has thus a pure thermal nature and
given by a Fermi-distribution-like function, which reflec
the relative probabilities for the pair to be found in sta
uS,2S& and uS11,2(S11)& near the crossing point. Thi
thermal broadening is the same for all steps because the
ergy differenceE„S11,2(S11)…2E(S,2S)52J2gmBB
does not depend onS5n21.

Instead of analyzing the functionm(B) it is more conve-
nient to deal with its derivative,dm/dB, which exhibits five
peaks as a function of the applied magnetic fieldB. In the
case when the separation between adjacent peaks 2J/gmB is
much greater than the peak width one can discuss each
separately. In particular, the thermal width of thenth peak
can be characterized by the average value of„B2Bn(b)…2,14

E „B2Bn~b!…2
dm

dB
dB[

DT
2

~gmB!2 5
p2

3 S kT

gmB
D 2

, ~15!

where the main contribution to the integral is from an int
val 2J/gmB aroundBn and we assumedDT!J. The experi-
mentally observed magnetization is the result of superp
tion of m(B) from different pairs in the sample, and differe
n
-

c-

ce

f

n
e
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pairs possess slightly different exchange constants, as
discussed in Sec. I, and are subject to different local
change fieldsb. The average value ofm(B),

M ~B!5^m~B!&, ~16!

with respect to fluctuations inJ andb exhibits steps with an
additional broadening. We will analyze these three effects
detail in subsections that follow.

A. Interaction with distant neighbors

The theory of internal exchange field acting on Mn-M
pairs in DMS was developed in Ref. 16. In this subsect
we use the results16 and calculate the average spin~16! of the
Mn-Mn pair primarily to show the qualitative difference
between this effect, DM and strain broadening mechanis
and for the sake of completeness.

The internal exchange fieldb entering the pair Hamil-
tonian ~11! arises due to the interaction between Mn ions
the pair under consideration and Mn ions occupying seco
third, etc. cation shells around these two ions. Because
Mn-Mn exchange interaction decreases rapidly with
distance,10,13 it is sufficient to take into account the antife
romagnetic exchange with Mn ions in the second shell~ab-
solute value of exchange constant isJ2! and with Mn ions in
the third shell~absolute value of exchange constant isJ3!
only.16 In this caseb takes on a set of discrete values~which
are linear combinations ofJ2 andJ3! with probabilities be-
ing dependent on the concentration of the alloyx. Using this
distribution function of internal fieldb given by Table II of
Ref. 16 we have convoluted the average spin of the Mn-
pair ~13! and the result is shown on Fig. 3. For the calcu
tion we have chosen DMS Cd12xMnxTe with the smallest
NN exchange constant@ J̄[J156.2 K ~Ref. 15!# and with a
concentration of Mn ionsx50.05, which is the typical con-
centration for the magnetization steps measurements~the
relative contribution of pairs to the magnetization of t
sample has its maximum at this point14!. The NNN exchange
constants were taken according to the approximate relat
J2.J1/10 ~Refs. 23 and 24! andJ3.J2/2.13

FIG. 3. Showing the shift and small additional broadening
peaks in the derivativedM/dB of the average spin of Mn-Mn pai
in Cd0.95Mn0.05Te ~exchange constantJ156.2 K! when the internal
exchange field from distant neighbors is taken into account~solid
line!. The dashed line shows the pure thermal broadening
T51.4 K. The exchange constants describing the coupling to
tant neighbors areJ250.6 K, J350.3 K.
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It follows from Fig. 3 that the interaction with distan
neighbors results mainly in the shift of the position of t
peaks, but only slightly affects the peak width~as is seen
from the change in the peak amplitudes!. The value of the
shift, Bcn2(2J/gmB)50.91J214.56J3 atx50.05,16 is inde-
pendent of the peak number. The~small! change in the peak
width arising due to this mechanism is also the same for
five peaks and can be described by introducing an effec
temperatureT* , so that atx50.05

~kT* !25~kT!21
3

p2 ~2.10J2
211.33J2J3110.95J3

2!.

~17!

B. DM interaction

In spite of the fact that it is generally accepted that
DM interaction ~12! produces additional broadening of th
magnetization steps,14 we did not find a detailed analysis o
this effect in the literature. That is why in this subsection
present the theory of the shape of the magnetization step
the presence of DM interaction.

It is clear from Eqs.~11! and ~12! that the energy spec
trum of a given pair depends on the anglef between the
applied magnetic fieldB and the vectorD. Because Mn-Mn
pairs are placed in a zinc-blende lattice, there are six poss
directions of the DM vectorD: ^11̄0&, ^101̄&, ^011̄&, ^110&,
^101&, and ^011&. The spin of Mn-Mn pair~13! should thus
be averaged over the different directions ofD, and the result
of such averaging will, in general, depend on the direction
magnetic field. Indeed, in the caseBuu^100& one has
cos(f)50 for 25% of pairs, and cos(f)561/& for 75% of
pairs; in the caseBuu^111& already 50% of pairs have
cos(f)50, and cos(f)5A2/3 for the other 50%.

In Fig. 4 we show the dependence of the averaged~as
explained above! derivative of the magnetization on the a
plied magnetic field. The results were obtained by numer
diagonalization of the Hamiltonian~11!,~12!, which is a
36336 matrix. The internal exchange fieldb was omitted for
simplicity. It turned out that the anisotropy is quite small,
is seen from the inset showing the maximum of the fifth pe

FIG. 4. The derivative of the average spin of Mn-Mn pairs
Cd12xMnxTe ~exchange constantJ156.2 K! in the presence of the
DM interaction ~12!. The results were obtained fo
uDu50.3 K.0.05J1 ~Refs. 11 and 18!. The dashed line shows th
pure thermal broadening (D50) at T51.4 K. The difference be-
tween the average spin of the pairs for two different orientation
the applied magnetic field is shown in the inset~see the text!.
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~where the anisotropy is the strongest!. The anisotropy be-
comes bigger with decreasing temperature, but the differe
between the maximum value at the fifth peak forBuu^100&
andBuu^111& is only a few percent atT50.2 K.

Because the results in Fig. 4 correspond toT51.4 K, the
DM interaction affects only slightly the width of the peaks.
does affect noticeably, however, theiramplitudes. And most
remarkable in Fig. 4 is the fact that the effect depends on
number of the peak, contrary to the case of the broaden
due to interaction with distant neighbors. The dependence
the peak number is not monotonic: the change in the am
tude is tiny for the first peak, it increases rapidly from t
second to the fourth peak, but the effect on the last, fifth p
is approximately the same as on the fourth peak, or eve
little bit smaller.

To understand this behavior we note that the DM inter
tion leads to an additional broadening of the magnetizat
steps because it mixes theuS,2S& and uS11,2(S11)&
states of the pair near the crossing point, resulting in
avoided crossing.14 The value of this effect is related to th
matrix element ofHDM between these two states. It is se
from Eq. ~12! that one has to calculate the following num
bers:

dS115u^S11,2~S11!u~S13S2!2uS,2S&u2, ~18!

which can be written via the Clebsch-Gordan coefficien
The calculations show thatdn , which defines the additiona
broadening ofnth peak, is indeed a nonmonotonous functi
of n, explaining the behavior ofdM/dB in Fig. 4. Namely,
d1535/655.8, d25128/5525.6, d35729/14552.1,
d45640/9571.1, andd55125/2562.5. Note that coeffi-
cients increase at the beginning, butd5 is smaller than d4 ,
and this makes the height of the last peak slightly grea
then the amplitude of the fourth one.

The second moment of the peaks indM/dB is infinite
because of a logarithmic divergence associated with the t
in the limit when the peaks are well separated as happ
with a smallD at low temperature. Thus it is not possible
define an effective temperature as was done at the end o
previous section. The full width at half the peak height sca
asD of course.

C. Strain broadening

Now we come back to consideration of the fluctuations
the geometry of Mn-Mn pairs and the inhomogeneous bro
ening of the magnetization steps due to related fluctuation
Mn-Mn exchange constantJ. First of all, it worth noting
from Table II that fluctuations of Mn-Te distances in th
alloy are about an order of magnitude smaller than the fl
tuations of Mn-Mn distances. This is a consequence of
strong inequality between radial and angular forces:a@b.
The problem of finding the fluctuations in the exchange c
stant is thus reduced to analyzing the one parameter de
dence ofJ(L), whereL is Mn-Mn separation.

Detailed information about the dependenceJ(L) was ob-
tained by means of inelastic neutron scattering from II-
diluted magnetic semiconductors,25 as well as from the posi-
tions of the magnetization steps. It was discovered that if
takes the values ofJ for NN Mn-Mn pairs in different
DMS’s and plot them as a function ofmeanMn-Mn distance

f
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in corresponding materials, the points fall on a very go
straight line,25 as shown in Fig. 1. From the slope of this lin
one can find thatdJ/dL.214 K/Å. Note also that the de
pendenceJ(L) defines the interaction between the spin
Mn ions in a pair and the phonons in the system. The va
uJ/(dJ/dL)u50.35 Å was used in Ref. 26 when analyzin
the spin relaxation, which leads to somewhat higher der
tive, dJ/dL.218 K/Å for Cd12xMnxTe. From these data
and using Eq.~8! and Table II, we can find out the typica
rms fluctuation of the NN Mn-Mn exchange constant
Cd0.95Mn0.05Te to be about 0.2 K@the values of covalen
radii entering Eq. ~8! were taken asrCd

0 51.48 Å and
rMn

0 51.30 Å ~Refs. 27–29!#.
The strain-induced broadening of magnetization step

shown in Fig. 5. In calculatingdM/dB we have convoluted
the average spin of the Mn-Mn pair~13! with a Gaussian
distribution of exchange constants. This was done havin
mind that the distribution of cation-cation distances is clo
to Gaussian5 andJ andL are linearly related. It is seen from
Fig. 5 that the case of strain broadening is similar to
Dzyaloshinski-Moriya one: the main effect is on the pe
amplitudes, but the behavior of the amplitude as a funct
of the peak numbern is monotonic. The fact that the peak
amplitude decreases linearly withn can be understood if on
recalls that the position ofnth peak is found from the relation
Bn5n(2J/gmB) @i.e., from Eq.~14! in which we neglected
the internal exchange fieldb.# So, for a given fluctuation in
the exchange constant, the corresponding fluctuations in
positions of peaks, and thus the additional inhomogene
broadening of peaks, increase linearly inn. In the case of
low temperatures, when the peaks are well separated,
can also define some effective temperature to describe
strain broadening of thenth peak:

~kTn* !25~kT!21
12

p2 ~ndJ!2, ~19!

wheredJ is the rms fluctuation ofJ.

FIG. 5. Showing the effect of fluctuations in the Mn-Mn e
change constantJ in Cd12xMnxTe on thedM/dB curve~see expla-
nations in the text!. The dashed line is the same as in Figs. 1 and
and shows the pure thermal broadening atT51.4 K. The mean
value of the exchange constant is^J&[J156.2 K. Solid curves in
this figure correspond to root-mean-square fluctuations of the
change constant,dJ, equal todJ50.2 K ~a! anddJ50.3 K ~b!.
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IV. DISCUSSION AND CONCLUSIONS

Comparing Figs. 3–5 we can point out that the thr
mechanisms of additional~with respect to the pure therma!
broadening of the magnetization steps in DMS, namely,~i!
interaction of Mn-Mn pair with distant neighbors,~ii ! the
Dzyaloshinski-Moriya interaction between the ions in t
pair, and~iii ! the strain induced fluctuations of the NN e
change constant, result in qualitatively different behaviors
the dM/dB curve. The main consequence of the interact
with distant neighbors is a shift in the positions of the pea
and only small additional broadening, which is the same
all five peaks and can be described by introducing an ef
tive temperatureT* .T, as given by Eq.~17!. The two other
mechanisms affect thedM/dB curve in a different way.
Their main effect is the change in the amplitude of the pea
with the amplitude being dependent on the number of
peak. Differences between the DM broadening and stra
induced broadening occurs mainly in the way they chan
the amplitude of the last two peaks in curve. This circu
stance gives hope to better sort out the relative importanc
each of these two mechanisms, and obtain more precise
ues of corresponding constants,D anddJ/dL. However, to
do it one will need to carry out the measurements at very
temperatures and in strong~preferably static! applied mag-
netic fields. Also, at low temperatures it seems to be poss
to extract information about the DM interaction by applyin
the magnetic field in different crystallographic directions, b
cause the DM effect is slightly anisotropic. The experimen
measurement of all the magnetization steps is not so eas
it involves the use of large pulsed magnetic fields that le
to ~unknown! heating in the sample, which is probably n
even in thermal equilibrium. The experimental result15

are, therefore, not quite accurate enough to justify trying
make a detailed fit at this time, including all three mech
nisms. We emphasize that all three mechanisms mus
present, are all equally important in somewhat differe
ways, and the parameters are all known approximately fr
other experiments. The work of Larson, Haas, a
Aggarwal16 focused on the further neighbor interactions,
explain the peak widths in Cd/Mn compounds and con
quently obtained a value ofJ2 that is rather large and no
consistent with other experimental determinations ofJ2 .
These authors did not consider the other two broaden
mechanisms that we have discussed here, but it is har
understand why their value ofJ2 was so large, as it was
necessary to use this value to explain the uniform shift in
the peaks.

In conclusion, we have suggested that in diluted magn
semiconductors there are fluctuations of exchange cons
between neighboring magnetic ions. These fluctuations e
due to the bond-length mismatch in the solid alloy, whi
results in fluctuations of the distance between the ions.
theory of such fluctuations has been presented. We h
shown that the fluctuations of the exchange constant pro
a new mechanism for the broadening of the magnetiza
steps, which are observed in these compounds from the p
of magnetic ions. This mechanism~the strain induced broad
ening! results in a qualitatively different behavior of th
dM/dB curve from the mechanisms known before.
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APPENDIX A: 2D NETWORK

We have added this appendix for two reasons. First,
want to show that the results similar to Eqs.~6!–~9! take
place in the case when one has an alloy of dilutedbonds.
And second, we want to present the exact solutions for
lattice integrals, which can be obtained explicitly for a tw
dimensional lattice.

We consider a 2D triangular net, the same as in Ref.
The bonds in this net can be of two types: A with probabil
(12x) and B with probabilityx. The natural bond length
are LA

0 and LB
0 , respectively, and the mean bond length

Le5(12x)LA
01xLB

0 . The dynamical matrixDnm for this
network is30

Dlm53I , if l5m, ~A1!

Dlm52 r̂ lm : r̂ lm , if l is NN of n, ~A2!

whereI is the unitary tensor, and the force constant, which
the common factor in these expressions, was omitted
equal to unity for simplicity.

Let us suppose, as we did in Sec. II, that we are intere
in the properties of aB bond that connects neighboring sit
i and j , and that is surrounded byA bonds. TheseA bonds
form again the clusterVA , and the clusterVB consists in this
case of only theB bond of interest. All the other bonds in th
alloy are random. The average value of the length of thiB
bond, and its root-mean-square fluctuations, can be a
expressed in terms of the Green function for the dynam
matrix ~A1!,~A2!. Because we consider the case of dilut
bonds, it turns out that it is more convenient to write t
answers via sum over bonds, not over sites as in Sec. II.
denote the bonds using Greek letters and introduce the f
tion Fab , which is analog ofanm,i ,

Fab5 r̂ ij•~Gil1Gjm2Gim2Gjl !• r̂ lm . ~A3!

In Eq. ~A3! it is assumed thata corresponds to theij bond,
andb corresponds to thelm bond. Then, it can be shown tha
the length of theB-bondL and its fluctuations are

^L&5Le1~LA
02LB

0 !FxS (
gPVA

FagD 2~12x!FaaG ,
~A4!

Š~L2^L&!2
‹5x~12x!~LA

02LB
0 !2RV , ~A5!

RV5 (
b¹V

Fab
2 , ~A6!
r
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which are very similar to Eqs.~6!–~9!.
For the triangular net under consideration there are so

exact results concerning the functionFab ~see Ref. 30!:

(
b

Fab50, (
b

Fab
2 5Faa5a** 52/3, ~A7!

where the summation overb is without any restrictions. Un-
fortunately, there is no simple analytical results for the se
rate values ofFab . To calculateFab we can solve the equa
tion for the Green function,(nDmn•Gnl5dmlI , using the
Fourier transform, and then obtain from Eq.~A3! the follow-
ing expression:

Fab5
S0

~2p!2 E dkeik•R
„r̂a•G~k!• r̂b…4 sin~ 1

2 Lek• r̂a!

3sin~ 1
2 Lek• r̂b!. ~A8!

Here vectorR points from the middle of thea bond to the
middle of theb bond,S0 is the area of the Wigner-Zeitz cel
S05(2/))Le

2 , and the integration over the wave vectork is
restricted to the Brillouin zone. The tensorG~k! reads

Gxx5~Ã1B̃!/D̃, Gyy5~Ã2B̃!/D̃, ~A9!

Gxy5Gyx52C̃/D̃ ~A10!

where

Ã532cos~kxLe!22cos~kxLe/2!cos~)kyLe/2!,
~A11!

B̃5cos~kxLe!2cos~kxLe/2!cos~)kyLe/2!, ~A12!

C̃5)sin~kxLe/2!sin~)kyLe/2!. ~A13!

We have calculated the integrals~A8! numerically to find
out how the factorRV ~A6! changes with increasing the siz
of the clusterV. The convergence of the integrals becom
poor with increasing of the distanceuRu between thea andb
bonds, and it is convenient to use the second relation~A7!
which results in

RV5a** 2 (
bPV

Fab
2 . ~A14!

If there is no restriction, i.e., all the bonds, except thea
bond, are taken at random, then the clusterV consists of the
a bond only, andR05a** (12a** )50.2222. If the first
shell of bonds around thea bond is filled with theA bonds
~i.e., when theVA cluster consists of the ten bonds attach
to the a bond directly!, we haveR150.1043. When theA
bonds occupy both the first and the second shell of bo
surrounding thea bond~i.e., when theVA cluster consists of
eighteen nearest bonds around thea bond!, we have
R250.0653.

It is important to understand what is the asymptotic b
havior ofRn for large n. If two bonds,a and b, are sepa-
rated by a macroscopic distanceuRu@Le , the main contribu-
tion to the integral~A8! comes from the region of sma
wave vectorsk. In this case we can perform the integratio
analytically. The result is
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Fab5
8

9p

S0

R2 ~ r̂a r̂b!F ~ r̂a r̂b!22
~ r̂aR!~ r̂bR!

R2 G . ~A15!

Let us consider the case when thea bond~theB bond! is
placed in the center of the circle of the macroscopic rad
R0 . All the other bonds inside the circle areA bonds, and the
bonds outside the circle are random. Substituting the ab
expression into Eq.~A6! and replacing the summation ove
bonds with the integration over their position, we obtain t
asymptotic behavior ofRV :
0

.

s

ve

e

RV→
24

33

S0

pR0
2 . ~A16!

Such slow decay of the fluctuations of the bond length
a general result. It is because the propagations of the stra
the lattice over macroscopic distances is governed by lo
wavelength acoustic phonons, and that is whyFab for large
distances between the bonds has the form of a dipole-dip
interaction. It is clear from this consideration that for a 3
latticeRV decays asR0
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