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An accurate numerical consideration is carried out of the ground state for the simplified model that is
traditionally used for the description of Verwey transition and related phenomena. In the framework of the
one-dimensional spinless fermion model, the effects of next-nearest nei@tikibl) interaction on the metal-
insulator transition are investigated for electron concentrations 1/2 and 2/3. It is shown that for large enough
NNN transfer integrals the electronic topological transition of metal-metal type is also possible. The corre-
sponding phase diagrams are present86163-18207)05144-§

[. INTRODUCTION phenomena seems to be rather interesting from both experi-
mental and theoretical points of view and may turn out to be
Studies of highly correlated electron systems are one oflosely related to the more popular areas of the physics of
the “hot” areas of condensed matter physics. A tremendoudlighly correlated electron systems.
number of papers have been concerned with the problems
such as heavy fermions, Mott transitions, magnetism of Il. THE FORMULATION OF THE MODEL
highly correlated systems, unconventional mechanisms of
superconductivity, etc. In this context the classical problem To consider the effects of strong correlations in crystals
of charge ordering, which has been raised by Wigrerd including charge ordering the polar motiés usually used
Shubin and VonsovsRy(see also Ref. Breceived far less With the Hamiltonian,
attention. As early as the 1930s, the famous Verwey transi-
tion in magnetite FgO, at the temperaturé,,=120 K has ) R
been discovered. According to the traditional views, this is M= _% tiJCinrCJUJ“UZ My + EiEj Vijning, (1)
the transition from the low-temperature insulating phase with
+ ‘. ) o
Fe? gnd Fé ions forming superlattlcé\/v|g|jer crystal to herec;’ andc;, are the creation and annihilation electron
the h|gh—tem.perature conducting pha;e with the desftroyegperatorsj is the site(Wannier stateindex, o=1,| is the
charge ordeer.However, fecent. expenmental data point to spin projectionin;, = c;’,C;, ;N = n;+n;, is the operator of
a more complicated physical picture since the Iong-ran(‘:]%Iectron number on sit t;; is the transfer integrald,V
charge ordering belowy appeared to be pronounced rather e the matrix elements of Coulomb interaction on-site and
weakly”® and the infrared spectra show “tunneling modes” peqyeen different sites correspondingly, and the primed sum-
that are presumably connected with the “smearing” of Fe  mation symbol indicates that#|. In comparison with the
and FE" ions over finite clusters. The assertion that, original polar model this expression does not contain the
namely, the charge ordering of ¥& and F& ions is the  muitielectron contributions to the transfer processes and the
cause of the metal-insulator transition is also called in quesgjrect exchange interactiofsee Ref. 3 The effects of
tion in a number of experimental workS.Phenomena simi- electron-phonon interaction may be partially taken into ac-
lar to the Verwey transition are observed also in a number ofount by the renormalization of the model parameters.,
other compounds, e.g., ifR3X, (R=Sm,Eu; X=8,S8,  tne formation of small-radius bipolarons by the condition
Yb,As; (see Ref. 10 and references thejein the layered v <q etc).
compoundsRFe,0,, whereR is a rare-earth iofr Some of In the case of Verwey transition in the magnetite the ex-
these compoundge.g., EwS,) exhibit long-range charge cess electrons distinguishing a Fesite from a Fé* one
ordering at low temperatures, and other ofes., SmSe;)  are almost completely spin polarizedT<T., where
show only short-range ordering. In the latter case, a numbef .= g50 K is the Curie temperaturand fill the band by less
of physical properties appeared to be anomalous, e.g., a giaf{an half. Therefore, the term wih= | may be omitted in

low-temperature heat capacity that is not connected with curthe Hamiltonian(1) and one may pass to the so-called spin-
rent carriers is observeéd™ Irkhin and Katsnelsof sug-  |ess fermion model,

gested that an RVEresonating valence bond or pseudospin

liguid) -type state with separated pseudospin and current de-

grees of freedom_mf'iy be formed in such systems. Hence, the H=— 2 ,tijcich + Ez 'Vij nin; )
problem of description of the Verwey transition and related i 24
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] ] FIG. 2. Metal-insulator phase diagram at2/3. Black and
FIG. 1. Metal-insulator phase diagram pt1/2. Black and  empty circles correspond to the metal and insulating phase, respec-
empty circles correspond to the metal and insulating phase, respeggely: solid lines correspond to the conditidn, = 3.
tively; solid lines correspond to the conditidn, = 2.

In the limit U— o the Hamiltonian(1) coincides with Eq. Let us define the quantit&? as follows: it_ is equal tc_) oif
(2).1415 More exactly, this is valid only in the one- f[he ground-state degeneragyis macroscopically Ia_rg(a._e..,
dimensional1D) case since in 2D and 3D systems the transincrease faster thaN whenN—-c) att=0; otherwise it is
fer Hamiltonian is renormalized by the spin-polaron €dqual to the difference between the energies of the lowest

effects!® But if we deal with ferromagnetéhis is the mag- €xcited state and the ground ond &0. It may be shown by

netite caspthe latter are absent. the direct enumeration of possible states with the same en-
The present work is devoted to the rigorous numericaBrgy that at=0 the degeneraay is exponentially large ifN

investigation of the ground state of the mod@®) in the 1D  atp=1/2V’=3V and, thereforeA..=0 in this case.

case, allowing for the interaction and transfer processes for One may obtain, fop=1/2,

the next-nearest neighbors. As will be shown below they

lead to a number of effects, in particular, to the opportunity ( .

of dimerization or electronic phase transitions of “metal- V-2V’ if §V>V'

metal” type. The 1D model may be considered not only as a

simplified way to understand some features of the real 3D

case but also as a model to describe the processes in the A= 2V'=V if 1V<V’<V &
conducting polymers and other quasi-one-dimensional 2
crystalst’~1° , .
At t;;=0 the model(2) is equivalent to the Ising model LV if V>V,
and describes in the ground state a “frozen” electron distri-_ _ 4 forp=2/3
bution (Wigner crystal depending on the specific form of '
Vi; . At V;;=0 we have the case of noninteracting electrons V' if V>V
with the homogeneous distribution. Intuitive considerations A= @
of energy gain for competing processes show thay atV;; * Vo if VeV

the ground state should change.

In the nearest-neighbor approximation the 1D model with
the Hamiltonian(2) appears to be exactly solube?! For
the electron concentration per sipe=1/2 andV=2 (here
and further  we put tji+1=1t;2=t",Vjis1
=V,V;=,=V’) the metal-insulator transition takes place
with the appearance of the energy gap in the electron spe
trum atV>2. Let us investigate for the beginning the effect
of the interactionV’ on this transition at’ =0.

As the electron transfer is taken into account the ground
state for the casa..=0 is split into the energy band with the
bandwidth of order oNt. Sinceg>N this band should be
continuous in the limiN— . Therefore, one should expect
that no energy gap will appear between the ground state and
fhe lowest excited one so the ground state will be always
conducting atA.,=0. At A_.>0 andt>0 it is natural to
expect that the conducting ground state will transform to the

Fort=0 andp=1/2 the ground state in the mod@) is : ' g . : .
. : , . insulating one with the increasinty,,. The following ques-
determined by the ratio o’ and V"’ and, as may be easily ion is to be elucidated: at what value &f (V,V’) does the

e " H I
demonstrated, corresponolis tlo the usua! charge Or_de”nénetal-insulator transition takes place and does the transition
[...1010100...] for V'<3V and dimer ordering point depend orv andV’ separately?

[...1100110011@...] for V'>3V (1 means the electron Hence, the following is the list of questions to be an-
and 0 means the hole on a $it8o the mode(2) is frustrated swered: (i) Does the metal-insulator transition exist at
because of the competing nature of the interactdasdV’ A,=07? (ii) At p=1/2, does the metal-insulator transition
(they favor different types of charge orderjng occur atA,,~2 similarly to the exactly soluble cas =07
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TABLE I. Dependence of the ground-state enefiine upper linesand the gag (the lower lineg on the
differentV andV' at p=2/3.

Vv’ 0 1 2 3 4 5 6 8 10

\%

0 -0.5472  -0.1318 0.2662 0.6489 1.0188 1.3790 1.7324 2.4248 3.1072
0.000 -0.001 -0.005 0.004 -0.004 -0.003 0.002 0.004 -0.001

1 -0.1856  0.2347 0.6386 1.0276 1.4031 1.7675 2.1236 2.8180 3.5016
0.000 0.000 -0.003 0.004 0.003 0.002 0.001 0.001 -0.001

2 0.1669 0.5903 0.9984 1.3922 1.7728 2.1417 2.5010 3.1997 3.8839
-0.001 0.000 0.000 0.002 -0.004 0.002 0.003 0.003 0.004

3 0.5135 0.9395 1.3495 1.7459 2.1292 2.5008 2.8626 3.5662 4.2545
-0.002 0.000 0.000 -0.001 -0.004 0.005 0.005 0.005 0.006

4 0.8565 1.2832 1.6941 2.0916 2.4757 2.8467 3.2072 3.9079 4.5944
-0.002 0.000 -0.003 0.005 0.094 0.140 0.169 0.092 0.083

5 1.1971 1.6236 2.0355 2.4332 2.8166 3.1864 3.5454 4.2440 4.9294
-0.002 0.000 -0.001 0.020 0.309 0.610 0.876 1.018 0.932

6 1.5367 1.9631 2.3746 27721 3.1547 3.5234 3.8814 4.5788 5.2637
-0.003 0.000 -0.003 0.019 0.374 1.017 1.497 1.952 1.934

7 1.8744 2.3005 2.7123 3.1095 3.4913 3.8591 4.2164 49131 5.5976
-0.003 0.000 -0.004 0.039 0.422 1.316 2.042 2.803 2.925

8 2.2113 2.6376 3.0488 3.4458 3.8271 4.1941 4.5510 5.2471 5.9314

-0.004 0.000 -0.001 0.066 0.586 1.470 2.447 3.443 3.822

10 2.8830 3.3092 3.7205 4.1166 4.4969 4.8632 5.2192 5.9147 6.5986
-0.004 0.000 0.000 0.082 0.570 1.390 2.943 4.568 5.423

20 6.2307 6.6539 7.0639 7.4582 7.8362 8.2005 8.5555 9.2496 9.9330
-0.004 -0.003 0.000 0.127 0.748 1.793 3.036 5.781 8.721

100 329074 33.3307 33.7389 34.1312 345074 34.8702 35.2243 359175 36.6004
-0.005 -0.003 0.015 0.173 0.861 1.963 3.292 5.983 8.813

(iii) More generally, do the interaction constants enter thaions will be sought for. Also, the interesting phenomenon of
expression for the transition point mainly via the parametethe metal-metal transition, which appears to be possible in
A..? (iv) How does the metal-insulator transition proceed athe model with next-nearest-neighbor transfer processes, will
p#1/2, and in particular, gb=2/3 (this filling corresponds be studied.
to the situation in many real compounds; see, e.g., ReR 10

These problems were considered already in a number of
papers (although, to our knowledge, for the cage=1/2 . METAL-INSULATOR TRANSITION:
only). In Ref. 22 the phase diagram of the 1D spinless fer- THE RESULTS OF CALCULATIONS
mion model (rewritten in terms of spin operatdfs with

next-nearest-neighbor interaction has been obtained by the To investiaate the around state of the svstem we have
renormalization-group approach. In Refs. 23 and 24 the g 9 y

metal and insulator regions of this model have been investiysed the Lanczos method of exact diagonalization for finite

gated by an exact numerical calculation of “Drude” contri- clgster§7*28 (really, we made the calculations fdi=20)
bution to the frequency-dependent conductivity rather with the extre}polatlon to the limil—oc. The comparison of
general approach to the numerical calculation of correlatiodhe results with the exact onestat=0,v’' =0 (Refs. 20 and
functions for 1D many-electron systems; see e.g., also irl) have shown that we have at least four accurate digits in
Refs. 25 and 26 However, the renormalization-group the ground-state energy and two in the energy @alpich
method can give only the general shape of the phase diagrawas calculated as the average difference of the ground-state
and not the exact numerical results for the positions of phasenergy upon adding and removing the elecir&uch accu-
boundaries. On the other hand, the calculations in Ref. 28acy is sufficient to answer the questions formulated above.
have been carried out only for few sets of parameters of thdhe main results are the following.

model. The recent wofR contains the most detailed numeri- (1) At A,,=0 the metal-insulator transition is absent and
cal investigation of the metal-insulator phase diagram in théhe ground state is always metallic both fo+ 1/2 and for
model under consideration. Below, the problem of metal-p=2/3 (the calculations have been carried out up to
insulator transition in the modéR) will be investigated by V~10?).

the calculations of the total energy and energy gap by the (2) The metal-insulator phase diagram fpr=1/2 is
Lanczos method for the broader range of the parameters thamown in Fig. 1. The metal-insulator transition takes place at
in the previous papers and the answers to the above queA..~2. Qualitatively this result seems rather natural. Never-
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TABLE Il. Dependence of the gap on the parameted., at

differentV, V', andV"” at p=1/2.
V \A \4 A, A
0.5 0 0.25 1.0 0.000
2.0 1 0.50 1.0 -0.001
3.0 2 1.00 1.0 -0.001
4.5 3 1.50 1.5 0.038 02 |
1.0 0 0.50 2.0 0.003
4.0 2 1.00 2.0 0.096 . o
6.0 4 2.00 2.0 0.180 7 3
7.5 5 2.50 2.5 0.465
15 0 0.75 3.0 0.263 0.0 T T v vV
6.0 3 1.50 3.0 0.726 ° ° 1 1"’ %
9.0 6 3.00 3.0 0.873 FIG. 3. Dependences of the correlation functiofis,n,)
2.0 0 1.00 4.0 1.069 (circles and (ngn,) (squares on the parametel for different
8.0 4 2.00 4.0 1.827 V'sV/2: () V'=0,2) V'=0.2/, (3 V'=0.3V, (4 V' =0.5V.
10.0 5 2.50 5.0 3.119
3.0 0 1.50 6.0 3.335 p 1
4.0 0 2.00 8.0 5.296 V=2V +2V" if Z(V+V")>V
2.0 2 1.00 2.0 0.002 2
3.0 3 1.50 3.0 0.000
4.0 4 2.00 4.0 0.156 Au=q ooy # Lovevn<vi<y O
5.0 5 2.50 5.0 1.769 2
6.0 6 3.00 6.0 3.494
Y% if V>V,

theless, it is not trivial, to our opinion, that it turned out to be ) o )

valid with the accuracy comparable to the accuracy of the This statement is illustrated by the d_ata of Table II: in the
calculations. This result may be used for the testing of dif-c2S€ of the downwards-convex potentiaipper part of the
ferent approximations proposed for the investigation of 2D{@bl®) the criterionA..~2 holds but no simple criterion can
and 3D systems. Qualitatively our phase diagram is in agred2€ established for the opposite cdlaver part of the table
ment with that from Ref. 24. Moreover, the part of the ph(,jsePresumany, this affirmation is also valid for the electron-
diagram for which real calculations has been carried out iff/eCtron interaction of arbitrary range. The arguments justi-
Ref. 24 is the same. But our results for the region of large fying the downward-convexity condition for realistic quasi-

are new. The main difference is that, according to our resultdn€-dimensional compounds were presented by Hu_Hﬁard.
the boundary lines of metal-insulator transition are not Apart from the metal-insulator transition, another interest-
crossed and the metallic phase is continued to infinity alond"d Phenomenon studied in the spinless fermion model is the

the lineV’ =V/2 in correspondence with the qualitative dis- Sharge” ordering. In particular, fgs=1/2 the interplay of
cussion in the Introduction. usual” and dimerized(Wigner and Peierf®) charge order-

(3) Figure 2 shows the phase diagram for2/3. The ing can be discu:_ssed. OL_Jr approach_canr?ot be appligd. di-
criterion of the metal-insulator transition i, ~ 3. This re- rectly to _the solution qf this problem since |t_|s rather dlf_fl—
sult is new even for the casé’ =0. The phase diagram for cult Fo flnq asymptot|c§ .of the correspon.dlng co_rrelatlon
this case is qualitatively different from that fpr=1/2 (com- functions dlrec_tly from flnlte—c]uster calculations. This prob-
pare Figs. 1 and)2In particular, the ground state is metallic €M can 2be mvestl.gatSed either by such approaches as
for small enough/’ andarbitrary V. It is connected with the analyticaf® or numericat® renormalization group or by the
macroscopically large degeneracy of the ground state #ombination of the exact diagonalization technique with the
V'=0. Also, it is not trivial that the position of the metal- results of the theory of Luttinger liquitsee, e.g., Ref. 26
insulator boundary with the accuracy of the calculations deNevertheless, we present here our results about the charac-
pend only oV atV’>V and only oV’ atV>V'. Since the  teristics of theshort-rangecharge order in the model under
1D spinless fermion model for=2/3 was probably not con- €onsideration, which can be interesting in and of themselves.
sidered earlier we present in Table | the results for the 1he results of the calculations for the correlation func-
ground-state energy and the energy gap. tions (ngn;) and(neny) in the ground state fop=1/2 are

(4) We also have carried out the calculations for the casgresented in Figs. 3 and 4. Consider first the cdse 3V.
p=1/2 with the adding of the third-neighbor interaction term According to Fig. 3 in this case we always have
V"Zinini;.3. It appears that the criterion of the metal- (ngn;)<<(ngn,), which show the absence of the dimeriza-
insulator transitiom ,~2 is valid also in this case provided tion. The metal-insulator transition is almost not appreciable
that the interaction potential is downwards-convex, namelyin the calculated correlation functions describing the short-
V+V'>2V', A, being equal to range order.
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FIG. 6. The double chain.

the derived conclusions about the effects of competing inter-
actions on the nature of Verwey transition may be useful in
v analyzing the realistic 2D or 3D systems.

IV. ELECTRONIC TOPOLOGICAL TRANSITION
FIG. 4. Dependence of the correlation functidngn,) (circles IN THE MODEL WITH NEXT-NEAREST-NEIGHBOR
and (ngn,) (squareson the paramete¥ for V'=0.7V. Vertical TRANSFER PROCESSES

dashed line shows the metal-insulator transition. . N ]
Apart from the metal-insulator transition considered

_Consider now the case’>3V. The data presented in apove, the interelectron interaction may lead to an electron
Fig. 4 show that a¥ is decreased, the dimerized state withphase transition of another type. It is connected with the
(non1)>(ngny) is probably destroyed before the metal- next-nearest-neighbor transfer processes. Although the role
insulator transition occurs. One may suppose that as thgf such processes in many-electron models is investigated in
transfer integrat is increased starting from the atomic limit, 3 number of workgsee, e.g., Ref. 29, a recent paptre
first the dimer lattice melts and then the insulator-metal tranopportunity of such transition’ to our know|edge, was not
sition occurs. Unfortunately the present results give us onlygted and studied.
preliminary indications of the melting of the dimerized lat-  Consider at first the cas€ #0V’'=0. In that case at
tice (because we cannot investigate the asymptotics of thg =0 one-particle electron spectrum is given by
correlation functions and, therefore, have no direct informa-
tion about long-range ordgrand this interesting question &= —2tcok—2t’'cosXk. (6)
calls for further investigations.

The results of calculations for the correlation functions It is easily seen that dt >t/4 the spectrum is nonmono-
(ngny), (ngny), and(ngns) for p=2/3 andvV=10 is shown tonic in the range (Gr). At t'>1/2 andp=1/2 the second
in Fig. 5. Qualitatively, a similar picture takes place for any fermion “pocket” appears, i.e., the electron-filled region in
V'<V. At large V and V' (or equivalently fort—0) we Kk space is no longer singly connected. In other words, while
have(ngn,)— 1/3{Nngn,)— 1/3{Nngn3)—2/3. the Fermi surface of a “normal” one-dimensional system
So our calculations give a rather full description of theconsists of two point&= *kg it consists of four points at
metal-insulator transition in the 1D spinless fermion modelt’>t/2 and p=1/2. In the latter case the occupied states
beyond the nearest-neighbor approximation. They also prazorrespond to the intervals 7= ks—k,'?, —kSs k< kS,
vide a basis for further investigations, in particular, concern-and kEgks . It should be emphasized that a 1D gas of
ing the relation between the metal-insulator transition anchoninteracting electrons cannot exhibit a dispersion law of
the destruction of the charge ordering. One may think thathis type since it is well knowrisee, e.g., Ref. 3that the
one-dimensional one-electron Scadinger equation for a
0.70 Jeriodic potential must necessarily exhibit a monoté&ik)
spectrum betweek=0 andk= (the lattice parameter is
set equal to unity everywhereNevertheless, the Hamil-
‘onian (1) with t'>t/4 may be used for the description of
‘eal systems, e.g., consisting of pairs of strongly coupled
one-dimensional chains with weak coupling between differ-
ant pairs. In this caseis the transfer integral between the
1earest sites in the direction across the double chairt‘aisd
he transfer integral along {see Fig. 6.

The study of such systems is not only of purely theoretical

nterest. It may give a deeper insight into the properties of

0.65

0.60

0.55

0.50 -

O‘SS‘T—o—o—o—o_o_c -ealistic quasi-one-dimensional systems, in particular, the
0.30 4 ‘ : ‘ . .y nell-known compound NMP-TCNQ(the molecules of
0 2 4 6 8 10 TCNQ and NMP are shown in Figs(&f and 7b), respec-

tvely). This compound is characterized by a charge transfer
FIG. 5. Dependences of the correlation functiofisyn,)  from TCNQ to NMP moleculesabout 1/3 electron per NMP
(circles, (ngn,) (squares and (ngny) (triangles on V' at  moleculg. As one NMP-TCNQ cell contains one electron,
V=10,p=2/3. half of thek states betweenr 7 and 7 are occupied. There-
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(a)
C N C~
- N -~ ~ k
‘ = \C/ oo N C
‘ é C C FIG. 8. The distribution functiofn,) att’=t. The solid line
N SN + SN~ corresponds t& =0, the dash-dot line corresponds\e-2.5, the
N C/ N - C = dashed line corresponds Yo=2.6t.
CH
3 =11 c10), W)
®) .
where the quasimomentum takes on the values
E(k) —mp+Askswp—A\ (the first step and

—m<ks-—7+\,7—A<ks 7 (the second step
Substituting Eq(7) into Eq. (2) and replacing the sum-
mation by the integration according to the formula

(IN)Zy...—(12m7)fT _dk... one has
E H 2
N=M=pzv— ;t[sin(pw—)\)—sin)\]

1
—;t’[sin(pr—Z)\)JrsinZ)\]

(0

A\ o
——2[S|n(p77—)\)—S|n)\] . (8)

T

FIG. 7. (8) TCNQ moleculgthydrogen atoms are not shoy()
NMP molecule(c) the sketch of the dispersion law of electrons in

, In the case op=1/2, the substitutiorx=1—cos\+sin\
NMP-TCNQ according to Ref. 17.

yields

fore the Fermi surface consists of two sheets: one of them is
bounded bykgza-r/3 and corresponds to the TCNQ chain;

the other is bounded by =57/6 and corresponds to NMP
].17

1 Vv
X+ —| 2t’ ——) X2, (9)
v ko

Y
—|t—2t"+ —
a a
where 0=x<2x=0 corresponds to one pocket amd-0
corresponds to two pockets. Minimizing the energy with re-
tion: What id h to the distribution functi gspect tox one obtains that the increase éfresults in the
question. Vvhat wou appen 1o the distribution func Ionmerging of the two step&isappearing of the second pocket
upon switching the electron-electron interaction, i.e., would,; 4 critical value
the increasing interaction result only in a gradual smearing of
the steps in the distribution function of electronskirspace

or is a drastic change of its shape also possible, e.g., the

merging of two steps? It will be shown below that the second This means that the switching on the electron-electron
possibility really takes place. interaction, according to the usual Hartree-Fock approxima-
Before the presentation and discussion of exact numericalon, may lead to a topological transition, i.e., a change in
results it would be reasonable to treat this problem in the@opology of Fermi surface: the two-sheetéfibur point
simplest Hartree-Fock approximation. The trial wave func-“surface” transforms into a one-sheetévo-point one. In
tion will be chosen in the form corresponding to the distri-a 3D case it would correspond to a transition from a doubly
bution function with two steps irk space of the widths connected Fermi surface to a singly connected one that is a
2wp—2\ and 2\: particular case of the electronic topological transitions pro-

Vo= m(2t' —t). (10)
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0 f T T T T I /4 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.5 1.0 15 20 25 3.0

FIG. 9. Phase diagram of the 1D spinless fermion model at
p=1/2V' =0, a being the label for the “one-pocket” region arl
for the “two-pocket” one.

FIG. 10. Phase diagram of the 1D spinless fermion model at
p=1/21"=0.42, « being the label for the one-pocket region and
the B for two-pocket one.

posed by LifshitZ! The investigation of such opportunity by case is shown in Fig. 10. The Hartree-Fock approximation
a more rigorous way is the purpose of our calculations decan describe qualiatively the phenomenon of “inverse” tran-
scribed below. sition but gives too high values of the critical values\&f

The calculations have been carried out for a system of 10the difference may be in a factor of order of 2—-5 depending
electrons in the ring from 20 sites and of 8 electrons in theon V values.
ring from 16 sites. The results for the points of the electronic To conclude this section note why these results are, to our
topological transition in these two sets of calculations wereopinion, nontrivial. It is well known that for 1D systems the
the same with the accuracy of two significant digits. Theelectron velocity may be zero eitherlat O or at the bound-
computational results are shown in Figs. 8 and 9. Figure &ry of the Brillouin zone?® Therefore, true one-dimensional
displays the distribution function in the ground stéatg) at  systems cannot exhibit Van Hove singularities inside the al-
t'=t. It is clearly seen that the “hump” near the edges of lowed band and hence they exhibit no electronic topological
the Brillouin zone k= — 7, 7) disappears at 25V<2.6. transitions because the latter are nothing but the crossing of
Figure 9 presents the phase diagram of the system. The coriiie Fermi level by the Van Hove singularity. However, this
parison with Eq.(10) shows that beginning from approxi- is not the case for, e.g., a double chain. The exact numerical
mately t’~0.8t the Hartree-Fock approximation gives too results presented here suggest that in this case quasi-one-
high values forv, and the difference with numerical results dimensional systems may demonstrate electronic topological
grows with increasing’. So, the Hartree-Fock approxima- transitions. As in the 3D cadkthey are, unlike metal-
tion is not very accurate quantitatively at large insulator transitions, transitions of metal-metal type. Study-

In the caseV’ #0 the inverse topological transition turns ing the possibility of such transitions in real quasi-one-
out to be possible when the increase of the Coulomb interdimensional conductors containing double chains would be
action results in the appearance of the second pocket. Wef experimental interest.
have carried out the corresponding calculations for the case
t'=0.49,p=1/2. Thus, without interaction the second mini-
mum in the electron spectrum lies very close to the Fermi
level and above it. The interaction can cause this minimum We are grateful to A.O. Anokhin and S.V. Tretjakov for
to be lower than the Fermi level. The phase diagram for thisissistance in the performing of numerical calculations.
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