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Interplay of Mott transition and ferromagnetism in the orbitally degenerate Hubbard model
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A slave-boson representation for the degenerate Hubbard model is introduced. The location of the metal-
to-insulator transition that occurs at commensurate densities is shown to depend weakly on the band degen-
eracy M . The relative weights of the Hubbard subbands depend strongly onM , as well as the magnetic
properties. It is also shown that a sizable Hund’s rule coupling is required in order to have a ferromagnetic
instability appearing. The metal-to-insulator transition driven by an increase in temperature is a strong function
of it. @S0163-1829~97!02144-9#
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There has been dramatic progress in our understandin
the Mott transition in the last few years. Careful experime
tal studies of systems in the vicinity of the Mott transitio
have been carried out.1 Two new theoretical tools, slave
boson mean-field theories~see, for instance, Fre´sard and
Wölfle2 and references therein!, and the limit of infinite di-
mensions have been adapted to its study. For a review
Georgeset al.3 Most of the modern work has focused on t
single-band Hubbard model. Now that both the metallic and
the Mott insulating states of the~doped! titanate and vanadi
ates have been studied experimentally1,4 ~corresponding to
3d1 and 3d2 configurations in the Mott insulating state!,
there is a need for a theoretical framework allowing for u
derstanding the Mott transition for arbitrary degeneracy a
density. This paper is aimed at providing such a techni
and applying it to a variety of quantities that cannot be o
tained easily using alternative approaches. Most of the
sults are obtained in a closed analytical form, allowing fo
qualitative understanding of the physical situation.

In this work we investigate the effect of strong Coulom
interaction in systems withorbital degeneracy. Such a situ-
ation is realized in virtually all transition-metals and tran
tion metal oxides. These systems containd electrons in cubic
or trigonal environments. The crystal field can only lift pa
tially the degeneracy of thed bands, down to two as is th
case of V2O3 ~Ref. 5! or three as in LaTiO3. Our goal is to
understand how degeneracy affects the behavior of the
ferent physical quantities near the Mott transition. To ca
out the investigation we extend the slave-boson techniq
which has been very successful in the study of the M
transition, to the orbitally degenerate case.

A remarkable feature of the dynamical mean-field so
tion to the large-dimension limit of the Hubbard model is t
metal-to-insulator transition that occurs in the vicinity of t
Mott transition under an increase of the temperature.3 In the
metallic phase the spectrum of the one-electron Gree
function consists of two incoherent excitation branches
one coherent quasiparticle peak, which is precisely abse
the insulating state. There is thus a coherence tempera
Tcoh at which the coherence of the interacting system giv
560163-1829/97/56~20!/12909~7!/$10.00
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rise to the Fermi liquid disappears. Such a cohere
incoherent transition is observed experimentally in V2O3
~Refs. 6 and 7! and can also be obtained out of the slav
boson mean-field theory.8

Compared to the variational wave-function approach9,10

our formalism is more flexible since, as we demonstrate
this paper, it allows us to calculate a variety of quantities t
are not easily accessible to the variational approach, a
function of the correlation strength and doping. It can also
improved systematically by performing a loop expansi
around the saddle point. Our main results are as follows

~a! Low-energy single-particle quantities such as the cr
cal value of the interaction strength of the transition, t
quasiparticle residue, and the single-particle Mott-Hubb
gap depend only weakly on degeneracy. This justifies
agreement between theory of Rozenberget al.11 and experi-
ment on orbitally degenerate systems.

~b! The relative weights of the Hubbard bands depe
strongly on degeneracy, in agreement with other method12

~c! The coherence temperature decreases with increa
band degeneracy.

~d! The magnetic properties, in particular the magne
susceptibility and its associated Landau parameter in
paramagnetic phase and the magnetic phase diagram
strongly modified with respect to the one-band case.

The Hamiltonian describing the low-energy properties
these systems is commonly written as

H5 (
i , j ,s,r

t i , j ci ,r,s
† cj ,r,s1U3(

i ,r
ni ,r,↑ni ,r,↓

1U1 (
i ,r8Þr

ni ,r,↑ni ,r8,↓1U (
i ,s,r8,r

ni ,r,sni ,r8,s ,

~1!

wheres is a spin index for the up and down states whiler is
labeling theM bands.U3 describes the on-site interactio
term between two particles in the same band but with op
site spin.U1 relates to a pair of particles with opposite sp
and different band index.U finally concerns the case o
12 909 © 1997 The American Physical Society
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12 910 56RAYMOND FRÉSARD AND GABRIEL KOTLIAR
equal spin. In the two-band model rotational symmetry
quiresUn5U1nJ.13 The relationship between the coupling
is derived and discussed in the Appendix for a model tha
relevant to the titanates. The description with only three d
ferent interaction strengths is a simplified version of the f
problem with completely general exchange interaction.
that case the coupling constants would not be complet
independent from one another, and relationships betw
them would follow from rotational symmetry as well. Her
we consider a generic model where the number of indep
dent parameters is kept small for simplicity. TakingJ finite
accounts for the Hund’s rule coupling.

As for any model with on-site interaction, a slave-bos
representation can be introduced, mapping all the degree
freedom onto bosons. We can rewrite any atomic state w
the help of a set of pseudofermions$ f a% and slave bosons
$ca1 , . . . ,am

(m) % (0<m<2M ). ca1 , . . . ,am

(m) is the slave boson as

sociated with the atomic state consisting ofm electrons in
statesua1 , . . . ,am& wherea is a composite spin and ban
index. By construction it is symmetric under any permutati
of two indices, and zero if any two indices are equal. We c
now write the creation operator of a physical electron
terms of the slave particles as

ca
†5 z̃ a

† f a
† . ~2!

z̃ a
† describes the change in the boson occupation numb

when an electron in statea is created as

z̃ a
†5 (

m51

2M

(
a1,•••,am21

ca,a1 , . . . ,am21

†~m! ca1 , . . . ,am21

~m21! ,

a iÞa. ~3!

The operatorsz̃ a
† in Eq. ~3! describe the change in the

slave-boson occupation as a many-channel process. In o
to recover the correct noninteracting limit at mean-fie
level, one has to observe that the classical probability
these processes to happen is not simply given by taking

FIG. 1. Inverse effective mass in the two-band model as a fu
tion of density for several values ofU.
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Bose fields in~3! to be given by their classical values, but b
introducing normalization factorsLa andRa ~Refs. 14 and 2!
as

za
†5 (

m51

2M

(
a1,•••,am21

3ca,a1 , . . . ,am21

†~m! LaRaca1 , . . . ,am21

~m21! ,

a iÞa, ~4!

where

Ra5F12 (
m50

2M21

(
a1 ,•••,am

ca1 , . . . ,am

†~m! ca1 , . . . ,am

~m! G21/2

,

a iÞa,

La5F12 (
m51

2M

3 (
a1,•••,am21

ca,a1 , . . . ,am21

†~m! ca,a1 , . . . ,am21

~m! G21/2

.

~5!

Namely,La normalizes to one the probability that no ele
tron in stateua& is present on a site before one such elect
hops on that particular site, andRa makes sure that it hap
pened. Clearly the eigenvalues of the operatorsLa and Ra
are one in the physical subspace. Now, the redundant deg
of freedom are projected out with the constraints

f a
† f a2 (

m51

2M

(
a1,•••,am21

ca,a1 , . . . ,am21

†~m! ca,a1 , . . . ,am21

~m! 50,

(
m50

2M

(
a1,•••,am

ca1 , . . . ,am

†~m! ca1 , . . . ,am

~m! 2150. ~6!

We obtain the Lagrangian atJ50 as

L5(
i ,a

f i ,a
† ~]t2m1 il i ,a! f i ,a2 iL i

1(
i ,m

(
a1,•••,am

c i ,a1 , . . . ,am

†~m! F ]t1 iL i1US m
2 D

2 i (
j 51

m

l i ,a jGc i ,a1 ,•••,am

~m! 1 (
i , j ,a

t i , j zi ,a
† f i ,a

† zj ,a f j ,a .

~7!

We now proceed to the mean-field theory, and we inv
tigate the paramagnetic, paraorbital saddle point. The latte
obtained after integrating out the fermions, and setting
bosonic fields to their classical value. The Mott transiti
that occurs at commensurate densityn is best discussed by
projecting out occupancies that are larger thann11 and
smaller thann21 ~if any!. The constraints allows for elimi-
nating the variablesc (n21) andc (n) to obtain the grand po-
tential atn as

c-
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V~D !5~122D2!D2~Abn,M1Acn!2e0

1UFD21S n
2D G2mr, ~8!

with e0[2M*deer(e) f F(z2e1l02m), D2

[(n11
2M )c (n11)2, bn,M[(2M2n11)/(2M2n), and

cn[(n11)/n. Minimizing Eq.~8! with respect toD yields a
critical interaction strength at whichD vanishes. It reads

Uc
~n,M !52e0~Abn,M1Acn!2, ~9!

which reproduces the results of the Gutzwill
approximation.9,10 This locates the Mott transition. Restric
ing ourselves to a flat density of states we can relate
critical interaction strength to the band widthW. We obtain

Uc
~n,M !5

nW

4M
~2M2n!~Abn,M1Acn!2. ~10!

Its band-degeneracy dependence is fairly weak.10 The effec-
tive mass of the quasiparticles diverges at the Mott tra
tion. We obtain
e
t

c

th
p

ta
e

i-

m

m*
5z25

~Abn,M1Acn!2

8

Uc
~n,M !22U2

Uc
~n,M !2

. ~11!

Due to the particular form of the coefficientsb and c the
dependence on the band degeneracy is weak. The cri
interaction strength increases withM so the quasiparticle
residueZ increases slightly withM . For small values ofU
~which we treated without projecting out higher occupa
cies!, Z decreases with increasingM . So there is a crossove
value of the interaction strength beyond which the syst
becomes more metallic with increasingM .15 As a function of
the hole dopingd, the quasiparticle residue vanishes ford
going to 0 aboveUc

(n,M ) as

Z5
d

2
~bn,M2cn!1

udu
2

@~bn,M1cn!A114wn,M

14Abn,Mcnwn,M#, ~12!

where we introduced
tric with
le

ame
upancies

emical

p

wn,M[
Uc

~n,M !2bn,Mcn /~Abn,M1Acn!4

~U2Uc
~n,M !!~U2Uc

~n,M !@~Abn,M2Acn!/~Abn,M1Acn!2# !
. ~13!

The expression of the quasiparticle residue consists of two contributions that are either symmetric or antisymme
respect to particle or hole doping. The antisymmetric contribution vanishes forn5M as a consequence of the particle-ho
symmetry. The asymmetry ofZ on particle or hole doping is seen to increase under an increase ofun2M u. For n,M , Z(d)
vanishes more slowly for hole doping than for particle doping. Increasing the degeneracy for fixedn, or increasing the
degeneracy atn5M , makes the rate at whichZ(d) vanishes smaller. Increasing the interaction strength has the s
consequence. As an example we calculate the effective mass for the two-band model without projecting out higher occ
and show it on Fig. 1.

Interestingly we also obtain a Mott gap. Indeed the number of quasiparticles is a continuous function of their ch
potentialm2l0/2. However, the saddle-point equations show that the Lagrange multiplierL jumps when going through the
Mott gap, which implies thatl is going to jump as well, and so doesm. As a result we obtain the Mott ga
D[ limd→02m(d)2 limd→01m(d) as

D5A~U2Uc
~n,M !!$U2Uc

~n,M !@~Abn,M2Acn!/~Abn,M1Acn!#2%. ~14!
nt is
ud-

nd
In the limit of U@Uc
(n,M ) , the Mott gap is given byU,

while it closes atUc
(n,M ) as D;Uc

(n,M )AU/Uc
(n,M )21, the

square-root behavior being typical of slave-boson mean-fi
theories. It can be read from Fig. 2 where it is compared
the one-band case as obtained by Lavagna.16 Clearly going
from one band to two bands does not imply a big differen
in the Mott gap. Indeed we obtain thatD/Uc

(n,M ) is indepen-
dent ofM at n5M , while for fixedn it depends very weakly
on M .

Our result can be compared to experimental data. For
series LaxY12xTiO3, Okimotoet al.17 measured how the ga
depends on the bandwidth. Assuming~for large ratioU/W)
D;U2W we obtain out of their dataU53.2 eV. Inserting
this and the experimental value of (U/W)c;1.3 into Eq.~14!
we can computeD/W for M53 as a function ofW/U and
compare it with experiment on Fig. 3. The experimen
ld
o

e

e

l

trend is clearly reproduced and the quantitative agreeme
very satisfactory. According to the above discussion, incl
ing the threefold degeneracy of thed band in order to ac-
count for the experimental situation17 only makes a small
difference as compared to the nondegenerate case.

We now turn to the Hund’s rule coupling dependence a
treat as an example the two-band model around then51
Mott insulating lobe. Atr51 the grand potential at the
saddle point reads

V5
4

3
e0~122r 2!@r 1~d01dx1D0!/A2#21~U13J!D0

2

1~U1J!dx
21Ud0

22mr, ~15!

with d0[(c↑,↑
(2)1c↓,↓

(2))/A2, dx[(c↑,↓
(2)1c↓,↑

(2))/A2,
D0[(c↑↓,0

(2) 1c0,↓↑
(2) )/A2, r 2[d0

21dx
21D0

2 , and l[(ala/2,
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12 912 56RAYMOND FRÉSARD AND GABRIEL KOTLIAR
and we have used the constraints to remove the varia
c (0) andc (1).

Such an expression differs from an ordinary Ginzbu
Landau free energy in the respect that it cannot be writte
a fourth-order polynomial in the variablesd0, dx , and D0.
As a result, if there were to be a critical point for one field
would be critical for the other ones as well. For smallJ we
obtain the location of the Mott transition as

Uc,~J!
~2! 5Uc,~0!

~2! S 12
4

3

J

U
1O~J/U !2D . ~16!

Another regime of interest is the large-J regime. There we
obtain the location of the Mott transition as

Uc
~2!52

2

3
e0~312A2!S 12

8

9

e0

J D1OS S e0

J D 2D ~17!

and thus decreasingJ from infinity leads to an increase of th
critical interaction.

FIG. 2. Chemical potential forn51 for the one-band~dashed
line! and two-band~full line! models.

FIG. 3. Dependence of the Mott gap on the bandwidth forn51
andM53. Circles: experimental data of Okimotoet al.17
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Another intriguing feature of transition-metal oxides su
as V2O3 is the metal-to-insulator transition that occurs in t
vicinity of the tricritical point under an increase o
temperature.6,7 It has recently been interpreted11 as the tran-
sition from a Fermi liquid with finite quasiparticle residueZ
to an insulator withZ50. This interpretation has been ob
tained in the framework of the dynamical mean-field a
proximation, which yields equations that have two differe
solutions, one that resembles a Fermi liquid with a finiteZ
and the other, which is totally incoherent. In the slave-bos
mean-field theory and at zero temperature, the quasipar
residueZ vanishes continuously asU approachesUc

(M ) , as
given by Eq.~11!. In contrast this behavior does not hold
finite temperature8 where the saddle-point equations acqu
a higher degree of nonlinearity since«0 becomes a function
of Z. Thus, for given U, they admit two solutions for
U,Uc2, and only one forU.Uc2. Among the two solu-
tions, one closely resembles the metallic solution with fin
Z of the larged. The second one, characterized by a stron
renormalized effective mass, is not really a good descript
of the insulator because it does not have the incoherent p
Nevertheless that is really the best mean-field theory can
Given the resemblance of one of the slave-boson solution
the metallic large-d solution it makes sense to ask at whic
temperature that solution ceases to exist, that is, our ca
lated Tcoh. When both solutions become degenerate th
is a first-order metal-to-insulator transition at a critic
Uc

(M )(T):

Uc
~M !~T!5Uc

~M !~0!2A8Uc
~M !~0!Tln~2M !. ~18!

Thus an increase in temperature may produce a meta
insulator transition, which is consistent with the experime
tal situation in V2O3. HereTcoh is given by

Tcoh5
@U2Uc

~M !~0!#2

8Uc
~M !~0!ln~2M !

~19!

and thus decreases under an increase ofM . In the dynamical
mean-field approximation at finite temperature there is
interaction strengthUc2(T) at which the metallic solution
ceases to exist. This quantity can also be evaluated in
slave-boson scheme and, atn51, is given by

Uc2
~M !~T!5Uc

~M !~0!@12aM~T/W!2/3#, ~20!

with a1;2.53 anda2;3.32.
We now turn to the calculation of the magnetic suscep

bility. Here we generalize the calculation of Liet al.18 to the
two-band model. The linear response to an external magn
field is obtained as a one-loop calculation of the correlat
function of the slave-boson fields in the spin-antisymme
band-symmetric channel. Three fields couple in t

channel:15 x2[ 1
2 (asca

(1) , x1[1/A2(c↑,↑
(2)2c↓,↓

(2)), and

k[ 1
2 (asla , and the magnetization is expressed in terms

slave bosons asM54d0x112c (1)x2 . The resulting sus-
ceptibility arises as a random-phase approximation form15

xS5
x0

11F0
ax0 /N~EF!

. ~21!
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We now determine the instability line of the paramagne
phase with respect to ferromagnetism. ForJ50 we find no
ferromagnetic instability even near the Mott transition, wh
for finite J we find that the Mott metal-to-insulator transitio
may be preempted by the appearance of a ferromagn
phase. In other words, a sufficiently strong Hund’s rule c
pling turns a Mott insulator into a ferromagnet. Original
the Hubbard model was introduced in order to describe
romagnetism in narrow-band systems, but it has been
cently established that the ground state is not ferromagn
for any reasonable values of the parameters on the sq
lattice.19,20Introducing a next-nearest-neighbor hopping te
in the Hamiltonian,21–24 which has the effect of shifting the
van Hove singularity of the non-interacting system aw
from the center of the band, may lead to a ferromagn
ground state in the vicinity of the van Hove singularity, ev
for realistic values of the coupling strength. We find that t
ground state is much more likely to be ferromagnetic in
degenerate model for finiteJ, as shown in Fig. 4.

Our method can be applied to the calculation of dyna
cal quantities too. In the slave-boson method,25 the Green’s
function that one obtains closely resembles the exact largd
result. It namely consists of a quasiparticle resonance
two Hubbard bands, which can be clearly separated. H
ever, the sum rules are not quite satisfied forN52. Here we
use a decomposition that is more closely related to the H
bard operator algebra treatment, and the idea is to calcu
the spectral weights of the Hubbard operator Green’s fu
tions. We really do not know how to separate that weig
into a lower band and a quasiparticle piece, but near h
filling the resonance has a small weight, and we can iden
the weight in the Hubbard bands with the spectral weigh
the corresponding Hubbard operator Green’s functions
the strong coupling regime the one-particle excitation sp
trum is split off into several pieces, each of them carryi
some fraction of the spectral weight~which are adding up to
1 so as to fulfill the sum rule!. The various pieces follow
from the discrete atomic levels, which are well separated
multiples of U, broadened by exchange processes. Let
now determine the fraction of the spectral weight carried

FIG. 4. Instability line of the paramagnetic phase forU/J510
~dashed line! andU/J55 ~solid line!. The diamond~square! indi-
cates the position of the Mott transition forU/J510 (U/J55).
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each sub-band. In our language the low-energy excitati
are involving the fieldc (1), and the high-energy excitation
centered aroundU the fieldc (2). Higher-energy excitations
involving higher local occupancies are left out. We obta
the spectral weights in both bands by evaluating explic
the anticommutator̂ $ca ,ca

†%& using the decomposition o
the physical electron operator@Eqs.~2! and~3!#. Accordingly
the spectral weight of the Green’s functionT^ca(t)ca

†(0)&
in the lower Hubbard band (WLHB5^$cLa ,cLa

† %&) and the
upper Hubbard band (WUHB^$cUa ,cUa

† %&), wherecLa
† (cUa

† )
is the contribution toca

† , which is involving the fieldca
†(1)

(ca,a1

†(2) ) in Eq. ~3!, are given by

WLHB5^c†~0!c~0!1ca
†~1!ca

~1!&,

WUHB5 (
bÞa

^cb
†~1!cb

~1!1cab
†~2!cab

~2!& ~22!

and are shown in Fig. 5. Here the weights do not quite a
up to 1 in the two-band case because we projected out o
pations larger than 2. In other words, on top of the two s
bands that are considered here, there appears a second
Hubbard band~centered around 3U23m, corresponding to
triple occupancy! that is becoming relevant in the partic
doped domain. To a very good accuracy its contribution
the spectral weight is given by 12WLHB2WUHB . Clearly
the degeneracy plays an important role as the weight of
upper band atn51 in the strong coupling regime is given b
(2M21)/2M .

In summary we introduced a slave-boson representa
of the degenerate Hubbard model. We obtained that the b
degeneracy has a weak influence on the location of the M
transition, while the degeneracy temperature and the dyna
cal and magnetic properties strongly depend on it. We a
showed that no ferromagnetic instability occurs unless
Hund’s rule coupling becomes sizable, yielding a gene
scenario for ferromagnetism in transition metals a
transition-metal oxides. In that case a ferromagnetic insta
ity may even shadow the Mott transition.

FIG. 5. Spectral weight of the upper~dashed lines! and lower
~solid lines! Hubbard bands for the 1 band and 2 band models
U52Uc

(M ) .
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Note added.After this work was completed we becam
aware of related work by H. Hasegawa@cond-mat/9612142
~unpublished!; cond-mat/9704168~unpublished!#.

R.F. gratefully acknowledges financial support from t
Fonds National Suisse de la Recherche Scientifique u
Grant No. 8220-040095, as well as Rutgers University a
Neuchâtel University for hospitality where part of this wor
has been done. This work has been partially supported by
NSF under Grant No. DMR 95-29138.

APPENDIX

In this appendix we derive the Hamiltonian that is re
evant to the titanates, Eq.~1!. In a cubic environment, the
crystal field is partially lifting the degeneracy of thed band,
by lowering the energy of the threefold degenerateT2g or-
bital, and by raising the energy of the twofold degenerateeg
orbital. Here we concentrate on theT2g electrons, for which
the interacting part of the Hamiltonian is given by

H int5 (
s,s8

(
a,b,g,d

^abu e2/r ugd&ca,s
† cb,s8

† cd,s8cg,s ,

~A1!

where the indicesa,b,g,d label thedxy , dxz , anddyz orbit-
als. The nonvanishing matrix elements of the Coulomb in
action are grouped into direct and exchange interactio
There is a diagonal direct coupling:

u5^aaue2/r uaa&, ~A2!

an off-diagonal direct coupling

u85^abu e2/r uab&, ~A3!

and two exchange couplings

J5^abu e2/r uba&,

a5^aau e2/r ubb&. ~A4!

Explicitly, introducing the Wannier real wave function
wa(r ), we find forJ:

J5E drdr 8wa
†~r !wb

†~r 8!
e2

ur2r 8u
wb~r !wa~r 8!. ~A5!

The reality of the wave functions implies

a5J. ~A6!

Using the partial wave expansion of the Coulomb poten
one obtains
.

-
le
, E
er
d

he

r-
s.

l

J5(
k,m

E r 2drr 82dr8
r ,

k

r ,
k11

R~r !2R~r 8!2,

E dVwa~V!Ym
k ~V!wb~V!

3E dV8wb~V8!Ym
k ~V8!wa~V8!,

~A7!

whereR(r ) andwa(V) are respectively the radial and ang
lar part of the wave functionwa(r ). As usual, using, for
instance, density-functional theory, the computation of
matrix elements can be brought down to the computation
three numbers,F0, F2, andF4. They are defined as

F05E r 2drr 82dr8
1

r .
R~r !2R~r 8!2,

F25
1

49E r 2drr 82dr8
r ,

2

r .
3

R~r !2R~r 8!2, ~A8!

F45
1

441E r 2drr 82dr8
r ,

4

r .
5

R~r !2R~r 8!2

and one obtains

u5F014F2136F4 ,

u85F02F224F4 , ~A9!

J5
5

2
F21

45

2
F4 .

In the limit whereF4!F2, we obtain

2J5u2u8. ~A10!

Setting

U[u23J, ~A11!

and inserting the above-found matrix elements of the C
lomb interaction in Eq.~A1! we obtain the Hamiltonian Eq
~1! provided one neglects the two following small terms:

Hneg5J (
aÞb

(
sÞs8

cas
† cas8

† cbs8cbs

1J (
aÞb

(
sÞs8

cas
† cbs8

† cas8cbs . ~A12!
d.

.
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