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Interplay of Mott transition and ferromagnetism in the orbitally degenerate Hubbard model
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A slave-boson representation for the degenerate Hubbard model is introduced. The location of the metal-
to-insulator transition that occurs at commensurate densities is shown to depend weakly on the band degen-
eracy M. The relative weights of the Hubbard subbands depend stronglyl pas well as the magnetic
properties. It is also shown that a sizable Hund'’s rule coupling is required in order to have a ferromagnetic
instability appearing. The metal-to-insulator transition driven by an increase in temperature is a strong function
of it. [S0163-182607)02144-9

There has been dramatic progress in our understanding ofse to the Fermi liquid disappears. Such a coherent-
the Mott transition in the last few years. Careful experimen-incoherent transition is observed experimentally irOY
tal studies of systems in the vicinity of the Mott transition (Refs. 6 and Y and can also be obtained out of the slave-
have been carried olitTwo new theoretical tools, slave- boson mean-field theofy.
boson mean-field theorieee, for instance, Fsard and Compared to the variational wave-function apprdaéh
Wolfle? and references therginand the limit of infinite di- our formalism is more flexible since, as we demonstrate in
mensions have been adapted to its study. For a review sé@is paper, it allows us to calculate a variety of quantities that
Georgest al® Most of the modern work has focused on the are not easily accessible to the variational approach, as a
single-band Hubbard modelNow that both the metallic and function of the correlation strength and doping. It can also be
the Mott insulating states of theloped titanate and vanadi- improved systematically by performing a loop expansion
ates have been studied experimentdllycorresponding to around the saddle point. Our main results are as follows:
3d1 and 312 configurations in the Mott insulating state (a) Low-energy single-particle quantities such as the criti-
there is a need for a theoretical framework allowing for un-cal value of the interaction strength of the transition, the
derstanding the Mott transition for arbitrary degeneracy andluasiparticle residue, and the single-particle Mott-Hubbard
density. This paper is aimed at providing such a techniqu&ap depend only weakly on degeneracy. This justifies the
and applying it to a variety of quantities that cannot be ob-agreement between theory of Rozenbetgl* and experi-
tained easily using alternative approaches. Most of the rement on orbitally degenerate systems.
sults are obtained in a closed analytical form, allowing for a (b) The relative weights of the Hubbard bands depend
qualitative understanding of the physical situation. strongly on degeneracy, in agreement with other metfiods.
In this work we investigate the effect of strong Coulomb  (€) The coherence temperature decreases with increasing
interaction in systems witbrbital degeneracySuch a situ- band degeneracy.
ation is realized in virtually all transition-metals and transi- (d) The magnetic properties, in particular the magnetic
tion metal oxides. These systems conthielectrons in cubic ~ susceptibility and its associated Landau parameter in the
or trigonal environments. The crystal field can only lift par- Paramagnetic phase and the magnetic phase diagram, are
tially the degeneracy of theé bands, down to two as is the Strongly modified with respect to the one-band case.
case of \éo3 (Ref 5 or three as in La'ﬂ@ Our goa| is to The Hamlltonlan deSCflblng the IOW—eneI’gy properties of
understand how degeneracy affects the behavior of the dithese systems is commonly written as
ferent physical quantities near the Mott transition. To carry

out the investigation we extend the slave-boson technique, p_— > i CipetUs NN,
JELp, 0T ]p o 4 Py Py
i,p

which has been very successful in the study of the Mott iJ,0.0
transition, to the orbitally degenerate case.
A remarkable feature of the dynamical mean-field solu- UL 2 My tU 2 N, oMy

tion to the large-dimension limit of the Hubbard model is the
metal-to-insulator transition that occurs in the vicinity of the (1)
Mott transition under an increase of the temperaturethe

metallic phase the spectrum of the one-electron Green'wherec is a spin index for the up and down states whilis
function consists of two incoherent excitation branches andhbeling theM bands.U; describes the on-site interaction
one coherent quasiparticle peak, which is precisely absent iterm between two particles in the same band but with oppo-
the insulating state. There is thus a coherence temperatusite spin.U, relates to a pair of particles with opposite spin
T.on @t which the coherence of the interacting system givingand different band indexU finally concerns the case of

i.p'#p io.p' <p

0163-1829/97/5@0)/129097)/$10.00 56 12 909 © 1997 The American Physical Society



12910 RAYMOND FRESARD AND GABRIEL KOTLIAR 56

Effective Mass Bose fields in(3) to be given by their classical values, but by
M2 Uu2.1)= introducing normalization factoils, andR, (Refs. 14 and P
1.0 ——— as
2M
0.8+ 1 ZZZ 2
0.5 m=1 a1<---<amp_1
t -1
06+ B X wa(z?i ..... am 1LaRa(/l(aT, . .). @1’
N
i a, 4
0.4+ , a7 a (4)
where
02l i1 2M-1 -1/2
) —{1— t(m) (m)
. R, {1 2 a1<2<am Vol } ,
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FIG. 1. Inverse effective mass in the two-band model as a func- 2
tion of density for several values &f. Lo= 1_21
equal spin. In the two-band model rotational symmetry re- Hm) - -1
quiresU,=U+nJ.3 The relationship between the couplings X E< Yaay, .. am Yoy, . amq|
is derived and discussed in the Appendix for a model that is s Ame1
relevant to the titanates. The description with only three dif- 5)

ferent interaction strengths is a simplified version of the full . .

. . : Namely, L, normalizes to one the probability that no elec-
problem with completely general exchange interaction. Intron in state @) is present on a site before one such electron
that case the coupling constants would not be completel a)lsp : .

ops on that particular site, amRl, makes sure that it hap-

independent from one another, and relationships betwee ned. Clearly the eigenval £ h ratorsand R
them would follow from rotational symmetry as well. Here pened. Llearly the eigenvalues of the operatofsa @

we consider a generic model where the number of indepena-lre one in the phys!cal subspac_e. Now, the ret_jundant degrees
dent parameters is kept small for simplicity. Takiddinite of freedom are projected out with the constraints

accounts for the Hund’s rule coupling. 2M
As for any model with on-site interaction, a slave-boson ¢ _ Z Z yhm P -0
. . . a'a —_ a,aq, ..y Q17 @0, .y 1 '
representation can be introduced, mapping all the degrees of m=1 a;<-- <ap_

freedom onto bosons. We can rewrite any atomic state with
the help of a set of pseudofermiofis,} and slave bosons

<« (m) (m) 1=
s the slave boson as- E 2 ‘r”alm aVaty an~1=0. (6)

m=0 ay<---<ayp - 7

2M

..... «,
sociated with the atomic state consistingmfelectrons in ] ]

states|a, . . . ,a;) Wherea is a composite spin and band W€ obtain the Lagrangian =0 as
index. By construction it is symmetric under any permutation

of two indices, and zero if any two indices are equal. We can | = T (9. —u+iN; )f; ,—iA;
now write the creation operator of a physical electron in ia Y
terms of the slave particles as

m
F(m) i
- + | 9. +iA+U
cl=7"fl. 2 % a1<2<am Vi i ( )

2

----- [

'ZL describes the change in the boson occupation numbers n

when an electron in state is created as _'21 Ni o, ¢’i(Tv)1,-~-,am+ian ti,JZiT,afiT,aZj,afi,a-
2M (7)
Z,= AN s
m=1 a;< - <ap_q L m-1- T m-1 We now proceed to the mean-field theory, and we inves-
tigate the paramagnetic, paraorbital saddle point. The latter is
a# a. 3 obtained after integrating out the fermions, and setting all

bosonic fields to their classical value. The Mott transition
The operatorsz | in Eq. (3) describe the change in the that occurs at commensurate densitys best discussed by
slave-boson occupation as a many-channel process. In ordefojecting out occupancies that are larger thehl and
to recover the correct noninteracting limit at mean-fieldsmaller tham—1 (if any). The constraints allows for elimi-
level, one has to observe that the classical probability fonating the variableg/("~%) and (" to obtain the grand po-
these processes to happen is not simply given by taking theential atn as
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Q(D)=(1-2D*)D*(Vbym+ o) %€ m _, (Jbyw+ey)? UMM2-u?
n w8 U2 (0
#0024 (3] |- up ® °

Due to the particular form of the coefficients and c the
dependence on the band degeneracy is weak. The critical
interaction strength increases wil so the quasiparticle

with €0=2M [deep(€)fe(Z2e+No— ), D2
=@V )yY2 b y=(2M-n+1)/(2M—n),  and

¢p=(n+1)/n. Minimizing Eq.(8) with respect td yields &  ragjquez increases slightly witt. For small values ofJ
critical interaction strength at which vanishes. It reads (which we treated without projecting out higher occupan-
nM)_ — P cies, Z decreases with increasimd. So there is a crossover

g™ =~ eg( Vbt Ven)?, ©®)  Value of the interaction strengtr?? beyond which the system

which reproduces the results of the Gutzwiller becomes more metallic with increasihg'® As a function of

approximatior?''° This locates the Mott transition. Restrict- the hole dopings, the quasiparticle residue vanishes &r

ing ourselves to a flat density of states we can relate thgoing to 0 aboved (™™ as

critical interaction strength to the band widih. We obtain

S |4l
nw _ _ (el
U(cn’M):m(ZM—n)(‘/bn,M+ Je)2. (10) Z=5(bym=cn)+ S [(bnm+Co) V1+4eny
Its band-degeneracy dependence is fairly w€akhe effec- +4bp MChenms (12
tive mass of the quasiparticles diverges at the Mott transi-
tion. We obtain where we introduced

U2, e/ (Voo + Vo)
P U= U0 (U= UL (Vb= Ve (Vb + Ve D)

The expression of the quasiparticle residue consists of two contributions that are either symmetric or antisymmetric with
respect to particle or hole doping. The antisymmetric contribution vanishas=féd as a consequence of the particle-hole
symmetry. The asymmetry @ on particle or hole doping is seen to increase under an incredse-dfl|. Forn<M, Z(6)
vanishes more slowly for hole doping than for particle doping. Increasing the degeneracy fon fixedncreasing the
degeneracy ah=M, makes the rate at whick(s5) vanishes smaller. Increasing the interaction strength has the same
consequence. As an example we calculate the effective mass for the two-band model without projecting out higher occupancies
and show it on Fig. 1.

Interestingly we also obtain a Mott gap. Indeed the number of quasiparticles is a continuous function of their chemical
potential u — A /2. However, the saddle-point equations show that the Lagrange mulidpljemps when going through the
Mott gap, which implies that\ is going to jump as well, and so dogs. As a result we obtain the Mott gap
A=limg_ o-u(8) —limys_q+u(J) as

A= U=UPMY U= UM (o = Ven (Vb + Ve 12). (14)

(13

In the limit of U>U™™) | the Mott gap is given byJ, trend is clearly reproduced and the quantitative agreement is

while it closes atU™™ as A~UM™ JU/UTW =1 the yerytsatltifact;)rlyd Qccordlng to t?iﬁz%ov%qlscuzsm?, includ-
square-root behavior being typical of slave-boson mean-fiel§f'9 th€ threeiold cegeneracy o and in order to ac-

theories. It can be read from Fig. 2 where it is compared ggount for the experimental situatithonly makes a small

the one-band case as obtained by Lava§r@learly going difference as compared to t,he nondege_nerate case.
from one band to two bands does not imply a big difference[ We now tumn to the Hund’s rule coupling dependence and
. . (M) i reat as an example the two-band model aroundnthkel
in the Mott gap. Indegd we C?bta'” Fh‘MUC is indepen- Mott insulating lobe. Atp=1 the grand potential at the
dent ofM atn=M, while for fixedn it depends very weakly ¢oqqle point reads
on M.

Our result can be compared to experimental data. For the 4
series LaY;_,TiOz, Okimotoet all’ measured how the gap 1= 550(1—2r2)[r+(d0+ detAg)/V2]2+(U+33)A3
depends on the bandwidth. Assumitigr large ratioU/W)
A~U—W we obtain out of their datt)=3.2 eV. Inserting +(U+)d2+Ud3— up, (15
this and the experimental value df (W)~ 1.3 into Eq.(14)
we can compute\/W for M=3 as a function ofA//U and  With do= (A% + ¥{*)1V2, de=(yi3+ 212,
compare it with experiment on Fig. 3. The experimentalAo=(yi7o+ ¥7))/V2, r’=dj+di+Af, andA=3 /2,
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Mott Lobes Another intriguing feature of transition-metal oxides such
as L0, is the metal-to-insulator transition that occurs in the
2.0 x vicinity of the tricritical point under an increase of
temperatur&’ It has recently been interpretédas the tran-
sition from a Fermi liquid with finite quasiparticle residide
to an insulator withZ=0. This interpretation has been ob-
tained in the framework of the dynamical mean-field ap-
proximation, which yields equations that have two different
solutions, one that resembles a Fermi liquid with a fizite
and the other, which is totally incoherent. In the slave-boson
mean-field theory and at zero temperature, the quasiparticle
residueZ vanishes continuously dd approacheSJ(CM), as
given by Eq.(11). In contrast this behavior does not hold at
finite temperatuféwhere the saddle-point equations acquire
a higher degree of nonlinearity sineg becomes a function
. of Z. Thus, for givenU, they admit two solutions for
1.0 15 2.0 U<U,,, and only one folU>U.,. Among the two solu-
uny™ tions, one closely resembles the metallic solution with finite
¢ Z of the larged. The second one, characterized by a strongly
FIG. 2. Chemical potential fon=1 for the one-banddashed renormalized effective mass, is not really a good description
line) and two-bandfull line) models. of the insulator because it does not have the incoherent parts.
Nevertheless that is really the best mean-field theory can do.
and we have used the constraints to remove the variablgsiven the resemblance of one of the slave-boson solutions to
9 and ), the metallic larged solution it makes sense to ask at which
Such an expression differs from an ordinary Ginzburg-temperature that solution ceases to exist, that is, our calcu-
Landau free energy in the respect that it cannot be written al@ted T,,. When both solutions become degenerate there
a fourth-order polynomial in the variablek, d,, andA,. is a first-order metal-to-insulator transition at a critical
As a result, if there were to be a critical point for one field, it U(M)(T)
would be critical for the other ones as well. For smhlve
obtain the location of the Mott transition as UMM =uM(0)-y8uM()TIn(2M). (18

@ @ 4] 5 _Thus an incre_a_se in temperature may p_roduce a m_etal-to-
Ulin=Ucin| 13 —+O(~]/U) - (16)  insulator transition, which is consistent with the experimen-
tal situation in \bO3. Here T, is given by
Another regime of interest is the largeregime. There we

obtain the location of the Mott transition as . [U-—uM(0)1? 19
e o’ " 8uUM(0)In(2M)
U<2>:—— 3+2 (1———)+o (—) 1 . :
ol \/—) 9J J 17 and thus decreases under an increadd o the dynamical

mean-field approximation at finite temperature there is an
interaction strengtiJ .»(T) at which the metallic solution
ceases to exist. This quantity can also be evaluated in our
slave-boson scheme and,rat 1, is given by

and thus decreasingfrom infinity leads to an increase of the
critical interaction.

1.0 T
UG (M =Ug(0)[1-an(T/W)*?], (20
08 ¢ T with @,~2.53 anda,~ 3.32.
We now turn to the calculation of the magnetic suscepti-
06 | ] bility. Here we generalize the calculation of &i al’® to the
o o two-band model. The linear response to an external magnetic
o ield is obtained as a one-loop calculation of the correlation
g 5 field is obtained | lculation of th lat
0.4 . function of the slave-boson fields in the spin-antisymmetric
S band-symmetric channel. Three fields couple in this
el 5 | channef® x_=33,090), x.=1V2(y?)-y{¥), and
k=33 ,0\,, and the magnetization is expressed in terms of
© slave bosons agM=4dyx. +2¢y_ . The resulting sus-
09 Y ovo ovs 080 ceptibility arises as a random-phase approximation férm
wiu
X
FIG. 3. Dependence of the Mott gap on the bandwidthnferl st—o. (21

andM =3. Circles: experimental data of Okimogd al’ 1+Fgxo/N(Eg)
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FIG. 4. Instability line of the paramagnetic phase tbfJ=10 FIG. 5. Spectral weight of the uppédashed linesand lower
(dashed linpandU/J=5 (solid ling). The diamondsquare indi- (solid lines Hubbard bands for the 1 band and 2 band models, at
cates the position of the Mott transition for/J=10 (U/J=5). u=2uM,

We now determine the instability line of the paramagnetic®ach sub-band. In our(llianguage the low-energy excitations
phase with respect to ferromagnetism. BerO we find no &€ involving the fieldy'*), and the high-energy excitations

. 2 . . .
ferromagnetic instability even near the Mott transition, while ¢&ntéred around the field y'?). Higher-energy excitations

for finite J we find that the Mott metal-to-insulator transition INvolving higher local occupancies are left out. We obtain
may be preempted by the appearance of a ferromagnetﬂ?e spe_ctral weights in b(T)th bapds by evaluatlnglgxpllcnly
phase. In other words, a sufficiently strong Hund's rule couthe anthommutato({ca,ca}> using the decompos|t.|on of
pling turns a Mott insulator into a ferromagnet. Originally the physical electron operatifgs.(2) and(3)]. Accordingly
the Hubbard model was introduced in order to describe ferthe spectral weight of the Green’s functidijc,(7)c}(0))
romagnetism in narrow-band systems, but it has been rén the lower Hubbard bandWyg={({c,,.cl,})) and the
cently established that the ground state is not ferromagnetigpper Hubbard band/{yps{{cy. ,cﬂ]a}», wherecIa (cfja)

for any reasonable values of the parameters on the squaiethe contribution tac!, which is involving the fieldy (¥
lattice.**°Introducing a next-nearest-neighbor hopping term( ')} in Eq. (3), are given by

in the Hamiltoniar?*~?*which has the effect of shifting the e
van Hove singularity of the non-interacting system away
from the center of the band, may lead to a ferromagnetic
ground state in the vicinity of the van Hove singularity, even
for realistic values of the coupling strength. We find that the _ (1) (1 t(2) /(2

ground state is much more likely to be ferromagnetic in the WUHB_;CV Wﬁ’( ¢(3)+ %(B)wgll;) (22)
degenerate model for finit& as shown in Fig. 4.

Our method can be applied to the calculation of dynami-and are shown in Fig. 5. Here the weights do not quite add
cal quantities too. In the slave-boson metRdthe Green’s up to 1 in the two-band case because we projected out occu-
function that one obtains closely resembles the exact ldrge-pations larger than 2. In other words, on top of the two sub-
result. It namely consists of a quasiparticle resonance anblands that are considered here, there appears a second upper
two Hubbard bands, which can be clearly separated. HowHubbard bandcentered around3—3u, corresponding to
ever, the sum rules are not quite satisfiedNet 2. Here we  triple occupancy that is becoming relevant in the particle
use a decomposition that is more closely related to the Hubdoped domain. To a very good accuracy its contribution to
bard operator algebra treatment, and the idea is to calculatbe spectral weight is given by-AW z—Wyug. Clearly
the spectral weights of the Hubbard operator Green’s functhe degeneracy plays an important role as the weight of the
tions. We really do not know how to separate that weightupper band ah=1 in the strong coupling regime is given by
into a lower band and a quasiparticle piece, but near half(2M —1)/2M.
filling the resonance has a small weight, and we can identify In summary we introduced a slave-boson representation
the weight in the Hubbard bands with the spectral weight obf the degenerate Hubbard model. We obtained that the band
the corresponding Hubbard operator Green’s functions. Imlegeneracy has a weak influence on the location of the Mott
the strong coupling regime the one-particle excitation spectransition, while the degeneracy temperature and the dynami-
trum is split off into several pieces, each of them carryingcal and magnetic properties strongly depend on it. We also
some fraction of the spectral weigfwhich are adding up to showed that no ferromagnetic instability occurs unless the
1 so as to fulfill the sum rude The various pieces follow Hund’s rule coupling becomes sizable, yielding a generic
from the discrete atomic levels, which are well separated bgcenario for ferromagnetism in transition metals and
multiples of U, broadened by exchange processes. Let ugransition-metal oxides. In that case a ferromagnetic instabil-
now determine the fraction of the spectral weight carried byity may even shadow the Mott transition.

Wipg= (g Oy @+ gl ylly,
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Note addedAfter this work was completed we became rk
aware of related work by H. Hasegaweond-mat/9612142 J=> J r2drr’2dr’ ——R(r)?R(r")?,
(unpublishe@t cond-mat/9704168unpublished). km r<

R.F. gratefully acknowledges financial support from the ‘
Fonds National Suisse de la Recherche Scientifique under f dQe,(2)Yr(2) (L)
Grant No. 8220-040095, as well as Rutgers University and
Neuchael University for hospitality where part of this work
has been done. This work has been partially supported by the X f dQ' oa(Q)YR(2) e, (Q),
NSF under Grant No. DMR 95-29138. (A7)

whereR(r) and¢,(£2) are respectively the radial and angu-
lar part of the wave functiorp,(r). As usual, using, for

In this appendix we derive the Hamiltonian that is rel- instance, density-functional theory, the computation of the
evant to the titanates, Eql). In a cubic environment, the matrix elements can be brought down to the computation of
crystal field is partially lifting the degeneracy of tdeband, three numbersty, F,, andF,. They are defined as
by lowering the energy of the threefold degenerésg or-
bital, and by raising the energy of the twofold degeneegte Fo:j r2drr’2dr’iR(r)2R(r’)2
orbital. Here we concentrate on tfig, electrons, for which r- ’
the interacting part of the Hamiltonian is given by

APPENDIX

2

r2
Fo= r2drr’2dr’ —R(r) R(r")?, (A8)
|nt Z 2 <a/:8| ez/r|76>ca0 BU—'C5O"C70'! 49 r‘>
0,0’ a,B,y,0
(A1) i
where the indices, 8,7, label thed,y, dy,, andd,, orbit- Fa= 44J r2drr’2dr’ R(r)zR(r )?
als. The nonvanishing matrix elements of the Coulomb inter- r2

action are grouped into direct and exchange interactionsand one obtains
There is a diagonal direct coupling:
u= Fo+4F2+ 36F4,

u={aale?r |aa), (A2)
an off-diagonal direct coupling U=Fo~F2=4F,, (A9)
u'=(ap|€r|ap), (A3) J:;F2+4?5F4_

and two exchange couplings
J={ap| e |Ba),
a=(aa|€r|BB). (A4)

Explicitly, introducing the Wannier real wave functions
@4(r), we find forJ:

In the limit whereF,<F,, we obtain

2J=u—u’. (A10)
Setting

U=u-3J, (Al11)

and inserting the above-found matrix elements of the Cou-
lomb interaction in Eq(A1) we obtain the Hamiltonian Eq.

2
e

_ ’ Trer ’

_f drdr’ea(r)ep(r )|r—r’| ea(Near). (A5 (g provided one neglects the two following small terms:

The reality of the wave functions implies
y P neg Jz 2 Cao’ agrcﬁa’cﬁa

¢
a=1J. (A6) WFEotd!

Using the partial wave expansion of the Coulomb potential +J> > clc ﬁglca(r/cﬁrr' (A12)
one obtains a*FB gtq’
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