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Surface electronic structure with the linear methods of band theory
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We present amb initio method for calculating electron states in a semi-infinite crystal. The complex band
structure is obtained by the extended linear augmented-plane-wave method within tHe- pXfacinulation of
the band-structure problem. We also present a variational scheme of matching the wave functions at the
interface. The practical applicability of the method is demonstrated by solving thediuieo equation for the
(100 surface of Al. We have calculated the normal incidence low-energy electron-diffraction spectra, the
occupied surface state at thepoint, and the normal-emission photoelectron spectra within the one-step model.
The results are in a good agreement with available measurements. We have developed a simplified procedure
to assess the conducting properties of a crystal surface in terms &f-fivejected real band structure. We
introduce a new quantity, the conductance index, whose energy dependence is shown to yield gross features of
the exact energy dependence of transmitted curf&M163-18207)05343-5

[. INTRODUCTION solution accurate everywhere in the unit cellhe photoelec-
tron final states are strongly delocalized: Even for the close-

Photoemission measurements carry rich informatiorpacked crystal structures the probability of finding the elec-
about the electronic structure of the crystal. To extract théron outside the muffin-tin sphere exceeds 30%; therefore, to
characteristics of the electronic structure theoretical modelget an accurate wave function far from the nucleus one has to
are invoked, which are not, in general, free from adjustablgetain a large number of terms in the angular-momentum
parameters. The unambiguous interpretation of the spectexpansion of the scattering theory. For open structures with
requires minimization of the number of such parametersseveral molecules per unit cell the KKR approach would lead
which is achieved by applying first-principles computationalto very time-consuming calculations.
methods. The recent progress in the linear methods of band theory

The ab initio treatment of the electronic structure of the suggests a way to avoid these difficultids has been shown
semi-infinite crystal is based on the numerical solution of thehat using an extended radial basis set in the ekaptfor-
Schralinger equation, with the domain composed of the bulkmulation of the Schidinger equation makes it possible to
and vacuum half spaces. The mathematical formulation ofolve the band-structure problem for real and complex Bloch
the problem depends upon which method is employed toectors with any desired accuratifhis offers a possibility
obtain the function satisfying the Sclilinger equation in the to apply the efficient linear band-structure methods to the
bulk half space. One of the earliest approaches, the propagaemi-infinite crystal problem in the framework of the Bloch
tion matrix technique of Marcus and Jepsdrads to a sys- wave approach.
tem of differential equations, which is solved by step-by-step Until now this approach has been used only in pseudopo-
integration. Present day calculations are based either on thential calculations; in the present work we extend its appli-
Bloch wave approach or on the multiple-scattering cation to the case of a singular crystal potential by using the
techniquée® In the Bloch wave method one takes advantageextended linear augmented-plane-waELAPW) k-p
of the fact that far from the crystal surface the solution is amethod. This enables us to obtain accurate wave functions
linear combination of the wave functions that satisfy the bulkand opens a way to employ the elaborate full-potential linear
Schralinger equation, thereby taking into account all mul-augmented-plane-wavd_APW) techniqué in photoemis-
tiple scattering in the crystdl.This linear combination is sion and also in low-energy electron-diffractidrEED) cal-
matched at a plane parallel to the surface to the solutions inulations. The method we propose is expected to be advan-
the surface regiof. The multiple-scattering technique is tageous for very low energies, where the scattering by the
based on the layer Korringa-Kohn-Rostok&KR) method®  singular potential is strong and the electron absorption is
In this method the crystal is represented as a finite number afmall.
monolayers and the convergence is ensured by introducing In Sec. Il we describe the formalism of the direct and
the electron absorption as an imaginary part of the crystaihverse ELAPWK-p methods and discuss its accuracy. In
potential. The layer KKR method employs the angular-Sec. lll we present a method of matching the functions at the
momentum representation of the solution in the solid, whichcrystal surface and propose a fast procedure to estimate the
makes the method very efficient for potentials of the muffin-conducting properties of the surface. In Sec. IV the inverse
tin form2 Recently, the layer KKR method has been ex-ELAPW is applied to the calculation of the localized surface
tended to the case of the space-filling potentials of arbitrargtate at thg100 surface of aluminum. The possible errors
shapé by employing the phase functional ansatz. due to our neglect of the quasiparticle effects are discussed in

It should be noted that even in the case of threeSec. V. In Sec. VI th€100) normal emission photoelectron
dimensional translational invariance it is not trivial to get aspectra of Al are compared with the experiment.

0163-1829/97/5@0)/1287410)/$10.00 56 12 874 © 1997 The American Physical Society



56 SURFACE ELECTRONIC STRUCTURE WITH TH. .. 12 875

Il. ELAPW k -p METHOD [ﬁk0+ 2Ak- 'E)koJr(Akz—E)ékO]Ckx:O,
A. Formalism
In the ELAPW method the trial function with the Bloch Hij=(i(ko)| = A+ V()] ¢(ko)),
vectork, is a linear combination oN¢ energy-independent
augmented plane wav@sAPW's) Oij=(#i(ko)| #j(Kko)),
Pij=(¥i(ko)| =1V |4 (ko)). )

Wi(Ko,1)= > Ami'ui(Ki ,1)YE(K) Yim(D),
i(ko.1) ;n KDY im(K)Yim(T) In the directk-p we fix the target poink and solve the

eigenvalue problem for the energiEs Realk vectors yield
K =Kkit G 1 the real band structure and real eigenvalues corresponding to
(. 0+ i ( ) .
complexk vectors comprise the complex band structure.

G; being reciprocal lattice vectors and—Ng localized
function$ B. Accuracy

The high accuracy of the ELAPW- p method is due to
Zam(D=z(NYm(M), n=1,... N, the additional radial functions used to construct theh
orbital y,,, in the angular-momentum expansion of the func-
I max tion ‘Ifko. In practical calculations the distance to the target

N—Ng=>, Nj(21+1), (2)  point is not too largeAk<2m/a; therefore, the ternh=0
1=0 dominates in the Rayleigh decomposition of the plane wave
» ) ) _exp(Ak-r). In the usual ELAPW the flexibility of the basis
the additionalz functions being referred to as the extensionget js used to adjust the functiog, to the solution of the
of the LAPW basis set. The radial functian(K;.r) is a  ragial Schidinger equationg;, whereas the task of the
linear combination of the solutiog,, of the radial Schro g apw k-p method is to fit the orbital,, to the exact

dinger equation at enerdy,; and its energy derivativeb,;,  solution ¢, divided by the leading Bessel function
which matches the Bessel functipiiK;r) in both value and
slope at the muffin-tin sphere boundary. & 1(Ep 1) jo( AKr).
In the ELAPW we choos®N,=2 for all <l so the
dimension of the Hamiltonian matrix is The error of this fit is rather small becaugg, still has
variational freedom after the conditions of matching to the
N=Ng+2(I ot 1)2. interstitial have been satisfied. However, to get a precise so-

lution for an electron state having a considerable contribu-
ion of angular momenturi, one has to include additional
unctions withl =1y*=1 because the matrix equatigb) in-
volves large momentum matrix elemeritg=1|—iV|l).
We have examined the accuracy of the ELAPWp
heme in Ref. 8, having chosen copper as an example. Here
we briefly recall the main results of this study. The reference
point was chosen at the center of gravity of the irreducible
part of the Brillouin zone and the energiEg, were calcu-
lated on a unifornk-point mesh by the ELAPW - p method
and by the pure ELAPW. The reference-target-distance range
covered by theAk vectors is shown in Fig. 1: ThAk de-
W (k,\,r)=exp(iAk- r)\Ifko(k,)\,r), pendence of the error is averaged over the directionslof
and over the energy interval from the bottom of the valence
band to 0.5 Ry above the Fermi level. Four basis sets have
been considered containi@functions of angular momenta
up tolha=1, 2, 3, and 5.
N It is seen that the energy error is a power function of the
llfko(k,)\,r)zz, Ci(k,N) (kg ,r). 3 distance from the reference point. The largest errors occur
=1 for the highly localized! states, where the shape of the wave
function inside the sphere affects the energy strongly. In ac-
cord with the above argumentation, the accuracy is not im-
broved by adding the functions df character, but including
the f functions reduces the error by an order of magnitude.
The further extension of the radial basis set, uptg=5,
. has no effect on the performance of the method. For the
HW (k,\)=EW¥(k,\) (4)  free-electron-like states, where the orbitg|s, are closer to
Bessel functions, the errors are not expected to be larger than
leads to the matrix equation in the considered case.

To construct the localized function we choose an additionai
energy parametek,; so thatz, (n=1,2) are two linear
combinations of four functions,;, ¢, ¢, , and ¢,,
which have both zero value and zero slope at the sphergC
radius and vanish in the interstitial.

In the k-p method we choose a reference pdigtand
represent the wave function with the Bloch vedtaand the
band indexn as a product of the phase factor gix—Kkg)r]
and the trial function having the Bloch vectky, ¥\

Ak=k—ky,

The localized functions do not depend kyy but we use the
same notation for all the basis functions for the sake o
brevity 1

Then the Schidinger equation
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Solutions of Eq(6) are orthogonal in the sense that at the

Cu o planez=const the nondiagonal elements of the current op-
° erator vanish:

100 | &

;ﬁ d L d
ad’ lmax=2 js _Id_an ‘I’n,— —Id—Z‘I’n, ‘I’n

° % Here the integral is over the surface of the unit cell. In other
words, the current carried by a sum of the Bloch states with
10F ° Y the sameE andk; is the sum of the individual currents.
o @&f Consider an evanescent wave with the Bloch vector
k, =k, 1+ik, ». From Eq.(8) it follows that for the Bloch
Qgﬁ boss™ part of the wave functionlfk” K [see Eq.3)] the expecta-

R tion value of the momentum operatéy, vanishes and its
| L= 4% energy expectation value is equal kinr E. It is well
. 5 known that the higher the energy of the Bloch state, the
* poorer its convergence, i.e., the larger the number of plane
! Lo waves(or, equivalently, the number of spherical functipns
0.2 04 0.8 that must be included in the basis set. This means that the
Ak (2nla) accuracy of the evanescent waves deteriorates with increas-
ing the imaginary part of the Bloch vector irrespective of the
FIG. 1. Energy error of the ELAPW- p method vs the distance method of calculation.
from the reference point for several extensidng;=1 (squares 2 Evidently, the above formalism is not restricted to the
(circles, 3 (triangles, and S(stars. APW-like methods. For a linear method to be applied within
the exactk-p formulation it is only required that the ex-
C. Inverse ELAPW k-p tended radial basis set be used in constructing the trial func-
In the present work we use the ELAPWp method to tion. Recently, an extended formalism has been developed
solve the inverse band-structure problem; i.e., given two redfor the linear muffin-tin orbitalLMTO) method? (multiple
Cartesian components of the Bloch veckpe (k,,k,) and  orbitals pedm channe) and the usual limitations of the rigid
the energ\E, we find the values o, that satisfy the Schro linear methodgsee Ref. Y have been eliminated. As in the

dp=0. (10

Energy error (mRy)

dinger equation usual band-structure calculations, solving the inverse prob-
R lem with the LMTO method may be preferable in the cases
HWY.(E Ky, K ;) =EV.(EK,Kini), (6) when the atomic sphere approximation is plausible, as the

LMTO method is much less time consuming than the
with the complex Bloch vectok= (k;,k, ). The choice of £/ Apw method. g

reference point depends upl ko= (k;,k, o). k, o is arbi-
trary, usually it is chosen at the center of the interval of

interest. Now thek - p representation IIl. MATCHING THE SOLUTIONS
AT THE CRYSTAL SURFACE

W(p.2)=expiAk, 12) > Cin(E.ko)i(Ko.1), Consider the electron wave functions in the semi-infinite
[ crystal. The domain now comprises the bulk half space and
vacuum. LetE be an energy at which there exists a solution

Kin=KkotAkyn, of the Schrdinger equation in the whole space. In the bulk
(z=0) far from the crystal surface the solutidnis a linear
pP=(px,py); () combination of the eigenfunctiong,, satisfying Eqs(6) and

(7), with Im(k, ,)=0 for propagating Bloch states and
Im(k, ,)<<O for evanescent states.
" . 2 ~ _ Consider the case of a Bloch electron incident from the
[H+24k,oPy +(AKL, ~E)OIG=0, solid. Let¥, be its wave function, i.e., theth propagating
P —P.n ®) solution of Eq.(9). Then the scattering by the crystal surface
L z: is described by the wave functieh, , which has the follow-

We define the vectob, = — (2P, + Ak, ,0)C, and reduce N9 @symptotics az— —co:
Eq. (8) to a matrix equation of twice the dimension:
o

D I 0
Cn)_AkLn 0 -0 Cn>. ©

where ¥, are reflected Bloch waves, which propagate or
Thus the solutions of the inverse band-structure problendecay into the solid.
Ak, , are obtained as solutions of the generalized non- In a local band gap of the energy spectrum there are no
Hermitian eigenvalue problem. propagating solutions, s, =0. Still there may exist a lo-

leads to the matrix equation

Nsol
<I>x<p,z>=Ic>o\1fx<p,z>+n§1 baVn(p,2), (12)

(o H-EO
| 2P,
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calized surface state with the wave function decaying both v.(p,2), z<0

into the vacuum and into the solid. Ne—1
In the vacuum, where the potential is zero, the solution is Xn(p.2)= R 7=0 (19
. S sn®s(P,2), =Y

a linear combination of plane waves 5=0

The trial function

Pr(p2)=2 a5 bJ(p2), (12 -
®(p,2)= 2, byxa(p.2) (20)
ds(p,2) =exdi(k+Gs)p+iksz], (13 n=0
is constructed so as to yield correct asymptotic behavior,
[k + G4?+k3=E, (14  e.g.bg=1,a, =0 for electrons incident from the solieqs.
(11) and(12)] andby=0, a5 =1 for LEED state§Eqs.(15)
Im(ks)=0, and (16)]. The trial function is continuous, but each Fourier

component has a mismatch in derivative:
G being the surface reciprocal lattice vectors. The super-
script + (—) denotes the plane waves propagating or decay-
ing toz=+ (—) . In the case of the incident Bloch electron
this sum contains the waves propagating or decaying into
vacuum and in the case of the surface state it contains only Adgp=(dgn— fsKs). (21)
decaying waves.
For LEED states the asymptotics is given in the vacuum, In the simple matchingthe coefficientd, are determined
atz— +; it is defined by fixing thénonzerg coefficient of by equatingmg to zero, i.e., by an exact matching bf:
the incident plane waveéy, . In the vacuum Fourier components. In that case it is necessary to include
Ngo=Ng solutions and the rest of the Fourier components
are left unmatched. Experience shows that the cases are fre-
D eep(p2)=ay ¢ (p.2)+ 2 al ds(p2) (15 quent in which the residual mismatch is not physically ac-
® ceptable and the situation cannot be improved by increasing

and in the solid it is a sum of the Bloch states that transmifNsol -

Nsol

msznzo bnAdSn, S:O, P 1NF_11

the incident current An alternative method to construct the solution for the
semi-infinite crystal has been proposed by Brdssho ap-
Neol plied a bivariational method to obtain the wave function as a
D eep(p2) = 2 b, ¥ n(p,2). (16) solution that yields a stationary value of the transmission
n=1

coefficient. For the trial functiofi20) this approach leads to

. . equation
In a local band gap the LEED wave function describes a

totally reflected electron beam.

56=0, 6=, fm;, (22)
S
A. Matching problem
In the case of a steplike surface barrier, with a periodic fo= > byfen. (23)
bulk potentialV(r) for z<0 and a zero potential far=0, n

the two representations in both half spaces hold right to thq.

. . . he physical meaning of E22) is transparent: R#j is the
surface anq the coe_fﬂuen_ts are determined by matching th@urrepntynonconservagtion eﬂ the surfage and fo} a smooth
wave function and its derivative over the plane 0. At a

| . t the eiaenfunctiond” ded function 6 vanishes. An important advantage of this proce-
F;]i)ntehz_tC(c))[]j'mer?s'ilr?e?InF%n?'(laornseP’(elgZ) are expanded  qure over the simple matching is thit,, is now indepen-
: wo-dl : uri : dent of Np. The mismatch is allowed to distribute over all

Ne—1 the Ng Fourier components and the freedom can be used to
_ . diminish the integral slope mismatch against the simple
Vn(p2) 520 fsiz)exili(ki+Go)p], (7 matching. However, Bross’s method has a shortcomyrig.

not a positive-definite quantity; consequently, the mis-
d Ng—1 matches due to differei@; may compensate each other, thus
—i—W.(p2)= >, dss(z)exdi(k+Gs)p]. (18)  Providing a good current conservation, but producing a solu-
dz s=0 tion that is far from smooth.
_ ) To construct® Appelbaum and Hamafirused a least-
At the matching plane we use the notation squares method, i.e., minimized the quantity

fo=f = .
sn sn(o)v dsn dsn(o) M — 2 |ms|2: z bnb:,z AdsnAd:n, (24)
We get rid of the mismatch in the values ®{p,0) by con- s n,n’ s
structing continuous auxiliary functiong,(p,z), which are by solving the equatio@M =0. A disadvantage of this pro-
defined in the whole space: cedure is that all the Fourier components are treated equally
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and no preference is given to ti& according to their indi- SJdWLi—WLY

vidual contributions to the solutio®. The mismatch is uni- W_<a’

formly distributed over the vector set and lar@, for ss

which the amplituded, are very small, can contribute to « being about 0.01. For propagating solutions the procedure
the mismatch considerably. Being the output of the variaconverges rapidlyi 10). WhenE falls in a bulk energy
tional procedurg8), which does not yield exact wave func- gap the convergence slows down with the distandg fsbm
tions, the small Fourier coefficientg,(z) in Eq.(17) are not  the surface state enerdf. The self-consistent procedure is
reliable. Therefore, matching the corresponding Fouriekasily transferred to the case of LEED states, where the

components has no physical meaning. asymptotic conditiorf15) implies the following constraint on
b,:
B. Self-consistent matching scheme
Nsol
A simple way to damp the unphysical contributions is to bof.|2=[1+a"|2

. . . ; ; = ag|“. 31
multiply each|m|? in Eq. (24) by the weightW, with which nz'l [Bofonl™=[1+20| S
the component enters the solution:

2 C. Comparison of the matching schemes

(25 We now compare the three variational matching schemes,

namely, the bivariational approach of BrdSshe derivative-
In turn, the coefficient®, are the solution of the variational only-based method of Appelbaum and HamAremd the
equation above nonlinear scheme. We consider two criteria of the
quality of solution. The first is an upper estimate of the cur-
opn=0, rent mismatch caused by the residual discontinuity in slope
at the surface,

M:Es Ws|ms|2: 2[ bnb:an'na
AF=/2 {RAFIm}?, (32
S

Bnin= z WsAdsnAd:nr ' (26) and the second is a mean square derivative mismatch, which
is the actual measure of smoothness of the wave function at
so that the Egs.(25 and (26) must be solved self- the surface
consistently. Of course, anyncreasing function of W can
be used to give preference to physically significant contribu- S f¥my?
tions and the mere weights seem to be the simplest and the AM= AR (33
most natural choice. s

In the case tha® is a propagating solution we minimizé  Ag an example we consider normal-incidence LEED
the weighted derivative mismatch under the constraint giates for the(100) surface of fcc aluminum. The vacuum
bo=1 (0=n,n"<Ns,). At the ith iteration step we mini- |oye| was taken aV,=0.93 Ry above the muffin-tin zero,
mize the quantity which corresponds to a work function of 4.41 &/The

planez=0 was located at half the interlayer spacing from
u=> WL mg|2 (270 the (100 atomic plane.

s Figure 2 shows the energy dependence of the valfes
andAM, which characterize the quality of the LEED states
constructed from the same functiogs [see Eq(19)] by the
éb=ﬂ B.=B 28) three sch_emes. The curves in the upper panel shqw that the

' n—=no- self-consistent scheme yields the smoothest solution for all
In the case thatb is a surface state &n,n’<N,,) we energies. Depending on the energy, one of the other curves
minimize x' under the integral constraint closely approaches the self-consistent result, and over the
whole energy region the three methods yield errors of the
5 same order of magnitude. However, the curves in the lower
z f°=1, (29 panel suggest that the solutions may be unstable to these
errors: In the interval 24—-25 eV the method of Appelbaum
which leads to a generalized symmetric eigenvalue problenand Hamann leads to the flux mismatch an order of magni-
tude larger than in the other two methods; apparently it finds
a totally different solution.

Nevertheless, except for a number of intervals, over a
wide energy region from 10 to 40 eV the three schemes yield
The solution we seek corresponds to the lowest eigenvalugphysically similar results and the character of the resulting

To start with we use the scheme of Appelbaum and Hat EED states is stable to the residual mismatch at the surface.
mann, i.e., at the first iteration we chod$€=1 for all s. In practical calculations we rely upon the self-consistent
We assume the procedure to converge when matching scheme because at any energy its output is con-

Ws:|fs|2: ; bnfsn -

by solving a system of linear equations toy:

Bb=puAb, Apn=2 feuf’ . (30)
S
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T Th=1- - > lad|? Re(ks). (34)
06 | T, 0 s
I Av The LEED state is normalized so that the current carried by
v ¥ the incident electron is unityT}, is the transmitted current
% 04 e o or % insofar as the above assumption is valid. A simple way to
W"vuv‘l\ o "';.. assess the validity of the single Bloch wave approximation is
oo ° ¥ % to evaluate the current nonconservation by compafifjgo
. v the current in the bulﬁ"r"n, which is calculated as an integral
~ ) over the unit cell
S DU VRN . f ) LT 35
03 |« DBDDD"D m( ' H)_ kOQ m Id_Z m/- ( )
@ Y S, : . .
g - - Evanescent waves are excluded from this consideration be-
5 R cause they carry zero current.
01k = a, Thereby the validity can be expressed by a quargity
o N defined as
24 28 32 o b [y , b
E-E; (eV) :{|Tm/Tm| ) |Tm|$|Tm| 36
"OUT TR TR TR

FIG. 2. Energy dependence of the matching etumper panel
and of the current nonconservation due to the mismalower ~ Where&y, is less than unity unless there is a perfect current
pane) by three matching schemes: the bivariational mett2®), ~ conservationy is an arbitrary positive scaling factor; in this
triangles; the derivative-only approa¢®4), squares; and the non- Work we have choseny=1. We calculate the product
linear scheme(26) and (27), dots.

Kmn=Tiém

firmed either by the re.sult. of the bivariational procedure ory .+ ake the largest,, for a given energy as eonductance
by that of the pure-derivative approach. indexfor this energy.

The conductance index is expected to point out the critical
D. Conductance index points of the real band structure because both multipliers
react on a change in matching conditions and one of them

The above investigation makes it clear that constructin eflects changes in slope of the band:

the LEED states within the complex band-structure approac
is a time-consuming proceduk@ involves diagonalization dE, 4 d
of the matrix of twice the dimension of the Hamiltonian m=—< m —i—‘\lfm>. (37
matrix), which may fail to yield a reliable output. Thus it is dk,  m dz
desirable to have a guide that would in advance indicate thg the present calculations we have observed only the case
unsafe regions of the energy spectrum and point out the criti0<-|-zr)n/-|-gq<1 and the single-carrier approximation has
cal points of the band structure. _ ___turned out to be valid over the energy regions from 10 to 18
The critical points by themselves are studied experimengy and from 30 to 60 eV. An interesting situation is encoun-
tally by very-low-energy electron dilfgractié?l(VLEED) and  tered in the energy region from 25 to 30 eV. There a single-
by target current spectroscopyCS),™ so we shall construct ¢onstituent wave function yields a good current conservation
a function that simulates the current carried by the LEEDgng for this reason this is just the solution chosen by the

state. bivariational procedupe however, the wave function is far

The time-saving approach presently used to relate thgom smooth. The self-consistent method is only able to di-
ki-projected real band structure to VLEED or TCS data ismjinjsh the mismatch slightly and the current nonconserva-
the conduct|ng-Fourler-comp(_)n_éﬁt(CFC) approximation,  tjon of the LEED state becomes rather large. We infer that in
where one relies upon the similarity between the functionyg region the exact solution contains steeply decaying
fon(2) [defined by Eq(17)] and a plane wave. In contrast to \yayes, which are not included in the present calculation.
the CFC approximation, the approach to be introduced in this e matching instabilities occur in the energy intervals
section explicitly takes into account the matching conditions,here the conductance index is close to zero. In such cases
at the surface. o _ _ the incident beam couples to an evanescent wave and either

We start with an approximation of a smgle transmittedeflects (as predicted by the conductance indeor, via
Bloch wave¥(p,2), i.e., we assume that in EG16) b,  matching, transfers the current to the propagating Bloch
*Shm. Then we match the incident wav, and the main  states. In both cases the requirements to accuracy of the Fou-
reflected wavep, to the zeroth Fourier component both in rier components are rather stringent because more than one
value fon,, and in slopedy,, [see Eqs(17) and(18)] to get  surface coordination sphere is involved. In addition, the eva-
the two coefficients,, and aj,,,, the other reflected plane nescent waves, which now strongly contribute to the wave
waves being matched only in vallisee Eq.(19)]. Thereby function, may have large Irk() and, consequently, a poor
we obtain the current in the vacuum accuracy.
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Re(k,)=0 Im(k,)=0
5
= I
=
it 30 b
e 5
Q
8 |
(53 |
! ~ |
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* ! ' ' 20
10 20 30 40 50 ]
E-E, (eV)
FIG. 3. LEED spectrum for thé100) surface of Al.Ab initio 157
calculation(dot9 and the single-carrier approximation-K(E);
see Sec. Il D. The curves are convoluted with a Gaussian of 2 eV : : = o5 X
full width at half maximum. Vertical bars show the energy location 0.4 I '(:('2 K 2'n/
of the experimentally observed maxinfRef. 18. mk,) . (2nla)
E. Comparison with LEED measurements FIG. 4. The left panel shows real lines of the complex band

. . o structure of Al in the[100] direction calculated by the inverse
Figure 3 shows the theoretical normal incidence LEEDg| apw k. p method(circles. The right panel shows the real band
spectrum for an energy region 5-50 eV above the vacuurgyycture in the-X direction (solid lines. k vectors are measured
level. We show the intensity integrated over all the beamsyy ynits of 27/a. Our results are in a good agreement with calcu-

Our calculations are in a good agreement with the measur@ations of WachutkdRef. 19.
ments by Jond& (incidence angles wer@=6°, ¢=45°),
who observed a strong specular reflection between 20 and 3f&nt states and we match their linear combination at the sur-
eV with a maximum at-25 eV and a broad maximum cen- face to a linear combination of the evanescent plane waves
tered at~47 eV. (13), Imks>0. Within the formalism of simple matching the

Our calculations predict a strong reflection in the intervalsurface state energy is calculated as the energy at which the
15-30 eV and a higher energy peak at 44 eV. A weak strucdeterminant of the matching matrix vanisf8sSimilarly, in
ture due to the llbeam is experimentally observed at the variational matching we expect the surface state to ap-
~38 eV; in the theoretical curve the corresponding maxi-pear at the energy where a smooth solution can be con-
mum is located at-35 eV. The energy location of experi- structed. As a measure of smoothness we use the weighted
mental features is marked by vertical bars in Fig. 3. average mismatch

The most pronounced disagreement with the experiment
is observed below 20 eV, where our calculations predict a QZE I£2my|
negligible absorption. In this interval (¥E—-Eg<24.5 s s sk
eV) the incident beam couples strongly with the evanescent ]
waves that decay slowly into the solid; see Fig. 4. Hence thd e non-self-consistent result f@ [6M =0; see Eq(24)]
incident electron penetrates deeply into the solid, thus havinghangeS rapidly and shows a sharp minimum at
a high probability to be absorbed as a result of inelastic proEs= —2.37 eV. The self-consistent solutiddu.=0; see
cesses. Such processes were not taken into account in tRél- (26)] at this energy is identical to the non-self-consistent
present calculation, which explains the observed disagredne(the convergence is achieved at the second iteratinrn
ment. The higher-energy features at 38 eV and 44 eV in thVer a narrow interval aroundg the self-consistent solution
calculated curves are shifted by3 eV to lower energies, is much smoother. It appears that th_e self—cons_isterjt methc_)d
which can be ascribed to inadequacy of the local-densitpucceeds in constructing an approximate solution in the vi-

approximation(LDA )—based one-electron approach we havecinity of the surface state energy. The result of the simple
used. matching is in agreement with that of the variational ap-

proach; the determinant of the matching matrix vanishes at
IV. CALCULATION OF THE SURFACE STATES E=-230eV.
The surface state energy has turned out to be rather sen-
We now apply the inverse ELAPW-p method and the sitive to the height of the steplike surface barrier. With in-
variational matching scheme to calculate the surface state icreasing the vacuum level froi: to V=5 Ry the energy
the local band gap in the valence-band energy spectrum @&, moves steadily from almost the bottom of the gap to
aluminum along thel’-X direction, k=(0,0k,) (see Ref. higher energies with the saturation point at—1.9 eV.
21). The bottom of the gap is at the poiKf, (—2.81 eV)  However, it is important that with any choice ¥§>E the
and the top is aK; (—1.83 eV). surface state is observed. Thus we expect the simple steplike
The eigenvalue procedu(8) now generates only evanes- simulation of the surface barrier to yield at least qualitatively

(38
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2
intra _

@Wp

e =1 pd (39
x30 .
with the plasma frequency,=14.85 eV calculated as an
integral over the Fermi surface. Abovieo=2 eV the intra-

band contribution tee; dominates and the agreement with
/M the measured spectrum is excellent. The experimental value
for the plasma frequency is 15.05 eV.

VI. CALCULATION OF THE PHOTOEMISSION SPECTRA

Dielectric function

-40 x30

i In the one-step model of photoemissidthe photocurrent
is determined by dipole transitions from the initial stales
.80 to the time-reversed LEED stat®|'-cp,

HE)O‘Z (D ¥een(E k)| (A- I5‘H§>'A)|\I’i>|2

-120

12 34812 1620 XO(E-E—fhw). (40)

The LEED states were calculated as explained in Sec. 11l and
the initial states were obtained by the direct ELARWD

FIG. 5. Imaginary(upper pandland real(lower panel parts of method. In principle, thék-p formalism is not crucial for

the DF of Al metal.Ab initio spectra are shown by solid lines. Calculating the initial states; however, using thep method

Experimental resultéRef. 23 are shown by open circles. considerably accelerates evaluation of #iaonconserving
momentum matrix elementMME'’s). In computing the

“oblique” MME's the plane-wave representation fdr ep

reliable results. Nevertheless, a corrugated potential can be v "is the most convenient. In the p method the trans-
i :

treated in an analogous way, whereas a reconstructed sun‘a]ceer matrix between the APW's and the plane waves is com-
needs additional matching planes. Because of the knowled ted only once, whereas in a nknp method this time-

of the whole wave function the potential can be iterativerCOnsuming procedure must be repeated for dapbint

brought to self-consistency. Electron absorption is introduced at the last stage of the

calculation as the optical potentig}, an imaginary part of

the potential in the solid. The effect of the optical potential is

taken into account within the approximation so that it does

not affect the periodic part of the Bloch constituents of the
The experimental band-gap parameters derived in Ref. 2LEED state[see Eq(16)]. Thus in the APW decomposition

from the photoemission measurements we(X;)=—2.83  of the wave functionV’, [see Eq(7)] the coefficients;, are

eV andE(X,)=—1.15 eV and the surface state was experi-I€ft unchanged, but the component of the Bloch vector

mentally observed at 2.75 eV. Several band-structure cal- changes to become complex for the propagating solutions of

culations have been reviewed in Ref. 21 and it has beefd. (8),

concluded that none of them reproduces correctly the experi-

mentally observed energy location of thg state. Our re- Kl =K, +Ki+ix,. (41)

sults are closest to the APW calculaffoi (X}) = —2.76 eV . o o A

and E(X,)=—1.77 eV. Although it has been supposed in With the_ imaginary contributionV; to the HamiltonianH

Ref. 21 that the discrepancy may be due to experimentdfd- (8) gives

problems, namely, to a possithkesmearing, it does not seem

Photon energy (eV)

V. ERRORS DUE TO THE ONE-ELECTRON
APPROXIMATION

that LDA-based calculations are able to describe precisely o= — E Vot ﬁ (42)
the spectral properties of aluminum because discrepancies of . AR
the same order of magnitude are observed in the optical
properties of Al(see Fig. and in the valence-band width. Vit 16v2— V2

To assess the validity of the one-electron approximation Ky=—\] —————, (43)
adopted in the present work we compare in Fig. 5 our calcu- 8

lated dielectric functiofDF) of aluminum with the measure- V,>0 being the velocity of the time-reversed constituent,

ments of Ref. 23. The low-energy structures are seen to b\5?/hich is calculated as an integral over the unit ¢séle Eq.

s_hn‘ted to low energy by 0.3 eV from their measured_ Ioca'(37)]. For an evanescent state the velocity is zero and the
tions, so one should not expect a better agreement with ph%’loch vectork, =k, ;+ik, , changes as
1L TR 1

toemission measurements.
On the other hand, the intraband contribution to the real V.
part of the DF is perfectly reproduced within the one- ki, =k, 1— '

P (44)
electron approach. It has a Drude-like féfm 2k,
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hw=32-35 eV(not shown hergit originates from a band-
gap emissiorisee Fig. §, i.e., the intensity is determined by
transitions to the evanescent constituents of the time-
reversed LEED state. Abovew=35.5 eV we observe direct
39eV transitions in the vicinity of the poinit’; hence, for the pho-
ton energies 35-36 eV the final states are far from free-
electron-like. The negligible dispersion of the lowermost

EXPT eV structure is explained by the steepness of the final-state band.
39ev The propagating constituents are strongly damped by the op-
37eV tical potential and therefore the transitions occur in the vi-
cinity of the crystal surface. As a result, the shape and the
36.5 eV intensity of the lowermost peak strongly depend upon the

form of the surface potential barrier as well as upon the way
of treating the electron absorption. In the present calculation
36eV both effects were included in the simplest manner; neverthe-
less, our results agree qualitatively with the measurements of
Ref. 21, wherein going fromiw=236 eV tohw=39 eV the
35.5eV lowermost structure shifts to lower energies-b9.5 eV and
its intensity grows.
Above Aw=40 eV this peak disappears because of the
35 eV wide gap at thd™ point betweerE—E=25 eV and 33 eV.
- In our calculations the structure below10 eV is observed
again for photon energies between 44 and 52 eV. From
hw=42 to 48 eV we see a single maximum that moves from
o —8eVathw=42 eV to—11 eV athw=46 eV. It remains
FIG. 6. Normal-_emlssuon photoelectrqn spectra for the1I0) at —11 eV up toZiw=48 eV and at higher frequencies it
surface. Theorysolid lineg and the experimeritircles are repro- - . .
duced from Ref. 21. The theoretical spectra are convoluted with gpll_ts into two peaks. In the experl_ment in the frequer.u_:y
Gaussian of 0.5 eV full width at half maximum. The origin of the region from ‘.15 to 52 eV a.smgle max'”_‘”m was observed; its
energy location changed irregularly with frequency between

intensity scale for each spectrum is marked by the photon energy:
Y P yihep Y95 and—10.6 eV

vy > Considering that the finite lifetime of the hole, not in-
;o /\/kL2+Vi +Kiz 45 cluded in the present calculation, smears out the frequency
L2 2 ' (49 dependence of the structures and affects their shape, the
present calculation unambiguously determines the origin of
The energy dependence of the optical potential was simuthe peaks and correctly predicts their dispersion. A compari-
lated by a Fermi-like step function son with the experiment infers that for the energies between
20 and 30 eV above the Fermi level the real part of the

self-energy is about 2 eV and it increases with energy to at
least 3 eV at 40 e\(see Sec. Il

EXPT
36eV

\Vist

~ 1+exd—(E-wp)/R]’

Vi(E) (46)

whereV; =3 eV, wp,=15 eV (see Sec. Y, andR=10 eV.
Figure 6 shows calculated photoelectron spectra for the
photon energies from 35 to 40 eV. Emission from the surface We have extended the Bloch wave method for surfaces to
state was not taken into account in this calculation. We comthe case of a realistic singular crystal potential. A milestone
pare the theoretical results with the measurements bygf the computational procedure is the extended radial basis
Levinson, Greuter, and Plumm@rin this range two peaks set, which makes thk-p formulation of the band-structure
due to direct transitions have been experimentally observegroblem practically applicable. Within thie- p method the
at low initial energies. No structures below the surface staténverse band-structure problem is solved by means of linear
energy were experimentally observedhat=30 eV. In the  algebra, which leads to an efficient pseudopotential-like pro-
experiment with increasing the photon energy from 36 to 3%edure.
eV the shoulder aE;~ —7 eV moves to lower energies and  The computing time required to calculate the photoemis-
disappears atiw=40 eV. In our calculations the corre- sion spectra for a giverk; is not longer than for a self-
sponding structure becomes visible 7ab=32 eV; at this consistent band-structure calculation and the limitations of
frequency it is located & ;= —3.5 eV, so that it cannot be the method are exactly the same as in the modern band-
visible in the experiment because of the strong broad pea&tructure methods. We expect the method to be promising in
due to the surface state Bf=—2.75 eV. We observe this many applications of surface science.

VII. CONCLUSION

structure moving from-6.5 to — 8 eV with the photon en- We have applied the present method to aluminum and
ergy increasing from 35 to 37 eV. In other words the calcu-have found reasonable agreement with the LEED and photo-
lated final states are shifted by2 eV to lower energies. emission measurements. Some of the features of the photo-

The lowermost structuréat ~—11 eV) is due to the ini- electron spectra of Al are directly related to the real band
tial states at the poirt (the bottom of the valence bandit  structure, which is far from free-electron-like up to 50 eV
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above the Fermi level; however, the whole picture can onlyconstructing a smooth trial function in order that the wave
be understood in terms of the complex band structure. function ® be obtained by solving the Scliinger equation

In the present work we have constructed the electrofin the surface region by a variational method.
wave functions by matching the solutions of the two half
spaces at the interface. This approach seems to be not devoid
of shortcomings. Though the matching scheme used in this
work performs considerably better than the other presently
used schemes, the current nonconservation due to the re- The authors are grateful to F. Starrost for useful com-
sidual mismatch is still not negligible. By employing the ments and helpful suggestions and to Dr. O. V. Krasovska
matching one concentrates the error at the matching plan&r programming assistance. E.E.K. gratefully acknowledges
but it may be an improvement to smear the error over a the support by a grant of the Deutsche Forschungsgemein-
interval in the surface region. This may be implemented byschaft.
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