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Surface electronic structure with the linear methods of band theory

E. E. Krasovskii* and W. Schattke
Institut für Theoretische Physik, Christian-Albrechts-Universita¨t, Leibnizstrasse 15, D-24118 Kiel, Federal Republic of Germany

~Received 27 November 1996; revised manuscript received 2 June 1997!

We present anab initio method for calculating electron states in a semi-infinite crystal. The complex band
structure is obtained by the extended linear augmented-plane-wave method within the exactk•p formulation of
the band-structure problem. We also present a variational scheme of matching the wave functions at the
interface. The practical applicability of the method is demonstrated by solving the Schro¨dinger equation for the
~100! surface of Al. We have calculated the normal incidence low-energy electron-diffraction spectra, the
occupied surface state at theG point, and the normal-emission photoelectron spectra within the one-step model.
The results are in a good agreement with available measurements. We have developed a simplified procedure
to assess the conducting properties of a crystal surface in terms of theki-projected real band structure. We
introduce a new quantity, the conductance index, whose energy dependence is shown to yield gross features of
the exact energy dependence of transmitted current.@S0163-1829~97!05343-5#
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I. INTRODUCTION

Photoemission measurements carry rich informat
about the electronic structure of the crystal. To extract
characteristics of the electronic structure theoretical mod
are invoked, which are not, in general, free from adjusta
parameters. The unambiguous interpretation of the spe
requires minimization of the number of such paramete
which is achieved by applying first-principles computation
methods.

The ab initio treatment of the electronic structure of th
semi-infinite crystal is based on the numerical solution of
Schrödinger equation, with the domain composed of the b
and vacuum half spaces. The mathematical formulation
the problem depends upon which method is employed
obtain the function satisfying the Schro¨dinger equation in the
bulk half space. One of the earliest approaches, the prop
tion matrix technique of Marcus and Jepsen,1 leads to a sys-
tem of differential equations, which is solved by step-by-s
integration. Present day calculations are based either on
Bloch wave approach2 or on the multiple-scattering
technique.3 In the Bloch wave method one takes advanta
of the fact that far from the crystal surface the solution i
linear combination of the wave functions that satisfy the b
Schrödinger equation, thereby taking into account all m
tiple scattering in the crystal.2 This linear combination is
matched at a plane parallel to the surface to the solution
the surface region.4 The multiple-scattering technique
based on the layer Korringa-Kohn-Rostoker~KKR! method.5

In this method the crystal is represented as a finite numbe
monolayers and the convergence is ensured by introdu
the electron absorption as an imaginary part of the cry
potential. The layer KKR method employs the angul
momentum representation of the solution in the solid, wh
makes the method very efficient for potentials of the muffi
tin form.3 Recently, the layer KKR method has been e
tended to the case of the space-filling potentials of arbitr
shape6 by employing the phase functional ansatz.

It should be noted that even in the case of thr
dimensional translational invariance it is not trivial to get
560163-1829/97/56~20!/12874~10!/$10.00
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solution accurate everywhere in the unit cell.7 The photoelec-
tron final states are strongly delocalized: Even for the clo
packed crystal structures the probability of finding the el
tron outside the muffin-tin sphere exceeds 30%; therefore
get an accurate wave function far from the nucleus one ha
retain a large number of terms in the angular-moment
expansion of the scattering theory. For open structures w
several molecules per unit cell the KKR approach would le
to very time-consuming calculations.

The recent progress in the linear methods of band the
suggests a way to avoid these difficulties.7 It has been shown
that using an extended radial basis set in the exactk•p for-
mulation of the Schro¨dinger equation makes it possible
solve the band-structure problem for real and complex Blo
vectors with any desired accuracy.8 This offers a possibility
to apply the efficient linear band-structure methods to
semi-infinite crystal problem in the framework of the Bloc
wave approach.

Until now this approach has been used only in pseudo
tential calculations; in the present work we extend its ap
cation to the case of a singular crystal potential by using
extended linear augmented-plane-wave~ELAPW! k•p
method. This enables us to obtain accurate wave funct
and opens a way to employ the elaborate full-potential lin
augmented-plane-wave~LAPW! technique9 in photoemis-
sion and also in low-energy electron-diffraction~LEED! cal-
culations. The method we propose is expected to be ad
tageous for very low energies, where the scattering by
singular potential is strong and the electron absorption
small.

In Sec. II we describe the formalism of the direct a
inverse ELAPWk•p methods and discuss its accuracy.
Sec. III we present a method of matching the functions at
crystal surface and propose a fast procedure to estimate
conducting properties of the surface. In Sec. IV the inve
ELAPW is applied to the calculation of the localized surfa
state at the~100! surface of aluminum. The possible erro
due to our neglect of the quasiparticle effects are discusse
Sec. V. In Sec. VI the~100! normal emission photoelectro
spectra of Al are compared with the experiment.
12 874 © 1997 The American Physical Society
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56 12 875SURFACE ELECTRONIC STRUCTURE WITH THE . . .
II. ELAPW k –p METHOD

A. Formalism

In the ELAPW method the trial function with the Bloc
vectork0 is a linear combination ofNG energy-independen
augmented plane waves10 ~APW’s!

C i~k0 ,r!5(
l ,m

4p i lul~Ki ,r !Ylm* ~K̂i !Ylm~ r̂!,

Ki5k01Gi , ~1!

Gi being reciprocal lattice vectors andN2NG localized
functions8

Znlm~r!5znl~r !Ylm~ r̂!, n51, . . . ,Nl ,

N2NG5(
l 50

l max

Nl~2l 11!, ~2!

the additionalZ functions being referred to as the extensi
of the LAPW basis set. The radial functionul(Ki ,r ) is a
linear combination of the solutionfn l of the radial Schro¨-
dinger equation at energyEn l and its energy derivativeḟn l ,
which matches the Bessel functionj l(Kir ) in both value and
slope at the muffin-tin sphere boundary.

In the ELAPW we chooseNl52 for all l< l max, so the
dimension of the Hamiltonian matrix is

N5NG12~ l max11!2.

To construct the localized function we choose an additio
energy parameterEm l so thatznl (n51,2) are two linear
combinations of four functionsfn l , ḟn l , fm l , and ḟm l ,
which have both zero value and zero slope at the sph
radius and vanish in the interstitial.

In the k•p method we choose a reference pointk0 and
represent the wave function with the Bloch vectork and the
band indexl as a product of the phase factor exp@i(k2k0)r#
and the trial function having the Bloch vectork0 , Ck0

:

C~k,l,r!5exp~ iDk•r!Ck0
~k,l,r!,

Dk5k2k0 ,

Ck0
~k,l,r!5(

i 51

N

Ci~k,l!c i~k0 ,r!. ~3!

The localized functions do not depend onk0 , but we use the
same notation for all the basis functions for the sake
brevity.11

Then the Schro¨dinger equation

ĤC~k,l!5EC~k,l! ~4!

leads to the matrix equation
al

re

f

@Ĥk0
12Dk•P̂k0

1~Dk22E!Ôk0
#Ckl50,

Hi j 5^c i~k0!u2D1V~r!uc j~k0!&,

Oi j 5^c i~k0!uc j~k0!&,

Pi j 5^c i~k0!u2 i“uc j~k0!&. ~5!

In the directk•p we fix the target pointk and solve the
eigenvalue problem for the energiesE. Realk vectors yield
the real band structure and real eigenvalues correspondin
complexk vectors comprise the complex band structure.

B. Accuracy

The high accuracy of the ELAPWk•p method is due to
the additional radial functions used to construct thelmth
orbital x lm in the angular-momentum expansion of the fun
tion Ck0

. In practical calculations the distance to the targ

point is not too large,Dk,2p/a; therefore, the terml 50
dominates in the Rayleigh decomposition of the plane w
exp(iDk•r). In the usual ELAPW the flexibility of the basi
set7 is used to adjust the functionx lm to the solution of the
radial Schro¨dinger equationf l , whereas the task of the
ELAPW k•p method is to fit the orbitalx lm to the exact
solutionf l divided by the leading Bessel function

f l~Ekl ,r !/ j 0~Dkr !.

The error of this fit is rather small becausex lm still has
variational freedom after the conditions of matching to t
interstitial have been satisfied. However, to get a precise
lution for an electron state having a considerable contri
tion of angular momentuml 0 one has to include additiona
functions with l 5 l 061 because the matrix equation~5! in-
volves large momentum matrix elements^ l 061u2 i“u l 0&.

We have examined the accuracy of the ELAPWk•p
scheme in Ref. 8, having chosen copper as an example.
we briefly recall the main results of this study. The referen
point was chosen at the center of gravity of the irreduci
part of the Brillouin zone and the energiesEkl were calcu-
lated on a uniformk-point mesh by the ELAPWk•p method
and by the pure ELAPW. The reference-target-distance ra
covered by theDk vectors is shown in Fig. 1: TheDk de-
pendence of the error is averaged over the directions ofDk
and over the energy interval from the bottom of the valen
band to 0.5 Ry above the Fermi level. Four basis sets h
been considered containingZ functions of angular momenta
up to l max51, 2, 3, and 5.

It is seen that the energy error is a power function of
distance from the reference point. The largest errors oc
for the highly localizedd states, where the shape of the wa
function inside the sphere affects the energy strongly. In
cord with the above argumentation, the accuracy is not
proved by adding the functions ofd character, but including
the f functions reduces the error by an order of magnitu
The further extension of the radial basis set, up tol max55,
has no effect on the performance of the method. For
free-electron-like states, where the orbitalsx lm are closer to
Bessel functions, the errors are not expected to be larger
in the considered case.
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12 876 56E. E. KRASOVSKII AND W. SCHATTKE
C. Inverse ELAPW k–p

In the present work we use the ELAPWk•p method to
solve the inverse band-structure problem; i.e., given two
Cartesian components of the Bloch vectorki5(kx ,ky) and
the energyE, we find the values ofk' that satisfy the Schro¨-
dinger equation

ĤCn~E,ki ,k'n ;r!5ECn~E,ki ,k'n ;r!, ~6!

with the complex Bloch vectork5(ki ,k'). The choice of
reference point depends uponki : k05(ki ,k'0). k'0 is arbi-
trary, usually it is chosen at the center of thek' interval of
interest. Now thek•p representation

Cn~r,z!5exp~ iDk'nz!(
i

Cin~E,k0!c i~k0 ,r!,

k'n5k'01Dk'n ,

r5~rx ,ry!, ~7!

leads to the matrix equation

@Ĥ12Dk'nP̂'1~Dk'n
2 2E!Ô#Cn50,

P̂'5P̂•nz . ~8!

We define the vectorDn52(2P̂'1Dk'nÔ)Cn and reduce
Eq. ~8! to a matrix equation of twice the dimension:

S 0 Ĥ2EÔ

Î 2P̂'

D S Dn

Cn
D5Dk'nS Î 0

0 2Ô
D S Dn

Cn
D . ~9!

Thus the solutions of the inverse band-structure prob
Dk'n are obtained as solutions of the generalized n
Hermitian eigenvalue problem.

FIG. 1. Energy error of the ELAPWk•p method vs the distance
from the reference point for several extensions:l max51 ~squares!, 2
~circles!, 3 ~triangles!, and 5~stars!.
al

m
-

Solutions of Eq.~6! are orthogonal in the sense that at t
planez5const the nondiagonal elements of the current
erator vanish:

E
S
F S 2 i

d

dz
CnDCn8

* 2S 2 i
d

dz
Cn8

* DCnGdr50. ~10!

Here the integral is over the surface of the unit cell. In oth
words, the current carried by a sum of the Bloch states w
the sameE andki is the sum of the individual currents.1

Consider an evanescent wave with the Bloch vec
k'5k'11 ik'2 . From Eq.~8! it follows that for the Bloch
part of the wave functionCki ,k'1

@see Eq.~3!# the expecta-

tion value of the momentum operatorP̂' vanishes and its
energy expectation value is equal tok'2

2 1E. It is well
known that the higher the energy of the Bloch state,
poorer its convergence, i.e., the larger the number of pl
waves~or, equivalently, the number of spherical function!
that must be included in the basis set. This means that
accuracy of the evanescent waves deteriorates with incr
ing the imaginary part of the Bloch vector irrespective of t
method of calculation.

Evidently, the above formalism is not restricted to t
APW-like methods. For a linear method to be applied with
the exactk•p formulation it is only required that the ex
tended radial basis set be used in constructing the trial fu
tion. Recently, an extended formalism has been develo
for the linear muffin-tin orbital~LMTO! method12 ~multiple
orbitals perlm channel! and the usual limitations of the rigid
linear methods~see Ref. 7! have been eliminated. As in th
usual band-structure calculations, solving the inverse pr
lem with the LMTO method may be preferable in the cas
when the atomic sphere approximation is plausible, as
LMTO method is much less time consuming than t
ELAPW method.

III. MATCHING THE SOLUTIONS
AT THE CRYSTAL SURFACE

Consider the electron wave functions in the semi-infin
crystal. The domain now comprises the bulk half space
vacuum. LetE be an energy at which there exists a soluti
of the Schro¨dinger equation in the whole space. In the bu
(z<0) far from the crystal surface the solutionF is a linear
combination of the eigenfunctionsCn satisfying Eqs.~6! and
~7!, with Im(k'n)50 for propagating Bloch states an
Im(k'n),0 for evanescent states.

Consider the case of a Bloch electron incident from
solid. LetCl be its wave function, i.e., thelth propagating
solution of Eq.~9!. Then the scattering by the crystal surfa
is described by the wave functionFl , which has the follow-
ing asymptotics atz→2`:

Fl~r,z!5b0Cl~r,z!1 (
n51

Nsol

bnCn~r,z!, ~11!

where Cn are reflected Bloch waves, which propagate
decay into the solid.

In a local band gap of the energy spectrum there are
propagating solutions, soCl50. Still there may exist a lo-
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56 12 877SURFACE ELECTRONIC STRUCTURE WITH THE . . .
calized surface state with the wave function decaying b
into the vacuum and into the solid.

In the vacuum, where the potential is zero, the solution
a linear combination of plane waves

Fl~r,z!5(
s

as
1fs

1~r,z!, ~12!

fs~r,z!5exp@ i ~ki1Gs!r1 iksz#, ~13!

uki1Gsu21ks
25E, ~14!

Im~ks!>0,

Gs being the surface reciprocal lattice vectors. The sup
script 1 ~2! denotes the plane waves propagating or dec
ing to z51 ~2! `. In the case of the incident Bloch electro
this sum contains the waves propagating or decaying
vacuum and in the case of the surface state it contains
decaying waves.

For LEED states the asymptotics is given in the vacuu
at z→1`; it is defined by fixing the~nonzero! coefficient of
the incident plane wavef0

2 . In the vacuum

FLEED~r,z!5a0
2f0

2~r,z!1(
s

as
1fs

1~r,z! ~15!

and in the solid it is a sum of the Bloch states that trans
the incident current

FLEED~r,z!5 (
n51

Nsol

bnCn~r,z!. ~16!

In a local band gap the LEED wave function describe
totally reflected electron beam.

A. Matching problem

In the case of a steplike surface barrier, with a perio
bulk potentialV(r) for z,0 and a zero potential forz>0,
the two representations in both half spaces hold right to
surface and the coefficients are determined by matching
wave function and its derivative over the planez50. At a
plane z5const the eigenfunctionsCn(r,z) are expanded
into the two-dimensional Fourier series

Cn~r,z!5 (
s50

NF21

f sn~z!exp@ i ~ki1Gs!r#, ~17!

2 i
d

dz
Cn~r,z!5 (

s50

NF21

dsn~z!exp@ i ~ki1Gs!r#. ~18!

At the matching plane we use the notation

f sn[ f sn~0!, dsn[dsn~0!.

We get rid of the mismatch in the values ofF(r,0) by con-
structing continuous auxiliary functionsxn(r,z), which are
defined in the whole space:
h

s

r-
y-

to
ly

,

it

a

c

e
he

xn~r,z!5H Cn~r,z!, z,0

(
s50

NF21

f snfs~r,z!, z>0.
~19!

The trial function

F̃~r,z!5 (
n50

Nsol

bnxn~r,z! ~20!

is constructed so as to yield correct asymptotic behav
e.g.,b051, a0

250 for electrons incident from the solid@Eqs.
~11! and~12!# andb050, a0

251 for LEED states@Eqs.~15!
and ~16!#. The trial function is continuous, but each Fouri
component has a mismatch in derivative:

ms5 (
n50

Nsol

bnDdsn , s50, . . . ,NF21,

Ddsn5~dsn2 f snks!. ~21!

In the simple matching2 the coefficientsbn are determined
by equatingms to zero, i.e., by an exact matching ofNF
Fourier components. In that case it is necessary to incl
Nsol5NF solutions and the rest of the Fourier compone
are left unmatched. Experience shows that the cases are
quent in which the residual mismatch is not physically a
ceptable and the situation cannot be improved by increa
Nsol .

An alternative method to construct the solution for t
semi-infinite crystal has been proposed by Bross,13 who ap-
plied a bivariational method to obtain the wave function a
solution that yields a stationary value of the transmiss
coefficient. For the trial function~20! this approach leads to
equation

du50, u5(
s

f s* ms , ~22!

f s5(
n

bnf sn . ~23!

The physical meaning of Eq.~22! is transparent: Re(u) is the
current nonconservation at the surface and for a smo
function u vanishes. An important advantage of this proc
dure over the simple matching is thatNsol is now indepen-
dent of NF . The mismatch is allowed to distribute over a
the NF Fourier components and the freedom can be use
diminish the integral slope mismatch against the sim
matching. However, Bross’s method has a shortcoming.u is
not a positive-definite quantity; consequently, the m
matches due to differentGs may compensate each other, th
providing a good current conservation, but producing a so
tion that is far from smooth.

To constructF Appelbaum and Hamann4 used a least-
squares method, i.e., minimized the quantity

M5(
s

umsu25 (
n,n8

bnbn8
* (

s
DdsnDdsn8

* ~24!

by solving the equationdM50. A disadvantage of this pro
cedure is that all the Fourier components are treated equ
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12 878 56E. E. KRASOVSKII AND W. SCHATTKE
and no preference is given to theGs according to their indi-
vidual contributions to the solutionF. The mismatch is uni-
formly distributed over the vector set and largeGs , for
which the amplitudesf sn are very small, can contribute t
the mismatch considerably. Being the output of the va
tional procedure~8!, which does not yield exact wave func
tions, the small Fourier coefficientsf sn(z) in Eq. ~17! are not
reliable. Therefore, matching the corresponding Fou
components has no physical meaning.

B. Self-consistent matching scheme

A simple way to damp the unphysical contributions is
multiply eachumsu2 in Eq. ~24! by the weightWs with which
the component enters the solution:

Ws5u f su25U(
n

bnf snU2

. ~25!

In turn, the coefficientsbn are the solution of the variationa
equation

dm50,

m5(
s

Wsumsu25 (
n,n8

bnbn8
* Bn8n ,

Bn8n5(
s

WsDdsnDdsn8
* , ~26!

so that the Eqs.~25! and ~26! must be solved self-
consistently. Of course, any~increasing! function of Ws can
be used to give preference to physically significant contri
tions and the mere weights seem to be the simplest and
most natural choice.

In the case thatF is a propagating solution we minimiz
the weighted derivative mismatchm under the constrain
b051 (0<n,n8<Nsol). At the i th iteration step we mini-
mize the quantity

m i5(
s

Ws
i 21umsu2 ~27!

by solving a system of linear equations forbn :

B̂b5b, bn5Bn0 . ~28!

In the case thatF is a surface state (1<n,n8<Nsol) we
minimize m i under the integral constraint

(
s

u f su251, ~29!

which leads to a generalized symmetric eigenvalue prob

B̂b5mÂb, An8n5(
s

f snf sn8
* . ~30!

The solution we seek corresponds to the lowest eigenva
To start with we use the scheme of Appelbaum and H

mann, i.e., at the first iteration we chooseWs
051 for all s.

We assume the procedure to converge when
-

r

-
he

m

e.
-

(suWs
i 2Ws

i 21u
(sWs

i ,a,

a being about 0.01. For propagating solutions the proced
converges rapidly (i ,10). WhenE falls in a bulk energy
gap the convergence slows down with the distance ofE from
the surface state energyEs . The self-consistent procedure
easily transferred to the case of LEED states, where
asymptotic condition~15! implies the following constraint on
bn :

(
n51

Nsol

ubnf 0nu25u11a0
1u2. ~31!

C. Comparison of the matching schemes

We now compare the three variational matching schem
namely, the bivariational approach of Bross,13 the derivative-
only-based method of Appelbaum and Hamann,4 and the
above nonlinear scheme. We consider two criteria of
quality of solution. The first is an upper estimate of the c
rent mismatch caused by the residual discontinuity in slo
at the surface,

DF5A(
s

$Re@ f s* ms#%
2, ~32!

and the second is a mean square derivative mismatch, w
is the actual measure of smoothness of the wave functio
the surface

DM5A(su f s* msu2

(su f su2 . ~33!

As an example we consider normal-incidence LEE
states for the~100! surface of fcc aluminum. The vacuum
level was taken atV050.93 Ry above the muffin-tin zero
which corresponds to a work function of 4.41 eV.14 The
planez50 was located at half the interlayer spacing fro
the ~100! atomic plane.

Figure 2 shows the energy dependence of the valuesDF
andDM , which characterize the quality of the LEED stat
constructed from the same functionsxn @see Eq.~19!# by the
three schemes. The curves in the upper panel show tha
self-consistent scheme yields the smoothest solution for
energies. Depending on the energy, one of the other cu
closely approaches the self-consistent result, and over
whole energy region the three methods yield errors of
same order of magnitude. However, the curves in the lo
panel suggest that the solutions may be unstable to th
errors: In the interval 24–25 eV the method of Appelbau
and Hamann leads to the flux mismatch an order of mag
tude larger than in the other two methods; apparently it fin
a totally different solution.

Nevertheless, except for a number of intervals, ove
wide energy region from 10 to 40 eV the three schemes y
physically similar results and the character of the result
LEED states is stable to the residual mismatch at the surf
In practical calculations we rely upon the self-consiste
matching scheme because at any energy its output is
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56 12 879SURFACE ELECTRONIC STRUCTURE WITH THE . . .
firmed either by the result of the bivariational procedure
by that of the pure-derivative approach.

D. Conductance index

The above investigation makes it clear that construct
the LEED states within the complex band-structure appro
is a time-consuming procedure~it involves diagonalization
of the matrix of twice the dimension of the Hamiltonia
matrix!, which may fail to yield a reliable output. Thus it i
desirable to have a guide that would in advance indicate
unsafe regions of the energy spectrum and point out the c
cal points of the band structure.

The critical points by themselves are studied experim
tally by very-low-energy electron diffraction15 ~VLEED! and
by target current spectroscopy~TCS!,16 so we shall construc
a function that simulates the current carried by the LE
state.

The time-saving approach presently used to relate
ki-projected real band structure to VLEED or TCS data
the conducting-Fourier-component17 ~CFC! approximation,
where one relies upon the similarity between the funct
f 0n(z) @defined by Eq.~17!# and a plane wave. In contrast t
the CFC approximation, the approach to be introduced in
section explicitly takes into account the matching conditio
at the surface.

We start with an approximation of a single transmitt
Bloch waveCm(r,z), i.e., we assume that in Eq.~16! bn

}dnm . Then we match the incident wavef0
2 and the main

reflected wavef0
1 to the zeroth Fourier component both

value f 0m and in sloped0m @see Eqs.~17! and ~18!# to get
the two coefficientsbm and a0m

1 , the other reflected plan
waves being matched only in value@see Eq.~19!#. Thereby
we obtain the current in the vacuum

FIG. 2. Energy dependence of the matching error~upper panel!
and of the current nonconservation due to the mismatch~lower
panel! by three matching schemes: the bivariational method~22!,
triangles; the derivative-only approach~24!, squares; and the non
linear scheme,~26! and ~27!, dots.
r

g
h

e
ti-

-

e
s

n

is
s

Tm
v 512

1

k0
(

s
uasm

1 u2 Re~ks!. ~34!

The LEED state is normalized so that the current carried
the incident electron is unity.Tm

v is the transmitted curren
insofar as the above assumption is valid. A simple way
assess the validity of the single Bloch wave approximation
to evaluate the current nonconservation by comparingTm

v to
the current in the bulkTm

b , which is calculated as an integra
over the unit cell

Tm
b ~E,ki!5

ubmu2

k0V K CmU2 i
d

dzUCmL . ~35!

Evanescent waves are excluded from this consideration
cause they carry zero current.

Thereby the validity can be expressed by a quantityjm
defined as

jm5H uTm
v /Tm

b ug, uTm
v u<uTm

b u

uTm
b /Tm

v ug, uTm
v u.uTm

b u,
~36!

wherejm is less than unity unless there is a perfect curr
conservation.g is an arbitrary positive scaling factor; in thi
work we have choseng51. We calculate the product

Km5Tm
v jm

and take the largestKm for a given energy as aconductance
index for this energy.

The conductance index is expected to point out the crit
points of the real band structure because both multipl
react on a change in matching conditions and one of themjm
reflects changes in slope of the band:

dEkm

dk'

5
\

m K CmU2 i
d

dzUCmL . ~37!

In the present calculations we have observed only the c
0,Tm

v /Tm
b ,1 and the single-carrier approximation h

turned out to be valid over the energy regions from 10 to
eV and from 30 to 60 eV. An interesting situation is encou
tered in the energy region from 25 to 30 eV. There a sing
constituent wave function yields a good current conserva
~and for this reason this is just the solution chosen by
bivariational procedure!; however, the wave function is fa
from smooth. The self-consistent method is only able to
minish the mismatch slightly and the current nonconser
tion of the LEED state becomes rather large. We infer tha
this region the exact solution contains steeply decay
waves, which are not included in the present calculation.

The matching instabilities occur in the energy interva
where the conductance index is close to zero. In such c
the incident beam couples to an evanescent wave and e
reflects ~as predicted by the conductance index! or, via
matching, transfers the current to the propagating Blo
states. In both cases the requirements to accuracy of the
rier components are rather stringent because more than
surface coordination sphere is involved. In addition, the e
nescent waves, which now strongly contribute to the wa
function, may have large Im(k') and, consequently, a poo
accuracy.
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E. Comparison with LEED measurements

Figure 3 shows the theoretical normal incidence LEE
spectrum for an energy region 5–50 eV above the vacu
level. We show the intensity integrated over all the bea
Our calculations are in a good agreement with the meas
ments by Jona18 ~incidence angles wereu56°, w545°!,
who observed a strong specular reflection between 20 an
eV with a maximum at;25 eV and a broad maximum cen
tered at;47 eV.

Our calculations predict a strong reflection in the inter
15–30 eV and a higher energy peak at 44 eV. A weak str
ture due to the 11̄beam is experimentally observed
;38 eV; in the theoretical curve the corresponding ma
mum is located at;35 eV. The energy location of exper
mental features is marked by vertical bars in Fig. 3.

The most pronounced disagreement with the experim
is observed below 20 eV, where our calculations predic
negligible absorption. In this interval (19,E2EF,24.5
eV! the incident beam couples strongly with the evanesc
waves that decay slowly into the solid; see Fig. 4. Hence
incident electron penetrates deeply into the solid, thus hav
a high probability to be absorbed as a result of inelastic p
cesses. Such processes were not taken into account in
present calculation, which explains the observed disag
ment. The higher-energy features at 38 eV and 44 eV in
calculated curves are shifted by;3 eV to lower energies
which can be ascribed to inadequacy of the local-den
approximation~LDA !–based one-electron approach we ha
used.

IV. CALCULATION OF THE SURFACE STATES

We now apply the inverse ELAPWk•p method and the
variational matching scheme to calculate the surface sta
the local band gap in the valence-band energy spectrum
aluminum along theG-X direction, k5(0,0,k') ~see Ref.
21!. The bottom of the gap is at the pointX48 (22.81 eV)
and the top is atX1 (21.83 eV).

The eigenvalue procedure~9! now generates only evane

FIG. 3. LEED spectrum for the~100! surface of Al.Ab initio
calculation ~dots! and the single-carrier approximation 12K(E);
see Sec. III D. The curves are convoluted with a Gaussian of 2
full width at half maximum. Vertical bars show the energy locati
of the experimentally observed maxima~Ref. 18!.
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cent states and we match their linear combination at the
face to a linear combination of the evanescent plane wa
~13!, Imks.0. Within the formalism of simple matching th
surface state energy is calculated as the energy at which
determinant of the matching matrix vanishes.20 Similarly, in
the variational matching we expect the surface state to
pear at the energy where a smooth solution can be c
structed. As a measure of smoothness we use the weig
average mismatch

Q5(
s

u f s* msu. ~38!

The non-self-consistent result forQ @dM50; see Eq.~24!#
changes rapidly and shows a sharp minimum
Es522.37 eV. The self-consistent solution@dm50; see
Eq. ~26!# at this energy is identical to the non-self-consiste
one~the convergence is achieved at the second iteration!, but
over a narrow interval aroundEs the self-consistent solution
is much smoother. It appears that the self-consistent me
succeeds in constructing an approximate solution in the
cinity of the surface state energy. The result of the sim
matching is in agreement with that of the variational a
proach; the determinant of the matching matrix vanishes
E522.30 eV.

The surface state energy has turned out to be rather
sitive to the height of the steplike surface barrier. With i
creasing the vacuum level fromEF to V055 Ry the energy
Es moves steadily from almost the bottom of the gap
higher energies with the saturation point at;21.9 eV.
However, it is important that with any choice ofV0.EF the
surface state is observed. Thus we expect the simple ste
simulation of the surface barrier to yield at least qualitative

V

FIG. 4. The left panel shows real lines of the complex ba
structure of Al in the@100# direction calculated by the invers
ELAPW k•p method~circles!. The right panel shows the real ban
structure in theG-X direction ~solid lines!. k vectors are measure
in units of 2p/a. Our results are in a good agreement with calc
lations of Wachutka~Ref. 19!.
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reliable results. Nevertheless, a corrugated potential ca
treated in an analogous way, whereas a reconstructed su
needs additional matching planes. Because of the knowle
of the whole wave function the potential can be iterative
brought to self-consistency.

V. ERRORS DUE TO THE ONE-ELECTRON
APPROXIMATION

The experimental band-gap parameters derived in Ref
from the photoemission measurements wereE(X48)522.83
eV andE(X1)521.15 eV and the surface state was expe
mentally observed at22.75 eV. Several band-structure ca
culations have been reviewed in Ref. 21 and it has b
concluded that none of them reproduces correctly the exp
mentally observed energy location of theX1 state. Our re-
sults are closest to the APW calculation22 E(X48)522.76 eV
and E(X1)521.77 eV. Although it has been supposed
Ref. 21 that the discrepancy may be due to experime
problems, namely, to a possiblek smearing, it does not seem
that LDA-based calculations are able to describe precis
the spectral properties of aluminum because discrepancie
the same order of magnitude are observed in the op
properties of Al~see Fig. 5! and in the valence-band width.21

To assess the validity of the one-electron approximat
adopted in the present work we compare in Fig. 5 our ca
lated dielectric function~DF! of aluminum with the measure
ments of Ref. 23. The low-energy structures are seen to
shifted to low energy by 0.3 eV from their measured loc
tions, so one should not expect a better agreement with p
toemission measurements.

On the other hand, the intraband contribution to the r
part of the DF is perfectly reproduced within the on
electron approach. It has a Drude-like form24

FIG. 5. Imaginary~upper panel! and real~lower panel! parts of
the DF of Al metal.Ab initio spectra are shown by solid lines
Experimental results~Ref. 23! are shown by open circles.
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intra512

vp
2

v2 , ~39!

with the plasma frequencyvp514.85 eV calculated as a
integral over the Fermi surface. Above\v52 eV the intra-
band contribution to«1 dominates and the agreement wi
the measured spectrum is excellent. The experimental v
for the plasma frequency is 15.05 eV.

VI. CALCULATION OF THE PHOTOEMISSION SPECTRA

In the one-step model of photoemission25 the photocurrent
is determined by dipole transitions from the initial statesC i

to the time-reversed LEED stateFLEED* ,

I ~E!}(
i

z^FLEED* ~E,ki!u~A•P̂1P̂•A!uC i& z2

3d~E2Ei2\v!. ~40!

The LEED states were calculated as explained in Sec. III
the initial states were obtained by the direct ELAPWk•p
method. In principle, thek•p formalism is not crucial for
calculating the initial states; however, using thek•p method
considerably accelerates evaluation of thek-nonconserving
momentum matrix elements~MME’s!. In computing the
‘‘oblique’’ MME’s the plane-wave representation forFLEED
andC i is the most convenient. In thek•p method the trans-
fer matrix between the APW’s and the plane waves is co
puted only once, whereas in a non-k•p method this time-
consuming procedure must be repeated for eachk point.

Electron absorption is introduced at the last stage of
calculation as the optical potentialVi , an imaginary part of
the potential in the solid. The effect of the optical potential
taken into account within the approximation so that it do
not affect the periodic part of the Bloch constituents of t
LEED state@see Eq.~16!#. Thus in the APW decomposition
of the wave functionCn @see Eq.~7!# the coefficientsCin are
left unchanged, but thez component of the Bloch vecto
changes to become complex for the propagating solution
Eq. ~8!,

k'8 5k'1k11 ik2 . ~41!

With the imaginary contributioniVi to the HamiltonianĤ
Eq. ~8! gives

k152
1

2 S Vz1
Vi

k2
D , ~42!

k252AAVz
4116Vi

22Vz
2

8
, ~43!

Vz.0 being the velocity of the time-reversed constitue
which is calculated as an integral over the unit cell@see Eq.
~37!#. For an evanescent state the velocity is zero and
Bloch vectork'5k'11 ik'2 changes as

k'18 5k'12
Vi

2k'28
, ~44!
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k'28 52AAk'2
4 1Vi

21k'2
2

2
. ~45!

The energy dependence of the optical potential was si
lated by a Fermi-like step function

Vi~E!5
Vi

`

11exp@2~E2vp!/R#
, ~46!

whereVi
`53 eV, vp515 eV ~see Sec. V!, andR510 eV.

Figure 6 shows calculated photoelectron spectra for
photon energies from 35 to 40 eV. Emission from the surf
state was not taken into account in this calculation. We co
pare the theoretical results with the measurements
Levinson, Greuter, and Plummer.21 In this range two peaks
due to direct transitions have been experimentally obser
at low initial energies. No structures below the surface s
energy were experimentally observed at\v530 eV. In the
experiment with increasing the photon energy from 36 to
eV the shoulder atEi'27 eV moves to lower energies an
disappears at\v540 eV. In our calculations the corre
sponding structure becomes visible at\v532 eV; at this
frequency it is located atEi523.5 eV, so that it cannot be
visible in the experiment because of the strong broad p
due to the surface state atEi522.75 eV. We observe this
structure moving from26.5 to 28 eV with the photon en-
ergy increasing from 35 to 37 eV. In other words the calc
lated final states are shifted by;2 eV to lower energies.

The lowermost structure~at ;211 eV! is due to the ini-
tial states at the pointG ~the bottom of the valence band!. At

FIG. 6. Normal-emission photoelectron spectra for the Al~100!
surface. Theory~solid lines! and the experiment~circles! are repro-
duced from Ref. 21. The theoretical spectra are convoluted wi
Gaussian of 0.5 eV full width at half maximum. The origin of th
intensity scale for each spectrum is marked by the photon ene
u-
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\v532– 35 eV~not shown here! it originates from a band-
gap emission~see Fig. 6!, i.e., the intensity is determined b
transitions to the evanescent constituents of the tim
reversed LEED state. Above\v535.5 eV we observe direc
transitions in the vicinity of the pointG; hence, for the pho-
ton energies 35–36 eV the final states are far from fr
electron-like. The negligible dispersion of the lowermo
structure is explained by the steepness of the final-state b
The propagating constituents are strongly damped by the
tical potential and therefore the transitions occur in the
cinity of the crystal surface. As a result, the shape and
intensity of the lowermost peak strongly depend upon
form of the surface potential barrier as well as upon the w
of treating the electron absorption. In the present calcula
both effects were included in the simplest manner; never
less, our results agree qualitatively with the measurement
Ref. 21, wherein going from\v536 eV to\v539 eV the
lowermost structure shifts to lower energies by;0.5 eV and
its intensity grows.

Above \v540 eV this peak disappears because of
wide gap at theG point betweenE2EF525 eV and 33 eV.
In our calculations the structure below210 eV is observed
again for photon energies between 44 and 52 eV. Fr
\v542 to 48 eV we see a single maximum that moves fr
28 eV at\v542 eV to211 eV at\v546 eV. It remains
at 211 eV up to\v548 eV and at higher frequencies
splits into two peaks. In the experiment in the frequen
region from 45 to 52 eV a single maximum was observed;
energy location changed irregularly with frequency betwe
29.5 and210.6 eV.21

Considering that the finite lifetime of the hole, not in
cluded in the present calculation, smears out the freque
dependence of the structures and affects their shape,
present calculation unambiguously determines the origin
the peaks and correctly predicts their dispersion. A comp
son with the experiment infers that for the energies betw
20 and 30 eV above the Fermi level the real part of
self-energy is about 2 eV and it increases with energy to
least 3 eV at 40 eV~see Sec. III E!.

VII. CONCLUSION

We have extended the Bloch wave method for surface
the case of a realistic singular crystal potential. A milesto
of the computational procedure is the extended radial b
set, which makes thek•p formulation of the band-structure
problem practically applicable. Within thek•p method the
inverse band-structure problem is solved by means of lin
algebra, which leads to an efficient pseudopotential-like p
cedure.

The computing time required to calculate the photoem
sion spectra for a givenki is not longer than for a self-
consistent band-structure calculation and the limitations
the method are exactly the same as in the modern ba
structure methods. We expect the method to be promisin
many applications of surface science.

We have applied the present method to aluminum a
have found reasonable agreement with the LEED and ph
emission measurements. Some of the features of the ph
electron spectra of Al are directly related to the real ba
structure, which is far from free-electron-like up to 50 e

a

y.
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above the Fermi level; however, the whole picture can o
be understood in terms of the complex band structure.

In the present work we have constructed the elect
wave functions by matching the solutions of the two h
spaces at the interface. This approach seems to be not de
of shortcomings. Though the matching scheme used in
work performs considerably better than the other prese
used schemes, the current nonconservation due to the
sidual mismatch is still not negligible. By employing th
matching one concentrates the error at the matching pl
but it may be an improvement to smear the error overz
interval in the surface region. This may be implemented
s

y

n
f
oid
is
ly
re-

e,

y

constructing a smooth trial function in order that the wa
function F be obtained by solving the Schro¨dinger equation
in the surface region by a variational method.
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