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Two interacting electrons in a quasiperiodic chain
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We study numerically the effect of on-site Hubbard interactiohetween two electrons in the quasiperiodic
Harper’s equation. In the periodic chain limit, by mapping the problem to that of one electron in two dimen-
sions with a diagonal line of impurities of strendthwe demonstrate a band of resonance two-particle pairing
states starting fronE=U. In the ballistic(metallic) regime we show explicitly interaction-assisted extended
pairing states and multifractal pairing states in the diffugiriical) regime. We also obtain localized pairing
states in the gaps and the created subband dli, twhose number increases when going to the localized
regime, which are responsible for reducing the velocity and the diffusion coefficient in the qualitatively similar
to the noninteracting case ballistic and diffusive two-particle dynamics. In the localized regime we find
propagation enhancement for sméll and stronger localization for larged, as in disordered systems.
[S0163-18207)07940-X

I. INTRODUCTION These rather conflicting results can be partially under-
stood by the fact that most works, apart from the direct exact
Anderson localizatichcan be also studied in quasiperi- diagonalization or dynamical approaches, rely on a mapping
odic systems via the Harper’'s equation, which also describesf the THIP problem to a superimposed banded random ma-
electrons in a square lattice with an added strong magnetitix ensemblgSBRME). It was suggested that if the interac-
field 2~* superconducting networRsetc. This model presents tion is expressed in the noninteracting localized basis a ran-
a very useful alternative to the study of one-dimensionadom band matrix with additional disorder in the matrix
(1D) disordered systems, since, apart from localization it cariagonal appearSSBRME) and the enhancement of the pair
also display metallic behavior associated with ballistic mo-localization lengthée« gi, whereé; is the one-particle local-
tion and critical behavior(mobility edge with ordinary ization length, is easily obtainédHowever, the reduction to
diffusion®’ somehow mimicking more realistic three- a SBRME relies on a guestionable assumption about chao-
dimensional3D) disordered systems. In this paper we reportticity of the noninteracting localized states withgp, so that
results that relate to the problem of what happens to théhe relevant matrix model could be differéfitMoreover,
electronic eigenstates and the corresponding quantum dgince in the one-particle localized basis the interaction is rel-
namics of two electrons moving in a quasiperiodic potentialevant only when the two particles are localized around posi-
in which the interaction between them is taken into accounttions close to each other, the obtained localization weakening
The study of two Hubbard interacting particl€é8HIP)  that occurs for mesoscopic systems vanishes for an infinite
localized by a random potential has been pioneered bghain® It must be also pointed out that since in most of the
Shepelyansk§.This author and othets* produced very in-  previous works only the localized case with finitgis con-
teresting analytical and numerical work within the Anderson-sidered it could be reasonable to expect more dramatic pair-
Hubbard model, which showed weakening of Anderson loding effects for extended noninteracting eigenstates that are
calization, known always to be caused by disorder in 1D, dualways overlapping.
to the effect of the two-particle interaction. The enhanced The model considered in this paper allows us to study the
propagation effect of the interacting electron pair on scéles fate of extended and critical one-electron states in the pres-
larger than the single-particle localization length due to  ence of Hubbard interaction. We find a kind of pairing effect
the interaction was also displayed in disordered mesoscopior certain two-patrticle states in the metallic and the critical
rings threaded by magnetic flux, by showing a pairing effectregimes with the simultaneous appearance of localized pair-
via h/2e-periodic, instead ofh/e-periodic, eigenstatés. ing states in the gaps and the created subband due to the
However, a previous diagonalization study for 1D disorderednteraction® These localized states reduce the corresponding
systent® revealed that few states in the main band show aHIP dynamics although it remains similar in nature to the
weak propagation enhancement, while states with two lononinteracting case in all three regimes. However, we obtain
cally paired electrons are usually even more localized in the@ weak enhancement of propagation in the localized regime
presence of the interaction. Moreover, it was pointed out thatvhen the interaction is switched on and even stronger local-
for large positivelU stronger localization occurs when com- ization for largerU.
pared to the noninteracting case. In a recent wWbrk, is In Secs. Il and lll, we introduce the Harper-Hubbard
demonstrated by a tranfer matrix study that no propagatiomodel and consider by diagonalization methods two interact-
enhancement is possible for THIP in an infinite disorderedng electrons moving in a tight-binding quasiperiodic poten-
chain atE=0 (see, however, Ref. 17 tial of strength\, for various values of the local electron-
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electron Hubbard interactiodJ. In the absence of the . METHOD OF CALCULATION
interactionU it is knowrf* that there are extended states for
A <2, a mobility edge foh =\.=2 and a finite one-electron

localization lengthe, = 1/ In(A/2) independent of energy for found out all the eigenvalues and eigenvectors for fihlte

A>2. In Sec. IV we present our results from the numerical_. : : . !
. o . . . sites with various\’'s andU'’s. In order to measure the de-
diagonalization of the corresponding two interacting elec-

. : s gree of localization for the interacting electrons we calculate
trons Harper-Hubbard equation, by showing explicitly X 1he one-particle spatial exter) in the jth two-electron
tended pairing states in the metallic case2 or multifractal wave fun%tion vié5p J
pairing states at the mobility edge=2. We do not find
extended or multifractal pairing states for the insulator but a Ny
weak propagation enhancement with the simultaneous ap- ¢W= z E
pearance of localized pairing stat@dn Sec. V we address np=1 np=
the question of the electron localization dynamics in thewith mean positions
presence ob). The time evolution of a quantum wave packet
in the presence of interactions shows ballistic motion for _ N i 12
A <2, diffusion forA=2 and ceases to expand for-2 as X1.2= nEzl 21 |an) n,I“N12 4
for the noninteracting metallic, critical, and localized re- v ,
gimes, respectivel§!? In the presence of the interaction a of the electrons 1 and 2, Whelfiiﬁl),n2 is the normalized

decreasindJ-dependent electron velocity and diffusion co- coefficient of the wave function in the basis of B@). It
efficiet, due to the appearance of localized states, is obtaingfust be mentioned that in the wayis defined it can esti-
for the metallic and the the critical regimes, respectively. Inmate the spatial extend of each electron averaged over the
the localized regime for highy stronger localization occurs, second electron and is related to a quantity known as the
in agreement with previous results on the Anderson-Hubbar@articipation ratict> Moreover, &£ should correspond to the
model’® Finally, in Sec. VI we discuss our results and true localization length if the wave functions decay exponen-
present the conclusions which arise from the present studytially. Another important quantity used in this study is the
mean value of the distance between the two electrons in the
Il. THE HARPER-HUBBARD MODEL chain, which can be calculated for each two-particle wave

. o ) ) function via
The Harper-Hubbard tight-binding equation for two inter-

We carried out exact diagonalization Hf in the singlet
subspace where the Hubbard interaction is relevant and

e AV =32 (=07, (3)

: ; 20,21 L
acting particles & d(”:nZl nz_l Iaﬁjl),n2|2|n1—nz|. (5)
H= ¢l i . Choteh c v
n§=:l 20: (Cn10Cn0F CnoCni2o) The distanced measures the correlation between the two
electrons so that a smatl defines a pairing two-electron
DD cog2mw¢n)c! cno eigenstate, which can be either delocalized in the metallic
n=1 o o regime, multifractal in the critical regime, or localized
mostly in the insulating regime > 2.
+nZl Ucl 1Cn1Ch (Cn. ) 1)
t . . IV. TWO-PARTICLE PAIRING STATES
wherec, , andc, , are the creation and destruction opera-
tors for the electron at site with spino, N cos(27¢n) is the We diagonalize the Hamiltonian matrix for Fibonacci

potential at siten, with ¢ an irrational number usually cho- number chain lengthBl, e.g.,N=89 if the rational approx-
sen as the golden meaf= (15— 1)/2 andU is the strength  imant of = (15— 1)/2 is §3, so that the potential is periodic
of the local Hubbard interaction between the two electronswith periodN. In Fig. (@ we plot ¢ andd versus the cor-
The Hilbert space can be conveniently divided into one sinvesponding eigenvalug for the 1D pureN=0 case with
glet subspace with total spl=0 and three triplet subspaces interactionU=1. The striking characteristic is a band f
with total spin S=1, S,=1,0,—1, respectively. The three states, out of the total ofN? two-particle states, which have
triplet subspaces are energy degenerate and since they permitremely small distancd starting from the energ=U

no double occupation the triplet states are not affected by thehered is presisely zergsee Fig. 1a)]. These pairing states
Hubbard interaction. In a chain & sites the singlet sub- have one sharp peak at the diagonal line of the plane where
space is spanned in the basisNfN+1)/2 spatially sym- n;=n,, which implies that the particles always stay very
metric wave functions close to each other. In Figs(ld—1(e) we plot some such
characteristic wave function amplitudes in the plane of the

[#(n1.n2))s two-electron coordinates,; andn, where the nonzero am-
1 plitudes appear in or very close to the diagonal line.
—(c el +ch el )0y for ny=n Extended pairing states due to the interaction but having a
Ny, Tng,l o ~ny, TNy, ) 1= - . e o
=4 V2 (2)  finite width d are also seen in Fig. 2 for the ballistic case
(Czl,TCrTZ,HO) for ny=ny, A=1 for U=1. These states are identified from Figa)2by

plotting in Figs. Zb) and Zc) only states that have small
which are antisymmetric with respect to the exchange of th&he extended pairing states in the metallic regime<@)
spins and permit double occupancy. have their number progressively reduced when in-
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10 ’ pairing states extend ¢ (open circleg and the
mean distanca (black dotg be-
tween two electrons as a function
of the two-electron wave function
energyE for the periodic Hubbard
chain of A=0 with interaction
strength U=1. (b), (c), (d), (e)
Amplitude distributions for ex-
tended pairing states witB=U,
E=4.1225, E=25119, and
E=4.1173, respectively, as a
function of the two-electron coor-
dinatesn,; and n, and the same
parameters as ifg).
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creasing\ towardsh = 2. Figure 3a) accounts for the critical action also appear in the metallic and the critical regimes.
case\ =2 where still a few pairing states are seen, such as iThese pairing states have smdlland are located either in
Fig. 3(b), with a displayed kind of multifractality along the the gaps or in the subband created by the interatdiomhey
diagonal’ However, apart from extended or multifractal are identified from Figs. @), 3(a), 4(a), and %a) and for the
pairing states we also obtain another kind of localized pair<critical A\ =2 case also in Figs.(8)—6(c) from the integrated
ing states, which occur in pairs of almost identical energieglensity of states, which is known to be multifractal “devil's
and similar amplitude distributions. In Fig(3 one such staircase” for noninteracting electrons. For the THIP four
state is shown where a double peaked structure is displayedajor gaps(plateaus are seen to coexist with smaller gaps
along the diagonal having small and misleadingly largé¢  on all scales. In the created subband for large positive energy
due to our definition of¢, since such pairing states are the localized pairing states due to the effect of the interaction
strongly localized in two spatial positions along the diagonalU are clearly seen. It must be emphasised that localized pair-
The localized pairing states correspond to a physical picturéng states are found fax<2 only in the presence of finite
of localization due to Mott? and they are more frequently interaction U>0). Moreover, we mention that the results
encountered in the insulating>2 regime. They involve described in this section did not change qualitatively by
tunneling transitions between two-particle localized statevarying the system size.
spaced at a distance proportionaktoapart, having energies
that differ by very small amounts. In Fig(a we demon-
strate¢ andd in the critical regimex =2 with a higher value
of the interaction strengthl =5. In Figs. 4b) and 4c) we The study of the wave packet dynamics provides global
show two multifractal pairing states. In the plot of Fig. 5 we information for the changes due to the interaction of all the
show ¢ andd for the insulating regime.=3 with localized relevant wave functions. If we put two electrons at the same
pairing states having two separate maxiffégs. 5b) and initial site, e.g., the chain center 0 &t 0, the mean-square
5(c)] and no extended or multifractal pairing states survive indisplacement([Ax(t)]?) for each electron at subsequent
this case. timest can be calculated from all the singlet eigensolutions
We find that localized two-patrticle states due to the inter-of Eq. (1) from the variance

V. TWO-PARTICLE DYNAMICS
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FIG. 2. (a) The ¢ andd versus
the energyE of the two-electron
wave functions in theballistic
case A=1 with the interaction
strengthU=1. Amplitude distri-
butions (b) for the extended pair-
ing stateE=—0.0013 andc) for
E=-2.5707.

FIG. 3. (a) The £ andd versus
the energyE of the two-electron
wave function for thediffusive
case with\=\.=2 and the inter-
action strengthU=1. Amplitude
distributions (b) for the pairing
state E=—0.5231 which has a
multifractal character andc) for
E=0.8274 which is localized in
the Mott sense.
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FIG. 4. (a) The £ andd versus
the energyE of the two-electron
wave function for the criticatlif-
fusivecaser =2 with U=5. The
states (b) E=1.3631 and (c)
E=1.3752 display a multifractal
character.

FIG. 5. (a) The ¢ andd versus
the energyE of the two-electron
wave function for the insulating
localized case A=3 with U=1.
The (b) E=-0.0646 and (c)
E=0.9083 correspond to local-
ized pairing states in the Mott
sense.
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FIG. 6. (a), (b), (c) The integrated density of states for the criti-
cal case\ =2 with various values of the interaction strengith The
main gaps correspond to the empty plateaus.
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FIG. 7. The mean-square displacemémx(t)]?) of a wave
packet for the approximarnt=10946/17711 with the two electrons
initially located at the chain center of long lengdth=17711, which
ensures that the wave does not reach the ends of the chain. The
values of the interaction strength are denoted in the figure&)
log-log plot for theballistic casex=1, (b) log-log plot for the
diffusivecasex =\ .=2 and(c) ordinary plot for thelocalizedcase
A=3.

tively, we have integrated the corresponding two-
dimensional equations of motion using a Runge-Kutta algo-

where(:--) denotes quantum average and the factor of 2 irrithm, in order to obtain results for much longer chains of

the denominator transformg\x?(t)) to correspond to one

N=17711. Figure ®) shows the obtained[ Ax(t)]%) for

electron, in order to agree with previous one-electron dynamA =1 where is seen that the ballistic motigpAx(t)]%)

ics for U=0. For the adopted initial condition, in which the

«t2, remains valid also for finitéJ but with a reduced ve-

two electrons are at the same site, only the singlet states witlocity. In the critical case\ =2 diffusion with ([ Ax(t)]?)

additional on-site energy due t0 are allowed. Alterna-

«t is obtained in Fig. @) reducing in magnitude by increas-
ing U, although a tendency for more enhanced propagation
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FIG. 9. The pair mean-square displacemehtand the pair size
o2 for the weakly localized caske= 2.1 with interaction strength
U=1. It is seen that for large times? becomes greater thar*
denoting coherent pair propagation in this regime.

<(AX)2>

ized regime for not too largd, in agreement with the origi-
nal reported tendency.

It must be mentioned that our definition o0&2
=1(n?+n3) of Eq. (6) focuses on the properties of one in-
teracting electron and is different from both

i o _ %0 7000 0% =%((n;+ny)? and ¢2=((n;—n,)?) introduced in
Time Refs. 8 and 18 to examine coherent propagation of two elec-
20 trons. Our results diplayed in Fig. 8 for the metallic, critical,
s and localized case show a similar behavior of the electron

(0?) and pair (ri) propagation as well as for the squared
pair size (2 ). From these results, since the obtained propa-
gation behavior in the diagonal and its vertical of the effec-
tive two-dimensional lattice are similar, no coherent pair
propagation can be concluded. In order to test our conclusion
for the insulating regime we also consider the weakly local-
ized case withh =2.1. The obtained dynamics shown in Fig.

9 eventually givess? >o¢? for larger times, as for disor-
dered system$which can be interpreted as denoting coher-
ent pair propagation enhancement.

5000 10000 15000
Time
. ) VI. DISCUSSION AND CONCLUSIONS
FIG. 8. A comparison between the mean-square displacements

o?=([Ax(t)]%), the pair mean-square displacemerft and the It can be showfi*°that the interacting electron problem in
pair sizea? with the rest of parameters as in Fig. 7. The values ofthe periodich =0 case can be mapped onto an equation for a
the interaction strengtbd=1: (a) log-log plot for theballistic case  single electron moving in an effective two-dimensional lat-
A=1, (b) log-log plot for thediffusivecaser =\ =2 and(c) ordi-  tice with a line of impurities of energy along the diagonal.
nary plot for thelocalizedcase\ = 3. The impurities naturally lead tbl resonance states at ener-
gies starting fromE=U as seen in Fig. (&), having ampli-
is seen whet =5. For the insulator in Fig.() ((Ax(t)]?)  tude only on the impurity sites along the lattice diagonal. In
shows many oscillations and asymptotically reaches largethis way extended pairing states naturally appear, for ex-
values for finiteU=1 or 5 when compared td =0, which  ample, precisely aE=U a two-particle pairing state can be
indicates the familiar weakening of localization due to thefound exactly{Fig. 1(b)] having a constant amplitude on the
interaction’**However, for very largéJ=7 or 10 therel- diagonal and zero elsewhere. It is very well known that such
evant wave functions for the dynamical process lie mostly irresonance extended states can also appear at certain energies
the subband created above the main band, which corresponifisnoninteracting 1D chains with distributed large segments
to localized pairing states having much shorter localizatiorof identical impurities?
lengths, and as a result the mean-square displacement be-We show that quasiperiodicity in addition to the interac-
comes very shoiftFig. 7(c)] indicating a localizing effect of tion also permits such an exact mapping of THIP to a single-
the interactiort® Therefore, a decrease of the degree of lo-electron equation moving in a two-dimensional lattice with a
calization due to the interaction is demonstrated in the localsymmetric potentiakh cos(2r¢n,)+\ cos(2r¢n,) at the co-
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ordinatenq,n,, which denote the positions of the two elec- extended or multifractal states. Localized pairing states are
trons, in addition to the line of impuritied 5, n, along the also found due to the interaction in all regimé®ur results

diagonal. In analogy with the one-dimensional large impurity@re confirmed for both repulsive and attractive on-site Hub-
case where additional small perturbations are known to alloard interactions and it is probably worth noting that in the
the survival of a weak resonant effect at certain energiescase of an attractive interactid negative the subband
remnant of the extended states in the absence of sucdieated by the interaction lies below the band bottom of the
perturbatiorf® we similarly obtain a kind of pairing states Nnoninteracting case so that the ground state is always a lo-
having finite but small distance between the two electrons. I§alized pairing state for the metal and the insulator. The lo-
this paper we demonstrate by exact diagonalization of th&alized pairing states might also affect physical quantities
THIP Hamiltonian in a finite quasiperiodic Harper's chain Since they can decrease the velocity and the diffusion coef-
such two-particle extended or multifractal pairing states dudicient in the metallic and the critical regimes. Moreover, in
to the interaction for the metal and at the critical point. Inthe corresponding dynamics we demonstrate a tendency for
these regimes we also find localized pairing states due to th&eakening of localization in the insulating>2 regime for
interaction in the gaps or the created subband, also accordirfgnall U but even stronger localization for higher.

to the Mott resonance theory of localization. In the localized
regime A\>2 we find mostly localized pairing states with
short localization lengths.

In disordered systems previous attempts to consider the We would like to thank J.-L. Pichard for originally intro-
electron-electron interactions are based on perturbatioducing us to the problem, S. J. Xiong, E. N. Economou, and
theorie$*2° or more rigorous solutions for special cad&4’  C. J. Lambert for many useful discussions. This work was
In this paper by a numerical diagonalization study the intersupported in part by AIENEA Research Grant of the Greek
action between two electrons a kind of pairing effect forSecretariat of Science and Technology, from EU Contract
certain delocalized states is demonstrated, which occurs vido. CHRX-CT93-0136 and within a TMR network.
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