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Two interacting electrons in a quasiperiodic chain
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Department of Physics, University of Ioannina, Ioannina 451 10, Greece
~Received 28 February 1997; revised manuscript received 22 July 1997!

We study numerically the effect of on-site Hubbard interactionU between two electrons in the quasiperiodic
Harper’s equation. In the periodic chain limit, by mapping the problem to that of one electron in two dimen-
sions with a diagonal line of impurities of strengthU we demonstrate a band of resonance two-particle pairing
states starting fromE5U. In the ballistic~metallic! regime we show explicitly interaction-assisted extended
pairing states and multifractal pairing states in the diffusive~critical! regime. We also obtain localized pairing
states in the gaps and the created subband due toU, whose number increases when going to the localized
regime, which are responsible for reducing the velocity and the diffusion coefficient in the qualitatively similar
to the noninteracting case ballistic and diffusive two-particle dynamics. In the localized regime we find
propagation enhancement for smallU and stronger localization for largerU, as in disordered systems.
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I. INTRODUCTION

Anderson localization1 can be also studied in quasiper
odic systems via the Harper’s equation, which also descr
electrons in a square lattice with an added strong magn
field,2–4 superconducting networks,5 etc. This model present
a very useful alternative to the study of one-dimensio
~1D! disordered systems, since, apart from localization it
also display metallic behavior associated with ballistic m
tion and critical behavior~mobility edge! with ordinary
diffusion,6,7 somehow mimicking more realistic three
dimensional~3D! disordered systems. In this paper we rep
results that relate to the problem of what happens to
electronic eigenstates and the corresponding quantum
namics of two electrons moving in a quasiperiodic poten
in which the interaction between them is taken into accou

The study of two Hubbard interacting particles~THIP!
localized by a random potential has been pioneered
Shepelyansky.8 This author and others9–14 produced very in-
teresting analytical and numerical work within the Anderso
Hubbard model, which showed weakening of Anderson
calization, known always to be caused by disorder in 1D,
to the effect of the two-particle interaction. The enhanc
propagation effect of the interacting electron pair on scalej
larger than the single-particle localization lengthj1 due to
the interaction was also displayed in disordered mesosc
rings threaded by magnetic flux, by showing a pairing eff
via h/2e-periodic, instead ofh/e-periodic, eigenstates.11

However, a previous diagonalization study for 1D disorde
system15 revealed that few states in the main band show
weak propagation enhancement, while states with two
cally paired electrons are usually even more localized in
presence of the interaction. Moreover, it was pointed out
for large positiveU stronger localization occurs when com
pared to the noninteracting case. In a recent work,16 it is
demonstrated by a tranfer matrix study that no propaga
enhancement is possible for THIP in an infinite disorde
chain atE50 ~see, however, Ref. 17!.
560163-1829/97/56~20!/12797~8!/$10.00
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These rather conflicting results can be partially und
stood by the fact that most works, apart from the direct ex
diagonalization or dynamical approaches, rely on a mapp
of the THIP problem to a superimposed banded random
trix ensemble~SBRME!. It was suggested that if the interac
tion is expressed in the noninteracting localized basis a
dom band matrix with additional disorder in the matr
diagonal appears~SBRME! and the enhancement of the pa
localization lengthj}j1

2, wherej1 is the one-particle local-
ization length, is easily obtained.8 However, the reduction to
a SBRME relies on a questionable assumption about ch
ticity of the noninteracting localized states withinj1 , so that
the relevant matrix model could be different.18 Moreover,
since in the one-particle localized basis the interaction is
evant only when the two particles are localized around po
tions close to each other, the obtained localization weaken
that occurs for mesoscopic systems vanishes for an infi
chain.16 It must be also pointed out that since in most of t
previous works only the localized case with finitej1 is con-
sidered it could be reasonable to expect more dramatic p
ing effects for extended noninteracting eigenstates that
always overlapping.

The model considered in this paper allows us to study
fate of extended and critical one-electron states in the p
ence of Hubbard interaction. We find a kind of pairing effe
for certain two-particle states in the metallic and the critic
regimes with the simultaneous appearance of localized p
ing states in the gaps and the created subband due to
interaction.19 These localized states reduce the correspond
THIP dynamics although it remains similar in nature to t
noninteracting case in all three regimes. However, we ob
a weak enhancement of propagation in the localized reg
when the interaction is switched on and even stronger lo
ization for largerU.

In Secs. II and III, we introduce the Harper-Hubba
model and consider by diagonalization methods two intera
ing electrons moving in a tight-binding quasiperiodic pote
tial of strengthl, for various values of the local electron
12 797 © 1997 The American Physical Society
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12 798 56S. N. EVANGELOU AND D. E. KATSANOS
electron Hubbard interactionU. In the absence of the
interactionU it is known4 that there are extended states f
l,2, a mobility edge forl5lc52 and a finite one-electron
localization lengthj151/ ln(l/2) independent of energy fo
l.2. In Sec. IV we present our results from the numeri
diagonalization of the corresponding two interacting el
trons Harper-Hubbard equation, by showing explicitly e
tended pairing states in the metallic casel,2 or multifractal
pairing states at the mobility edgel52. We do not find
extended or multifractal pairing states for the insulator bu
weak propagation enhancement with the simultaneous
pearance of localized pairing states.15 In Sec. V we address
the question of the electron localization dynamics in
presence ofU. The time evolution of a quantum wave pack
in the presence of interactions shows ballistic motion
l,2, diffusion for l52 and ceases to expand forl.2 as
for the noninteracting metallic, critical, and localized r
gimes, respectively.6,12 In the presence of the interaction
decreasingU-dependent electron velocity and diffusion c
efficiet, due to the appearance of localized states, is obta
for the metallic and the the critical regimes, respectively.
the localized regime for highU stronger localization occurs
in agreement with previous results on the Anderson-Hubb
model.15 Finally, in Sec. VI we discuss our results an
present the conclusions which arise from the present stu

II. THE HARPER-HUBBARD MODEL

The Harper-Hubbard tight-binding equation for two inte
acting particles is20,21

H5 (
n51

(
s

~cn11,s
† cn,s1cn,s

† cn11,s!

1 (
n51

(
s

l cos~2pfn!cn,s
† cn,s

1 (
n51

Ucn,↑
† cn,↑cn,↓

† cn,↓ , ~1!

wherecn,s
† and cn,s are the creation and destruction ope

tors for the electron at siten with spins, l cos(2pfn) is the
potential at siten, with f an irrational number usually cho
sen as the golden meanf5(A521)/2 andU is the strength
of the local Hubbard interaction between the two electro
The Hilbert space can be conveniently divided into one s
glet subspace with total spinS50 and three triplet subspace
with total spin S51, Sz51,0,21, respectively. The three
triplet subspaces are energy degenerate and since they p
no double occupation the triplet states are not affected by
Hubbard interaction. In a chain ofN sites the singlet sub
space is spanned in the basis ofN(N11)/2 spatially sym-
metric wave functions

uc~n1 ,n2!&s

5H 1

&
~cn1 ,↑

† cn2 ,↓
† 1cn2 ,↑

† cn1 ,↓
† !u0& for n15n2 ,

~cn1 ,↑
† cn2 ,↑

1 u0& for n15n2,
~2!

which are antisymmetric with respect to the exchange of
spins and permit double occupancy.
l
-
-

a
p-

e
t
r

ed

rd

y.

-

s.
-

rmit
he

e

III. METHOD OF CALCULATION

We carried out exact diagonalization ofH in the singlet
subspace where the Hubbard interaction is relevant
found out all the eigenvalues and eigenvectors for finiteN
sites with variousl’s and U ’s. In order to measure the de
gree of localization for the interacting electrons we calcul
the one-particle spatial extentj ( j ) in the j th two-electron
wave function via15

j~ j !5 (
n151

N

(
n251

n1

uan1 ,n2

~ j ! u2A~n12 x̄1!21~n22 x̄2!2, ~3!

with mean positions

x̄1,25 (
n151

N

(
n251

n1

uan1 ,n2

~ j ! u2n1,2 ~4!

of the electrons 1 and 2, wherean1 ,n2

( j ) is the normalized

coefficient of the wave function in the basis of Eq.~2!. It
must be mentioned that in the wayj is defined it can esti-
mate the spatial extend of each electron averaged over
second electron and is related to a quantity known as
participation ratio.15 Moreover,j should correspond to the
true localization length if the wave functions decay expon
tially. Another important quantity used in this study is th
mean value of the distance between the two electrons in
chain, which can be calculated for each two-particle wa
function via

d~ j !5 (
n151

N

(
n251

n1

uan1 ,n2

~ j ! u2un12n2u. ~5!

The distanced measures the correlation between the t
electrons so that a smalld defines a pairing two-electron
eigenstate, which can be either delocalized in the meta
regime, multifractal in the critical regime, or localize
mostly in the insulating regimel.2.

IV. TWO-PARTICLE PAIRING STATES

We diagonalize the Hamiltonian matrix for Fibonac
number chain lengthsN, e.g.,N589 if the rational approx-
imant off5(A521)/2 is 55

89 , so that the potential is periodi
with periodN. In Fig. 1~a! we plot j andd versus the cor-
responding eigenvalueE for the 1D purel50 case with
interactionU51. The striking characteristic is a band ofN
states, out of the total of 2N2 two-particle states, which hav
extremely small distanced starting from the energyE5U
whered is presisely zero@see Fig. 1~a!#. These pairing states
have one sharp peak at the diagonal line of the plane wh
n15n2 , which implies that the particles always stay ve
close to each other. In Figs. 1~b!–1~e! we plot some such
characteristic wave function amplitudes in the plane of
two-electron coordinatesn1 and n2 where the nonzero am
plitudes appear in or very close to the diagonal line.

Extended pairing states due to the interaction but havin
finite width d are also seen in Fig. 2 for the ballistic ca
l51 for U51. These states are identified from Fig. 2~a! by
plotting in Figs. 2~b! and 2~c! only states that have smalld.
The extended pairing states in the metallic regime (l,2)
have their number progressively reduced when
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56 12 799TWO INTERACTING ELECTRONS INA . . .
FIG. 1. ~a! The electron spatial
extend j ~open circles! and the
mean distanced ~black dots! be-
tween two electrons as a functio
of the two-electron wave function
energyE for the periodic Hubbard
chain of l50 with interaction
strength U51. ~b!, ~c!, ~d!, ~e!
Amplitude distributions for ex-
tended pairing states withE5U,
E54.1225, E52.5119, and
E54.1173, respectively, as a
function of the two-electron coor-
dinatesn1 and n2 and the same
parameters as in~a!.
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creasingl towardsl52. Figure 3~a! accounts for the critica
casel52 where still a few pairing states are seen, such a
Fig. 3~b!, with a displayed kind of multifractality along th
diagonal.7 However, apart from extended or multifract
pairing states we also obtain another kind of localized p
ing states, which occur in pairs of almost identical energ
and similar amplitude distributions. In Fig. 3~c! one such
state is shown where a double peaked structure is displa
along the diagonal having smalld and misleadingly largej
due to our definition ofj, since such pairing states a
strongly localized in two spatial positions along the diagon
The localized pairing states correspond to a physical pic
of localization due to Mott,22 and they are more frequentl
encountered in the insulatingl.2 regime. They involve
tunneling transitions between two-particle localized sta
spaced at a distance proportional toj1 apart, having energie
that differ by very small amounts. In Fig. 4~a! we demon-
stratej andd in the critical regimel52 with a higher value
of the interaction strengthU55. In Figs. 4~b! and 4~c! we
show two multifractal pairing states. In the plot of Fig. 5 w
showj andd for the insulating regimel53 with localized
pairing states having two separate maxima@Figs. 5~b! and
5~c!# and no extended or multifractal pairing states survive
this case.

We find that localized two-particle states due to the int
in
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s
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s
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action also appear in the metallic and the critical regim
These pairing states have smalld and are located either in
the gaps or in the subband created by the interactionU. They
are identified from Figs. 2~a!, 3~a!, 4~a!, and 5~a! and for the
critical l52 case also in Figs. 6~a!–6~c! from the integrated
density of states, which is known to be multifractal ‘‘devil
staircase’’ for noninteracting electrons. For the THIP fo
major gaps~plateaus! are seen to coexist with smaller gap
on all scales. In the created subband for large positive ene
the localized pairing states due to the effect of the interac
U are clearly seen. It must be emphasised that localized p
ing states are found forl,2 only in the presence of finite
interaction (U.0). Moreover, we mention that the resul
described in this section did not change qualitatively
varying the system size.

V. TWO-PARTICLE DYNAMICS

The study of the wave packet dynamics provides glo
information for the changes due to the interaction of all t
relevant wave functions. If we put two electrons at the sa
initial site, e.g., the chain center 0 att50, the mean-square
displacement̂ @Dx(t)#2& for each electron at subseque
times t can be calculated from all the singlet eigensolutio
of Eq. ~1! from the variance
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FIG. 2. ~a! The j andd versus
the energyE of the two-electron
wave functions in theballistic
case l51 with the interaction
strengthU51. Amplitude distri-
butions~b! for the extended pair-
ing stateE520.0013 and~c! for
E522.5707.

FIG. 3. ~a! The j andd versus
the energyE of the two-electron
wave function for thediffusive
case withl5lc52 and the inter-
action strengthU51. Amplitude
distributions ~b! for the pairing
state E520.5231 which has a
multifractal character and~c! for
E50.8274 which is localized in
the Mott sense.
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56 12 801TWO INTERACTING ELECTRONS INA . . .
FIG. 4. ~a! The j andd versus
the energyE of the two-electron
wave function for the criticaldif-
fusivecasel52 with U55. The
states ~b! E51.3631 and ~c!
E51.3752 display a multifractal
character.

FIG. 5. ~a! The j andd versus
the energyE of the two-electron
wave function for the insulating
localized case l53 with U51.
The ~b! E520.0646 and ~c!
E50.9083 correspond to local
ized pairing states in the Mot
sense.
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^Dx2~ t !&5 1
2 ^n1

21n2
2&

5 (
n151

N

(
n251

n1 U(
j

e2 iE j ta0,0
~ j !* an1 ,n2

~ j ! U2

~n1
21n2

2!/2,

~6!

where^•••& denotes quantum average and the factor of 2
the denominator transformŝDx2(t)& to correspond to one
electron, in order to agree with previous one-electron dyna
ics for U50. For the adopted initial condition, in which th
two electrons are at the same site, only the singlet states
additional on-site energy due toU are allowed. Alterna-

FIG. 6. ~a!, ~b!, ~c! The integrated density of states for the cri
cal casel52 with various values of the interaction strengthU. The
main gaps correspond to the empty plateaus.
tion
n

-

ith

tively, we have integrated the corresponding tw
dimensional equations of motion using a Runge-Kutta al
rithm, in order to obtain results for much longer chains
N517711. Figure 7~a! shows the obtained̂@Dx(t)#2& for
l51 where is seen that the ballistic motion^@Dx(t)#2&
}t2, remains valid also for finiteU but with a reduced ve-
locity. In the critical casel52 diffusion with ^@Dx(t)#2&
}t is obtained in Fig. 7~b! reducing in magnitude by increas
ing U, although a tendency for more enhanced propaga

FIG. 7. The mean-square displacement^@Dx(t)#2& of a wave
packet for the approximantf510946/17711 with the two electron
initially located at the chain center of long lengthN517711, which
ensures that the wave does not reach the ends of the chain.
values of the interaction strengthU are denoted in the figures:~a!
log-log plot for theballistic casel51, ~b! log-log plot for the
diffusivecasel5lc52 and~c! ordinary plot for thelocalizedcase
l53.
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56 12 803TWO INTERACTING ELECTRONS INA . . .
is seen whenU55. For the insulator in Fig. 7~c! ^@Dx(t)#2&
shows many oscillations and asymptotically reaches la
values for finiteU51 or 5 when compared toU50, which
indicates the familiar weakening of localization due to t
interaction.9–14However, for very largeU57 or 10 the rel-
evant wave functions for the dynamical process lie mostly
the subband created above the main band, which corresp
to localized pairing states having much shorter localizat
lengths, and as a result the mean-square displacemen
comes very short@Fig. 7~c!# indicating a localizing effect of
the interaction.15 Therefore, a decrease of the degree of
calization due to the interaction is demonstrated in the lo

FIG. 8. A comparison between the mean-square displacem
s25^@Dx(t)#2&, the pair mean-square displacements1

2 and the
pair sizes2

2 with the rest of parameters as in Fig. 7. The values
the interaction strengthU51: ~a! log-log plot for theballistic case
l51, ~b! log-log plot for thediffusivecasel5lc52 and~c! ordi-
nary plot for thelocalizedcasel53.
er

n
ds

n
be-

-
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ized regime for not too largeU, in agreement with the origi-
nal reported tendency.

It must be mentioned that our definition ofs2

5 1
2 ^n1

21n2
2& of Eq. ~6! focuses on the properties of one in

teracting electron and is different from bot

s1
2 5 1

4 ^(n11n2)2& and s2
2 5^(n12n2)2& introduced in

Refs. 8 and 18 to examine coherent propagation of two e
trons. Our results diplayed in Fig. 8 for the metallic, critica
and localized case show a similar behavior of the elect
(s2) and pair (s1

2 ) propagation as well as for the square
pair size (s2

2 ). From these results, since the obtained pro
gation behavior in the diagonal and its vertical of the effe
tive two-dimensional lattice are similar, no coherent p
propagation can be concluded. In order to test our conclus
for the insulating regime we also consider the weakly loc
ized case withl52.1. The obtained dynamics shown in Fi
9 eventually givess1

2 .s2
2 for larger times, as for disor-

dered systems,8 which can be interpreted as denoting coh
ent pair propagation enhancement.

VI. DISCUSSION AND CONCLUSIONS

It can be shown8,10 that the interacting electron problem i
the periodicl50 case can be mapped onto an equation fo
single electron moving in an effective two-dimensional la
tice with a line of impurities of energyU along the diagonal.
The impurities naturally lead toN resonance states at ene
gies starting fromE5U as seen in Fig. 1~a!, having ampli-
tude only on the impurity sites along the lattice diagonal.
this way extended pairing states naturally appear, for
ample, precisely atE5U a two-particle pairing state can b
found exactly@Fig. 1~b!# having a constant amplitude on th
diagonal and zero elsewhere. It is very well known that su
resonance extended states can also appear at certain en
in noninteracting 1D chains with distributed large segme
of identical impurities.23

We show that quasiperiodicity in addition to the intera
tion also permits such an exact mapping of THIP to a sing
electron equation moving in a two-dimensional lattice with
symmetric potentiall cos(2pfn1)1l cos(2pfn2) at the co-

ts

f

FIG. 9. The pair mean-square displacements1
2 and the pair size

s2
2 for the weakly localized casel52.1 with interaction strength

U51. It is seen that for large timess1
2 becomes greater thans2

2

denoting coherent pair propagation in this regime.
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12 804 56S. N. EVANGELOU AND D. E. KATSANOS
ordinaten1 ,n2 , which denote the positions of the two ele
trons, in addition to the line of impuritiesUdn1 ,n2

along the
diagonal. In analogy with the one-dimensional large impur
case where additional small perturbations are known to al
the survival of a weak resonant effect at certain energ
remnant of the extended states in the absence of s
perturbation,23 we similarly obtain a kind of pairing state
having finite but small distance between the two electrons
this paper we demonstrate by exact diagonalization of
THIP Hamiltonian in a finite quasiperiodic Harper’s cha
such two-particle extended or multifractal pairing states d
to the interaction for the metal and at the critical point.
these regimes we also find localized pairing states due to
interaction in the gaps or the created subband, also accor
to the Mott resonance theory of localization. In the localiz
regime l.2 we find mostly localized pairing states wit
short localization lengths.

In disordered systems previous attempts to consider
electron-electron interactions are based on perturba
theories24,25 or more rigorous solutions for special cases.26,27

In this paper by a numerical diagonalization study the int
action between two electrons a kind of pairing effect
certain delocalized states is demonstrated, which occurs
n,

,

tt

v.

n,
y
w
s,
ch

In
e

e

he
ing
d

e
n

-
r
ia

extended or multifractal states. Localized pairing states
also found due to the interaction in all regimes.19 Our results
are confirmed for both repulsive and attractive on-site H
bard interactions and it is probably worth noting that in t
case of an attractive interaction~U negative! the subband
created by the interaction lies below the band bottom of
noninteracting case so that the ground state is always a
calized pairing state for the metal and the insulator. The
calized pairing states might also affect physical quantit
since they can decrease the velocity and the diffusion c
ficient in the metallic and the critical regimes. Moreover,
the corresponding dynamics we demonstrate a tendency
weakening of localization in the insulatingl.2 regime for
small U but even stronger localization for higherU.
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