PHYSICAL REVIEW B VOLUME 56, NUMBER 19 15 NOVEMBER 1997-I

Conductance quantization in metals: The influence of subband formation on the relative stability
of specific contact diameters
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We consider a simple model of a metallic nhanowire, consisting of a free electron gas confined within
hard-wall boundaries and connected to banks on either side. Similar models have been widely used to discuss
conductance properties of nanowires and point contacts. Here we show that the same model has implications
for the mechanical stability of the wire and its work function, and that it possibly induces Jahn-Teller-type
distortions in the wire cross sectiof50163-18207)02243-]

[. INTRODUCTION Is an effective nearest-neighbor interaction valid in the cal-
culation of the interatomic forces?

Metallic contacts of atomic dimensions are routinely ob- The nearly free electron approximation has proven its
tained by pressing two electrodes together in a controlledalue for the calculation of various properties of metdlk.
way!**As the contacts are elongated, they change size in works best for simple, monovalent metals, in particular the
stepwise fashion due to atomic structural rearrangemeniglkali metals, for which the Fermi surface is nearly spherical.
which are revealed by an irregular staircase variation of botftone of the most convincing implications of the free electron
the force between electrodes and the electrical CO“dUCta”%%proximation is the shell structure in metal clustérén
of the contact. Although the conductance staircase is diﬁ‘er\—,apor jets of potassium, the metal atoms cluster together, and
ent for each elongation process, a statistical analysis over g sters composed of specific “magic” numbers of ato®s
large number of runs, for simple free electronlike metals.g 15 >0 40 58 ). are more frequently detected than
result_s i_n conductance histogrqms that usually display SeV(Sihers,z.o T’his 6bse’rvation was explained, in analogy to the
eral distinct peaks. The exact histogram depends on the pg nagic numbers in nuclear structure, by the favorable binding

ticular metal and on the experimental conditions but one fac nerav for clusters having “closed” electronic shells. The
is quite general: For most metals measured up to now, ang ©'9Y 9 '

especially for monovalent ones, there exist certain favorec?IeCtronlc wave fqncnons can be approx imated as free elec-
values for the conductance. In particular, the most prominent °"S _conflned inside a spherical potential well, given by the
peak corresponds to one conductance quar@yw 2e%/h spherlpal Bessel f'unctlons. The total energy per atpm of the
(to within 10% or better This suggests that the conductancefccupied electronic states .decreases with cluster size as long
in atom size metallic contacts shows a tendency fo®S the set of states for a givemuantum numbefa shel) is
quantization:* However, the problem is intimately con- partially flllgd. The ad(j|t|on of one atom to a filled-shell
nected to the distribution of atomic configurations which areClUSter requires occupying a higher-energy level, and the to-
visited in the experiments. When particular atomic configu-{2! €nergy per atom of the cluster increases again. Therefore,
rations are preferred over others, this by itself would lead tdn€ cluster energy finds itself at a minimum when the shell is
peaks in the histograms. The question then arises as to whySt completed. The magic numbers are found from the de-
these configurations are preferred. generacy of the levels, €-1)(2l +1), with spins= 3. The
Theoretical descriptions of conductance quantization irorder in which thd quantum numbers are filled can be read
metallic contacts have been given in terms of free electroiirom the order of the zero’s of the Bessel functions.
waves, confined within a boundary which was fixed by the A proper calculation of the cluster abundance spectrum
positions of the atoms at the surfdét®!® Alternatively the  requires including exchange and correlation effects as well as
electron waves have been described in terms of a tight binda realistic shape of the confining potenfidlHowever, the
ing model*>~" but in each case the problem of finding the principle of the magic numbers can be demonstrated using a
electronic wave functions was separated from the problem dfiard-wall boundary and ignoring exchange and correlation
determining the atomic configuration of the contact, forcontributions?’ We will use this simple approach below in a
which molecular dynamics simulations were employed orcalculation for a wire connected to bulk reservoirs, and dis-
fixed convenient geometries were chosen. The question weuss the question of whether specific wire diameters have a
want to investigate below, is whether this separation is alhigher relative stability due to the electronic degrees of free-
lowed: are the contributions of the wave functions of thedom, in analogy to the shell-filling effects in clusters. In
conduction electrons sufficiently smallor sufficiently  contrast to the clusters, the wire is not isolated, and the con-
smooth that they can be ignored in searching for thenection of the wire to the reservoirs results in an equilibrium
minimum-energy configurations of the atoms in the contact®lectric charge in the wire, which may be observed as fluc-
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FIG. 1. As the geometry of the model nanowire we choose a ™
conductor of uniform square cross sectidi< W and lengthL, 0-00
connected to reservoirs at both erdashed 1.0
. o o £ os}
tuations in the work function with the wire diameter. §
We are aware of the serious limitations of the approxima- o 0.6f
tions, but we want to point out some of the interesting con- °
sequences of the model, which may stimulate more realistic § 04
model calculations. Furthermore, similar approximations g o2l
have been widely used in the calculation of the conductance )
of nanowires, while the implications of this model for the 0.0 \ . ) )
total energy and electric potential of the wire have generally 0 5 10 15 20 25
been ignored. In Sec. Il the problem is introduced and it is Wire cross section w*

shown that screening effects should be taken into account.
The calculation preserving charge neutrality is presented in
Sec. Ill, and in Sec. IV electron energy induced deviations g, 2. pensity of states, of the wire (a, solid curvé com-

from a symmetric square cross section are considered. Thgyred to the bulka, dashed curvein unitsm/7%2W, as a function
relevance to experimental results is briefly discussed in Segf w2=(2w/\)2. Also the total kinetic energy densiti, (b) and
V. the density of electrons)(w), (c), are shown, both normalized to
the bulk value. These are obtained by integrating the DOS and the
II. THE TOTAL ENERGY OF A NANOWIRE product of the DOS and the energy, respectively, over all states up

. . ) . _ to the Fermi energy.
Since we are only interested in demonstrating the prin-

ciple we can choose convenient boundary conditions. Our
wire consists of a uniform conductor of square cross sectiotron mass, respectively. The on the summation indicates
WXW and lengthL, with free and independent electrons thatn; andn, run from 1 to the maximum value for which
confined within hard-wall boundaries, connected to free electhe expression under the square root in @gis positive. In
tron gas reservoirg$Fig. 1). We consider wires sufficiently Fig. 2 the DOS of the wire is compared to that of a bulk
long that the contribution of tunneling electrofesranescent electron gas. The figure illustrates that the total energy of the
mode$ can be ignored. It poses no great difficulty to extendoccupied states is very sensitive to the actual position of the
the calculations to include such contributions, but for theFermi energy relative to the positions of the peaks in the
sake of clarity we limit ourselves to a brief discussion of thisDOS. This particular DOS is a consequence of the quantiza-
aspect in Sec. V. When it is necessary to choose values faion of the transverse degrees of freedom of the electron
the parameters we will use those appropriate for sodium. wave function in a contact and results in a finite number of
The density of state@®OS) in the wire can be expressed subbands, each of which contributes a quantum to the con-

as ductance of the contact. Perfect quantization is only obtained
N when (1) the contact length. is much larger than the width
MW )= 2m 1 ! W of the contact and the Fermi wavelengtp, (2) the width
(W, er) = WwZﬁanvnz /w—z—nf—ng’ (1) of the contact is a smooth function of the longitudinal coor-

dinate(adiabatic approximationand(3) the total mean free

pathl>L . Further, all energieskgT,eV) should be much
wherew=2W/\g, A\p=27h/\2meg, and g, €z, andm  smaller than the subband splitting. This is the explanation for
are the Fermi wavelength, Fermi energy, and the free eledhe phenomenon of conductance quantization observed in
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semiconducting point contacts, for which the free electrorcluding these corrections, and that the actual diameter of the
model is applicable. The adiabatic approximati(®) is  wires required for a specific number of modes is smaller than
clearly not applicable for the model geometry of Fig. 1, andobtained from the standard calculations.
additional resonances of the conductance on the plateaus ap- The third feature(c), is the one that we are particularly
pear as a result of the interference of waves scattered frofterested in. The strong fluctuations in the total energy may
the two interfaces. However, globally the conductance cagontribute to the relative stability of specific wire widths.
still be seen to increase by quantum units for this m@Hel. Although the details will also be sensitive to the artificial
The total kinetic energy of the occupied states can pdoundary conditions that we use, the general features should

found by integrating the energy over this DOS. Expressind’® Présent for any choice of potential. They can be under-
the total energy normalized to the bulk valu, tood as follows. When the diameter of the wire increases to

— 72,5 2 . w=+/2 the Fermi energy touches the bottom of the first sub-
7"kg/10m"m, we obtain, band. From this point onward the subband starts to be filled
and the electron density and kinetic energy per volume start

10 1 & rising rapidly as a result of the peak in the DOS. For further
K(w)= e > (WA 2n?+ zng)\/wz_nil_ng_ incrgase ofw the DOS decreases leading to a slow_dovyn in
™ Wnyn, the increase of the number of electrons and the kinetic en-

(2)  ergy, while the volume keeps increasing\s resulting in a
maximum in the densities of electrons and energy, followed
Similarly, the density of electrons normalized to the bulkPY @ decrease in these densities until the next subband is
value n0=k,3:/3772 is reached. As a resulb(w) and C(w) show oscillations as a
function of w, with the amplitude decreasing for increasing
w. The deviations from the bulk values are largest for small

6 1 W, and amount up to tens of percents.
n(w)y=—— Z \/wz—ni—ng. 3 Such deviations from the bulk density are not realistic.
7 Wy n, The most dramatic consequence is that the electron density is
found to drop to zero for small widths when the last channel
These functions are also plotted in Fig. 2. is closed, whereas in practice every atom will continue to be

The figure clearly demonstrates three important featuressurrounded, on average, by one elect(for a monovalent
(a) the total energy density an) the electron density are Meta). The screening in metals is very effective down to a
much lower than the bulk values, arid) there are strong scale~1 A, and the positive background charge density will
fluctuations in both quantities as a function of the width oftend to be compensated. This shortcoming is generally ig-
the wire. The first(a), is the result of the strong confinement nored in free-electron calculations of conductance in nanow-
imposed by the hard-wall potential. A realistic potential al-ires.
lows spillout of the wave function beyond the boundaries.
There is a simple solution to this problem, since the energy IIl. SCREENING: CONSTANT ELECTRON DENSITY

levels for a finite potential well can be described to a very The main effect of the electron screening can be taken
good approximation by those of an infinite potential well of 1o account by fixing the electron density in the wire at the

larger width. Using parameters appropriate for sodium, the|k value? This can be done by adjusting the electrochemi-
width should be increased by an amouiw=0.688. Using | potentialy of the wire such that

this value in the calculation of the total energy, we find that
K fluctuates properly around 1. The second featdog, is

also a consequence of the hard-wall potential. The distribu- i \/ w+dw 2—n2—n2

tion of states in momentum space is not uniform, since states 6 Ny, W, 12

with k,=0 or k,=0 are excluded. This is a well known n(W,,u)=; 3 3 =1,
problem which was already treated by Wé&The bulk den- (W+dw)3— = (w+dw)2+ =— (w+dw)

sity of electrons to which Eq3) should be normalized re- 2 2m

ceives surface corrections, which can be expressedyas 4

=(k2/37?)(1—3/2w+ 3/27w?) .22 When the density is re-

calculated and normalized using this correction, we find thatvith w,=X/\g= e/ u. The corrections for the effects of

it fluctuates around the proper bulk limit. Both featuré®, the hard-wall potential discussed above have been incorpo-
and (b), have recently been discussed in the context of conrated in this expression. The total kinetic energy is then cal-
ductance quantization by GameMartn et al?* They showed culated for the value of obtained by solving Eq4), which

how the semiclassical Sharvin limit can be obtained by in-needs to be reevaluated for each witlthof the wire:

+

>

2
) +2n%+2n3
10 i<, [\ w,

)= 57 wi(w+dw)? ' ©

w+dw
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1.08 ! T — ———— hold, e.g., for semimetals, where the contribution to the total
Lo6l N P : P energy of the conduction electrons is extremely small.
2 (b) The difference between the bulk Fermi energy and the
£ 1.04f chemical potential in the wire can be maintained only by
I Lozl adjusting the electric potential of the wire with respect to the
5 bulk by an amoun¥ =+ (u—€g)/e; i.e., the electrochemi-
G 1.00f cal potential matches the Fermi energy. The fluctuations of
098k the electrical potential can be read from Figb)3in units
Vo P er /e. For the narrowest wires the potential can reach values
096 ————— 6 3 10 12 12 up to 0.6 V, but even for much larger diameters excursions
13 N S B S B B - T T up to 0.1 V are obtained. Similar effects have been consid-
. I ‘ ‘ ered by Moskalets for two-dimensional electron gas quantum
= 127 S i point contacts, where the quantum-size induced potential
5 1l IR ] should modify the applied gate potentfalFor the metallic
g T 3D nanowires the effects are more pronounced and may be
T 10— /\/\ O e observable as fluctuations in the work function.
£ \/ \/ I (c) In order to set up the electrical potential difference
5 09f \ L ‘ o i(b)v 1 between the wire and the bulk electrodes a charged dipole
: : ‘ P o layer will be formed at the interfacdsee Fig. 1, and also
= ¢ s 10 13 iz some charge will accumulate at the surface of the wire and
y . . r — electrodes. The electrostatic energy involved needs to be
14y N I T A taken into account in the evaluation of the total energy of the
" 12F ‘ o wire configuration, and it should be small compared to the
g 1o total kinetic energy, otherwise we must accept that the elec-
g sl tron density deviates from the bulk value. We estimate the
2 6l electrostatic energy as that of the capacitance of an isolated
S 4 wire end of lengthL, C=2m¢(L, and charged to a potential
[ V=+(u—eg)/e. In units of the bulk energy densifg,, the
2r _ S ‘ electrostatic energy per unit volume of the wire can be ex-
%34 6 s 10 12 1 pressed as
Wire cross section w” 5 , ( u )2
Ec==C'|——-1] , (6)
FIG. 3. Kinetic energy densityC, (a) of the wire normalized to 6 €F

the bulk value calculated while keeping density of electrons con- . . . . . .
stant, plotted as a function @f=(2W/\¢)2 The electron density Where C' is the capacitance in dimensionless uni®,

(A2, 72 2 : - -
is held constant by adjusting the chemical potential, showh)ias =(6meoh /mez)\FW ) apd o Is the vacuum d|e|?Ctr|C
wuler, normalized to the bulk Fermi energy. The cusps in theconstant for Sl units. Withhg=0.683 nm, we obtairfc
chemical potential are found at the steps in the conductémce =(0.305W?) (! e — 1)?. For the larger wire diameters this

is a minor correction to the energy, but for smelf the
L A . . charging energy cannot be ignored. At small diameters nei-
The resul_t IS glven In Fig. 3, together with the variation of ther a constant electron density, nor a constant chemical po-
the chemical potentlale/e,: .+The cpndugtance ha52 also beentential forms a good approximation, and the truth is some-
calculated, usings(w)=2, , 1, in units Go=2e%h and  \yhere in between. The balance is determined by the charging
ignoring reduction of the transmission probability due to re-energy, expressed by the relation,
flections at the interface with the reservoirs. The conse-
guences of this scenario are the following: n—-1

(&) The width at which a new channel is opened, and at m:
which the conductance jumps by one or two units, is consid-
erably smaller than in the case discussed above with With C’'=0.366iv? we find that the deviations from the bulk
= e, even smaller than that obtained after correction for thedensity are smaller than the deviations from the bulk chemi-
effects of the hard-wall potential. In particular, the jump cal potential down tov?>=1. Keepingn constant is thus a
from zero to 1G, is displaced tow=0 in this model. In  better approximation, but corrections are only negligible for
reality the electrochemical potential and the kinetic energyw?>3.
density(Fig. 3) cannot be raised indefinitely, and the density There are a number of other corrections to the energy,
would still drop to zero at some point. A density of statessuch as an increased spillout of the wave function for a
equal to zero in the wire corresponds to ionization of thehigher chemical potential and a tendency for the charge to
atom(s) which make up the wire. The energy cost involved isaccumulate at the surface due to electron-electron repulsion,
so large that the wire will most likely break before this hap-resulting in a nonhomogeneous density profile. Estimating
pens. This suggests that a contact having no conductinguch corrections goes beyond the validity of the model, but
modes and only tunneling contributions to the conductanceye believe they are smaller than the terms we have consid-
is not stable. Note that this applies to metals, and need nared here.

!
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FIG. 4. Kinetic energy densityC, of a rectangular wire for fixed L:‘ 1.00— A /\V : \\_)\__//
cross-sectional arew1w2=4W1W2/)\§=3, plotted as a function é 0.95 \/ ; § |
of the ratio of the two widthsW, /W,. The energy density is nor- 8 ‘ : E(b)
malized to the bulk value and the density of electrons is held con- © 090 , A
stant at the bulk value. S S S E— T 5 : 11
. T . T : . 4
(d) The total energy density in Fig.(8& shows distinct 121
local minima, notably neaw?=1.4, 4, 8, 10.5... . This 10+
suggests that the formation of quantum modes in the contac 8 sl 13
has a significant influence on the stability of specific wire 2 <
diameters. In contrast to the calculation in the previous sec- -§ 6r _E
tion, which ignored screening effects, the minima in the en- &§ 4} 12
ergy do not coincide with the steps in the conductance, but ol
are found on the plateaus. Near the steps deviations frormr
0

guantized values are most pronounced due to tunneling anc
backscattering contributions. This suggests that the minima
in the total energy may play a role in explaining the fact that
guantized values of the conductance are more frequently o _ _ _
observed in experiment, compared to nonquantized FIG. 5. Kinetic energy densr[yC, (a) of the wire normallz_ed to
values’:8:9:10 the bul;< value for cgnstant density of eIec‘Fron_s, as a function of the
To this point we have considered the width of the wire as?€aW =4WiWz/Ag . The electron density is held constant by
a continuous parameter. In fact, the finite size of the atom;@dlusting the chemical potential/ e, shown in(b). The energy is
building blocks restricts the accessible valuesWérIn the minimized at each point as a function of the rafig /W, which is

. ) . also plotted(c) together with the conductancé,.
metal-cluster calculations the radius of the cluster is taken to P (c) tog W

be R=Zrg, with Z the number oflmonovalent atoms, and  Similar electron wave induced distortions have been shown
rs the Wigner-Seitz radius. In Ref. 7 the cross-sectional aretgo be relevant for the description of cluster abundance
of point contacts was estimated ag\£/2)?, with @ a con-  spectre?® In Fig. 4 we plot the energy density as a function
stant depending on the crystal structure, being slightlyof the ratioW; /W, of the wire widths in the two perpen-
smaller than unity. All estimates give contact areasadf  dicular directions, for a rectangular wire of fixed cross sec-
=1 per atom. The integer contact areas are marked by thgon 4W,W,/\Z=w?=3. At W,;/W,=1 the calculation
grid lines in Fig. 3. However, stacking patterns of atoms carstarts from a square wire and a conductance @&,3 The
exist which correspond to noninteger effective cross secfigure shows that the energy indeed decreases with distor-
tions. The grid mainly illustrates the typical jump in crosstion, and a minimum is found fow, /W,=2.22. For 1.57
section which will be made between successive configura<w, /W,<2.86 the conductance drops to®, carried by
tions. As a final step in refinement of the problem we will two modes in one direction and a single in the other direc-
now consider deviations from symmetric square shapes afon. At the minima in Fig. 8) nearw?=4 and 1.36 the
the wire cross section. energyincreaseswith distortion from square symmetry. In
Fig. 5 we replot the curves from Fig. 3, where at each point
the ratioW, /W, has been optimized for minimum energy. In
Fig. 5(c) it is shown that between the plateaus of 1 an@d3

For the symmetric wire of square cross section which weof Fig. 3, a new plateau at 2 has been created by increasing
have considered here, the conductance shows double jumpg, /W, to 2.2. Similarly, we find that all double steps are
between 1 and %5, between 4 and 6, 6 and 8, etc. The removed by distortion of the shape of the wire. Often we find
double jumps are the result of the degeneracy of the mtdes.slightly lower-energy minima at very large distortions. We
When we distort the wire under volume conservation, onaliscard these because of the small gain in energy, and be-
expects that the energy can be lowered by lifting of the deeause in practice other contributions to the surface tension,
generacy of the modes, in analogy to the Jahn-Teller effeciwhich have been ignored here, are probably more important.

o 2 4 6 8 10 12 14

Wire cross section w’

IV. LIFTING OF THE DEGENERACY OF THE MODES
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V. RELEVANCE TO EXPERIMENTS 2 . . . i . . .

We stress again that the results of the calculations pre- ‘ .
sented should be interpreted with some precautions because 1f b e o 19
the model is oversimplified. However, it is a useful exercise /\ ------------ 18 2
for two reasons. First, free electron calculations with hard- £ o ‘\jf\ [\\/\] '\,f\ \Va P &
wall boundaries have been widely employed in the context of L§ \} N g
conductance quantization in metals, where the consequences™ .} T 1¢ 8
discussed here have been ignored. Second, the effects on the st T 12
work function of the nanowire, and on the relative stability Py S s s : . . o
of specific wire diameters may survive in more realistic cal- 0 2 4 6 8 10 12 M
culations, and have some relevance for the interpretation of Wire cross section w

the experiments. - F ina in the longitudinal direction of the wi
One of the features that have been neglected in the dis- G- 8- Force acting in the longitudinal direction of the wire as
. ) o a consequence of the fluctuations in the total energy, calculated
cussion above is the contribution of evanescent mdtes

i h | The i f h using parameters appropriate for sodium. The electron density is
neling to the total energy. The importance of suc COMEChelg constant at the bulk value and the rectangular distortion is

tions depends sensitively on the effective length of the wire,gsted to minimize the energy. The force is plotted as a function
Including the occupation of tunneling modes will round-off of the wire cross section?=4W,; W, /\2.

the cusps in the energy density and electron density in Fig. 2.

However, after including screening contributions, theered here is that a nanowire may prefer to split into parallel
minima in the energy density are repelled from the maximawires, each carrying a single quantum of conductance. A
in the density of state€ig. 3), and will be less sensitive to deep minimum in energy is found a?=1.36, where the

the rounding introduced by tunneling modes. On the otheconductance corresponds to one quantum. Comparing the en-
hand, the cusps in the chemical potential in Figp)3vill be  ergy density for this contact area to that at twice the area, and
rounded-off, as will be the steps in the conductance in Figmultiplying by the volume of the wire, we find usine:

3(c). =3.23 eV, that the total energy for two parallel one-quantum

Regarding the relative stability, we have found thatwires is 0.21 eV lower than for a single wire of double cross
minima in the energy are situated near the middle of thesection, pem\ /2 of length of the wire. The energy gain is
conductance plateaus, which would provide a mechanism tolearly not negligible, and such parallel wires would offer an
stabilize those wire geometries which have a quantized valualternative explanation for the observation of quantized con-
of the conductance. It is interesting to note that in the experiductance values 1,2,3.. . On theother hand, the energy
ment of Muller et al!° the contact was not strained, but it barrier encountered between the two topologically different
was allowed to evolve spontaneously. Sharp steps betweawnfigurations may be too large. Also, the low energy for the
very horizontal plateaus are observed, while other experiene-mode wire may be sensitive to the boundary conditions
ments generally measure the conductance during continuows the model. Again, more sophisticated calculations should
elongation of the contact where the conductance at the pldse made to test these ideas.
teaus is generally seen to decrease with increasing elongation The rapid variation in the total energy as a function of
until a new step is encountered. Thus, the experiment of Refvire diameter can be translated into a forEeacting in the
10 allows the contact to find its equilibrium configuration. longitudinal direction of the wire. In hydrostatic approxima-
Also the fact that it is performed at room temperature is oftion, and assuming conservation of volume of the wire, it
importance, since the mobility of the atoms is sufficiently follows that
high that the contact can explore various configurations.

On the other hand, equally horizontal plateaus at noninte- 2wt dK
ger conductance values are regularly observed, as can also be T 5 E'EF@-
seen in Ref. 10. Such plateaus seem to contradict the mecha-
nism discussed here. We should keep in mind, however, thapplying this to the result of Fig. ® we obtain the force
the wire diameter is not a continuous parameter in realityplotted in Fig. 6, expressed in nanoNewtons, using param-
Molecular dynamics simulatioh$®?° clearly show that the eters appropriate for sodium. THeegative peaks in the
contact diameter jumps between atomic scale configurationf®rce are somewhat smaller than those measured for gold
corresponding to cross-section jumpsv? of order unity.  nanocontacts at room temperatidrand at larger contact di-
The true minimum-energy configurations of the contact areameters the experimental forces are much larger. We stress
therefore, not all accessible due to atomic size constraints.that no quantitative predictions can be made based on this

The same constraints may explain the observation of demodel. Qualitatively, the quantum-mode induced force
generate conductance modes in sodiulm.that experiment jumps offer an alternative explanation for the observations in
histograms of conductance values showed clear peaks at 1,tBe experiment for small contacts. The model does not treat
5, and 6G,, exactly the series expected for a circularly sym-in detail the interaction between all the atoms of the contact.
metric contact. The Jahn-Teller-type distortion considered’he force calculated here is just the average contribution
here would prevent the absence of conductance peaks at 2,@¥ginating from the conduction electrons to the force be-
and 7 G,. Surface tension may prohibit the distortion, buttween atoms. If the atoms can move in response to this force,
further work is needed to clarify this point. arrangements that accommodate the quantum modes will be

A very surprising consequence of the mechanism considpreferred.

@)
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In conclusion, a simple model of free electron waves conwall boundaries, and discuss the resulting force on the wire.
fined by a hard-wall potential has some unexpected and obFheir wire geometry is taken as circularly symmetric, having
servable consequences for the properties of metallic nan@n adiabatic constriction. Compared to the present work,
wires. The three main conclusions dfe the work function  they have not considered surface corrections and electron
is expected to fluctuate with the cross section of the Wi8e,  screening. Tunneling contributions are included in their ap-

the total energy has minima on the conductance plateaysoach, and they obtain similar force fluctuations as in Fig. 6.
which may help to favor the corresponding wire geometry,

and (3) a Jahn-Teller type of distortion of wire is expected,
which would lift the degeneracy of the modes and remove
double quantum steps in the conductance.
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