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Conductance quantization in metals: The influence of subband formation on the relative stability
of specific contact diameters
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We consider a simple model of a metallic nanowire, consisting of a free electron gas confined within
hard-wall boundaries and connected to banks on either side. Similar models have been widely used to discuss
conductance properties of nanowires and point contacts. Here we show that the same model has implications
for the mechanical stability of the wire and its work function, and that it possibly induces Jahn-Teller-type
distortions in the wire cross section.@S0163-1829~97!02243-1#
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I. INTRODUCTION

Metallic contacts of atomic dimensions are routinely o
tained by pressing two electrodes together in a contro
way.1–13 As the contacts are elongated, they change size
stepwise fashion due to atomic structural rearrangem
which are revealed by an irregular staircase variation of b
the force between electrodes and the electrical conduct
of the contact. Although the conductance staircase is dif
ent for each elongation process, a statistical analysis ov
large number of runs, for simple free electronlike meta
results in conductance histograms that usually display s
eral distinct peaks. The exact histogram depends on the
ticular metal and on the experimental conditions but one
is quite general: For most metals measured up to now,
especially for monovalent ones, there exist certain favo
values for the conductance. In particular, the most promin
peak corresponds to one conductance quantumG052e2/h
~to within 10% or better!. This suggests that the conductan
in atom size metallic contacts shows a tendency
quantization.14 However, the problem is intimately con
nected to the distribution of atomic configurations which a
visited in the experiments. When particular atomic config
rations are preferred over others, this by itself would lead
peaks in the histograms. The question then arises as to
these configurations are preferred.

Theoretical descriptions of conductance quantization
metallic contacts have been given in terms of free elect
waves, confined within a boundary which was fixed by t
positions of the atoms at the surface.8,6,15 Alternatively the
electron waves have been described in terms of a tight b
ing model,15–17 but in each case the problem of finding th
electronic wave functions was separated from the problem
determining the atomic configuration of the contact,
which molecular dynamics simulations were employed
fixed convenient geometries were chosen. The question
want to investigate below, is whether this separation is
lowed: are the contributions of the wave functions of t
conduction electrons sufficiently small~or sufficiently
smooth! that they can be ignored in searching for t
minimum-energy configurations of the atoms in the conta
560163-1829/97/56~19!/12566~7!/$10.00
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Is an effective nearest-neighbor interaction valid in the c
culation of the interatomic forces?

The nearly free electron approximation has proven
value for the calculation of various properties of metals.18 It
works best for simple, monovalent metals, in particular
alkali metals, for which the Fermi surface is nearly spheric
One of the most convincing implications of the free electr
approximation is the shell structure in metal clusters.19 In
vapor jets of potassium, the metal atoms cluster together,
clusters composed of specific ‘‘magic’’ numbers of atoms~2,
8, 18, 20, 40, 58, ...! are more frequently detected tha
others.20 This observation was explained, in analogy to t
magic numbers in nuclear structure, by the favorable bind
energy for clusters having ‘‘closed’’ electronic shells. Th
electronic wave functions can be approximated as free e
trons confined inside a spherical potential well, given by
spherical Bessel functions. The total energy per atom of
occupied electronic states decreases with cluster size as
as the set of states for a givenl quantum number~a shell! is
partially filled. The addition of one atom to a filled-she
cluster requires occupying a higher-energy level, and the
tal energy per atom of the cluster increases again. There
the cluster energy finds itself at a minimum when the she
just completed. The magic numbers are found from the

generacy of the levels, (2s11)(2l 11), with spins5 1
2 . The

order in which thel quantum numbers are filled can be re
from the order of the zero’s of the Bessel functions.

A proper calculation of the cluster abundance spectr
requires including exchange and correlation effects as we
a realistic shape of the confining potential.19 However, the
principle of the magic numbers can be demonstrated usin
hard-wall boundary and ignoring exchange and correlat
contributions.20 We will use this simple approach below in
calculation for a wire connected to bulk reservoirs, and d
cuss the question of whether specific wire diameters hav
higher relative stability due to the electronic degrees of fr
dom, in analogy to the shell-filling effects in clusters.
contrast to the clusters, the wire is not isolated, and the c
nection of the wire to the reservoirs results in an equilibriu
electric charge in the wire, which may be observed as fl
12 566 © 1997 The American Physical Society
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56 12 567CONDUCTANCE QUANTIZATION IN METALS: THE . . .
tuations in the work function with the wire diameter.
We are aware of the serious limitations of the approxim

tions, but we want to point out some of the interesting co
sequences of the model, which may stimulate more real
model calculations. Furthermore, similar approximatio
have been widely used in the calculation of the conducta
of nanowires, while the implications of this model for th
total energy and electric potential of the wire have gener
been ignored. In Sec. II the problem is introduced and i
shown that screening effects should be taken into acco
The calculation preserving charge neutrality is presente
Sec. III, and in Sec. IV electron energy induced deviatio
from a symmetric square cross section are considered.
relevance to experimental results is briefly discussed in S
V.

II. THE TOTAL ENERGY OF A NANOWIRE

Since we are only interested in demonstrating the p
ciple we can choose convenient boundary conditions.
wire consists of a uniform conductor of square cross sec
W3W and lengthL, with free and independent electron
confined within hard-wall boundaries, connected to free e
tron gas reservoirs~Fig. 1!. We consider wires sufficiently
long that the contribution of tunneling electrons~evanescent
modes! can be ignored. It poses no great difficulty to exte
the calculations to include such contributions, but for t
sake of clarity we limit ourselves to a brief discussion of th
aspect in Sec. V. When it is necessary to choose values
the parameters we will use those appropriate for sodium

The density of states~DOS! in the wire can be expresse
as

N~W,eF!5
2m

Wp2\2 (
n1 ,n2

1
1

Aw22n1
22n2

2
, ~1!

wherew52W/lF , lF52p\/A2meF, and lF , eF, and m
are the Fermi wavelength, Fermi energy, and the free e

FIG. 1. As the geometry of the model nanowire we choos
conductor of uniform square cross sectionW3W and lengthL,
connected to reservoirs at both ends~dashed!.
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tron mass, respectively. The1 on the summation indicate
that n1 andn2 run from 1 to the maximum value for which
the expression under the square root in Eq.~1! is positive. In
Fig. 2 the DOS of the wire is compared to that of a bu
electron gas. The figure illustrates that the total energy of
occupied states is very sensitive to the actual position of
Fermi energy relative to the positions of the peaks in
DOS. This particular DOS is a consequence of the quant
tion of the transverse degrees of freedom of the elect
wave function in a contact and results in a finite number
subbands, each of which contributes a quantum to the c
ductance of the contact. Perfect quantization is only obtai
when ~1! the contact lengthL is much larger than the width
W of the contact and the Fermi wavelengthlF , ~2! the width
of the contact is a smooth function of the longitudinal coo
dinate~adiabatic approximation!, and~3! the total mean free
path l @L . Further, all energies (kBT,eV) should be much
smaller than the subband splitting. This is the explanation
the phenomenon of conductance quantization observe

a

FIG. 2. Density of states,N, of the wire ~a, solid curve! com-
pared to the bulk~a, dashed curve!, in unitsm/p\2W, as a function
of w25(2W/lF)2. Also the total kinetic energy density,K, ~b! and
the density of electrons,n(w), ~c!, are shown, both normalized t
the bulk value. These are obtained by integrating the DOS and
product of the DOS and the energy, respectively, over all state
to the Fermi energy.
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12 568 56van RUITENBEEK, DEVORET, ESTEVE, AND URBINA
semiconducting point contacts, for which the free elect
model is applicable. The adiabatic approximation~2! is
clearly not applicable for the model geometry of Fig. 1, a
additional resonances of the conductance on the plateau
pear as a result of the interference of waves scattered f
the two interfaces. However, globally the conductance
still be seen to increase by quantum units for this model21

The total kinetic energy of the occupied states can
found by integrating the energy over this DOS. Express
the total energy normalized to the bulk value,K0

5\2kF
5/10p2m, we obtain,

K~w!5
10

3p

1

w5 (
n1 ,n2

1

~w212n1
212n2

2!Aw22n1
22n2

2.

~2!

Similarly, the density of electrons normalized to the bu
valuen05kF

3/3p2 is

n~w!5
6

p

1

w3 (
n1 ,n2

1

Aw22n1
22n2

2. ~3!

These functions are also plotted in Fig. 2.
The figure clearly demonstrates three important featu

~a! the total energy density and~b! the electron density are
much lower than the bulk values, and~c! there are strong
fluctuations in both quantities as a function of the width
the wire. The first,~a!, is the result of the strong confineme
imposed by the hard-wall potential. A realistic potential
lows spillout of the wave function beyond the boundari
There is a simple solution to this problem, since the ene
levels for a finite potential well can be described to a ve
good approximation by those of an infinite potential well
larger width. Using parameters appropriate for sodium,
width should be increased by an amountdw50.688. Using
this value in the calculation of the total energy, we find th
K fluctuates properly around 1. The second feature,~b!, is
also a consequence of the hard-wall potential. The distr
tion of states in momentum space is not uniform, since st
with kx50 or ky50 are excluded. This is a well know
problem which was already treated by Weyl.22 The bulk den-
sity of electrons to which Eq.~3! should be normalized re
ceives surface corrections, which can be expressed an0

5(kF
3/3p2)(123/2w13/2pw2).23 When the density is re

calculated and normalized using this correction, we find t
it fluctuates around the proper bulk limit. Both features,~a!
and ~b!, have recently been discussed in the context of c
ductance quantization by Garcı´a-Martı́n et al.24 They showed
how the semiclassical Sharvin limit can be obtained by
n
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cluding these corrections, and that the actual diameter of
wires required for a specific number of modes is smaller th
obtained from the standard calculations.

The third feature,~c!, is the one that we are particularl
interested in. The strong fluctuations in the total energy m
contribute to the relative stability of specific wire width
Although the details will also be sensitive to the artifici
boundary conditions that we use, the general features sh
be present for any choice of potential. They can be und
stood as follows. When the diameter of the wire increase
w5A2 the Fermi energy touches the bottom of the first s
band. From this point onward the subband starts to be fi
and the electron density and kinetic energy per volume s
rising rapidly as a result of the peak in the DOS. For furth
increase ofw the DOS decreases leading to a slowdown
the increase of the number of electrons and the kinetic
ergy, while the volume keeps increasing asW2 resulting in a
maximum in the densities of electrons and energy, follow
by a decrease in these densities until the next subban
reached. As a result,n(w) andK(w) show oscillations as a
function of w, with the amplitude decreasing for increasin
w. The deviations from the bulk values are largest for sm
W, and amount up to tens of percents.

Such deviations from the bulk density are not realist
The most dramatic consequence is that the electron dens
found to drop to zero for small widths when the last chan
is closed, whereas in practice every atom will continue to
surrounded, on average, by one electron~for a monovalent
metal!. The screening in metals is very effective down to
scale;1 Å, and the positive background charge density w
tend to be compensated. This shortcoming is generally
nored in free-electron calculations of conductance in nan
ires.

III. SCREENING: CONSTANT ELECTRON DENSITY

The main effect of the electron screening can be ta
into account by fixing the electron density in the wire at t
bulk value.26 This can be done by adjusting the electrochem
cal potentialm of the wire such that

n~w,m!5
6

p

(
n1 ,n2

1 AS w1dw

wm
D 2

2n1
22n2

2

~w1dw!32
3

2
~w1dw!21

3

2p
~w1dw!

51,

~4!

with wm5l/lF5AeF /m. The corrections for the effects o
the hard-wall potential discussed above have been inco
rated in this expression. The total kinetic energy is then c
culated for the value ofm obtained by solving Eq.~4!, which
needs to be reevaluated for each widthW of the wire:
K~w,m!5
10

3p

(
n1 ,n2

1 F S w1dw

wm
D 2

12n1
212n2

2GAS w1dw

wm
D 2

2n1
22n2

2

w2~w1dw!3
. ~5!
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The result is given in Fig. 3, together with the variation
the chemical potentialm/eF . The conductance has also be
calculated, usingG(w)5(n1,n2

1 1, in units G052e2/h and

ignoring reduction of the transmission probability due to
flections at the interface with the reservoirs. The con
quences of this scenario are the following:

~a! The width at which a new channel is opened, and
which the conductance jumps by one or two units, is cons
erably smaller than in the case discussed above withm
5eF , even smaller than that obtained after correction for
effects of the hard-wall potential. In particular, the jum
from zero to 1G0 is displaced tow50 in this model. In
reality the electrochemical potential and the kinetic ene
density~Fig. 3! cannot be raised indefinitely, and the dens
would still drop to zero at some point. A density of stat
equal to zero in the wire corresponds to ionization of
atom~s! which make up the wire. The energy cost involved
so large that the wire will most likely break before this ha
pens. This suggests that a contact having no conduc
modes and only tunneling contributions to the conductan
is not stable. Note that this applies to metals, and need

FIG. 3. Kinetic energy density,K, ~a! of the wire normalized to
the bulk value calculated while keeping density of electrons c
stant, plotted as a function ofw25(2W/lF)2. The electron density
is held constant by adjusting the chemical potential, shown in~b! as
m/eF , normalized to the bulk Fermi energy. The cusps in
chemical potential are found at the steps in the conductance~c!.
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hold, e.g., for semimetals, where the contribution to the to
energy of the conduction electrons is extremely small.

~b! The difference between the bulk Fermi energy and
chemical potential in the wire can be maintained only
adjusting the electric potential of the wire with respect to t
bulk by an amountV51(m2eF)/e; i.e., the electrochemi-
cal potential matches the Fermi energy. The fluctuations
the electrical potential can be read from Fig. 3~b! in units
eF /e. For the narrowest wires the potential can reach val
up to 0.6 V, but even for much larger diameters excursio
up to 0.1 V are obtained. Similar effects have been con
ered by Moskalets for two-dimensional electron gas quan
point contacts, where the quantum-size induced poten
should modify the applied gate potential.25 For the metallic
3D nanowires the effects are more pronounced and may
observable as fluctuations in the work function.

~c! In order to set up the electrical potential differen
between the wire and the bulk electrodes a charged dip
layer will be formed at the interfaces~see Fig. 1!, and also
some charge will accumulate at the surface of the wire
electrodes. The electrostatic energy involved needs to
taken into account in the evaluation of the total energy of
wire configuration, and it should be small compared to
total kinetic energy, otherwise we must accept that the e
tron density deviates from the bulk value. We estimate
electrostatic energy as that of the capacitance of an isol
wire end of lengthL, C.2p«0L, and charged to a potentia
V51(m2eF)/e. In units of the bulk energy densityK0, the
electrostatic energy per unit volume of the wire can be
pressed as

EC5
5

6
C8S m

eF
21D 2

, ~6!

where C8 is the capacitance in dimensionless units,C8
5(6p2«0\2/me2lFw2), and «0 is the vacuum dielectric
constant for SI units. WithlF50.683 nm, we obtainEC
5(0.305/w2)(m/eF21)2. For the larger wire diameters thi
is a minor correction to the energy, but for smallw2 the
charging energy cannot be ignored. At small diameters n
ther a constant electron density, nor a constant chemical
tential forms a good approximation, and the truth is som
where in between. The balance is determined by the char
energy, expressed by the relation,

n21

m/eF21
5C8.

With C850.366/w2 we find that the deviations from the bul
density are smaller than the deviations from the bulk che
cal potential down tow251. Keepingn constant is thus a
better approximation, but corrections are only negligible
w2.3.

There are a number of other corrections to the ener
such as an increased spillout of the wave function fo
higher chemical potential and a tendency for the charge
accumulate at the surface due to electron-electron repuls
resulting in a nonhomogeneous density profile. Estimat
such corrections goes beyond the validity of the model,
we believe they are smaller than the terms we have con
ered here.

-
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~d! The total energy density in Fig. 3~a! shows distinct
local minima, notably nearw251.4, 4, 8, 10.5, . . . . This
suggests that the formation of quantum modes in the con
has a significant influence on the stability of specific w
diameters. In contrast to the calculation in the previous s
tion, which ignored screening effects, the minima in the
ergy do not coincide with the steps in the conductance,
are found on the plateaus. Near the steps deviations f
quantized values are most pronounced due to tunneling
backscattering contributions. This suggests that the min
in the total energy may play a role in explaining the fact th
quantized values of the conductance are more freque
observed in experiment, compared to nonquanti
values.7,8,9,10

To this point we have considered the width of the wire
a continuous parameter. In fact, the finite size of the ato
building blocks restricts the accessible values forW. In the
metal-cluster calculations the radius of the cluster is take
be R5Zrs , with Z the number of~monovalent! atoms, and
r s the Wigner-Seitz radius. In Ref. 7 the cross-sectional a
of point contacts was estimated asa(lF/2)2, with a a con-
stant depending on the crystal structure, being sligh
smaller than unity. All estimates give contact areas ofw2

.1 per atom. The integer contact areas are marked by
grid lines in Fig. 3. However, stacking patterns of atoms c
exist which correspond to noninteger effective cross s
tions. The grid mainly illustrates the typical jump in cro
section which will be made between successive configu
tions. As a final step in refinement of the problem we w
now consider deviations from symmetric square shape
the wire cross section.

IV. LIFTING OF THE DEGENERACY OF THE MODES

For the symmetric wire of square cross section which
have considered here, the conductance shows double ju
between 1 and 3G0, between 4 and 6, 6 and 8, etc. Th
double jumps are the result of the degeneracy of the mod27

When we distort the wire under volume conservation, o
expects that the energy can be lowered by lifting of the
generacy of the modes, in analogy to the Jahn-Teller eff

FIG. 4. Kinetic energy density,K, of a rectangular wire for fixed
cross-sectional areaw1w254W1W2 /lF

253, plotted as a function
of the ratio of the two widths,W1 /W2. The energy density is nor
malized to the bulk value and the density of electrons is held c
stant at the bulk value.
ct
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Similar electron wave induced distortions have been sho
to be relevant for the description of cluster abundan
spectra.28 In Fig. 4 we plot the energy density as a functio
of the ratioW1 /W2 of the wire widths in the two perpen
dicular directions, for a rectangular wire of fixed cross se
tion 4W1W2 /lF

25w253. At W1 /W251 the calculation
starts from a square wire and a conductance of 3G0. The
figure shows that the energy indeed decreases with dis
tion, and a minimum is found forW1 /W252.22. For 1.57
,W1 /W2,2.86 the conductance drops to 2G0, carried by
two modes in one direction and a single in the other dir
tion. At the minima in Fig. 3~a! near w254 and 1.36 the
energy increaseswith distortion from square symmetry. In
Fig. 5 we replot the curves from Fig. 3, where at each po
the ratioW1 /W2 has been optimized for minimum energy.
Fig. 5~c! it is shown that between the plateaus of 1 and 3G0
of Fig. 3, a new plateau at 2 has been created by increa
W1 /W2 to 2.2. Similarly, we find that all double steps a
removed by distortion of the shape of the wire. Often we fi
slightly lower-energy minima at very large distortions. W
discard these because of the small gain in energy, and
cause in practice other contributions to the surface tens
which have been ignored here, are probably more import

-

FIG. 5. Kinetic energy density,K, ~a! of the wire normalized to
the bulk value for constant density of electrons, as a function of
area w254W1W2 /lF

2 . The electron density is held constant b
adjusting the chemical potential,m/eF , shown in~b!. The energy is
minimized at each point as a function of the ratioW1 /W2, which is
also plotted~c! together with the conductance,G.
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V. RELEVANCE TO EXPERIMENTS

We stress again that the results of the calculations
sented should be interpreted with some precautions bec
the model is oversimplified. However, it is a useful exerc
for two reasons. First, free electron calculations with ha
wall boundaries have been widely employed in the contex
conductance quantization in metals, where the conseque
discussed here have been ignored. Second, the effects o
work function of the nanowire, and on the relative stabil
of specific wire diameters may survive in more realistic c
culations, and have some relevance for the interpretatio
the experiments.

One of the features that have been neglected in the
cussion above is the contribution of evanescent modes~tun-
neling! to the total energy. The importance of such corre
tions depends sensitively on the effective length of the w
Including the occupation of tunneling modes will round-o
the cusps in the energy density and electron density in Fig
However, after including screening contributions, t
minima in the energy density are repelled from the maxi
in the density of states~Fig. 3!, and will be less sensitive to
the rounding introduced by tunneling modes. On the ot
hand, the cusps in the chemical potential in Fig. 3~b! will be
rounded-off, as will be the steps in the conductance in F
3~c!.

Regarding the relative stability, we have found th
minima in the energy are situated near the middle of
conductance plateaus, which would provide a mechanism
stabilize those wire geometries which have a quantized v
of the conductance. It is interesting to note that in the exp
ment of Muller et al.10 the contact was not strained, but
was allowed to evolve spontaneously. Sharp steps betw
very horizontal plateaus are observed, while other exp
ments generally measure the conductance during contin
elongation of the contact where the conductance at the
teaus is generally seen to decrease with increasing elong
until a new step is encountered. Thus, the experiment of R
10 allows the contact to find its equilibrium configuratio
Also the fact that it is performed at room temperature is
importance, since the mobility of the atoms is sufficien
high that the contact can explore various configurations.

On the other hand, equally horizontal plateaus at nonin
ger conductance values are regularly observed, as can al
seen in Ref. 10. Such plateaus seem to contradict the me
nism discussed here. We should keep in mind, however,
the wire diameter is not a continuous parameter in rea
Molecular dynamics simulations16,8,29 clearly show that the
contact diameter jumps between atomic scale configurat
corresponding to cross-section jumpsDw2 of order unity.
The true minimum-energy configurations of the contact a
therefore, not all accessible due to atomic size constrain

The same constraints may explain the observation of
generate conductance modes in sodium.7 In that experiment
histograms of conductance values showed clear peaks at
5, and 6G0, exactly the series expected for a circularly sy
metric contact. The Jahn-Teller-type distortion conside
here would prevent the absence of conductance peaks at
and 7 G0. Surface tension may prohibit the distortion, b
further work is needed to clarify this point.

A very surprising consequence of the mechanism con
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ered here is that a nanowire may prefer to split into para
wires, each carrying a single quantum of conductance
deep minimum in energy is found atw251.36, where the
conductance corresponds to one quantum. Comparing the
ergy density for this contact area to that at twice the area,
multiplying by the volume of the wire, we find usingeF
53.23 eV, that the total energy for two parallel one-quant
wires is 0.21 eV lower than for a single wire of double cro
section, perlF/2 of length of the wire. The energy gain i
clearly not negligible, and such parallel wires would offer
alternative explanation for the observation of quantized c
ductance values 1,2,3, . . . . On theother hand, the energy
barrier encountered between the two topologically differ
configurations may be too large. Also, the low energy for
one-mode wire may be sensitive to the boundary conditi
of the model. Again, more sophisticated calculations sho
be made to test these ideas.

The rapid variation in the total energy as a function
wire diameter can be translated into a forceF acting in the
longitudinal direction of the wire. In hydrostatic approxim
tion, and assuming conservation of volume of the wire
follows that

F52
2p

5

w4

lF
eF

dK
dw2

. ~7!

Applying this to the result of Fig. 5~a! we obtain the force
plotted in Fig. 6, expressed in nanoNewtons, using para
eters appropriate for sodium. The~negative! peaks in the
force are somewhat smaller than those measured for
nanocontacts at room temperature11 and at larger contact di
ameters the experimental forces are much larger. We st
that no quantitative predictions can be made based on
model. Qualitatively, the quantum-mode induced for
jumps offer an alternative explanation for the observations
the experiment for small contacts. The model does not t
in detail the interaction between all the atoms of the conta
The force calculated here is just the average contribu
originating from the conduction electrons to the force b
tween atoms. If the atoms can move in response to this fo
arrangements that accommodate the quantum modes wi
preferred.

FIG. 6. Force acting in the longitudinal direction of the wire
a consequence of the fluctuations in the total energy, calcul
using parameters appropriate for sodium. The electron densit
held constant at the bulk value and the rectangular distortion
adjusted to minimize the energy. The force is plotted as a func
of the wire cross sectionw254W1W2 /lF
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In conclusion, a simple model of free electron waves c
fined by a hard-wall potential has some unexpected and
servable consequences for the properties of metallic na
wires. The three main conclusions are~1! the work function
is expected to fluctuate with the cross section of the wire,~2!
the total energy has minima on the conductance plate
which may help to favor the corresponding wire geomet
and ~3! a Jahn-Teller type of distortion of wire is expecte
which would lift the degeneracy of the modes and remo
double quantum steps in the conductance.

After completing this work we have received a prepr
‘‘Jellium model of metallic nanocohesion’’ by C. A
Stafford, D. Baeriswyl, and J. Bu¨rki. These authors also ca
culate the total energy for free electrons confined by ha
e

.

,

nd

.
-

.

s

re

,
-

-
b-
o-

us
,

,
e

t

-

wall boundaries, and discuss the resulting force on the w
Their wire geometry is taken as circularly symmetric, havi
an adiabatic constriction. Compared to the present wo
they have not considered surface corrections and elec
screening. Tunneling contributions are included in their a
proach, and they obtain similar force fluctuations as in Fig
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Garciá, Phys. Rev. Lett.71, 1852~1993!.

4J. M. Krans, C. J. Muller, I. K. Yanson, Th. C. M. Govaert, R
Hesper, and J. M. van Ruitenbeek, Phys. Rev. B48, 14 721
~1993!.

5J. M. Krans and J. M. van Ruitenbeek Phys. Rev. B50, 17 659
~1994!.

6L. Olesen, E. L,gsgaard, I. Stensgaard, F. Besenbacher
Schio”tz, P. Stoltze, K. W. Jacobsen, and J. K. No”rskov, Phys.
Rev. Lett.72, 2251~1994!.

7J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, a
L. J. de Jongh, Nature~London! 375, 767 ~1995!.

8M. Brandbyge, J. Schio”tz, M. R. So”rensen, P. Stoltze, K. W
Jacobsen, J. K. No”rskov, L. Olesen, E. L,gsgaard, I. Stens
gaard, and F. Besenbacher, Phys. Rev. B52, 8499~1995!.

9J. L. Costa-Kra¨mer, N. Garcı´a, P. Garcı´a-Mochales, and P. A
Serena, Surf. Sci.342, L1 144 ~1995!.

10C. J. Muller, J. M. Krans, T. N. Todorov, and M. A. Reed, Phy
Rev. B53, 1022~1996!.

11G. Rubio, N. Agraı¨t, and S. Vieira, Phys. Rev. Lett.76, 2302
~1996!.

12E. Scheer, P. Joyez, D. Esteve, C. Urbina, and M. H. Devo
Phys. Rev. Lett.78, 3535~1997!.

13For a recent review, see J. M. van Ruitenbeek, inMesoscopic
Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven
and G. Scho¨n, NATO Advanced Study Institute, Series E, Ap
plied Sciences~Kluwer, Dordrecht, to be published!.
v.

J.

.

t,

14For a review, see C. W. J. Beenakker and H. van Houten,Solid
State Physics: Advances in Research and Applications, edited by
H. Ehrenreich and D. Turnbull~Academic Press, New York
1991!, Vol. 44, p. 1.

15A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev.
52, 5036~1995!.

16T. N. Todorov and A. P. Sutton, Phys. Rev. Lett.70, 2138~1993!.
17A. Levy Yeyati, A. Martı́n-Rodero, and F. Flores~unpublished!.
18N. W. Ashcroft and N. D. Mermin,Solid State Physics~Holt,

Rinehart, and Winston, New York, 1976!.
19W. A. de Heer, Rev. Mod. Phys.65, 611 ~1993!.
20W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M

Y. Chou, and M. L. Cohen, Phys. Rev. Lett.52, 2141~1984!.
21E. Tekman and S. Ciraci, Phys. Rev. B43, 7145~1991!.
22H. Weyl, Kgl. Ges. d. Wiss. Nachrichten. Math. Phys. Klas

Heft 2, 110 ~1911!.
23D. B. Bivin and J. W. McClure, Phys. Rev. B16, 762 ~1977!.
24A. Garcı́a-Martı́n, J. A. Torres, and J. J. Sa´enz, Phys. Rev. B54,

13 448~1996!.
25M. V. Moskalets, Pis’ma Zh. Eksp. Teor. Fiz.62, 702 ~1995!

@JETP Lett.62, 719 ~1995!#.
26Note that a similar approximation has been adopted in a re

preprint by A. Levy Yeyati, A. Martı´n-Rodero, and F. Flores
Ref. 17, for a tight binding model of atom size contacts.

27Note that the series of conductance values for a circularly s
metric contact is different: 1, 3, 5, 6, 8, . . . ,G0.

28O. B. Christensen, K. W. Jacobsen, J. K. No”rskov, and M. Man-
ninen, Phys. Rev. Lett.66, 2219~1991!.

29U. Landman, W. D. Luedtke, B. E. Salisbury, and R. L. Whette
Phys. Rev. Lett.77, 1362~1996!.


