PHYSICAL REVIEW B VOLUME 56, NUMBER 19 15 NOVEMBER 1997-I

Relaxation of surface profiles by evaporation dynamics
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We present simulations of the relaxation towards equilibrium of one-dimensional steps and sinusoidal
grooves imprinted on a surface below its roughening transition. We use a generalization of the hypercube
stacking model of Forrest and Tang that allows for temperature-dependent next-nearest-neighbor interactions.
For the step geometry the results B0 agree well with the¥/* prediction of continuum theory for the
spreading of the step. In the case of periodic profiles we modify the mobility for the tips of the profile and find
the approximate solution of the resulting free boundary problem to be in reasonable agreement WitlDthe
simulations[S0163-182807)01539-7

[. INTRODUCTION netic Ising model on a triangular lattice with anisotropic cou-
plingsK;=BE=K, K,=K+ BE,, andK;=K+ BEj in the
The relaxation of corrugated crystal surfaces above theilimit K— —o. They noted already that in two dimensions
roughening transition is well understood in terms of con-each Ising-spin configuration can be mapped on a SOS
tinuum theory: Experimenté and Monte Carlo height configuration. In the isotropic cakg=K,=K; con-
simulation$* on the decay of sinusoidal grooves agree quansidered in Ref. 11 each configuration is a ground state of an
titatively with the predictions of continuum theory and evenantiferromagnetic Ising model with one frustrated bond per
deviations due to the anisotropy of the surface free energgriangle and the corresponding SOS model can be considered
have been observéd:or profiles imprinted on a crystal facet as temperature independerti,&E;=0) or as being at in-
below its roughening transition things are less settled. Sewvinite temperaturg8—0 but K— —o). All possible surface
eral predictions of continuum theorfed’for time and wave-  configurations have the same energy, since the number of
length dependence of the decay exist, where differences atgoken nearest neighbor bonds is conserved. Dynamics can
mainly due to the different treatment of the singularity in thebe imposed by assigning the same nageto all evaporation
surface free energy that emerges for the orientation belowind condensation events allowed by the SOS restriction.
the roughening temperatulig,. Experimentéwhere surface  Spin flips that maintain the condition of having one frus-
diffusion prevails show trapezoidal profiles with flat tops andtrated bond per triangle correspond to adding or removing an
bottoms, a feature qualitatively reproduced by several conatom without violating the SOS condition.
tinuum approachée$!® Simulations belowTy are severely We now introduce next-nearest-neighbor interactions of
hampered by the slow decay kinetics, a problem somewhaitrengthJ. If an atom is removed from the surface the sur-
less important for evaporation dynamics. Furthermore, foface energy changes bXE= (J/2) An=J(n—3), where
T<Tkg lattice effects play a role that is not presentTor Tz~ An is the difference in the number of broken next-nearest-
and that is not taken into account in the continuum theoryneighbor bonds ande{0,...,6 is the number of next-
To suppress these effects, larger systems need to be simuearest neighbors in the same layer. Thus the total surface
lated. The scope of this paper is to present Monte Carl@nergy is proportional to the number of broken next-nearest-
simulations for the case of evaporation dynamics, which ar@eighbor bonds. We impose the usual Metropolis rates
able to test the predictions of continuum theory. In Sec. Il we
introduce a modified version of the hypercube stacking _ Pod"? if n>3
modelt for the case of a two-dimensional surface. In Sec. IlI W=y if n<3 @
we recall the results of continuum theory for a bunch of
straight steps and compare them to simulation$a0. In
Sec. IV we show how one can modify the continuum theory pog® " if
L i X od if n<3
for periodic grooves to get agreement with due=0 simu- :{ it n=3 2
lations and discuss another recent attempt at this problem. In Po -
Sec. V we give a conclusion of our findings. The Appendixfor a condensation event. Note that these rates fulfill detailed
briefly describes the core part of our modifications of thebalance.
hypercube stacking model. As shown in detail in Ref. 11 the spin representation of
the model can be programmed very efficiently by using a
multisite coding algorithm, where each spin is coded by a
single bit of an integer variable and the dynamics is incor-
We use the hypercube stacking model of Forrest angborated via logical operations on the integers. In this type of
Tang, which is a solid on soligSOS model of the(111) algorithm we can also incorporate the next-nearest-neighbor
surface of a simple cubic crystal as described in Ref. 1linteractions between surface atoms as will be shown in some
Originally Blote and Hilhors¥ considered an antiferromag- detail in the Appendix. We use four dynamical sublattices as

with q=ex — (J/kgT)] for an evaporation event and

Il. MODIFIED HYPERCUBE STACKING MODEL
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in Ref. 13 for the evolution of the height profile. The active over the free energy(u) per unit projected surface area.
sublattice is chosen at random and each evaporation or coBelow the roughening transitiom(u) is written as*
densation event on that sublattice allowed by the SOS re-

striction takes place with the Metropolis rgteof the event
determined by Eq9.1) and(2) with py= 1/2. Our generali-
zation of the model of Ref. 11 leads to a fast and memory . ) ) i
saving implementation of a solid on solid model, which weW'th y=3 for purely entropic step repulsiom, describes
use in following to study the decay of surface corrugationd€ €nergy of the11ll) surface,s, is the step free energy
consisting of many steps. We should note that, due to théat contributes proportional to the step density and the
multisite coding, where we use each bit of a random numbef’ » (€M describes step-step interactions. Now the wedge sin-
to update one spin, the values @f and therefore the avail- gularity of thes; term atu=0 leads to a5-function singu-

able temperatures, are restrictecite {0.k/2™,1} with m in- larity in Eq. (3). In the case of evaporation dynamics well
teger anck odd integer between 1 andT2 1).! The best belowTg, where thermally activated nucleation is negligible
performance of the algorithm is achieved for smralksince ~ 2nd the whole dynamics is due to step motion, the mobility

3m+1 random integers are needed for each update of th&f @ surface is proportional to the step denfsity
spins stored in one integer. The cages{0,1} (correspond- (U)=pq|ul )
ing to T=0 andT=«) need only one random number per # (Sl
update for the rat@y,= 1/2 while g= 1/2 (corresponding to  Since nucleation is an activated process, it is entirely absent
T=1.44)/kg) needs already four, namely one fpy= 1/2  in our T=0 simulations and Ed5) is valid even for a driven
and three forq®= 1/8. After completion of this work we surface. Now the vanishing mobility at=0 for the high-
became aware of Ref. 23, where the same kind of modedymmetry orientation cancels th@&function singularity in
(interpreted as a fcc crysjakith different rates is studied for Eq. (3) leading td'8
periodic grooves at a temperature- 0.68T; (corresponding
to q= 1/2).

In the following we concentrate on the cafe-0. Then
evaporation or condensation events can take place only or the step geomefiythe scaling ansatia(x,t) = (t~ )

(11) steps since adding or removing an atom there does not B 6
increase the number of broken bonds. Decay kinetics i ivesa=1/(y+1) and leads to a Barenblatt solution®for

slowed down considerably by this choice, but as an advan '€ slope

tage nucleation of islands or holes on terraces is entirely U(X,t) = Gyt~ ¥(a2—y2) U1 @)
absent. This simplifies the comparison to continuum theory, ' 0 Yo '

since now the mobility of the surface is proportional to thewherey=x/t¢, ¢, anda are constants determined by the
kink density. The(11) steps are rough even @&=0 due to initial condition and + denotes the positive part of the
the random update of growth and evaporation sites and thgracket. Since Eq.6) is invariant under the rescaling
interaction between steps in this limit is purely entropic. Wey— y/| h=h/L andt=t/L2, the wholeL dependence for a

study the relaxation of two different initial profiles, a train of gt of initial profiles of the same slopebut of different size

equidistant(11) steps separating two plan@ll) surfaces | can pe absorbed by rescaling. This leadsge L° and
(step geomety and a periodic sinusoidal corrugation of j2_| 2-4a t5 the coefficients of Eq(7).

wavelengthL. For the second we grow an initial profile that
satisfiesh(x,0)<{ainf sin(L/27) x]} (where aint denotes the
integer part of the argumemn a flat surface of size XL so
that the steps of the profile do hatkl) orientation. For the How do these results compare with due 0 simulations?
original model, which is effectively af=c0, we recover the Figure 1 displays the evolution of a step train of 11 steps on
well-known results of Mullind valid above the roughening a 360x< 360 lattice up tot=10* Monte Carlo steps with
transition. At=500. The height is averaged over the columns parallel to
the average step direction and ovef iflependent runs. To
check Eq.7) and theL dependence of the parametgrand
lll. STEP GEOMETRY a we plot the scaled slopat'* against the scaled width
xt~Y* using y=3. Figure 2 displays the flattening data for
_ ) ] _ three step trains of 45, 22, and 11 steps with the same initial
To describe the flattening of a profile under evaporationgjope. The topmost curves are data for 45 steps on a
dynamics with a continuum theory we use the usual assumpr440x 1440 lattice up tot=10" with At=10°, averaged
tion that the profile evolution minimizes the free energy of 5yer 100 independent runs. The middle set gives the same

1
0(u)=00+0'1|u|+;a'y|u|7+-~- : (4

&h— 1 y*ﬁzh 6
Sh= o, (y= DU —-3h. (6)

B. Simulational results

A. Continuum theory

the surface in the most direct way: information for 22 steps on a 720720 lattice withAt=500
averaged over foruns and the lowest set are the differenti-
P SF ated data of Fig. 1. The curves of Fig. 2 nicely approach the
Eh: —,u,(u)%. (3)  ellipses of the Barenblatt solutidi¥) and a good fit can be

achieved withcy=0.028 anda®=1024, 500.4, 250.%rom
top to bottom in agreement withcy~L° and a?~L. The
Here w(u) is the mobility of a surface of slope= dh/dx  slight skewness in the initial conditididue to computational
and the free energly of the surface is given by the integral conveniencevanishes in time, indicating that the Barenblatt
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FIG. 1. Flattening of a step train of 11 initially equidistant steps
on a 360<360 lattice up tot=10* Monte Carlo steps with
At=500.

solution is attractive also for asymmetric initial profiles. The
singularity of Eq.(7) for u=0 is smeared out by the fluctua-
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©(0)= uq. Differentiating Eq.(3) with respect toc and per-
forming the functional derivate we get

4 J PN au)z
Y7 ox m(u) Fvd (w|=un (U)% x
. v [du 2+ dv d°u g
M(U)mz X M(U)@a—xz, (8

wherev=¢'(u). Provided thatu(u) contains noL depen-
dence Eq. (8) is independent under the rescaling
x=x/L,h=h/L andt=t/L?. Thus the data for a set of initial
profiles with the same slope but different wavelengths
should collapse on a single scaling curve under the rescaling.
Note that the first two terms in E¢B) are positive while the
third one is negative. In the following we restrict the discus-
sion to the intervak e [0,L/4], whereu=0, which is suffi-
cient to describe the whole profile by symmetry and period-
icity. After initial transients have died out we expetti<0

for all u>0, so the third term is dominant in E¢8) for
u>0. Foru—0 andy>2 the first term in Eq(8) is much

tions of the rightmost and leftmost steps. Furthermore, ongmajier than the second singe (u)—0. In the step flow
can resolve the mean positions of the individual steps, as iggime, where Eq(5) is valid and the third term dominates,
seen best for the 11-step data. Similar features have beqRe first term is of the same magnitude as the second. By

observed recently for two steps with surface diffusion dy-
namics.

IV. PERIODIC GROOVES
A. Continuum theory

For periodic surface grooves E() leads to a solution
that predicts a nonparabolic sharpening of the profile tip
proportional to ¢x)(** 1’7 (Refs. 7 and Bthat was observed
neither in previous'’~*°nor in the present simulations. As
pointed out by Rettori and Villafhthe decay of the profile

topmost meandering steps, which annihilate each other
contact. This process induces a nonzero mean kink density
the tips of the profile and hence the mobility does not vanis

foru=0. In this case we expect the wedge singularity of Eq'tation with unstable neighbor orientatiéAsuch a transfor-

mation cannot be applied. Inverting= ¢’ (u) we obtair!

(5) to be rounded to an analytical function with nonzero
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FIG. 2. Time evolution of the scaled slopeg* plotted versus
the scaled widtht ™Y for step trains of 45, 22, and 11 steffiom
top to bottom with the same initial slope.

neglecting the first term in Eq8) we get

)
u=u(u)—=7.

at ©

Now the singularity in the free energy is not canceled by a

vanishing mobility and gives rise to &  function in

v/ 9x2. Bonzel and Preus$smoothened the wedge singu-

2
?ﬁarity and solved the resulting equation numerically in the

case of surface diffusion. This leads to qualitatively correct
results but introduces additional parameters. As required by

tips proceeds via the shrinking of islands formed by the twot.he thermodynamic stability of neighboring surface onenta-

0p]ons withu#0,v =o' (u) is strictly increasing and therefore

(Lﬂvertible. So we can transform the singular equat@ninto

well-defined free boundary problémy usingv instead of
u as the independent variable. Note that for a singular orien-

Uy-1)
— O_—y(a'l—v)) if v<—o0q,
u(v)=4 0 if —oysv<oy, (10)
1 U(y—1)
(0_—7(0—0'1)) if v>0.

By inserting Eqg.(10) into Eq. (9) we arrive at the free
boundary problem:

ﬁv:(y_l)'“(u)ayw 1)(U_01)<y 2y 1)m
JL
for xe O’T (11

and
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(92
ﬁ—XzUZO for xe

L L
7z z}’ 12

where €[0,1] is a time-dependent free boundary. Here
{<1 means the existence of facets of size 2L at the
tips of the profile. The solution of Eq12) taking into ac-

count point symmetry is £
Lo s £
v(X, )—Ulm- (13
The boundary conditions for Eq11) are
(4L t]= 401 do'(01)=0 14 0 200 400 600
v T’ = m andv'(0}t)=0. (14 )

Equation(11) cannot be simply solved by a scaling ansatz as

in the case of Eq(6), since this ansatz does not fulfill the FIG. 3. Flattening sequences of periodic sinusoidal grooves with
boundary conditions. Furthermore, we do not know the prethe same initial slope on quadratic lattices lo¥ 180, 360, 540,
cise form of the mobility(u) near the tips. Thus we have to 720, and 1440.

try an approximative or a numerical solution. In the step flow

dominated region of not too small slope, which for G40  tem sizeL, initial heighth,, number of Monte Carlo stefis
simulations covers the whole profile except the tips whergyng number of independent runs are given in Table I. The

step-step annihilation takes place we can safely used. gata have been averaged in the transverse direction and over
for the mobility. At the facet edges, however, the solution isy, independent runs. We fitted the profiles with EL7)

determined by the boundary conditions. As a first apprOX|-taking the actual amplitude @s(4x/7L) and used’ as fit

nm;rgg? we_use_a;xz\t/\)/((e; ie;igxsz?nzi%t)z u&;%ﬁe;jgﬁsortﬁ? in parameter. The values for the absolute deviatibhg of the
bound)z/i,rv cg;(;tign witha (t)zga g’/,(2—2§) but Solves fits and for ¢;; are also displayed in Table I. We cannot
y N 1574 : .~ decide wether the remaining small but systematical devia-
Eq. (11) up to second order i _only n th? singular limit tions from Eq.(17) are due to higher-order terms of the
gzill (s(irl){; llelv e—cap\‘/)vrr?i)c(:lrr\nlit;éé t;md Aon v solution of Eq.(11) or caused by our approximation leading
H1 ! o to Eq. (9). As for the step trains, the singularity at the facet
{=Co—Cyt, (15)  edge and also the facet itself are blurred by step fluctuations.
. _ o . Since { tends to 1 for larget. we do not expect to find a
with a constanty determ_lned by the initial condition. For macroscopic facet fdr — . Equation(16), which describes
the amplitude of the profile we find the time dependence of the amplitude, could not be tested
seriously with the data of Fig. 3 since the time evolution was

h(é t) _ E ﬂ) YD (ep—eqt) Y too short to pin down the three independent parameters of
47 420, (1—co+c,t)r- Eq. (16) precisely. Nevertheless the valuesogfandc, via
L Eq. (15 give an alternative estimate for the time evolution of
xf (1—y?)Ur-1gy (16) ¢ that shows a considerably faster decay than the direct
0 evaluation via Eq(17). This indicates that Eq$15)—(17) do

. . not tell the full story and higher-order terms in the solution
and the profile shape foy=3 is of Eq. (11) are necessary to describe the full time depen-
ax a2 Ix dence of the decay.
A /1_(_ +arcsir( _> To test the wavelength dependence of the decay we in
L L L Fig. 4 plot the scaled amplitude=h/L against the scaled
17 time t=t/L2. The upper five curves of Fig. 4 display the
We note that the solution up to this order is of scaling formscaled amplitude fok =1440, 720, 540, 360, and 180 from
and the time dependence enters only §{#). By adding a  top to bottom. The lower set of curves shows the same se-
term a,(t)(1— 16x%/{?L?)2 we can solve Eq(11) up to

2 (L
h(x,t)= ;h<T’t)

fourth order inx for arbitrary{. If we assumey; <a, we can TABLE I. Parameter for the simulational data of Fig. 3.
solve the emerging differential equation férmumerically,
which gives the time dependence of the decay and fulfills the ho 10% Runs L Ahg
assumptiona;<a, self-consistently. Fo~1 we recover
Egs. (15)—(17). 180  11.85 15 ™ 089-093  0.05
360 23.7 4 200 0.96 0.1
. . . . 540 355 4 100 0.97 0.1
B. Simulational results and discussion 720 475 10 20 0.98 0.2
Figure 3 displays simulational data of initial sinusoidal 1440 945 40 5 0.99 0.4

grooves on square lattices. The corresponding values of sys
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0.070 To describe the profile form Tang modifies the equation
0.065 & of Langn and Villaif by adding a term proportional to
0.060 £\ s2(9%hl9x?), where the functiorsy(t) is determined self-
0055+ \ consistently out of the width of the topmost terrace. This
£ 00501 approach, leading to fits for the profile shape of an accuracy
2 ot comparable to ours, effectively introduces a mobility0)
< #0 as we did, but in contrast to our description Tang ignores
S 0040 % . . .
0035 4 the wedge singularity of the free energy_whlch led us to the
free boundary problem. Thus Tafigconjectures that the
0.030% — equation of Lanen and Villain becomes exact in the limit
00251 N e L—oe. In contrast we expect the solution of the free bound-
002 o 0omL . 0002 0008 00004 0.0005 ary .problem, ie., Eqs(.15)—.(17) plus small <_:orrecti0ns qlue
scaled time to higher orders, to be valid fdr—. The different predic-

tions for the profile shape in the limit—oc are displayed in
FIG. 4. The upper five curves display the time evolution of theFig. 5. One finds that the theory of Lamnt and Villain pre-
scaled amplitude®/L for the data of Fig. 3 plotted versus the dicts more pronounced tips than the solution of the free
scaled timet/L2. The lower set displays the same data plotted ver-pboundary problem for bothy=2 and y=3. Our largest
sus a differently scaled timgL>*°. In each set from top to bottom  simulations of wavelength 1440 support E47) but they
data for the system sizes=1440, 720, 540, 360, and 180 are presumably can also be fitted with the term induced by
displayed. Tang?® Further effort is necessary to establish the wave-
length dependence for periodic grooves.
quence of data with a different time scalitig.>°. The ob-
vious violation of the expected scaling cannot be traced back V. CONCLUSION
to our approximations, since already E§) is invariant un- ) )
der reparametrization. We can think of at least two possible " conclusion, we showed that our large-scate0 simu-
sources. We start with a set of straight steps that roughen GONS Of Step trains agree quantitatively with the predictions
the beginning of the decay. This feature is not present in ouf! continuum theory below the roughenlng_trans]tlon. For
continuum approach and might introduce an additidnde- per|qd|c grooves we used a nonzero mobﬂMO)' in the
i L . cfontmuum theory to capture some of the subtleties of step-
pendence. Secondly the step-step annihilation at the tips g

; . o Step annihilation. Our approximate solution for the profile
the pI’OfI|.e may induce & dependepce of the mobility not shape is in good agreement with the simulations while for
present in the case of a step train. Actually,

> (e , sctually, Tang in hisine gecay and wavelength scaling discrepancies remain.
recent work did find evidence for logarithmic corrections 0 5 can extend our simulation to temperatufes0 to

the exp3ected scaling due to the top step annihilationyy,qgy the influence of nucleation on surface free energy and
process: mobility. One can also incorporate surface diffusion dynam-

FIG. 5. Different predictions for the profile shape in the limit- are plotted with the same initial slopeat 0. From top to bottom
the curves are numerical solution of E@) [after a separation ansatfx,t)=g(t)f(x)] with y=3 (topmos} and y=2, approximate
solutions of the free boundary problemith {=1) for y=3 [Eq. (15)] and y=2, and a sine-function for comparison.
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ics in our kind of algorithm. This would be interesting sinceis(i) €{0,1} denote the value of the spin on an evaporation
the existing simulatio’g?? use systems too small for a or condensation site arig(j) with j €{1,...,6: in some ar-

comparison to continuum theory. bitrary order, the values of the spins on the six next-nearest-
neighbor sites of site. We define the flad; : =is(j)wis(i),
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tuationen. _JO if h(j)=h(i) (empty sitej) AD

i=11 if h(j)=h(i)+3 (occupied sitej) A2
APPENDIX for i being a(empty condensation site. Thus is the occu-
Here we give the logical function that counts the numberpation number of sit¢ if site i is a condensation sitf if i
of atoms on the six in-plane next-nearest-neighbor sites for & an evaporation site. Out of tHe we now create flaga,
given evaporation or condensation site. This function is thavith the value 1 fork occupied next-nearest-neighbor sites,

main extension of the code given already in Ref. 11. Letbeing O otherwise:

n0=_‘(flUf2Uf3Uf4Uf5Uf6), (A3)

ni=(f,Ufufauf,Wfsufe) N={[(f1Nf)U(fsNTU(fsNTe)JUL(FiNT)U(faNTs)U(faNfe)]
UL(FiNf)U(fasnfe)U(fanfs)]}, (A4)

Ny=(FUT,UfaUT,U fsUfg) N[=(FLU0f,0fauf,0fsufe)]N[~{[(FiNf2)U(FsNf)U(FsNfe)]
N[(f NTa)U(fNTs)U(faNTe) 11, (A5)

n4=[—'(flﬂfzﬂf3ﬂf4ﬂf5ﬂf6)]ﬂ[—'(flLlUszUJf3@f4LUJf5LUJfG)]ﬂ{[(flufz)ﬂ(f3Uf4)ﬂ(f5Uf6)]
UL(f Uf)N(fufs)N(faufe) ]} (A6)

ns=(f WU fauf,wfsWfe) N{[(F Uf)N(F3UT)N(FsUTe)IN[(FLUT)N(FaUf5)N(FaUTg)]
N[(fLUf)N(FUfe) N (FUTs)]], (AT)

n6=(flﬂfzﬂfsﬂf4ﬂf5ﬂf6). (A8)

Note that we listed the flags, for the case of being a condensation site, and one has to repladg & —=f; in the case
of i being a evaporation site. With these flags at hand we can construct expressions for the missind for
Nz, .. .g="(NoUN1Uny) andng . 3=-ngUnsUn,), which we need to apply the Metropolis ratd$ and (2).
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