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Relaxation of surface profiles by evaporation dynamics

Johannes Hager
Fachbereich Physik, Universita¨t Essen, D-45117 Essen, Germany

~Received 11 February 1997; revised manuscript received 29 April 1997!

We present simulations of the relaxation towards equilibrium of one-dimensional steps and sinusoidal
grooves imprinted on a surface below its roughening transition. We use a generalization of the hypercube
stacking model of Forrest and Tang that allows for temperature-dependent next-nearest-neighbor interactions.
For the step geometry the results atT50 agree well with thet1/4 prediction of continuum theory for the
spreading of the step. In the case of periodic profiles we modify the mobility for the tips of the profile and find
the approximate solution of the resulting free boundary problem to be in reasonable agreement with theT50
simulations.@S0163-1829~97!01539-7#
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I. INTRODUCTION

The relaxation of corrugated crystal surfaces above t
roughening transition is well understood in terms of co
tinuum theory.1 Experiments2 and Monte Carlo
simulations3,4 on the decay of sinusoidal grooves agree qu
titatively with the predictions of continuum theory and ev
deviations due to the anisotropy of the surface free ene
have been observed.5 For profiles imprinted on a crystal face
below its roughening transition things are less settled. S
eral predictions of continuum theories6–10for time and wave-
length dependence of the decay exist, where differences
mainly due to the different treatment of the singularity in t
surface free energy that emerges for the orientation be
the roughening temperatureTR . Experiments2 where surface
diffusion prevails show trapezoidal profiles with flat tops a
bottoms, a feature qualitatively reproduced by several c
tinuum approaches.8,10 Simulations belowTR are severely
hampered by the slow decay kinetics, a problem somew
less important for evaporation dynamics. Furthermore,
T,TR lattice effects play a role that is not present forT.TR
and that is not taken into account in the continuum theo
To suppress these effects, larger systems need to be s
lated. The scope of this paper is to present Monte Ca
simulations for the case of evaporation dynamics, which
able to test the predictions of continuum theory. In Sec. II
introduce a modified version of the hypercube stack
model11 for the case of a two-dimensional surface. In Sec.
we recall the results of continuum theory for a bunch
straight steps and compare them to simulations atT50. In
Sec. IV we show how one can modify the continuum theo
for periodic grooves to get agreement with ourT50 simu-
lations and discuss another recent attempt at this problem
Sec. V we give a conclusion of our findings. The Append
briefly describes the core part of our modifications of t
hypercube stacking model.

II. MODIFIED HYPERCUBE STACKING MODEL

We use the hypercube stacking model of Forrest
Tang, which is a solid on solid~SOS! model of the~111!
surface of a simple cubic crystal as described in Ref.
Originally Blöte and Hilhorst12 considered an antiferromag
560163-1829/97/56~19!/12499~7!/$10.00
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netic Ising model on a triangular lattice with anisotropic co
plingsK15bE5K, K25K1bE2 , andK35K1bE3 in the
limit K→2`. They noted already that in two dimension
each Ising-spin configuration can be mapped on a S
height configuration. In the isotropic caseK15K25K3 con-
sidered in Ref. 11 each configuration is a ground state o
antiferromagnetic Ising model with one frustrated bond p
triangle and the corresponding SOS model can be consid
as temperature independent (E25E350) or as being at in-
finite temperature~b→0 but K→2`!. All possible surface
configurations have the same energy, since the numbe
broken nearest neighbor bonds is conserved. Dynamics
be imposed by assigning the same ratep0 to all evaporation
and condensation events allowed by the SOS restrict
Spin flips that maintain the condition of having one fru
trated bond per triangle correspond to adding or removing
atom without violating the SOS condition.

We now introduce next-nearest-neighbor interactions
strengthJ. If an atom is removed from the surface the su
face energy changes byDE5 (J/2) Dn5J(n23), where
Dn is the difference in the number of broken next-neare
neighbor bonds andnP$0,...,6% is the number of next-
nearest neighbors in the same layer. Thus the total sur
energy is proportional to the number of broken next-near
neighbor bonds. We impose the usual Metropolis rates

w5 H p0qn23 if n.3
p0 if n<3 ~1!

with q5exp@2 (J/kBT)# for an evaporation event and

w5 H p0q32n if n,3
p0 if n>3 ~2!

for a condensation event. Note that these rates fulfill deta
balance.

As shown in detail in Ref. 11 the spin representation
the model can be programmed very efficiently by using
multisite coding algorithm, where each spin is coded by
single bit of an integer variable and the dynamics is inc
porated via logical operations on the integers. In this type
algorithm we can also incorporate the next-nearest-neigh
interactions between surface atoms as will be shown in so
detail in the Appendix. We use four dynamical sublattices
12 499 © 1997 The American Physical Society
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12 500 56JOHANNES HAGER
in Ref. 13 for the evolution of the height profile. The acti
sublattice is chosen at random and each evaporation or
densation event on that sublattice allowed by the SOS
striction takes place with the Metropolis ratep of the event
determined by Eqs.~1! and ~2! with p05 1/2. Our generali-
zation of the model of Ref. 11 leads to a fast and mem
saving implementation of a solid on solid model, which w
use in following to study the decay of surface corrugatio
consisting of many steps. We should note that, due to
multisite coding, where we use each bit of a random num
to update one spin, the values ofq, and therefore the avail
able temperatures, are restricted toqP$0,k/2m,1% with m in-
teger andk odd integer between 1 and (2m21).11 The best
performance of the algorithm is achieved for smallm since
3m11 random integers are needed for each update of
spins stored in one integer. The casesqP$0,1% ~correspond-
ing to T50 andT5`! need only one random number p
update for the ratep05 1/2 while q5 1/2 ~corresponding to
T51.44J/kB! needs already four, namely one forp05 1/2
and three forq35 1/8. After completion of this work we
became aware of Ref. 23, where the same kind of mo
~interpreted as a fcc crystal! with different rates is studied fo
periodic grooves at a temperatureT50.68TR ~corresponding
to q5 1/2!.

In the following we concentrate on the caseT50. Then
evaporation or condensation events can take place on
~11! steps since adding or removing an atom there does
increase the number of broken bonds. Decay kinetics
slowed down considerably by this choice, but as an adv
tage nucleation of islands or holes on terraces is enti
absent. This simplifies the comparison to continuum theo
since now the mobility of the surface is proportional to t
kink density. The~11! steps are rough even atT50 due to
the random update of growth and evaporation sites and
interaction between steps in this limit is purely entropic. W
study the relaxation of two different initial profiles, a train
equidistant~11! steps separating two plane~111! surfaces
~step geometry! and a periodic sinusoidal corrugation
wavelengthL. For the second we grow an initial profile th
satisfiesh(x,0)<$aint@sin(L/2p) x#% ~where aint denotes th
integer part of the argument! on a flat surface of sizeL3L so
that the steps of the profile do have~11! orientation. For the
original model, which is effectively atT5`, we recover the
well-known results of Mullins1 valid above the roughening
transition.

III. STEP GEOMETRY

A. Continuum theory

To describe the flattening of a profile under evaporat
dynamics with a continuum theory we use the usual assu
tion that the profile evolution minimizes the free energy
the surface in the most direct way:

]

]t
h52m~u!

dF

dh
. ~3!

Here m(u) is the mobility of a surface of slopeu5 ]h/]x
and the free energyF of the surface is given by the integra
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over the free energys(u) per unit projected surface area
Below the roughening transitions(u) is written as14

s~u!5s01s1uuu1
1

g
sguuug1••• , ~4!

with g53 for purely entropic step repulsion.s0 describes
the energy of the~111! surface,s1 is the step free energy
that contributes proportional to the step densityuuu, and the
sg term describes step-step interactions. Now the wedge
gularity of thes1 term atu50 leads to ad-function singu-
larity in Eq. ~3!. In the case of evaporation dynamics we
belowTR , where thermally activated nucleation is negligib
and the whole dynamics is due to step motion, the mobi
of a surface is proportional to the step density7

m~u!5m1uuu. ~5!

Since nucleation is an activated process, it is entirely abs
in our T50 simulations and Eq.~5! is valid even for a driven
surface. Now the vanishing mobility atu50 for the high-
symmetry orientation cancels thed-function singularity in
Eq. ~3! leading to7,8

]

]t
h5m1sg~g21!uuug21

]2

]x2 h. ~6!

For the step geometry8 the scaling ansatzh(x,t)5F(t2ax)
givesa51/(g11) and leads to a Barenblatt solution15,16 for
the slope

u~x,t !5c0t2a~a22y2!1
1/~g21! , ~7!

where y5x/ta, c0 and a are constants determined by th
initial condition and 1 denotes the positive part of th
bracket. Since Eq.~6! is invariant under the rescalin
x̄5x/L,h̄5h/L and t̄5t/L2, the wholeL dependence for a
set of initial profiles of the same slopeu but of different size
L can be absorbed by rescaling. This leads toc0;L0 and
a2;L224a for the coefficients of Eq.~7!.

B. Simulational results

How do these results compare with ourT50 simulations?
Figure 1 displays the evolution of a step train of 11 steps
a 3603360 lattice up tot5104 Monte Carlo steps with
Dt5500. The height is averaged over the columns paralle
the average step direction and over 103 independent runs. To
check Eq.~7! and theL dependence of the parameterc0 and
a we plot the scaled slopeut1/4 against the scaled width
xt21/4 using g53. Figure 2 displays the flattening data fo
three step trains of 45, 22, and 11 steps with the same in
slope. The topmost curves are data for 45 steps o
144031440 lattice up tot5104 with Dt5103, averaged
over 100 independent runs. The middle set gives the s
information for 22 steps on a 7203720 lattice withDt5500
averaged over 103 runs and the lowest set are the differen
ated data of Fig. 1. The curves of Fig. 2 nicely approach
ellipses of the Barenblatt solution~7! and a good fit can be
achieved withc050.028 anda251024, 500.4, 250.3~from
top to bottom! in agreement withc0;L0 and a2;L. The
slight skewness in the initial condition~due to computationa
convenience! vanishes in time, indicating that the Barenbla
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56 12 501RELAXATION OF SURFACE PROFILES BY . . .
solution is attractive also for asymmetric initial profiles. T
singularity of Eq.~7! for u50 is smeared out by the fluctua
tions of the rightmost and leftmost steps. Furthermore,
can resolve the mean positions of the individual steps, a
seen best for the 11-step data. Similar features have b
observed recently17 for two steps with surface diffusion dy
namics.

IV. PERIODIC GROOVES

A. Continuum theory

For periodic surface grooves Eq.~6! leads to a solution
that predicts a nonparabolic sharpening of the profile
proportional to (dx)(g11)/g ~Refs. 7 and 8! that was observed
neither in previous4,17–19 nor in the present simulations. A
pointed out by Rettori and Villain6 the decay of the profile
tips proceeds via the shrinking of islands formed by the t
topmost meandering steps, which annihilate each othe
contact. This process induces a nonzero mean kink dens
the tips of the profile and hence the mobility does not van
for u50. In this case we expect the wedge singularity of E
~5! to be rounded to an analytical function with nonze

FIG. 1. Flattening of a step train of 11 initially equidistant ste
on a 3603360 lattice up to t5104 Monte Carlo steps with
Dt5500.

FIG. 2. Time evolution of the scaled slopeut1/4 plotted versus
the scaled widthxt21/4 for step trains of 45, 22, and 11 steps~from
top to bottom! with the same initial slope.
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m(0)5m0 . Differentiating Eq.~3! with respect tox and per-
forming the functional derivate we get

]

]t
u5

]

]x S m~u!
]

]x
s8~u! D5m8~u!

]v
]u S ]u

]xD 2

1m~u!
]2v
]u2 S ]u

]xD 2

1m~u!
]v
]u

]2u

]x2 , ~8!

wherev5s8(u). Provided thatm(u) contains noL depen-
dence Eq. ~8! is independent under the rescalin
x̄5x/L,h̄5h/L andt̄5t/L2. Thus the data for a set of initia
profiles with the same slope but different wavelengthsL
should collapse on a single scaling curve under the resca
Note that the first two terms in Eq.~8! are positive while the
third one is negative. In the following we restrict the discu
sion to the intervalxP@0,L/4#, whereu>0, which is suffi-
cient to describe the whole profile by symmetry and perio
icity. After initial transients have died out we expect] tu,0
for all u.0, so the third term is dominant in Eq.~8! for
u.0. For u→0 andg.2 the first term in Eq.~8! is much
smaller than the second sincem8(u)→0. In the step flow
regime, where Eq.~5! is valid and the third term dominates
the first term is of the same magnitude as the second.
neglecting the first term in Eq.~8! we get

]

]t
u5m~u!

]2v
]x2 . ~9!

Now the singularity in the free energy is not canceled by
vanishing mobility and gives rise to ad8 function in
]2v/]x2. Bonzel and Preuss10 smoothened the wedge singu
larity and solved the resulting equation numerically in t
case of surface diffusion. This leads to qualitatively corr
results but introduces additional parameters. As required
the thermodynamic stability of neighboring surface orien
tions withuÞ0, v5s8(u) is strictly increasing and therefor
invertible. So we can transform the singular equation~9! into
a well-defined free boundary problem8 by usingv instead of
u as the independent variable. Note that for a singular ori
tation with unstable neighbor orientations20 such a transfor-
mation cannot be applied. Invertingv5s8(u) we obtain9

u~v !55
2S 1

sg
~s12v ! D 1/~g21!

if v,2s1 ,

0 if 2s1<v<s1 ,

S 1

sg
~v2s1! D 1/~g21!

if v.s1 .

~10!

By inserting Eq. ~10! into Eq. ~9! we arrive at the free
boundary problem:

]

]t
v5~g21!m~u!sg

1/~g21! ~v2s1!~g22!/~g21!
]2

]x2 v

for xPF0,
z L

4
G ~11!

and
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12 502 56JOHANNES HAGER
]2

]x2 v50 for xPFzL

4
,
L

4G , ~12!

where zP@0,1# is a time-dependent free boundary. He
z,1 means the existence of facets of size 2(12z)L at the
tips of the profile. The solution of Eq.~12! taking into ac-
count point symmetry is

v~x,t !5s1

L24x

L2z~ t !L
. ~13!

The boundary conditions for Eq.~11! are

v8S zL

4
,t D52

4s1

L2z~ t !L
and v8~0,t !50. ~14!

Equation~11! cannot be simply solved by a scaling ansatz
in the case of Eq.~6!, since this ansatz does not fulfill th
boundary conditions. Furthermore, we do not know the p
cise form of the mobilitym(u) near the tips. Thus we have t
try an approximative or a numerical solution. In the step fl
dominated region of not too small slope, which for ourT50
simulations covers the whole profile except the tips wh
step-step annihilation takes place we can safely use Eq~5!
for the mobility. At the facet edges, however, the solution
determined by the boundary conditions. As a first appro
mation we use a power series ansatz up to second orderx,
namely, v2s15a0(t)(12 16x2/z2L2), which fulfills the
boundary condition witha0(t)5s1z/(222z) but solves
Eq. ~11! up to second order inx only in the singular limit
z→1. For z'1 we approximately find (]/]t) z(t)
52m1(g21)s1 /L252c1 , which leads to

z5c02c1t, ~15!

with a constantc0 determined by the initial condition. Fo
the amplitude of the profile we find

hS zL

4
,t D5

L

4 S s1

2sg
D 1/~g21! ~c02c1t !g/~g21!

~12c01c1t !1/~g21!

3E
0

1

~12y2!1/~g21!dy ~16!

and the profile shape forg53 is

h~x,t !5
2

p
hS zL

4
,t D F 4x

zL
A12S 4x

zL D 2

1arcsinS 4x

zL D G .
~17!

We note that the solution up to this order is of scaling fo
and the time dependence enters only viaz(t). By adding a
term a1(t)(12 16x2/z2L2)2 we can solve Eq.~11! up to
fourth order inx for arbitraryz. If we assumea1!a0 we can
solve the emerging differential equation forz numerically,
which gives the time dependence of the decay and fulfills
assumptiona1!a0 self-consistently. Forz'1 we recover
Eqs.~15!–~17!.

B. Simulational results and discussion

Figure 3 displays simulational data of initial sinusoid
grooves on square lattices. The corresponding values of
s

-

e

s
i-

e

l
s-

tem sizeL, initial heighth0 , number of Monte Carlo stepst,
and number of independent runs are given in Table I. The
data have been averaged in the transverse direction and ov
the independent runs. We fitted the profiles with Eq.~17!
taking the actual amplitude ash(4x/zL) and usedz as fit
parameter. The values for the absolute deviationsDhfit of the
fits and for zfit are also displayed in Table I. We cannot
decide wether the remaining small but systematical devia-
tions from Eq. ~17! are due to higher-order terms of the
solution of Eq.~11! or caused by our approximation leading
to Eq. ~9!. As for the step trains, the singularity at the facet
edge and also the facet itself are blurred by step fluctuations
Sincez tends to 1 for largerL we do not expect to find a
macroscopic facet forL→`. Equation~16!, which describes
the time dependence of the amplitude, could not be tested
seriously with the data of Fig. 3 since the time evolution was
too short to pin down the three independent parameters o
Eq. ~16! precisely. Nevertheless the values ofc0 andc1 via
Eq. ~15! give an alternative estimate for the time evolution of
z that shows a considerably faster decay than the direc
evaluation via Eq.~17!. This indicates that Eqs.~15!–~17! do
not tell the full story and higher-order terms in the solution
of Eq. ~11! are necessary to describe the full time depen-
dence of the decay.

To test the wavelength dependence of the decay we in
Fig. 4 plot the scaled amplitudeh̄5h/L against the scaled
time t̄5t/L2. The upper five curves of Fig. 4 display the
scaled amplitude forL51440, 720, 540, 360, and 180 from
top to bottom. The lower set of curves shows the same se

FIG. 3. Flattening sequences of periodic sinusoidal grooves with
the same initial slope on quadratic lattices ofL5180, 360, 540,
720, and 1440.

TABLE I. Parameter for the simulational data of Fig. 3.

L h0 104t Runs zfit Dhfit

180 11.85 1.5 103 0.89–0.93 0.05
360 23.7 4 200 0.96 0.1
540 35.5 4 100 0.97 0.1
720 47.5 10 20 0.98 0.2

1440 94.5 40 5 0.99 0.4
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56 12 503RELAXATION OF SURFACE PROFILES BY . . .
quence of data with a different time scalingt/L2.15. The ob-
vious violation of the expected scaling cannot be traced b
to our approximations, since already Eq.~8! is invariant un-
der reparametrization. We can think of at least two poss
sources. We start with a set of straight steps that roughe
the beginning of the decay. This feature is not present in
continuum approach and might introduce an additionalL de-
pendence. Secondly the step-step annihilation at the tip
the profile may induce aL dependence of the mobility no
present in the case of a step train. Actually, Tang in
recent work did find evidence for logarithmic corrections
the expected scaling due to the top step annihilat
process.23

FIG. 4. The upper five curves display the time evolution of t
scaled amplitudesh/L for the data of Fig. 3 plotted versus th
scaled timet/L2. The lower set displays the same data plotted v
sus a differently scaled timet/L2.15. In each set from top to bottom
data for the system sizesL51440, 720, 540, 360, and 180 a
displayed.
k

le
at

ur

of

s

n

To describe the profile form Tang modifies the equat
of Lançon and Villain7 by adding a term proportional to
s0

2 (]2h/]x2), where the functions0(t) is determined self-
consistently out of the width of the topmost terrace. Th
approach, leading to fits for the profile shape of an accur
comparable to ours, effectively introduces a mobilitym(0)
Þ0 as we did, but in contrast to our description Tang igno
the wedge singularity of the free energy which led us to
free boundary problem. Thus Tang23 conjectures that the
equation of Lanc¸on and Villain becomes exact in the lim
L→`. In contrast we expect the solution of the free boun
ary problem, i.e., Eqs.~15!–~17! plus small corrections due
to higher orders, to be valid forL→`. The different predic-
tions for the profile shape in the limitL→` are displayed in
Fig. 5. One finds that the theory of Lanc¸on and Villain pre-
dicts more pronounced tips than the solution of the f
boundary problem for bothg52 and g53. Our largest
simulations of wavelength 1440 support Eq.~17! but they
presumably can also be fitted with the term induced
Tang.23 Further effort is necessary to establish the wa
length dependence for periodic grooves.

V. CONCLUSION

In conclusion, we showed that our large-scaleT50 simu-
lations of step trains agree quantitatively with the predictio
of continuum theory below the roughening transition. F
periodic grooves we used a nonzero mobilitym(0) in the
continuum theory to capture some of the subtleties of st
step annihilation. Our approximate solution for the profi
shape is in good agreement with the simulations while
time decay and wavelength scaling discrepancies remain

One can extend our simulation to temperaturesT.0 to
study the influence of nucleation on surface free energy
mobility. One can also incorporate surface diffusion dyna

-

FIG. 5. Different predictions for the profile shape in the limitL→` are plotted with the same initial slope atx50. From top to bottom
the curves are numerical solution of Eq.~4! @after a separation ansatzh(x,t)5g(t) f (x)# with g53 ~topmost! and g52, approximate
solutions of the free boundary problem~with z51! for g53 @Eq. ~15!# andg52, and a sine-function for comparison.
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ics in our kind of algorithm. This would be interesting sin
the existing simulations3,21,22 use systems too small for
comparison to continuum theory.
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APPENDIX

Here we give the logical function that counts the numb
of atoms on the six in-plane next-nearest-neighbor sites f
given evaporation or condensation site. This function is
main extension of the code given already in Ref. 11.
f
-
k-

r
a
e
t

is( i )P$0,1% denote the value of the spin on an evaporat
or condensation site andis( j ) with j P$1,...,6% in some ar-
bitrary order, the values of the spins on the six next-near
neighbor sites of sitei . We define the flagf j :5 is( j )d is( i ),
which has the values

f j5 H 0 if h~ j !5h~ i ! ~occupied sitej !
1 if h~ j !5h~ i !23 ~empty site j ! ~A1!

for i being an~occupied! evaporation site, and

f j5 H0 if h~ j !5h~ i ! ~empty site j !
1 if h~ j !5h~ i !13 ~occupied sitej ! ~A2!

for i being a~empty! condensation site. Thusf j is the occu-
pation number of sitej if site i is a condensation sitef j if i
is an evaporation site. Out of thef j we now create flagsnk
with the value 1 fork occupied next-nearest-neighbor site
being 0 otherwise:
n05¬~ f 1ø f 2ø f 3ø f 4ø f 5ø f 6!, ~A3!

n15~ f 1d f 2d f 3d f 4d f 5d f 6!ù¬$@~ f 1ù f 2!ø~ f 3ù f 4!ø~ f 5ù f 6!#ø@~ f 1ù f 2!ø~ f 3ù f 5!ø~ f 4ù f 6!#

ø@~ f 1ù f 2!ø~ f 3ù f 6!ø~ f 4ù f 5!#%, ~A4!

n25~ f 1ø f 2ø f 3ø f 4ø f 5ø f 6!ù@¬~ f 1d f 2d f 3d f 4d f 5d f 6!#ù@¬$@~ f 1ù f 2!ø~ f 3ù f 4!ø~ f 5ù f 6!#

ù@~ f 1ù f 3!ø~ f 2ù f 5!ø~ f 4ù f 6!#%#, ~A5!

n45@¬~ f 1ù f 2ù f 3ù f 4ù f 5ù f 6!#ù@¬~ f 1d f 2d f 3d f 4d f 5d f 6!#ù$@~ f 1ø f 2!ù~ f 3ø f 4!ù~ f 5ø f 6!#

ø@~ f 1ø f 3!ù~ f 2ø f 5!ù~ f 4ø f 6!#%, ~A6!

n55~ f 1d f 2d f 3d f 4d f 5d f 6!ù$@~ f 1ø f 2!ù~ f 3ø f 4!ù~ f 5ø f 6!#ù@~ f 1ø f 2!ù~ f 3ø f 5!ù~ f 4ø f 6!#

ù@~ f 1ø f 2!ù~ f 3ø f 6!ù~ f 4ø f 5!#%, ~A7!

n65~ f 1ù f 2ù f 3ù f 4ù f 5ù f 6!. ~A8!

Note that we listed the flagsnk for the case ofi being a condensation site, and one has to replace allf j by ¬5 f j in the case
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7F. Lançon and J. Villain, Phys. Rev. Lett.64, 293 ~1990!; in

Kinetics of Ordering and Growth at Surfaces, Vol. 239 ofNATO
Advanced Study Institute Series B: Physics, edited by M. G.
Lagally ~Plenum, New York, 1990!, p. 369.

8H. Spohn, J. Phys. I3, 69 ~1993!.
9J. Hager and H. Spohn, Surf. Sci.324, 365 ~1995!.

10H. P. Bonzel and E. Preuss, Surf. Sci.336, 209 ~1995! and refer-
ences therein.

11B.-M. Forrest and L. H. Tang, J. Stat. Phys.60, 181 ~1990!.
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