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Nonperturbative evaluation of STM tunneling probabilities from ab initio calculations

H. Ness and A. J. Fisher
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

~Received 18 March 1997!

We present a method for calculating the rate of electron transfer across the tunnel junction in a scanning
tunneling microscope without any perturbation expansion in the tip-sample coupling. The method may be
readily combined with separateab initio electronic-structure calculations for the tip and the sample. This
involves replacing the asymptotic scattering states by localized initial and final states on either sides of the
tunnel junction. We present examples of applications to C2H4 molecules adsorbed on the Si~001! surface.
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I. INTRODUCTION

The scanning tunneling microscope~STM! ~Refs. 1 and
2! is now established as an important tool in the study
surface phenomena. Clean surfaces,1 and surface processe
such as oxidation,3 adsorbed molecules,4–6 and their
reactions7 have all been studied, to give only a few e
amples. Even very large systems such as DNA~Refs. 8 and
9! and thick alkane films10,11have been successfully image

Understanding the information conveyed by STM imag
has itself become a major area of activity in theoreti
physics.12 A particularly important step forward was take
when Tersoff and Hamann13,14 considered the resolution o
an ‘‘ideal’’ STM. Working to first order in the tip-sample
interaction, using the form of the tunneling matrix eleme
due to Bardeen,15 and assuming ans-like form for the tip
wave function, they found that the tunnel current at sm
bias is simply proportional to the substrate density of sta
at the center of the tip. This result allows a relative
straightforward interpretation of STM images in a variety
situations. It is particularly powerful when combined withab
initio molecular-dynamics methods,16 which allow the
atomic structure and charge densities of complicated sur
reconstructions,17,18 or of adsorbed systems,19 to be deter-
mined simultaneously.

First-order perturbation theory in tip-sample coupling c
be extended beyond Tersoff-Hamann theory20 to allow for
the effects of higher angular momentum admixtures in the
orbital,21–24 to treat the effects of local variations in th
potential,25 and to incorporate the wave functions of realis
tip models in order to discuss issues such as the tip de
dence of images26,27and the occurrence of negative differe
tial resistance in the STM.28

There remain problems, however, in which perturbat
theory is not expected to provide an adequate picture of
tunneling process because the tunneling is, in some se
strong and cannot be treated as a perturbation. One
example occurs in the transition between the tunneling
point-contact regimes,29,30where the transmission coefficien
for electrons between the tip and the sample become
order unity. This case has recently been extensively stu
in the context of pull-off of a STM tip in contact with a
surface,31–33 and in the formation of thin junctions whe
notched wires are broken apart.34
560163-1829/97/56~19!/12469~13!/$10.00
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Another case involves tunneling through an adsorb
molecule; here the difficulty is that although the tunneli
matrix element between the tip and molecule may not its
be large, the molecule-substrate interaction and the inte
tion between opposite ends of the molecule introduce a
tional small energy scales which should be treated on
same footing as the interaction with the tip. An extreme e
ample occurs in studies of tunneling through thick and no
nally insulating organic films,10,11 where one expects tha
tunneling through the film is at least as unlikely as tunnel
across the vacuum gap between the tip and the film. S
problems require a unified treatment of electron transp
through the coupled system of tip, substrate, and any in
vening molecule.

There have been a number of previous nonperturba
calculations of tunneling in three-dimensional system
These include treatments of resonant tunneling throug
simple barrier35 and between two planar surfaces, one
which has a protruberance which models a STM tip.36 The
resistance of a single atom adsorbed between two jell
surfaces was computed nonperturbatively by Lang,30 and
successfully compared with the experimental results
Gimzewski and Mo¨ller.29 A complete theory to calculate th
tunneling current between two electrodes has been develo
by Noguera.37–39 It is based on the matching of Green
functions on two surfaces defining three domains: the
and right electrodes, and the barrier~where no occupied
states are available!. To our knowledge, there have been n
direct applications of the formalism for realistic thre
dimensional tip-sample systems. This is due to the difficu
of exactly calculating the Green’s functions in real space
the two surfaces in order to perform the matching. Anoth
model, with a particular tip geometry, was later proposed
Sacks and Noguera.40 More recently41 the tunneling current
between aluminum and palladium surfaces, represented
ing muffin-tin orbitals and a tip atom adsorbed on a jelliu
slab, has been computed by non perturbative solution of
equations of scattering theory.

In a different class of approaches, the electronic struct
of the tip and substrate~including adsorbates if present! is
mapped to a system described by some Hamiltonian tha
relatively simple~at least, simple in comparison with th
Hamiltonian of a first-principles electronic-structure calcu
tion!. This can either be a tight-binding model,31,42where the
12 469 © 1997 The American Physical Society



m
ti
h

a
lu

ho
ur
en

tiv
fi-
al
e

r’

s
n
o
re
e-
e
g
io
o

m
in
e

el
in
th

e
o
e

ri
ite

e
ct
u
r-
th
rc
n
,

r
i-
go
ar
e

o-

f
s

es

of

an
lies
-

n

s
iffi-
ip
ite
nt.
e

of
he
-
by

ator
e of
tes

.
ling
gh

ibed.
r-

12 470 56H. NESS AND A. J. FISHER
tunneling current can be calculated exactly even for a co
plex three-dimensional system, or a simpler model poten
problem.43 Results have also been obtained using the tig
binding approach for adsorbed molecules;44 using the model
potential approach, the conductance has been calculated
function of position of an aluminum atom between two a
minum surfaces.45

The present paper is motivated by the need for a met
which allows a nonperturbative calculation of the tunnel c
rent, but which can be used directly with the self-consist
potential produced by total-energy calculations orab initio
molecular dynamics. Such a method allows nonperturba
calculations even for complex systems for which it is dif
cult to fit a simple approximate form to the true potenti
and enables one to calculate the geometry and STM imag
a system together from first principles.

We begin the paper with a brief discussion of Landaue
conductance formula~Sec. II A!; in particular, we emphasize
that it expresses the current carried by the system in term
the S-matrix element~a particular type of Green’s-functio
matrix element! between asymptotic propagating states
either side of the tunnel barrier. We then express the cur
in terms of a different set of Green’s-function matrix el
ments, those betweenlocalizedstates on either side of th
barrier~Sec. II B!. These matrix elements have the advanta
that they can be computed within a total-energy calculat
with periodic boundary conditions. We discuss the effect
the presence of many electrons in the system~Sec. II B 2!,
and show how it may be accounted for through a sche
which treats electron and hole tunneling on an equal foot
Next, we move on to consider how the Green’s-function
ements in question can be evaluated~Sec. II D!. We also
provide a scheme to calculate these Green’s-function
ments for real systems without the necessity of perform
an expensive summation over the entire spectrum of
coupled tip-sample system~see the Appendix!. In Sec. III we
discuss the connection of the present formalism to other
isting theories. We then turn to some actual applications
the method~Sec. IV!. These concern more especially th
STM contrast of adsorbed ethene (C2H4) molecules on the
Si~001! surface, and the effects of the tip-induced elect
field on this contrast. An application for the bare graph
surface has been already published elsewhere46

II. TUNNEL CURRENT AND GREEN’S FUNCTIONS

A. Transmission coefficient

We begin our discussion of tunneling with the Landau
formula47 for the current in a system containing nonintera
ing electrons and dominated by elastic scattering. This eq
tion formalizes the intuitively appealing notion that the cu
rent carried through a system should be proportional to
product of the rate at which carriers arrive from some sou
with the probability that those carriers are successfully tra
mitted through the sample. Originally derived heuristically47

this result has been related~with the aid of some delicate
mathematics! to the Kubo-Greenwood formula of first-orde
perturbation theory.48 It has been generalized to multiterm
nal systems,49 to systems in which the electrons under
arbitrarily strong interactions with each other in a finite p
of the system,50 or to systems in which the potential in th
-
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asymptotic region is nonseparable.51,52 In this paper, we con-
sider only a simple two-terminal STM device, and the tw
terminal form of the result is sufficient:

I 5
e

h E
EF

EF1eV

dE Tr@ r̂0 left~E! t̂†r̂0 right~E! t̂#, ~1!

whereI is the dc current,EF the equilibrium Fermi energy o
the system, andV the applied voltage. The density matrice
r0,left(E) andr0,right(E) specify the occupancies of the stat
of the incoming and outgoing leads, while thet matrix is
related to theS matrix of the system in the following
manner:53

Ŝ512
2p i

\ (
i j

u j &t i j d~Ei2Ej !^ i u. ~2!

However,Ŝ is also related to the time-evolution operator
the system in the interaction representation:

Ŝ5ÛI~2`,`!, ~3!

where

i\] tÛ I~ t,t0!5V̂I~ t !ÛI~ t,t0!,
~4!

V̂I~ t !5exp~ iĤ 0t/\!V̂ exp~2 iĤ 0t/\!.

HereĤ0 is taken to be the Hamiltonian of the leads, andV̂ is
the so-called perturbation potential in the total Hamiltoni
that couples the incoming and outgoing leads. This imp
that thet matrix has the following interpretation: an incom
ing stateuf i

left(1)(E)& at energyE on the left of the sam-
ple ~for example! is scattered into the combinatio
( j t i j (E)uf j

right(1)(E)& on the right.
It is the definition ofŜ and t̂ in terms of asymptotic state

that makes the exact calculation of the transmission so d
cult to perform: it involves matching the potentials of the t
and of the sample smoothly onto the potential of an infin
wire or medium to carry the incoming and outgoing curre
This is very difficult for a realistic model of a tip and surfac
containing, for example, adsorbed molecules or defects.

B. Tunneling between localized states

The aim of this paper is to suggest that for the purpose
calculating the tunnel current through a STM junction t
matrix elements of theS matrix between incoming and out
going propagating states may be conveniently replaced
the matrix elements of the quantum-mechanical propag
between two localized electronic states, one on each sid
the tunnel junction. This means that the coupling of the sta
near the junction into the asymptotic scattering states~and
the associated spreading resistance! is not described exactly
On the other hand, the essential physics of the tunne
process, including multiple scattering and tunneling throu
resonant surface or molecular states, is accurately descr
We will come back to the interpretation of the present fo
mulation and its connection to theS-matrix formalism and
the Landauer formula in Secs. III B and III C.
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56 12 471NONPERTURBATIVE EVALUATION OF STM TUNNELING . . .
1. A single electron

Motivated by this observation, we consider the evoluti
of an electron which att50 is localized in an initial stateu i &
on one side of the junction. Let us calculate the probabilit
may be found in a second localized stateu f & on the other side
of the junction at a later timet. This is given by

P~ t !5u^ f uexp~2 iĤ t/\!u i &u2

5U(
n

^ f un&^nu i &exp~2 i ent/\!U2

, ~5!

where theun& ’s are eigenstates of the HamiltonianĤ of the
entire system, with eigenvaluesen . In general this quantity
will be a highly oscillatory function oft; we can, however,
obtain a simpler measure of the rate of electron tran
across the junction by averaging over a timet. It is conve-
nient to do this by introducing an exponentially decayi
weighting function:

P̄~t![
1

2

*0
`P~ t !e2t/tdt

*0
`e2t/tdt

. ~6!

~The factor of1
2 in the above definition has been introduc

to make it consistent with others that will be introduc
re

n-
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shortly for a many-particle system, where hole tunneli
must also be taken into account.! We can simplify this ex-
pression by noting that the numerator can be written as

\2E
2`

`

uGf i~ t !u2e2t/tdt, ~7!

whereGf i(t) is the causal Green’s function connecting sta
u i & and u f &:

Gf i~ t ![2
i

\
u~ t !^ f uexp~2 iĤt/\!u i &, ~8!

whereu is the Heaviside step function. This Green’s functi
can itself be written, from its Fourier transform, as

Gf i~ t !5E
2`

` dE

2p\
G̃f i~E!exp~2 iEt/\!, ~9!

with

G̃f i~E![ lim
d→01

(
n

^ f un&^nu i &
E2en1 id

. ~10!

This result enables us to make a spectral decompositio
the average tunneling probabilityP̄(t) in the form
P̄~t!5
h

\ E
2`

`

dtE
2`

` dE

2p E
2`

` dE8

2p (
n

^ f un&^nu i &
E2en1 ih (

m

^ i um&^mu f &
E82em1 ih

exp@2 i ~E2E8!t/\#

5hE
2`

` dE

2p U(
n

^ f un&^nu i &
E2en1 ih U2

5hE
2`

` dE

2p
uG̃f i~E1 ih!u2, ~11!
n’s

rs
cle

c-
-

ishes.
ob-
whereh5\/2t, and we have recognized the spectral rep
sentation of thed function in performing the integrals overt
andE8.

It is worth noticing that the introduction of the expone
tial decaying weighting function in Eq.~6! is reminiscent of
what Lippmann and Schwinger, in their original paper ab
scattering processes, called the adiabatic decrease of the
turbation when the timet goes to infinity. This was achieve
by introducing the factor exp(2hutu/\) into the expression o
the scattering statesuf (1)(E)& @see, for example, Eq.~1.51!
in Ref. 54#. On the other hand, this can be understood a
convenient way to introduce the finite imaginary parth in
the energy of the Green’s function, in order to remove th
singularities and make their energy integrals tractable.

2. Many electrons

The evaluation ofP̄(t) using Eq.~11! is the central fea-
ture of the present approach. In one important respect, h
ever, the real systems differ from the model we used to
rive the result: states up to the Fermi energyEF are already
filled with electrons, and the Pauli principle therefore forbi
the introduction of an electron into these states. Instead,
duction through energy levels withe,EF takes place via
holes.
-

t
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a
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We may formalize this by replacing the causal Gree
function in Eq.~8! by a time-ordered Green’s function,

Gf i~ t !52
i

\
^0, NuT@ ĉf~ t !ĉi

†~0!#u0, N&

[2
i

\
u~ t !^0, Nuĉf~ t !ĉi

†~0!u0, N&

1
i

\
u~2t !^0, Nuĉi

†~0!ĉf~ t !u0, N&, ~12!

whereu0, N& is theN-particle ground state and the operato
ĉi

† and ĉf , respectively, create an electron in single-parti
stateu i & and annihilate an electron in single-particle stateu f &.
The first term in Eq.~12! describes propagation of an ele
tron from stateu i & to stateu f &, while the second term de
scribes the propagation of a hole fromu f & to u i &. For the
one-electron case discussed above, the second term van

A suitable measure of the time-averaged tunneling pr
ability is then

P̄~t!5\2
*2`

` uGf i~ t !u2e2utu/tdt

*2`
` e2utu/tdt

. ~13!
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12 472 56H. NESS AND A. J. FISHER
The Fourier transform of the time-ordered Green’s funct
can be written as

G̃f i~E!5 lim
d→01

F(
n

^0, Nuĉf un,N11&^n,N11uĉi
†u0, N&

E2~En,N112E0,N!1 id

1(
n

^0, Nuĉi
†un,N21&^n,N21uĉf u0, N&

E1~En,N212E0,N!2 id G
~14!

whereun,N11& and un,N21& are the many-particle eigen
states of theN21 andN11 particle systems, andEn,N11
andEn,N21 are the corresponding many-particle eigenvalu
Let us assume that the many-particle states are well app
mated by a set of Slater determinants of single-part
eigenstatesun& with eigenvaluesen . Then we can write

G̃f i~E!5(
n

~12 f n!
^ f un&^nu i &
E2en1 id

1(
n

f n

^ i un&^nu f &
E2en2 id

,

~15!

wheref n is the occupation number ofun& and will be a Fermi
function if the system is in thermal equilibrium. Similar m
nipulations to those used above then give the spectral dec
position of the time-averaged tunneling probability as

P̄~t!5hE
2`

` dE

2p U(
n

~12 f n!
^ f un&^nu i &
E2en1 ih

1(
n

f n

^ i un&^nu f &
E2en2 ihU

2

. ~16!

This equation corresponds to Eq.~11! in the single-particle
system.

Equations~11! and~16! show that, for small values ofh,
the contribution toP̄ from energy E is overwhelmingly
dominated by eigenstatesun& with en'E. In other words, the
contribution to the tunneling probability at energiesE,EF is
essentially determined only by filled states, and at ener
E.EF it is determined only by the empty states. The diffe
ence between Eqs.~11! and ~16! is confined to a narrow
region of width h around the Fermi energy. We therefo
make a very small error by using the causal Green’s func
and Eq.~11! to calculate the tunneling probability, instead
the time-ordered Green’s function and Eq.~16!.

3. Reservoirs

Up to this point we considered the propagation of t
electron only once it has been introduced into stateu i &, by
some as-yet-unspecified procedure. This implicitly assum
that we are always able to supply electrons to stateu i & and
remove them from stateu f & at whatever rate is required t
keep up with their propagation through the STM tunneli
junction. This is, of course, an idealization; in reality, t
supply and removal of the electrons is determined by c
nections to reservoirs in which the electrons can reach e
librium by inelastic processes. If these reservoirs have
same electrochemical potential, so that all the states wi
given energy are equally occupied,no net charge flows
through the system. This is simply a consequence of
unitarity of the operator exp(2iĤt/\); propagation fromu f &
n
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to u i &, once the electron has been introduced intou f &, is just
as likely as propagation fromu i & to u f & once the electron ha
been introduced intou i &.

The final step in our derivation is therefore to connect
initial and final states to reservoirs with electrochemical p
tentialsm i and m f , respectively. This has the consequen
that electrons can be supplied to stateu i & only at energies up
to m i , and removed from stateu f & only at energies above
m f . Only in the energy region betweenm i andm f is there a
contribution to the current. The transmission probabil
from u i & to u f & becomes

P̄~t!5hE
m f

m i dE

2p
uG̃f i~E1 ih!u2. ~17!

We identify the average rate of electron transfer over timt
with the quantity

P̄~t!

t
52

h2

h E
m f

m i
dEuG̃f i~E1 ih!u2. ~18!

Recognizing that each electron carries chargee from oneu i &
to u f &, so the current isJ̄[eP̄(t)/t, and that the electro-
chemical potential is related to the voltage by a factor ofe,
we find that the differential conductance of the system is

s5
] J̄

]m i
5e

] P̄/t

]m i
5

2e2

h
h2uG̃f i~E1 ih!u2. ~19!

This has the familiar form of the quantum of conductan
2e2/h, multiplied by a dimensionless factor~the so-called
dimensionless or normalized conductancesN!.

C. Choice of initial and final states

One important issue to be addressed in a method suc
this is the choice of initial and final states between which
calculate the Green’s functions. While the use of localiz
statesu f & and u i & is important in that it enables us to obta
an expression for the tunnel current that can be evaluate
a system with periodic boundary conditions, we need to
sure that it does not introduce errors. The principal difficu
we found in applying this method occurs when there
several degenerate~or nearly degenerate! states which con-
tribute to the tunneling at a particular energy. In these c
cumstances, the overlaps of the eigenstatesun& with u f & and
u i & play an important role in ensuring that those states wh
most efficiently bridge the gap between tip and substr
contribute most to the formation of the STM image; on t
other hand, one must ensure that the overlaps do not go
far in singling out some eigenstates of the degenerate
space at the expense of the others.

We propose some procedures to circumvent such und
able effects. Although the terms ‘‘initial’’ and ‘‘final’’ states
are rather misleading since, as already pointed out in S
II B 3, the transport at any given energy is symmetric, i.
uG̃i f u25uG̃f i u2 and the tunneling direction is only introduce
by the applied bias. Therefore, we consider in the followi
the case of electron transport form the sample to the tip,
we concentrate for simplicity our discussion only on the
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56 12 473NONPERTURBATIVE EVALUATION OF STM TUNNELING . . .
fects of the overlap elements^nu i &. However the solutions
we propose hereafter are also applicable for the overlap
ments^ f un&.

The first possible solution consists in calculating an av
aged differential conductances̄ from Eq. ~19! over a set of
random localizedu i & states in the sample. With such
method, it is expected that no particular stateun& among the
states relevant for the tunneling energy will play a drastica
more important role over another one.

The second possibility is to go beyond the considerat
of localized state. This can be done by considering for
initial state a state coming from anotherab initio calculation
in which, for example, the sample is represented by a slab
this case, the arbitrary choice of the localization of theu i &
state on the values of the overlap^nu i & does not occur any
more. The values of such overlap matrix elements is stron
dependent on the remaining orthogonality between theu i &
and un& states. An automatic selection of the importantun&
states relevant for the tunneling energy is then ensured
practice, theu i & states are chosen to be the eigenstates of
corresponding isolated surface slab. Theun& are then the
eigenstates of such a surface ‘‘perturbed’’ by the presenc
adsorbates and/or by the presence of the tip. We comm
further on the significance of such a choice for theu i & and
un& states in the next sections; the effects of this choice
the tunnel current are shown in Sec. IV.

D. Calculation of the Green’s function

Another important point in the theory presented in S
II B is that it involves the Green’s functionG̃(E) for the
coupled tip-sample system. A direct calculation ofG̃(E) via
its representation in Eq.~10! would in principle involve the
complete spectrum of the single-particle states of t
coupled system.

Even in principle, a plane-wave basis set is not suffici
to describe the real-space representationG̃(r ,r 8,E) of the
Green’s function. Because of the finite size of this basis
the Green’s function cannot be described for energies ab
the cutoff energy corresponding to the plane-wave basis,
does not have the correct analytic properties. To reduce
error, a procedure has been proposed for correcting
Green’s function~see, for example, Refs. 55 and 56!. How-
ever, although, in principle, the plane-wave representatio
not complete for the fullG̃(r ,r 8,E), the calculation of the
matrix elementŝ f uG̃(E)u i & will be accurate, provided tha
the statesu i & and u f & are themselves plane-wave converge

In practice, we will show that only relatively few eigen
functions make significant contributions to the tunneling c
rent at a particular energy. In particular, we now concentr
our discussion on the convergence of the conductance
respect to~i! the number of statesun& included in the sum-
mation, and~ii ! the value of the imaginary parth of the
energy. With respect to point~i!, it is also possible to avoid
the determination of the eigenvalue spectrum altogethe
the calculation of the tunneling current by using an iterat
method. A technique for doing this based on the recurs
method~or Lanczos algorithm! is presented in the Appendix
le-
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1. Direct calculation

In this section, we show that it is not necessary to ha
the complete eigenvalue spectrum representation for
Green’s function Eq.~10! when one wants to calculate th
tunneling current or the differential conductance as given
Eq. ~19!. The influence of the imaginary parth of the energy
on the conductance is also considered.

For this, we consider a simple one-dimensional mo
case. The eigenstatesun& and eigenvaluesen are chosen to be
those of a harmonic oscillator. The Green’s function is giv
by Eq. ~10!, where the index summationn goes in principle
to infinity. We take localized Gaussian functions for the in
tial and final states.

First of all, let us rewrite the expression of the different
conductance in a more convenient form. Starting from
definition ofs(E), we can write the normalized conductan

sN~E!5s~E!/~2e2/\!5h2uG̃f i~E1 ih!u2

5(
n

uOnu2

11Dn
2 12 (

n,m.n
OnOm*

11DnDm

~11Dn
2!~11Dm

2 !
,

~20!

whereOn5^ f un&^nu i & andDn5(E2en)/h. One can distin-
guish the individual contribution to the conductance of ea
stateun& @first summation term on the right-hand side of E
~20!# and a ‘‘mixing’’ term ~second summation term!. From
this equation, we can analyze the effect of changing first
number of states (nmax) included in the summations and
second, the value of the energy imaginary parth.

Figure 1 shows the values ofsN(E,x) for different values
of nmax versus the positionxf of the center of the final state
For a tunneling energyE that is close to an eigenvalueen ,

FIG. 1. Values of the normalized conductancesN vs the posi-
tion xf of the final Gaussian stateu f &. The Green’s functionG̃f i is
calculated by includingnmax states. The different values ofnmax are
8 ~solid line!, 10 ~dotted line!, 15 ~dashed line!, 20 ~long dashed
line!, and 30 ~dot-dashed line!. The tunneling energy isE/\v
52.6 close to the eigenvalueen5252.5\v and h/\v50.1. The
fixed position of the initial state isxi520.22, and its corresponding
Gaussian width isb i59.1. Finally the final state moves along thex
axis, and its Gaussian width isb f57.1.
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the dependence of the conductance onnmax is negligible,
provided that the states close to the tunneling energy
included in the summation. In this case, the individual co
tribution of the eigenstateun52& to the conductance is th
most important. For a tunneling energy between two diff
ent eigenvalues, the individual contributions of the cor
sponding eigenstates to the conductance are not the
important terms and the ‘‘mixing’’ term has a non-negligib
contribution~Fig. 2!.

The global shape of the conductance is not drastic
affected for small values ofh ~Fig. 3!. For large values, the
spreading of the Lorentzians (11Dn

2)21 becomes too large
and all eigenstates contribute almost equally to the cond
tance; the energy selectivity of the relevant states for

FIG. 2. Normalized conductance vsxf ~solid line! calculated for
nmax510. The individual contribution~dotted line! of each state
@first summation term in Eq.~20!# is not the most important quantit
contributing tosN when the tunneling energyE is between two
eigenvalues, for instance,E/\v53.0. The values of the other pa
rameters are the same as for Fig. 1.

FIG. 3. Influence ofh on the normalized conductancesN vs xf ;
h50.10 ~solid line!, h50.30 ~dotted line!, and h51.1 ~dashed
line!. The values of the other parameters are identical to those
for Fig. 2.
re
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tunneling is then lost. Furthermore the conductance beco
strongly dependent onnmax. This essential physics will also
hold for cases in which the eigenstatesun& are represented by
much more complex wave functions, such as the one fo
surface expanded in augmented plane waves in Sec. IV.

III. CONNECTION TO EXISTING THEORIES

A. Tersoff-Hamann formula

It is interesting to notice how Tersoff-Hamann theory13,14

can be obtained in the present context. As already mentio
in Sec. I, the Tersoff-Hamman model is based on first-or
perturbation theory using the unperturbed sample surf
wave functions, and a spherical symmetry for the unp
turbed tip wave function. Let us neglect the effect of the
potential, so that the eigenstatesun& appearing in Eqs.~10!
and~19! are simply the eigenstates of the sample. In the lim
of zero bias, we need to consider only the states close to
Fermi levelEF . In this condition, as shown in Sec. II D 1
and for an infinitesimally small value ofh, the differential
conductance can be written as@the ‘‘mixing’’ term in Eq.
~20! is negligible for a tunneling energy close to an eige
value of the Hamiltonian#

sN~E!'(
n

u^ f un&u2u^nu i &u2d~EF2en!. ~21!

Next, the initial stateu i & is taken to be a state localized on
near the tip apex at some positionr0 . Then the scalar prod
uct ^nu i & is a convolution between the surface states^r un&
5cn(r ) and the tip wave function which closely resembl
cn(r0) if the spatial extent of̂r u i & is not too large compared
to the features ofcn(r ) @for the extreme case in which th
initial state is ad function on the tip,̂ nu i & is simply equal to
cn(r0)#. The exact analytical calculation of^nu i & is only
possible by assuming a particular form for the surface w
function.

In a perturbative approach such as Tersoff-Hamann,
states at@or close to, for a broadenedd(EF2en) function#
the Fermi energy participate in tunneling with a weighti
that is determined only by the matrix element of the trans
Hamiltonian. In our formalism, this implies choosing th
same weight for eachun& state, disregarding the overlap wit
the finalu f & state, i.e., the scalar product^ f un& is taken to be
a constant. In these conditions, one recovers the resu
Tersoff and Hamann, i.e., the differential conductan
sN(EF) is proportional to the surface local density of stat
rS(r0 ,EF)5(nucn(r0)u2d(EF2en).

It is interesting that from this point of view, the majo
effects disregarded in the Tersoff-Hamann approach but
cluded in Eq.~19! are the coherence between different eige
states participating in the transport, and the weighting of
different eigenstates according to their ability to carry curr
between the initial and final states.

It should also be possible to derive an equivalent expr
sion to the Tersoff-Hamann result by another route. T
consists in partitioning the system into two subsystems~the
unperturbed tip and sample!. Then the full Green’s function
G̃(E) of the system could be found from the unperturbed
G̃T and sampleG̃S Green’s functions by matching thes
Green’s functions on the surface separating the two s

ed
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systems. Such an approach would essentially duplic
Noguera’s discussion37 of the validity of the transfer Hamil-
tonian approximation, so we do not pursue it here.

B. Scattering theory

In this section, we establish a connection between
formalism described in Sec. II B and the standard formu
tion of the current in scattering theory obtained from t
generalized Ehrenfest theorem~for example, see Ref. 57!.
We consider the case of time-independent scattering.
also discuss the separation of the total Hamiltonian into
noninteracting system, and the so-called perturbation po
tial used in scattering theory. It should be noticed at t
point that our formalism is not based on this separation
deals directly with the total Hamiltonian of the system.

We do not rederive the theory of scattering which can
found in several textbooks. Instead we start directly from
formalism described in Secs. 36 and 37 of Ref. 58. The n
interacting system, consisting of the left and right sides
the STM tunneling junction, is described by the Hamiltoni
Ĥ0 . The basic aim of scattering theory is to express
transition probability from eigenstates ofĤ0 on one side to
the other side of the junction under the action of a pertur
tion ~or scattering! potentialV̂. The precise definition of such
a potential in the case of a STM junction is discussed
more detail below. From the time-dependent point of vie
the scattering occurs as follows: an initialfa(r ,t) eigenstate
of Ĥ0 is scattered byV̂ into a scattering stateca

1(r 8,t8). The
relation between these two states can be obtained via
general form of the space-time propagator~or Green’s func-
tion! G1(r 8,t8;r ,t) of the total HamiltonianĤ5Ĥ01V̂:

ca
1~r 8,t8!5 i E G1~r 8,t8;r ,t !fa~r ,t !d3r . ~22!

It should be noted that, in order to obtain transitions betw
eigenstates ofĤ0 , the pertubation potential should be in
tially absent, then switched on, and off again after the s
tering of the state concerned has been completed. Otherw
if the perturbation potential is always present, the syst
does not ‘‘evolve;’’ it just stays in an eigenstate of the to
HamiltonianĤ. From Eq.~22!, a Lippman-Schwinger equa
tion for the scattering stateca

1 can be obtained from the
Dyson equation of theG1 Green’s function, and the integra
properties of such a Green’s function.

In the stationary case, the wave functions are expres
as fa(r ,t)5ua(r )e2 iEat/\, uua& being the eigenfunction o
the time-independent HamiltonianĤ0 and ca

1(r ,t)
5ua

1(r )e2 iEat/\. The same exponential factor occurs in t
expressions forfa andca

1 , because the energy is conserv
in elastic scattering. This can been seen in more detail in
54 @for example, Eq.~1.71! in this reference#. Then it can be
shown that the matrix elements of the propagator or Gree
function are written as follows:

eiEbt8/\^ubu iĜ1~ t8,t !uua&eiEat/\

5dab2
i

\
^ubuT̂uua&E g~ t1!ei ~Eb2Ea!t1 /\dt1 , ~23!
te
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where Ĝ1(t8,t)52( i /\)u(t82t)exp@2iĤ(t82t)/\# is the
causal Green’s function obtained from the total Hamiltonia
g(t) is the time dependence function of the perturbation
tential V̂(r ,t)5V̂(r )g(t), and theT-matrix elements are ex
pressed in the common form

^ubuT̂uua&5^ubuV̂uua
1&5E d3r ub* ~r !V~r !ua

1~r !.

~24!

We now choose the form of the time dependence of
perturbation potential,g(t); let it be unity during a period
DT and go to zero outside this period~i.e., whent→6`!
over a time intervalDt @cf. Fig. ~34! in Ref. 58#. Then the
Fourier transform ofg(t) is not strictly a d function but
merely a functiong̃(Ea2Eb) strongly peaked aroundEa
2Eb50 in an energy range of approximately\/Dt. Dt can
be chosen as large as needed to reduce arbitrarily the en
interval in whichg̃ is nonzero.

Now the transition probability defined by the left-han
side of Eq.~23!,

P~ t82t !5u^ubuĜ1uua&u2, ~25!

is directly proportional to the square modulus of theT-matrix
elements when the initial stateuua& is orthogonal to the final
stateuub&.

If we now apply the same time-averaging formalism
developed in Sec. II B to Eq.~25!, using Eq.~23! for the
Green’s function, we obtain the following equivalence f
the time-averaged tunneling current:

J̄5e
P̄~t!

t
[

2pe

\
u^ubuT̂uua&u2d~Ea2Eb!, ~26!

since theT-matrix elements are independent of time. No
that, for convenience, we replaced theg̃ function by the
equivalentd function whenEa5Eb .59 Then Eq.~26! shows
the equivalence between our formalism and the expressio
the tunneling current obtained from the generalized Ehr
fest theorem. This is a ‘‘strict’’ equivalence when and on
when the averaged transition rateP̄(t) is defined from the
eigenstates of the HamiltonianĤ0 of the noninteracting sys
tem.

Note again that, in the present formalism, we deal direc
with the total HamiltonianĤ; there is no need to know ex
plicitly the form of the perturbation potentialV̂. Ĥ0 has to be
known only to determine its corresponding initial and fin
eigenstates.

Now it is essential to discuss the definition ofĤ0 and the
meaning ofV̂ for a practical application to scanning tunne
ing microscopy. In a realistic description of the tunnelin
junction, Ĥ0 should ideally represent the Hamiltonian of th
two separate noninteracting sides of the junction. These
be the sample side and the tip side. Then the total Ham
tonian should include all the effects when the tip is broug
close to the sample surface, for example the effects of
tip-induced electric field, the possible chemical bonding b
tween the tip atoms and surface atoms, the possible mo
cations of the atomic structure of the tip and surface, e
These effects are quite subtle, and the definition ofV̂ is not
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12 476 56H. NESS AND A. J. FISHER
straightforward.51 Hence the present formalism using on
the full Hamiltonian seems to be a convenient method
treating such a problem.

However the calculation of the corresponding eigensta
of Ĥ0 is a very hard problem inab initio ~plane-wave-like!
methods, since both parts of the subsystems are repres
by semi-infinite systems. To our knowledge, calculations
the tunneling current for such cases are only possible
introducing some approximations for the asymptotic pro
gating states. This has been done by using a tight-bind
like basis set31,42 or using an analytical form for the
asymptotic propagating states which assumes there is a
lium on one41 or both sides60–62 of the tunneling junction.

Therefore it is convenient to introduce a model descr
tion of the tunneling junction to perform calculations of th
current fromab initio ~plane-wave-like! methods. This can
be done by representing the surface by a slab, and the ti
an isolated cluster or a cluster deposited on another s
Then our definition of the currentJ̄ must be seen as an av
eraged electron transition rate from one slab state to ano
slab state ‘‘located’’ on the other side of the tunneling jun
tion.

Note also that, when the transition rate is calculated
our originally derived Green’s-function matrix elemen
G̃f i(E) ~i.e., when the statesuua& anduub&, rather than being
eigenstates ofH̃0 , are substituted by arbitrary localized in
tial u i & and final u f & states on both sides of the tunnelin
junction!, the current is not exactly determined. In this ca
the calculation should be seen as a ‘‘sampling’’ of the ex
T matrix.

Finally, there is still a possibility of matching of the wav
functions of the slab states onto the leads~the remaining of
the semi-infinite part for a realistic description of the tunn
ing junction!. For such a purpose, the formalism used
Weir and Wingreen to determine a generalized Landauer
mula, briefly described in Sec. III C, can be helpful.

C. Generalized Landauer formula of Meir and Wingreen

Now we come back to the Landauer formulation of t
tunneling current, as generally described by Eq.~1!. Meir
and Wingreen50 derived a generalized Landauer formula f
the tunneling current flowing between two leads through
intermediate region in which the electrons may interact.
the case of independent~or noninteracting! electrons, the
current flowing from the left to the right (mL.mR), is ex-
pressed as

J5
e

h E de@ f L~e!2 f R~e!#Tr@ĜaĜRĜr ĜL#, ~27!

where f L,R are the unperturbed Fermi-Dirac distributio
functions of the leads, andĜr ,a are, respectively, the retarde
and advanced Green’s functions of the complete intermed
region. TheĜ operators represent the coupling between
intermediate region and the leads. For example,ĜL for the
left side is Gn,m

L 52p(aPLra(e)Va,n(e)Va,m* (e), where
Va,n is the potential coupling the incominga channel~with
density of statesra! to the nth single-particle state of the
intermediate region. By noticing that the transmission co
ficient tb,a from the left~channela! to the right~channelb!
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is given bytb,a[2p(n,mVb,n* Gn,m
r Va,m , it can be shown50

that Eq.~27! reduces to Eq.~1!. In fact, under the conditions
of noninteracting electrons, zero temperature, and a fi
bias between the two electrodes, Eq.~27! is strictly equiva-
lent to the expression for the tunnel current discussed
Caroli et al.63 In all these treatments, the differential condu
tance is ultimately proportional to a product of two on
particle Green’s functions, but also involves quantities d
scribing the leads connecting the system to
reservoirs.50,52,63,64

In our case, the coupling between the so-called interm
diate region and these leads is not treated exactly. We c
sider the propagation of an electron introduced~somehow!
into theu i & state, and removed~somehow! from the stateu f &.
This means that we approximate the expressions for thĜ
operatorsĜ52p(aV̂ua&ra^auV̂† ~where Ĝ5ĜL,R if a in-
dexes a channel in the left or right lead, respectively!.

For example, if we consider only one incoming chann
with a normalized density of states, we suppose that the
fect of V̂ on the incoming state is simply to transformua&
into u i &, i.e., V̂ua&}u i &. The ĜL operator takes the form of a
projector onto theu i & states; similarly,ĜR is a projector onto
the u f & states!. This expression can be written asĜL

5(aPLu i &uVia(e)u2^ i ud(e2ea). Then, if we takeVia to be
independent of the energy, Eq.~27! becomes proportional to
our expression for the tunneling currentJ̄5eP̄(t)/t.

This has the consequence, as already mentioned in
II B, that the absolute values of our tunneling current are
correct because they do not include the effects of the spr
ing resistance due to the coupling with the leads. Nevert
less the essential physics of the tunneling processes in
the intermediate region is correctly described, since we
the full Green’s functionsĜr and Ĝa for the intermediate
region in the expression of the tunneling current; the
Green’s functions are obtained, for example, within t
density-functional-theory formalism. A more accurate d
scription of the couplingG operators would be possible b
approximating the asymptotic propagating states of the le
by, for example, a coupled chain of Wannier functions.

IV. APPLICATION

In this section, we present an application of the techniq
for a specific surface. Calculations of the STM image for t
bare graphite surface, using the present technique, have
published elsewhere.46 The surface we propose to study he
is more complex than the bare graphite surface because
heterogeneous. It is a silicon surface on which small orga
molecules are deposited.65 Such systems are interesting fo
understanding the fundamental adsorption mechanism
well as for applications in film growth. In this paper, w
consider ethene (C2H4) molecules adsorbed on the Si~001!
surface.66,67

In the STM images presented below, the presence of
tip has been approximated by particular tip states and sim
potentials. This simplification is not due to any restriction
principle on the method, but should be seen as a first stag
calculation. This, of course, should be improved and co
pleted by further calculations including a more realis
atomic description of the tip.
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The method used to determine the ground state of
system is the local-density-functional based68,69 projector-
augmented wave~PAW! method developed by Blo¨chl.70 The
main features of the PAW method are as follows:~i! it is an
all-electron method which includes the full valence-electr
wave functions, representing them by augmented pla
waves;~ii ! it employs a generalization of the pseudopoten
concept using~localized! projectors to represent the nonloc
part of the atomic potentials;71 and ~iii ! Car-Parrinello-like
Lagrangian16,72dynamics is implemented in the PAW fram
work and permits us to determine simultaneously the e
tronic and atomic ground-state configurations of the syste
considered.

Experimental images have been obtained for differ
coverages of C2H4 adsorbed on Si~001!, both at positive and
negative sample biases. These results can be found in
example, Refs. 66, 67, and 73. It is found that, in the ima
at negative sample bias~the current flows then from the
sample to the tip!, the isolated molecules adsorbed on t
surface appear slightly darker than the bare dimers of
clean parts of the surface. Preliminary calculation of cons
current scans have shown that it is necessary to take exp
account of the tip-induced electric field in the calculations
order to obtain, even qualitatively, the correct ST
contrast.73 This result can be understood in terms of the b
havior, under the presence of an external electric field
electronic states from a surface presenting different p
characterized by different polarizabilities.74

The details of the calculations of the structure19 and of the
surface polarization effects due to our model tip-induc
electric field75 have been already described elsewhere.
concentrate our discussion here on the influence of
choice for the initial statesu i & on the tunneling current an
more especially on the STM contrast. As already mentio
in Sec. II C, owing to the approximations made in the co
pling of the tunneling junction to the leads, different choic
for the u i & and u f & states are possible. Here we choose t
alternatives for the initial~sample! states:~i! a set of three-
dimensional Gaussian states localized randomly in the
face, and~ii ! a set of Kohn-Sham eigenstates obtained fr
the PAW method for the same conditions of calculation as
Ref. 75 for the bare Si~001! surface. As mentioned at th
beginning of this section, the final~tip! state is an approxi-
mate one, chosen for computational convenience. It is c
sen to be a localized three-dimensional Gaussian state.
state moves in the vacuum space above the surface as th
scans this surface. This means that the tip potential is o
taken partially into account in the calculations via the t
induced electric field.

The differential conductance is calculated for a set ofM
different energiesEa close to the top of the valence ban
Then the conductance values are summed over the c
sponding energy windowDE5m i2m f5eV to give an ap-
proximation for the integral defined by Eq.~18!: J̄5Vsav
5V(as(Ea)/M . The precise value of theDE appropriate to
the experiments is somewhat uncertain, since the exact v
of the bias across the tunneling junction is strongly affec
by the screening and long-ranged band bending below
surface. However, no strong modifications of the experim
tal contrast were observed for different negative bias v
ages. This suggests that the choice ofDE is not a critical
e
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parameter in the present case. We take an integration en
window DE50.9 eV, as this range includes all the occupi
states which are strongly localized near the surface. Furt
more this choice seems to be reasonable since the band
of silicon is'1.1 eV and the Si substrate in the experime
is n type; the Fermi level in the bulk is therefore just belo
the bottom of the conduction band. The experimental ima
were taken for a negative sample bias of 2 V; neglect
band-bending effects, this corresponds to tunneling in the
0.9 eV of the valence band.

Constant-current images of the surface are shown on F
4 and 5 for both choices of the initial states. It is found th
a contrast in agreement with the experiments~i.e., the mol-
ecules appear darker than the bare dimers! can only be ob-
tained with the presence of the tip-induced electric field. T
most important result regarding the use of the method is
the STM contrast of the adsorbed molecules on the surfac
not strongly or qualitatively dependent on the two differe
choices we made for the initial states. In other words, in
present case the approximation made in the coupling of
tunneling junction to the leads does not play an import
role on the STM contrast. Instead, the surface polariza
effects due to the tip-induced electric field are mainly
sponsible for the observed contrast. For a more comp
understanding of the tip-sample interactions, further calcu
tions should be performed with the presence of a more r
istic description of the tip states and potential.

V. CONCLUSIONS

We have presented a method which allows electron t
neling in a model STM junction to be tackled in a nonpe
turbative manner. The calculation follows the progress of
electron which is injected into a state on one side of
tunnel junction, and adopts as a measure of the tunnel cur
the time-averaged rate of transfer to a second state loca
on the other side. The method can be used directly with
self-consistent potential and wave functions obtained
total-energy calculations orab initio molecular dynamics.

We have shown that the electron transfer rate can be
culated in a manner which does not involve the unaccepta
computational expense of obtaining the full spectrum
single-particle eigenfunctions for the coupled tip-sample s
tem. We have presented some applications of the techn
here. The STM contrast calculated for adsorbed eth
(C2H4) molecules on the Si~001! surface appears to be i
agreement with the corresponding experimental images.

These preliminary results are encouraging, but the pre
version of the technique needs to be developed and impro
to include a better representation of the tip states and po
tial. This can be done, for example, by including in theab
initio calculation an atomic cluster tip close to the surface,
already done by other authors.76–79Finally, in order to obtain
exact absolute values of the tunneling current, the coup
of the tunnel junction with the leads carrying the current
both sides of the junction should be treated exactly. Suc
coupling appears to be possible with the help of real sp
embedding potentials80,81 and tricks used in the so-calle
O(N) electronic structure methods.82
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FIG. 4. Grey-scaled constant-current image above the sur
unit cell. The corresponding conductance value is
31025 @2e2/h#. The conductance is calculated using a set of r
dom localized Gaussian initial states. The ‘‘tip-sample’’ distance
given in Å, and corresponds to the position of the center of
Gaussian final state.~a! Without the tip-induced electric field, the
molecules appear brighter than the bare dimers.~b! In the presence
of the tip-induced electric field, the contrast is inverted, and
dimers appear brighter than the molecules, in qualitative agreem
with the experiences.
ce

-
s
e

e
nt

FIG. 5. Grey-scaled constant-current image above the sur
unit cell. The corresponding conductance value is
31025 @2e2/h#. The conductance is calculated using a set of init
states coming from a slab calculation of the bare Si~001! surface.
The ‘‘tip-sample’’ distance is given in Å, and corresponds to t
position of the center of the Gaussian final state.~a! Without the
tip-induced electric field, the molecules appear still brighter than
bare dimers.~b! With the tip-induced electric field, the contrast
inverted and the molecules appear slightly darker than the b
dimers. Such a contrast is in better agreement with the experien
especially when one considers the dimer rows. However, the c
trast is only slightly affected by the choice of the initial states~com-
pare to Fig. 4!.
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APPENDIX: ITERATIVE CALCULATION OF THE
GREEN’S-FUNCTION MATRIX ELEMENTS

We can avoid the calculation of the eigenvalue spectr
altogether by a trick similar to those used to avoid sums o
intermediate states in linear response theory in atoms83 and
solids.84 It can be seen that the Green’s function in quest
can be written as

G̃f i~E1 ih!5(
n

^ f un&^nu i &
E2en1 ih

5^ f u~E1 ih2Ĥ !21u i &.

~A1!

This in turn can be written

G̃f i~E1 ih!5^ f u ĩ &, ~A2!

where the stateu ĩ & is the solution of the linear equation

~E1 ih2Ĥ !u ĩ &5u i &. ~A3!

This equation may be efficiently solved by an iterati
method ~such as the recursion method! with, in general,
many fewer operations than are necessary to find the c
plete spectrum of the HamiltonianĤ. In the present situa
tion, a particularly useful iterative scheme is provided by
Lanczos algorithm.85–88It is convenient for our purposes be
cause it involves generating a tridiagonalization form for
Hamiltonian. Once this has been found, it is straightforw
to compute the solutionu ĩ & for any desired values ofE rel-
evant for the tunneling.

The calculation proceeds as follows. The tridiagonali
tion is generated by a sequence of recursion vectorsuui& as
usual.86 After NL Lanczos iterations, the Hamiltonian in th
basis of the Lanczos vectors takes the standard tridiag
form Hii 5^ui uĤuui&5a i and Hi ,i 115Hi 11,i5b i . The
space spanned by the vectorsuui& ~for i 51,...,NL! is known
as theNLth Krylov space.

The solution of the linear equation~A3! is also the solu-
tion to the problem of finding the stationary values of t
quadratic from

f ~ u ĩ &)[^ ĩ u~E1 ih2Ĥ !u ĩ &2^ i u ĩ &. ~A4!

If u ĩ m& denotes the stationary point off in the mth Krylov
space, then the solutions in successive Krylov spaces ca
et
n-

r

n

-

e

e
d

-

al

be

constructed iteratively.85 The construction of the successiv
Krylov spaces guarantees that the sequence ofu ĩ m& con-
verges to the true stationary pointu ĩ & of f . It can be shown85

that the set$u ĩ m&% satisfies the iterative relation

u ĩ m&5u ĩ m21&1rmucm&, ~A5!

with

ucm&5uum&2mm21ucm21&,

rm52
mm21dm21rm21

dm
,

dm5E1 ih2am1bm21mm21 ,

mm2152
bm21

dm21
, ~A6!

and the initial conditions

u ĩ 1&5r1uu1&,

uc1&5uu1&,

r15
1

d1
5

1

E1 ih2a1
. ~A7!

One final simplification arises because we are not concer
with the stateu ĩ & for its own sake, but only with the overla
^ f u ĩ &. We can therefore replace the vector manipulations
Eqs.~A5! and~A6! by the simpler scalar formulas involvin
the elementŝ f u ĩ m&, ^ f ucm&, and^ f uum&. Once the chain of
the NL Lanczos vectors has been constructed, this ena
^ f u ĩ & to be found for each energy with onlyO(NL) opera-
tions.

Some STM images have already been calculated usin
iterative method such as that used to determine the Gree
function elements. They have been obtained for a mode
potential.46 More work needs to be done to take account o
more realistic tip modeling. Note that in such iterative c
culations the convergence of the results with the numbe
iteration stepsNL must be carefully examined, as must th
asymptotic values of thea i andb i recursion coefficients. In
some cases, the loss of orthogonality between the Lanc
vectorsuui&, due to the use of finite-precision arithmetic, c
cause problems with the convergence of the algorithm
lead to ‘‘multiple copies’’ of eigenvalues in the spectrum
however, it is still possible to impose orthogonality aft
each iteration step,89 with some loss of efficiency. This
method is therefore promising, and computationally efficie
for large and complex tip-sample systems; work on optim
ing it is still in progress.
ev.
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70P. E. Blöchl, Phys. Rev. B50, 17 953~1994!.
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