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Nonperturbative evaluation of STM tunneling probabilities from ab initio calculations
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We present a method for calculating the rate of electron transfer across the tunnel junction in a scanning
tunneling microscope without any perturbation expansion in the tip-sample coupling. The method may be
readily combined with separatgb initio electronic-structure calculations for the tip and the sample. This
involves replacing the asymptotic scattering states by localized initial and final states on either sides of the
tunnel junction. We present examples of applications $blOmolecules adsorbed on the(®)1) surface.
[S0163-18297)06444-9

I. INTRODUCTION Another case involves tunneling through an adsorbed
molecule; here the difficulty is that although the tunneling
The scanning tunneling microscop8TM) (Refs. 1 and matrix element between the tip and molecule may not itself
2) is now established as an important tool in the study ofbe large, the molecule-substrate interaction and the interac-
surface phenomena. Clean surfates)d surface processes tion between opposite ends of the molecule introduce addi-
such as oxidatiod, adsorbed moleculés® and their tional small energy scales which should be treated on the
reaction$ have all been studied, to give only a few ex- same footing as the interaction with the tip. An extreme ex-
amples. Even very large systems such as DIR&fs. 8 and ample occurs in studies of tunneling through thick and nomi-
9) and thick alkane film€** have been successfully imaged. nally insulating organic film&®'* where one expects that
Understanding the information conveyed by STM imagesunneling through the film is at least as unlikely as tunneling
has itself become a major area of activity in theoreticalacross the vacuum gap between the tip and the film. Such
physics'? A particularly important step forward was taken problems require a unified treatment of electron transport
when Tersoff and Hamahh'# considered the resolution of through the coupled system of tip, substrate, and any inter-
an “ideal” STM. Working to first order in the tip-sample vening molecule.
interaction, using the form of the tunneling matrix element There have been a number of previous nonperturbative
due to Bardeer® and assuming as-like form for the tip  calculations of tunneling in three-dimensional systems.
wave function, they found that the tunnel current at smallThese include treatments of resonant tunneling through a
bias is simply proportional to the substrate density of statesimple barrie?® and between two planar surfaces, one of
at the center of the tip. This result allows a relatively which has a protruberance which models a STMifhe
straightforward interpretation of STM images in a variety of resistance of a single atom adsorbed between two jellium
situations. It is particularly powerful when combined with ~ surfaces was computed nonperturbatively by L¥hgnd
initio molecular-dynamics method8, which allow the successfully compared with the experimental results of
atomic structure and charge densities of complicated surfad&imzewski and Mber.2° A complete theory to calculate the
reconstructions”*® or of adsorbed system$,to be deter- tunneling current between two electrodes has been developed
mined simultaneously. by Noguera’~3° It is based on the matching of Green's
First-order perturbation theory in tip-sample coupling canfunctions on two surfaces defining three domains: the left
be extended beyond Tersoff-Hamann thé®nyp allow for  and right electrodes, and the barriavhere no occupied
the effects of higher angular momentum admixtures in the tistates are availableTo our knowledge, there have been no
orbital?2=2* to treat the effects of local variations in the direct applications of the formalism for realistic three-
potential?® and to incorporate the wave functions of realistic dimensional tip-sample systems. This is due to the difficulty
tip models in order to discuss issues such as the tip depewf exactly calculating the Green’s functions in real space on
dence of imageé$?” and the occurrence of negative differen- the two surfaces in order to perform the matching. Another
tial resistance in the STIFP model, with a particular tip geometry, was later proposed by
There remain problems, however, in which perturbationSacks and Noguefd.More recentl§! the tunneling current
theory is not expected to provide an adequate picture of thbetween aluminum and palladium surfaces, represented us-
tunneling process because the tunneling is, in some sendag muffin-tin orbitals and a tip atom adsorbed on a jellium
strong and cannot be treated as a perturbation. One sudfab, has been computed by non perturbative solution of the
example occurs in the transition between the tunneling andquations of scattering theory.
point-contact regime®**where the transmission coefficient  In a different class of approaches, the electronic structure
for electrons between the tip and the sample becomes aff the tip and substraténcluding adsorbates if preseris
order unity. This case has recently been extensively studieghapped to a system described by some Hamiltonian that is
in the context of pull-off of a STM tip in contact with a relatively simple(at least, simple in comparison with the
surface’*3% and in the formation of thin junctions when Hamiltonian of a first-principles electronic-structure calcula-
notched wires are broken apétt. tion). This can either be a tight-binding mod&t*?where the
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tunneling current can be calculated exactly even for a comasymptotic region is nonseparable’? In this paper, we con-
plex three-dimensional system, or a simpler model potentiasider only a simple two-terminal STM device, and the two-
problem*® Results have also been obtained using the tightterminal form of the result is sufficient:

binding approach for adsorbed molecutésising the model

potential approach, the conductance has been calculated as a e (Ept+ev - e R

function of position of an aluminum atom between two alu- =% dE T po e E)t'po ignd E)ET, (D)
minum surface$® o

The present paper is motivated by the need for a methognere| is the dc currentEg the equilibrium Fermi energy of
which allows a nonperturbative calculation of the tunnel cur-pe system, and¥ the applied voltage. The density matrices
rent, b_ut which can be used directly with th_e self-cpr_lslstenbojleﬁ(E) andpo,ign(E) Specify the occupancies of the states
potential produce_d by total-energy calculationsabr initio o 'the incoming and outgoing leads, while thematrix is
molecular dynamics. Such a method allows nonperturbativeg|ated to theS matrix of the system in the following
calculations even for complex systems for which it is diffi- ;,0ne/53

cult to fit a simple approximate form to the true potential,

and enables one to calculate the geometry and STM image of . 2

a system together from first principles. S=1-—, it S(Ei—Ej)(i]. 2)
We begin the paper with a brief discussion of Landauer’s Ao A

conductance formuléSec. Il A); in particular, we emphasize - ) )

that it expresses the current carried by the system in terms &fowever,S is also related to the time-evolution operator of

the S-matrix elementia particular type of Green's-function the system in the interaction representation:

matrix element between asymptotic propagating states on A

either side of the tunnel barrier. We then express the current S=U;(—,x), ©)

in terms of a different set of Green’s-function matrix ele-

ments, those betwedncalized states on either side of the Where

barrier(Sec. Il B. These matrix elements have the advantage

that they can be computed within a total-energy calculation i11.9,0,(t,to) = V() Uy (t,to), @
with periodic boundary conditions. We discuss the effect of
the presence of many electrons in the syst&ec. |1 B 2, V,(t) =exp(iH gt/7)V exp(—iHot/#).

and show how it may be accounted for through a scheme

which treats electron and hole tunneling on an equal footing;.|ere|:|0 is taken to be the Hamiltonian of the leads, ahis
Next, we move on to consider how the Green's-function elthe so-called perturbation potential in the total Hamiltonian
ements in question can be evaluat@ec. I1D. We also  that couples the incoming and outgoing leads. This implies
provide a scheme to calculate these Green's-function elehat thet matrix has the following interpretation: an incom-
ments for real systems without the necessity of performingng state|¢!e“(+)(E)> at energyE on the left of the sam-
an expensive summation over the entire spectrum of th5|e (for elxample) is scattered into the combination
coupled tip-sample systefsee the Appendjx In Sec. Il we E_t__(E)|¢[ight(+)(E)> on the right

discuss the connection of the present formalism to other ex-' ')’ e - A .

isting theories. We then turn to some actual applications of Itis the definition ofS andt In terms of asymptotic states |
the method(Sec. IV). These concern more especially thethat makes the exact calculation of the transmission so diffi-

STM contrast of adsorbed ethene,HG) molecules on the cult to perform: it involves matching the potentials of the tip

Si(001) surface, and the effects of the tip-induced eIectricar_1d of the sample smoothly onto the potential of an infinite

field on this contrast. An application for the bare graphite?’!"® ©F mediu_m_ to carry the i_nc_oming and ou_tgoing current.
Pb grap This is very difficult for a realistic model of a tip and surface

surface has been already published elsevifiere -
yp containing, for example, adsorbed molecules or defects.

II. TUNNEL CURRENT AND GREEN’S FUNCTIONS . .
B. Tunneling between localized states

A. Transmission coefficient The aim of this paper is to suggest that for the purpose of

We begin our discussion of tunneling with the Landauercalculating the tunnel current through a STM junction the
formuld’ for the current in a system containing noninteract-matrix elements of th& matrix between incoming and out-
ing electrons and dominated by elastic scattering. This equagoing propagating states may be conveniently replaced by
tion formalizes the intuitively appealing notion that the cur-the matrix elements of the guantum-mechanical propagator
rent carried through a system should be proportional to théetween two localized electronic states, one on each side of
product of the rate at which carriers arrive from some sourcéhe tunnel junction. This means that the coupling of the states
with the probability that those carriers are successfully transnear the junction into the asymptotic scattering stdte=l
mitted through the sample. Originally derived heuristicAflly, the associated spreading resistarisenot described exactly.
this result has been relatddith the aid of some delicate On the other hand, the essential physics of the tunneling
mathematicsto the Kubo-Greenwood formula of first-order process, including multiple scattering and tunneling through
perturbation theor§® It has been generalized to multitermi- resonant surface or molecular states, is accurately described.
nal systemé? to systems in which the electrons undergoWe will come back to the interpretation of the present for-
arbitrarily strong interactions with each other in a finite partmulation and its connection to th&matrix formalism and
of the systent® or to systems in which the potential in the the Landauer formula in Secs. Il B and Il C.
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1. A single electron shortly for a many-particle system, where hole tunneling
must also be taken into accoun¥e can simplify this ex-

Motivated by this observation, we consider the evolution ! : i
pression by noting that the numerator can be written as

of an electron which at=0 is localized in an initial statg)

on one side of the junction. Let us calculate the probability it w
may be found in a second localized stiteon the other side ﬁzf |Gy ()|?e~Ydt, (7)
of the junction at a later timé. This is given by -

- . whereGy;(t) is the causal Green’s function connecting states
P(t)=|(f|exp(—iHt/A)]i)|? ) and|}'>:

2
= ; (fIn)(nli)exp(—ieqt/n)| (5 Gﬂ(t)z—;i—e(t)<f|exp(—il:|t/ﬁ)|i>, 8

where then)’s are eigenstates of the Hamiltoniahof the  \yheregis the Heaviside step function. This Green's function
entire system, with eigenvalues . In general this quantity cap jtself be written, from its Fourier transform, as
will be a highly oscillatory function ot; we can, however,

obtain a simpler measure of the rate of electron transfer ® E ~ )
across the junction by averaging over a timdt is conve- Gri(D)= fﬁw 57 Cr(E)exp—iEt/A), 9)
nient to do this by introducing an exponentially decaying
weighting function: with
— 1 [3P(t)e Yrdt ~ : (f[n)(nli)
=_ - Gti(E)= lim _—. 10
P(N=5 = T (6) n(B)=m > 05 (10

(The factor of3 in the above definition has been introduced This result enables us to make a spectral decomposition of
to make it consistent with others that will be introducedthe average tunneling probabili§(7) in the form

— (e (% dE [+ dE'  (fmli) o Gilmmln
P(T)_ﬁf,mdtfwﬁ 7@,?; E—eﬁ—in% E’—em+i7]exq_l(E_E)t/h]
~ dE
1)

D (fln)(nli)

2 » dE ~ o
= E—etin :ﬂf |GH(E+in)|% (11)
n

s

where n="%/27, and we have recognized the spectral repre- We may formalize this by replacing the causal Green’'s
sentation of the$ function in performing the integrals over function in Eq.(8) by a time-ordered Green’s function,
andE’.

It is worth noticing that the introduction of the exponen- i A at
tial decaying weighting function in Ed6) is reminiscent of Gri(t)=—7(0, N[T[C{(1)¢i (0)][0, N)
what Lippmann and Schwinger, in their original paper about
scattering processes, called the adiabatic decrease of the per- i At
turbation when the time goes to infinity. This was achieved =77 6(1){0, N[C¢(1)¢/(0)|0, N)
by introducing the factor exp{#[t|/%) into the expression of
the scattering statdg)(")(E)) [see, for example, Ed1.51)
in Ref. 54. On the other hand, this can be understood as a
convenient way to introduce the finite imaginary pgrin
the energy of the Green’s function, in order to remove theimwhere|0, N) is theN-particle ground state and the operators

+%9«4XQNEH®&UHQN% (12

singularities and make their energy integrals tractable. E:iT andcy, respectively, create an electron in single-particle
state|i) and annihilate an electron in single-particle stéje
2. Many electrons The first term in Eq(12) describes propagation of an elec-

) — . ) tron from state|i) to state|f), while the second term de-
The evaluation oP(r) using Eq.(11) is the central fea-  scripes the propagation of a hole fraf) to |i). For the

ture of the present approach. In one important respect, hoWspe_glectron case discussed above, the second term vanishes.

ever, the real systems differ from the model we used to de- A gyitable measure of the time-averaged tunneling prob-

rive the result: states up to the Fermi enefgyare already  gpjjity is then

filled with electrons, and the Pauli principle therefore forbids
the introduction of an electron into these states. Instead, con- 171Gt |2e gt
~ |G

duction through energy levels wite<Ep takes place via P_(T):ﬁz _ ;
holes. LT

(13
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The Fourier transform of the time-ordered Green'’s functionto |i), once the electron has been introduced {ifi}o is just

can be written as as likely as propagation frof) to |f) once the electron has
. t been introduced int¢i ).
G (E)= lim | S (0, NJc¢|n,N+1){n,N+1|c/[0, N) ~ The final step in our derivation is therefore to connect the
: s.04| M E-(Enn+1—Eon) tid initial and final states to reservoirs with electrochemical po-
tentials u; and u;, respectively. This has the consequence
(0, N|&f|n,N—1)(n,N—1|&]0, N) that electrons can be supplied to stajeonly at energies up
; E+(E,n_1—Eon)—10 to u;, and removed from stat) only at energies above

m¢. Only in the energy region between and u¢ is there a
(14 contribution to the current. The transmission probability

where|n,N+1) and|n,N—1) are the many-particle eigen- from i} to [f) becomes
states of theN—1 andN+1 particle systems, anf, - dE
andE, y_ are the corresponding many-particle eigenvalues. o7\ J”i = Y
' . ; = —|G(E+ :
Let us assume that the many-particle states are well approxi- P(r)=n 2 |Gri(E+in)| (17)
mated by a set of Slater determinants of single-particle
eigenstate$n) with eigenvaluess,,. Then we can write We identify the average rate of electron transfer over time

) ) with the quantity

<f|n><nll>+z (ilm)n[f)
E—e,+io 4 "E—e,—id’ P(7)
(15

wheref , is the occupation number ¢rfi) and will be a Fermi

function if the system is in thermal equilibrium. Similar ma- Recognizing that each electron carries chadem oneli)

nipulations to those used above then give the spectral decornte |f), so the current is=eP(7)/7, and that the electro-

position of the time-averaged tunneling probability as chemical potential is related to the voltage by a factoeof
i we find that the differential conductance of the system is

p_(T):,?fw d_E’2 (1—f )M
—= 2m |5 " E-entinp 9 oPlT 2e* .
) o Fm e Fm h7 |G+ (E+in)] (19

Glny(nl)
PX g e iy (19

éﬁ(E>=§ (1—fp)

=2— dE|Gf|(E+|7])| . (18)
h I3

T

This has the familiar form of the quantum of conductance,
2 . . . .
This equation corresponds to EG.1) in the single-particle 2e7/h, multiplied by a dimensionless factdthe so-called

system. dimensionless or normalized conductarngg.
Equations(11) and (16) show that, for small values af,
the contribution toP from energy E is overwhelmingly C. Choice of initial and final states

dominated by eigenstatgs) with e,~E. In other words, the One important issue to be addressed in a method such as
contribution to the tunneling probability at energles'Er is s js the choice of initial and final states between which to
essentially determined only by filled states, and at energieg,|cylate the Green’s functions. While the use of localized
E>E itis determined only by the empty states. The differ-giataq f) and|i) is important in that it enables us to obtain
ence between Eqg1l) and (16) is confined to a narrow 4, expression for the tunnel current that can be evaluated in
region of width  around the Fermi energy. We therefore 5 gystem with periodic boundary conditions, we need to be
make a very small error by using the causal Green’s functioq e that it does not introduce errors. The principal difficulty
and Eq.(ll) to calculate the tun_nellng probability, instead of \\a found in applying this method occurs when there are
the time-ordered Green's function and Eg6). several degenerat@r nearly degeneratestates which con-
tribute to the tunneling at a particular energy. In these cir-
cumstances, the overlaps of the eigenstatgswith |f) and

Up to this point we considered the propagation of theli) play an important role in ensuring that those states which
electron only once it has been introduced into stateby  most efficiently bridge the gap between tip and substrate
some as-yet-unspecified procedure. This implicitly assumesontribute most to the formation of the STM image; on the
that we are always able to supply electrons to sfgtend  other hand, one must ensure that the overlaps do not go too
remove them from statff) at whatever rate is required to far in singling out some eigenstates of the degenerate sub-
keep up with their propagation through the STM tunnelingspace at the expense of the others.
junction. This is, of course, an idealization; in reality, the = We propose some procedures to circumvent such undesir-
supply and removal of the electrons is determined by conable effects. Although the terms “initial” and “final” states
nections to reservoirs in which the electrons can reach equéare rather misleading since, as already pointed out in Sec.
librium by inelastic processes. If these reservoirs have thd B 3, the transport at any given energy is symmetric, i.e.,
same electrochemical potential, so that all the states with BG;|?=|Gy;|? and the tunneling direction is only introduced
given energy are equally occupiedp net charge flows by the applied bias. Therefore, we consider in the following
through the system. This is simply a consequence of theéne case of electron transport form the sample to the tip, and
unitarity of the operator exp(iHt/%); propagation fronjf)  we concentrate for simplicity our discussion only on the ef-

3. Reservoirs
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fects of the overlap elements|i). However the solutions 150 , , ,
we propose hereafter are also applicable for the overlap ele-
ments(f|n).

The first possible solution consists in calculating an aver-
aged differential conductanae from Eq.(19) over a set of
random localized|i) states in the sample. With such a
method, it is expected that no particular statg among the
states relevant for the tunneling energy will play a drastically
more important role over another one.

The second possibility is to go beyond the consideration
of localized state. This can be done by considering for the
initial state a state coming from anothay initio calculation
in which, for example, the sample is represented by a slab. In o5
this case, the arbitrary choice of the localization of the

=3
=3

0.76

0.50

Normalized conductance o, ( x10° )

state on the values of the overlépl|i) does not occur any- 0.00 ‘ ‘ ‘

more. The values of such overlap matrix elements is strongly e e B e e e
dependent on the remaining orthogonality between |the

and|n) states. An automatic selection of the importamt FIG. 1. Values of the normalized conductangg vs the posi-

states relevant for the tunneling energy is then ensured. Ifion X of the final Gaussian staté). The Green's functioGy; is
practice, thdi) states are chosen to be the eigenstates of thgalculated by including,, states. The different values of,q, are
: : 8 (solid line), 10 (dotted ling, 15 (dashed ling 20 (long dashed
corresponding isolated surface slab. are then the
b 9 Tim) Iiine), and 30 (dot-dashed line The tunneling energy i€/%w

eigenstates of such a surface “perturbed” by the presence 0.6 close o the eigenvalue_,—2.5iw and 7/fiw—0.1. The

adsorbates and/or by the presence of the tip. We Commeﬂked position of the initial state is;= —0.22, and its corresponding

further on the significance of such a choice for theand  Gayssian width i8;=9.1. Finally the final state moves along the
In) states in the next sections; the effects of this choice oRyis, and its Gaussian width j&=7.1.

the tunnel current are shown in Sec. IV.
1. Direct calculation

In this section, we show that it is not necessary to have
the complete eigenvalue spectrum representation for the
Another important point in the theory presented in Sec.Green’s function Eq(10) when one wants to calculate the
Il B is that it involves the Green’s functioG(E) for the  tunneling current or the differential conductance as given by
coupled tip-sample system. A direct calculationG(fE) via  Ed-(19). The influence of the imaginary pastof the energy

its representation in Eq10) would in principle involve the O the conductance is also considered.

complete spectrum of the single-particle states of this FOr this, we consider a simple one-dimensional model
coupled system. case. The eigenstatps) and eigenvalues, are chosen to be

Even in principle, a plane-wave basis set is not sufficien hose of a harmonic oscillator. The Green’s function is given

. =~ y Eq.(10), where the index summatiamgoes in principle
to describe the real-space represgpta@m,r ’E). of th_e to infinity. We take localized Gaussian functions for the ini-
Green’s function. Because of the finite size of this basis se

\ . ) X %al and final states.
the Green's function cannot be described for energies above gt of 4, let us rewrite the expression of the differential

the cutoff energy corresponding to the plane-wave basis, anghnguctance in a more convenient form. Starting from the

does not have the correct analytic properties. To reduce thigefinition of o(E), we can write the normalized conductance
error, a procedure has been proposed for correcting the

D. Calculation of the Green'’s function

Green’s function(see, for example, Refs. 55 and)56low- — 20\ 21 FoN|2

ever, aIthough,riﬁ principle, thepplane-wave reprgsentation is on(E)=o(E)/(2€°/)=n"|Gr(E+in)|

not complete for the fullG(r,r",E), the calculation of the -y |On|? 23S o0 1+AnAp
matrix elementgf|G(E)|i) will be accurate, provided that mOl+AL TafEa T M (IHAN(L+AY)]
the stategi) and|f) are themselves plane-wave converged. (20)

In practice, we will show that only relatively few eigen-
functions make significant contributions to the tunneling cur-where O,=(f|n)(n|i) andA,=(E—€,)/ 7. One can distin-
rent at a particular energy. In particular, we now concentratguish the individual contribution to the conductance of each
our discussion on the convergence of the conductance wittate|n) [first summation term on the right-hand side of Eq.
respect ta(i) the number of statel1) included in the sum- (20)] and a “mixing” term (second summation tepmFrom
mation, and(ii) the value of the imaginary pary of the  this equation, we can analyze the effect of changing first the
energy. With respect to poirti), it is also possible to avoid number of statesn,,y) included in the summations and,
the determination of the eigenvalue spectrum altogether isecond, the value of the energy imaginary part
the calculation of the tunneling current by using an iterative Figure 1 shows the values of,(E,x) for different values
method. A technique for doing this based on the recursio®f ny,, versus the position; of the center of the final state.
method(or Lanczos algorithimis presented in the Appendix. For a tunneling energi that is close to an eigenvalug,



12 474 H. NESS AND A. J. FISHER 56

30 \ ' , ' ! : tunneling is then lost. Furthermore the conductance becomes
strongly dependent on,,,,. This essential physics will also
hold for cases in which the eigenstata$ are represented by
much more complex wave functions, such as the one for a
surface expanded in augmented plane waves in Sec. IV.

Ing
»
T

I

n
1=}
T

IIl. CONNECTION TO EXISTING THEORIES

2

A. Tersoff-Hamann formula

It is interesting to notice how Tersoff-Hamann thelGrif
can be obtained in the present context. As already mentioned
in Sec. |, the Tersoff-Hamman model is based on first-order
perturbation theory using the unperturbed sample surface
wave functions, and a spherical symmetry for the unper-
turbed tip wave function. Let us neglect the effect of the tip
20 potential, so that the eigenstatgs appearing in Eqs(10)

and(19) are simply the eigenstates of the sample. In the limit

FIG. 2. Normalized conductance xs (solid line) calculated for ~ Of zero bias, we need to consider only the states close to the
Nmac=10. The individual contributior(dotted ling of each state Fermi levelEg. In this condition, as shown in Sec. IID 1,
[first summation term in Eq20)] is not the most important quantity and for an infinitesimally small value of, the differential
contributing tooy when the tunneling energ§ is between two conductance can be written &@he “mixing” term in Eq.
eigenvalues, for instanc&/4 w=3.0. The values of the other pa- (20) is negligible for a tunneling energy close to an eigen-

Normalized conductance o, { x1 0* )
P

o
@

0.0

rameters are the same as for Fig. 1. value of the Hamiltoniah
the dependence of the conductance roR, is negligible, on(E)~ > [(F|n)2|(n]i}|28(E—€,). (22)
provided that the states close to the tunneling energy are n

included in the summation. In this case, the individual con- i N .
tribution of the eigenstatin=2) to the conductance is the Next, the !n|t|al statéi) is taken.t'o be a state localized on or
most important. For a tunneling energy between two differ-ne:’lr the 'Flp apex atls?me[)r)()tS|tlo51. t'lr']hen tr]:e scaltar prod-
ent eigenvalues, the individual contributions of the corre-LiC (nli) |sdatr1cor:yo ution f € V\tlgen h? hsurl acel S dtdmbl
sponding eigenstates to the conductance are not the mogtwn(r). and the lip wave function which closely resembles
important terms and the “mixing” term has a non-negligible In(ro) if the spatial extent ofr|i) is not too Iarge compared
contribution (Fig. 2). to the features off,(r) [for the extreme case in which the
The global shape of the conductance is not drasticallyitial State is asfunction on the tip{n|i) is simply equal to
affected for small values of (Fig. 3. For large values, the #n(fo)]. The exact analytical calculation dhli) is only
spreading of the Lorentzians {1A2) ! becomes too large possible by assuming a particular form for the surface wave
n ’ :
and all eigenstates contribute almost equally to the conduéyncuon'

tance; the energy selectivity of the relevant states for the In a perturbative approach such as Tersoff—Hamann, all
states afor close to, for a broadene8{Er— €,) function|

the Fermi energy participate in tunneling with a weighting
that is determined only by the matrix element of the transfer
Hamiltonian. In our formalism, this implies choosing the
. 1 same weight for eacin) state, disregarding the overlap with
\ the final|f) state, i.e., the scalar produdin) is taken to be
\ a constant. In these conditions, one recovers the result of
\ | Tersoff and Hamann, i.e., the differential conductance
\ on(Eg) is proportional to the surface local density of states
' ) pS(r01EF):En|wn(r0)|25(EF_€n)-
T It is interesting that from this point of view, the major
— effects disregarded in the Tersoff-Hamann approach but in-
cluded in Eq(19) are the coherence between different eigen-
states participating in the transport, and the weighting of the
different eigenstates according to their ability to carry current
between the initial and final states.
00 ‘ ‘ e It should also be possible to derive an equivalent expres-
oo e e R B R0 e sion to the Tersoff-Hamann result by another route. This
consists in partitioning the system into two subsystéthe
FIG. 3. Influence ofy on the normalized conductanog Vs ; : unperturbed tip and sampleThen the full Green’s function .
7=0.10 (solid line), 7=0.30 (dotted ling, and »=1.1 (dashed G(E) of the system could be found from the unperturbed tip
line). The values of the other parameters are identical to those us€@t and sampleGg Green’s functions by matching these
for Fig. 2. Green’s functions on the surface separating the two sub-

6.0 T T T T

I w0 & o
=) =3 =) o
T T
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o
T




56 NONPERTURBATIVE EVALUATION OF STM TUNNELING . . . 12 475

systems. Sgch an approach _ vyould essentially dupllicatamere é*(t’,t)= _(i/h)g(t'_t)exq_iﬁ(t'_t)/ﬁ] is the
Noguera’s discussidhof the validity of the transfer Hamil-  causal Green’s function obtained from the total Hamiltonian,

tonian approximation, so we do not pursue it here. g(t) is the time dependence function of the perturbation po-
tential V(r,t)=V(r)g(t), and theT-matrix elements are ex-
B. Scattering theory pressed in the common form

In this section, we establish a connection between the R R
formalism described in Sec. Il B and the standard formula- (uﬁ|T|ua)=<uB|V|u;)=f d3r ug(rV(rug(r).
tion of the current in scattering theory obtained from the (24)
generalized Ehrenfest theoretfor example, see Ref. 57
We consider the case of time-independent scattering. We \We now choose the form of the time dependence of the
also discuss the separation of the total Hamiltonian into th@erturbation potentialg(t); let it be unity during a period
noninteracting system, and the so-called perturbation poterkT and go to zero outside this perigie., whent— = )
tial used in scattering theory. It should be noticed at thispyver a time intervalAt [cf. Fig. (34) in Ref. 58. Then the
point that our formalism is not based on this separation angtoyrier transform ofg(t) is not strictly a & function but
deals direCt|y W|th the tOtal Hamiltonian Of the SyStem. mere|y a function’g(Ea_EB) Strong'y peaked aroun&a
We do not rederive the theory of scattering which can be_ E;=0 in an energy range of approximatelyAt. At can

formalism described in Secs. 36 and 37 of Ref. 58. The nonpteryal in whichg is nonzero.

interacting system, consisting of the left and right sides of Now the transition probability defined by the left-hand
the STM tunneling junction, is described by the Hamiltoniangjge of Eq.(23),

Ho. The basic aim of scattering theory is to express the )

transition probability from eigenstates bif, on one side to P(t'—t)=[(uglG™|uy)|?, (25
the other side _Of the Jun_ctlpn under th_e actpn_qf a perturbai—s directly proportional to the square modulus of Thenatrix
tion (or scatteringpotentialV. The precise definition of such

oo X O . elements when the initial stata,) is orthogonal to the final
a potential in the case of a STM junction is discussed '”state|uﬁ>

more detail below. From the time-dependent point of view, If we now apply the same time-averaging formalism as
the scattering occurs as follows: an initia),(r,t) eigenstate developed in Sec. Il B to Eq25), using Eq.(23) for the

of Hy is scattered by into a scattering statg, (r',t"). The  Green's function, we obtain the following equivalence for
relation between these two states can be obtained via thge time-averaged tunneling current:

general form of the space-time propagator Green’s func-

tion) G*(r’,t’;r,t) of the total HamiltoniartH=Hy+ V: I- P_(T) 2me
=e =
f

W;(f',t')=iJ GH(r' t';r,) g (r,H)dr. (22)  since theT-matrix elements are independent of time. Note
that, for convenience, we replaced thefunction by the
It should be noted that, in order to obtain transitions betweegquivalents function whenE, = E.*® Then Eq.(26) shows
eigenstates ofl,, the pertubation potential should be ini- e equivalence between our formalism and the expression of
tially absent, then switched on, and off again after the scatth® tunneling current obtained from the generalized Ehren-
tering of the state concerned has been completed. Otherwis€St theorem. This is a "strict” equivalence when and only
if the perturbation potential is always present, the systenyvhen the averaged transition ref ) is defined from the
does not “evolve;” it just stays in an eigenstate of the total eigenstates of the Hamiltoniat, of the noninteracting sys-
HamiltonianH. From Eg.(22), a Lippman-Schwinger equa- tem.
tion for the scattering state¢] can be obtained from the Note again that, in the present formalism, we deal directly
Dyson equation of th&™ Green’s function, and the integral With the total HamiltoniarH; there is no need to know ex-
properties of such a Green'’s function. plicitly the form of the perturbation potenti®l. Hy has to be
In the stationary case, the wave functions are expressddiown only to determine its corresponding initial and final
as ¢,(r,t)=u,(r)e %" |u,) being the eigenfunction of eigenstates. i
the time-independent HamiltonianH, and ¢ (r,t) Now it is essential to discuss the definitiontdf and the
=u/(r)e 'E«/* The same exponential factor occurs in themeaning ofV for a practical application to scanning tunnel-
expressions forp,, andy , because the energy is conserveding microscopy. In a realistic description of the tunneling
in elastic scattering. This can been seen in more detail in Refunction, H, should ideally represent the Hamiltonian of the
54 [for example, Eq(1.71) in this referencké Then it can be two separate noninteracting sides of the junction. These can
shown that the matrix elements of the propagator or Green’be the sample side and the tip side. Then the total Hamil-

(Ug| TIU)28(E,—Ep),  (26)

function are written as follows: tonian should include all the effects when the tip is brought
close to the sample surface, for example the effects of the
e‘EBt"h<uB|ié+(t’,t)|ua>e‘Ea”ﬁ tip-induced electric field, the possible chemical bonding be-

tween the tip atoms and surface atoms, the possible modifi-
cations of the atomic structure of the tip and surface, etc.

i |
5 i(Eg—E )ty [h
Oap™ 7 (UglTIUa) f g(ty)ee = dy, (2 These effects are quite subtle, and the definitioVdé not
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straightforwarct® Hence the present formalism using only is given byts =272, mV3 nGnmVam, it can be showtf

the full Hamiltonian seems to be a convenient method fotthat Eq.(27) reduces to Eq(l). In fact, under the conditions

treating such a problem. of noninteracting electrons, zero temperature, and a finite
However the calculation of the corresponding eigenstatebias between the two electrodes, E27) is strictly equiva-

of Hy is a very hard problem imb initio (plane-wave-likg¢  lent to the expression for the tunnel current discussed by

methods, since both parts of the subsystems are represent@droliet al® In all these treatments, the differential conduc-

by semi-infinite systems. To our knowledge, calculations oftance is ultimately proportional to a product of two one-

the tunneling current for such cases are only possible byarticle Green’s functions, but also involves quantities de-

introducing some approximations for the asymptotic propascribing the leads connecting the system to the

gating states. This has been done by using a tight-bindingreservoirs?:5263.64

like basis set*? or using an analytical form for the In our case, the coupling between the so-called interme-

asymptotic propagating states which assumes there is a jaliate region and these leads is not treated exactly. We con-

lium on oné* or both side® %2 of the tunneling junction.  sider the propagation of an electron introdugedmehow
Therefore it is convenient to introduce a model descrip-into the|i) state, and remove@omehow from the statef).

tion of the tunneling junction to perform calculations of the This means that we approximate the expressions folthe

current fromab initio (plane-wave-lik¢ methods. This can  operatorsI'= 273 V| a)p (a|V' (where =R if « in-

be done by representing the surface by a slab, and the tip byexes a channel in the left or right lead, respectively

an isolated cluster or a cluster deposited on another slab. For example, if we consider only one incoming channel

Then our definition of the curred must be seen as an av- with a normalized density of states, we suppose that the ef-

eraged electron transition rate from one slab state to anoth@gct of V on the incoming state is simply to transforfes)
slab state “located” on the other side of the tunneling junc-;.;, i), ie. \A/|a>0<|i). TheT‘ operator takes the form of a

tion. . . . projector onto théi) states; similarlyI'? is a projector onto
Note also that, when the transition rate is calculated vid’ . T i ~
the |f) statey. This expression can be written ds-

our originally derived Green’'s-function matrix elements
Qi onginaty =3 o [DIVin( €)% S(e—e,). Then, if we takeV,, to be

G.f'(E) (e., when the state}x?la> and|ug), .rather thar-1 be|r?g. independent of the energy, E@7) becomes proportional to
eigenstates ofl, are substituted by arbitrary localized ini- . ) —
N X . .__our expression for the tunneling curreht e P(7)/7.
tial |i) and final |f) states on both sides of the tunneling . . .
) . . . . This has the consequence, as already mentioned in Sec.
junction), the current is not exactly determined. In this case, :
) ¥ S | B, that the absolute values of our tunneling current are not

the calculation should be seen as a “sampling” of the exac .
T matrix correct because they do not include the effects of the spread-

' ing resistance due to the coupling with the leads. Neverthe-

Finally, there is still a possibility of matching of the wave . . : L
. S less the essential physics of the tunneling processes inside
functions of the slab states onto the ledtige remaining of . . SO . :
the intermediate region is correctly described, since we use

the semi-infinite part for a realistic description of the tunnel- . . r “a . .
ing junction. For such a purpose, the formalism used bythe full Green’s function€G" and G for the intermediate

Weir and Wingreen to determine a generalized Landauer for€910n in the expression of the tunneling current; these
mula, briefly described in Sec. Ill C, can be helpful. Green’'s functions are obtained, for example, within the

density-functional-theory formalism. A more accurate de-
scription of the couplingd™ operators would be possible by
approximating the asymptotic propagating states of the leads
Now we come back to the Landauer formulation of theby, for example, a coupled chain of Wannier functions.
tunneling current, as generally described by Eh. Meir
and Wingreerf derived a generalized Landauer formula for
the tunneling current flowing between two leads through an

intermediate region in which the electrons may interact. In |n this section, we present an application of the technique
the case of independerior noninteracting electrons, the  for a specific surface. Calculations of the STM image for the
current flowing from the left to the right{ > ug), is ex-  pare graphite surface, using the present technique, have been
pressed as published elsewher®.The surface we propose to study here
is more complex than the bare graphite surface because it is
J= € f de[f (€)— frl 6)]Tr[éaf~Rérva], (27) heterogeneous. It is a silicon surface on whiqh smalll organic
h molecules are depositéd.Such systems are interesting for
A ... understanding the fundamental adsorption mechanisms as
where f_ g are the unperturbed Fermi-Dirac distribution well as for a%plications in film growth.pln this paper, we

functions of the leads, ar(élr’a_ are, respectively, the retarded . .<iqer ethene (&, molecules adsorbed on the(@2)

and advanced Green'’s functions of the complete |ntermed|at§urface§6,e7

region. Thel" operators represent the coupling between the | the STM images presented below, the presence of the
intermediate region and the leads. For examplefor the tip has been approximated by particular tip states and simple
left side is F,ﬁ’mz2772a€Lpa(e)Vayn(e)V’;’m(e), where  potentials. This simplification is not due to any restriction in
V,.n is the potential coupling the incoming channel(with principle on the method, but should be seen as a first stage of
density of statep,) to the nth single-particle state of the calculation. This, of course, should be improved and com-
intermediate region. By noticing that the transmission coefpleted by further calculations including a more realistic
ficientt, , from the left(channela) to the right(channelg)  atomic description of the tip.

C. Generalized Landauer formula of Meir and Wingreen

IV. APPLICATION
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The method used to determine the ground state of thparameter in the present case. We take an integration energy
system is the local-density-functional ba¥& projector-  window AE=0.9 eV, as this range includes all the occupied
augmented wavéPAW) method developed by Bitl.”° The  states which are strongly localized near the surface. Further-
main features of the PAW method are as follo@it is an  more this choice seems to be reasonable since the band gap
all-electron method which includes the full valence-electronof silicon is~1.1 eV and the Si substrate in the experiments
wave functions, representing them by augmented plangs n type; the Fermi level in the bulk is therefore just below
waves;(ii) it employs a generalization of the pseudopotentialthe bottom of the conduction band. The experimental images
concept usinglocalized projectors to represent the nonlocal were taken for a negative sample bias of 2 V; neglecting
part of the atomic potentialS; and (iii) Car-Parrinello-like  hand-bending effects, this corresponds to tunneling in the top
Lagrangiaf®’2dynamics is implemented in the PAW frame- 0.9 eV of the valence band.

work and permits us to determine simultaneously the elec-  constant-current images of the surface are shown on Figs.
tronic and atomic ground-state configurations of the systemg 4q 5 for both choices of the initial states. It is found that

considered. a contrast in agreement with the experimefiss., the mol-

Experimental images have been obtained for differenieCuIeS a .
o ppear darker than the bare ditneas only be ob-
coverages of ¢4, adsorbed on $001), both at positive and tained with the presence of the tip-induced electric field. The

negative sample biases. These results can be found in, for - : :
example, Refs. 66, 67, and 73. It is found that, in the imagemOSt important result regarding the use of the method is that

at negative sample biaghe current flows then from the ﬁwet StTM clontrast Ofl_ihf_ a(lis%rbed n;oletculetshonttheg_l;frfacetls
sample to the tip the isolated molecules adsorbed on theMO! Strongly or qualitatively dependent on the two dilteren

surface appear slightly darker than the bare dimers of thghmces we made for the_mltlgl states. I_n other wor(_js, in the
clean parts of the surface. Preliminary calculation of constanPr€Sent case the approximation made in the coupling of the
current scans have shown that it is necessary to take explid¢nneling junction to the leads does not play an important
account of the tip-induced electric field in the calculations infole on the STM contrast. Instead, the surface polarization
order to obtain, even qua|itative|y’ the correct STM effects due to the tip-induced electric field are mainly re-
contrast’® This result can be understood in terms of the be-sponsible for the observed contrast. For a more complete
havior, under the presence of an external electric field, ofinderstanding of the tip-sample interactions, further calcula-
electronic states from a surface presenting different partions should be performed with the presence of a more real-
characterized by different polarizabilitié$. istic description of the tip states and potential.

The details of the calculations of the structirand of the
surface polarization effects due to our model tip-induced
electric field® have been already described elsewhere. We V. CONCLUSIONS
concentrate our discussion here on the influence of the
choice for the initial statefi) on the tunneling current and ~ We have presented a method which allows electron tun-
more especially on the STM contrast. As already mentionedieling in a model STM junction to be tackled in a nonper-
in Sec. 1l C, owing to the approximations made in the cou-turbative manner. The calculation follows the progress of an
pling of the tunneling junction to the leads, different choiceselectron which is injected into a state on one side of the
for the |i) and|f) states are possible. Here we choose twatunnel junction, and adopts as a measure of the tunnel current
alternatives for the initialsample states:(i) a set of three- the time-averaged rate of transfer to a second state localized
dimensional Gaussian states localized randomly in the sun the other side. The method can be used directly with the
face, and(ii) a set of Kohn-Sham eigenstates obtained fromself-consistent potential and wave functions obtained by
the PAW method for the same conditions of calculation as irtota|-energy calculations @b initio molecular dynamics_
Ref. 75 for the bare 8001) surface. As mentioned at the  we have shown that the electron transfer rate can be cal-
beginning of this section, the findlip) state is an approxi- culated in a manner which does not involve the unacceptable
mate one, chosen for Computational convenience. It is Ch(tomputationa] expense of obtaining the full spectrum of
sen to be a localized three-dimensional Gaussian state. Thisngle-particle eigenfunctions for the coupled tip-sample sys-
state moves in the vacuum space above the surface as the Mn We have presented some app|icati0n3 of the technique
scans this surface. This means that the tip potential is onljiere. The STM contrast calculated for adsorbed ethene
taken partially' into account in the calculations via the tip-(C,H,) molecules on the 801) surface appears to be in
induced electric field. agreement with the corresponding experimental images.

The differential conductance is calculated for a seibf These pre|iminary results are encouraging’ but the present
different energie€,, close to the top of the valence band. version of the technique needs to be developed and improved
Then the conductance values are summed over the corrg include a better representation of the tip states and poten-
sponding energy windowAE=u;—u;=eV to give an ap- tjal. This can be done, for example, by including in tie
proximation for the integral defined by E(l8): J=Va,, initio calculation an atomic cluster tip close to the surface, as
=V= ,0(E,)/M. The precise value of th&E appropriate to  already done by other authdi%."°Finally, in order to obtain
the experiments is somewhat uncertain, since the exact valexact absolute values of the tunneling current, the coupling
of the bias across the tunneling junction is strongly affectedf the tunnel junction with the leads carrying the current on
by the screening and long-ranged band bending below thkoth sides of the junction should be treated exactly. Such a
surface. However, no strong modifications of the experimeneoupling appears to be possible with the help of real space
tal contrast were observed for different negative bias voltembedding potentidi®! and tricks used in the so-called
ages. This suggests that the choiceAdE is not a critical O(N) electronic structure methods.
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FIG. 5. Grey-scaled constant-current image above the surface
unit cell. The corresponding conductance value is 5
X 107% [2e?/h]. The conductance is calculated using a set of initial

FIG. 4. Grey-scaled constant-current image above the surfacdates ccoming fr,em_ a slab calculation of the bar@®&l) surface.
unit cell. The corresponding conductance value is 5 The “tip-sample” distance is given in A, and corresponds to the

X 1075 [2e%/h]. The conductance is calculated using a set of ranPosition of the center of the Gaussian final stdtg.Without the

dom localized Gaussian initial states. The “tip-sample” distance istip-induced electric field, the molecules appear still brighter than the

given in A, and corresponds to the position of the center of the_bare dimers(b) With the tip-induced electric field, the contrast is
Gaussian final statda) Without the tip-induced electric field, the Nverted and the molecules appear slightly darker than the bare
molecules appear brighter than the bare dim@sin the presence dlmere. Such a contrast is .|n better agreement with the experiences,
of the tip-induced electric field, the contrast is inverted, and the®SPecially when one considers the dimer rows. However, the con-
dimers appear brighter than the molecules, in qualitative agreemeffi@St is only slightly affected by the choice of the initial staesm-

with the experiences. pare to Fig. 4.
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||m>:||m—l>+Pm|Cm>v (A5)

APPENDIX: ITERATIVE CALCULATION OF THE with
GREEN’'S-FUNCTION MATRIX ELEMENTS
. . ) |Cm>:|um>_ﬂm—1|cm—1>'
We can avoid the calculation of the eigenvalue spectrum

altogether by a trick similar to those used to avoid sums over Mm—10m-1Pm-1
intermediate states in linear response theory in atdersd Pm="— dp '
solids®* It can be seen that the Green’s function in question
can be written as dn=E+in—antBm-1Mm-1,
Bu(E+in=3 IO o1+, o g = — o0 (A6)
€n +| dm—l
(A1)

and the initial conditions
This in turn can be written

_ _ |Tl>:Pl|ul>1
Gi(E+in)=(f|i), A2
B fl( 77) < | > ( ) |Cl>:|u1>;
where the statéi) is the solution of the linear equation 1 1
"~ == A7
(E+in—F=li). (A3) PTG T Etina (A7)

This equation may be efficiently solved by an iterative ONe final simEIification arises because we are not concerned

method (such as the recursion methodith, in general, With the stateli) for its own sake, but only with the overlap
many fewer operations than are necessary to find the con{fll) We can therefore replace the vector manipulations in
plete spectrum of the Hamiltoniad. In the present situa- Eds.(A5) and(A6) by the simpler scalar formulas involving
tion, a particularly useful iterative scheme is provided by thethe eIement$f||m> (flemy, and(f|u,,). Once the chain of
Lanczos algorithn¥>#t is convenient for our purposes be- the N Lanczos vectors has been constructed, this enables
cause it involves generating a tridiagonalization form for the(f|i) to be found for each energy with on9(N,) opera-
Hamiltonian. Once this has been found, it is straightforwardions.
to compute the solutiofi) for any desired values d& rel- Some STM images have already been calculated using an
evant for the tunneling. iterative method such as that used to determine the Green’s-
The calculation proceeds as follows. The tridiagonalizafunction elements. They have been obtained for a model tip
tion is generated by a sequence of recursion vedtghsas potential*® More work needs to be done to take account of a
usual®® After N, Lanczos iterations, the Hamiltonian in the more realistic tip modeling. Note that in such iterative cal-
basis of the Lanczos vectors takes the standard tridiagonablations the convergence of the results with the number of
form |-|“:(ui||3||ui>:ai and Hi,i+1 Hi 1 =8i. The iteration ;tepsNL must be carefully exa_mined, as must the
space spanned by the vectous) (for i = N,) is known asymptotic values of the; and B, recursion coefficients. In
as theN, th Krylov space. some cases, the loss of orthogonality between the Lanczos
The solution of the linear equatia3) is also the solu- vectors|u;), due to the use of finite-precision arithmetic, can
tion to the problem of finding the stationary values of thecause problems with the convergence of the algorithm and

quadratic from lead to “multiple copies” of eigenvalues in the spectrum;
however, it is still possible to impose orthogonality after
f(ﬁ’))z<T|(E+i,7_|3|)|T>_<i|i~>_ (A4)  each iteration stefy, with some loss of efficiency. This

- method is therefore promising, and computationally efficient
If |i,,) denotes the stationary point 6fin the mth Krylov  for large and complex tip-sample systems; work on optimiz-
space, then the solutions in successive Krylov spaces can ligg it is still in progress.
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