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Charging ultrasmall tunnel junctions in an electromagnetic environment
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We have investigated the quantum admittance of an ultrasmall tunnel junction with arbitrary tunneling
strength under an electromagnetic environment. Using the functional-integral approach a close analytical
expression of the quantum admittance is derived for a general electromagnetic environment. We then consider
a specific controllable environment where a resistance is connected in series with the tunneling junction, for
which we derived the dc quantum conductance from the zero-frequency limit of the imaginary part of the
guantum admittance. For such an electromagnetic environment the dc conductance has been investigated in
recent experiments, and our numerical results agree quantitatively very well with the measurements. Our
complete numerical results for the entire range of junction conductance and electromagnetic environmental
conductance confirmed the few existing theoretical conclus{@®163-182607)02843-9

[. INTRODUCTION gated with the path-integral representation of the partition
function*~*81t has been provéd that a formal perturbation

In semiclassical theory of Coulomb blockatfeelectron — expansion of the partition function results in exactly the
tunneling is controlled by the charging energy, which is de-same form as that derived with the path-integral method,
termined by the junction capacitance. While the existence oprovided that the channel number of the tunnel junction is
this elementary charging effect is clearly seen in multijunc-very large, which is the case for metallic tunnel junctions.
tion configurations,in a single junction, because of the stray Furthermore, based on the functional-integral formulism, a
capacitance, only partial blockade has been obseéhigte ~ Monte Carlo simulation can be constructed for the entire
question is then, including the electromagnetic environment/€gime from weak to strong tunneling strength. The Monte
what is the effective junction capacitance? The work of De-Carlo simulation has been performed for the SEB and a very
voret et al® has shown that external electrical circuit hasSmooth interpolation between the weak-tunneling and the
strong impact on the effect of Coulomb blockade in a singleStrong-tunneling regime has been obtaifidTherefore,
junction, and under standard experimental conditions wheréinctional integral is a reliable powerful tool to study ultras-
the external resistance is much smaller than the resistanégall metallic tunnel junctions with arbitrary tunneling rate.
quantumRy=h/e?, the Coulomb gap is totally smeared out S_lnce most experimental investigations on uItrasm_aII tun-
at low voltages and at low temperature. A similar result wad€l junctions measure the current response to applied volt-
also obtained by Girviret al® In both works, as well as in ade, a relevant theoretical study must take into account the
most existing studies on charging ultrasmall tunnel junctionsinfluence of the electromagnetic environment. This is the
the tunnel Hamiltonian was treated perturbativélysing — goal of the present work, which will use the function-integral
the Fermi golden rule. This lowest-order perturbative ap-2PProach. In Sec. Il we introduce the model Hamiltonian of
proach is valid for weak tunneling strength. a smgle tunnel junction under an electromagnetlc environ-

With increasing tunneling strength, one must go beyondnent in a general form, and perform a theoretical analysis for
the Fermi go'den ru'e to inc|ude higher-order tunne”ng pro_arb|trary tunne.“ng rate. In Sec. Il we COI:]“nUe to denVe the
cesses. The conventional perturbative calculation is very tequantum admittance of such a system in a close analytical
dious, and has been used to study the statistical properties &m. Then, in Sec. IV we restrict ourselves to the simple
a sing|e electron boéGEB)_S_J-O”'] a SEB an island is formed controllable e|eCtr0magnetiF: enVironment, Wh|Ch allows us
between a tunnel junction and a gate capacitor. This is thE> compare  our theoretical results with the recent
simplest structure exhibiting the charging effect. Even formeasurement&:*! For this case we only need the dc conduc-
such a simplest system, it is very difficult to derive the par-tance, which is the zero-frequency limit of the imaginary part
tition function beyond the second order of the dimensionles®f the quantum admittance. The numerical results will be
tunnel conductanceRy /Ry, where Ry is the tunnel Presented in Sec. V, which agree well with experiméfs.
resistancé? Therefore, an entirely different approach is re- Finally, in Sec. VI we give a concluding remark.
quired to investigate the physics associated to strong tunnel-
ing strength.

The functional-integral method has been used to study an
open, undriven tunnel junctiot- 23 As an extension of this The HamiltonianHy=H +H, of an open, undriven tun-
work, the relevant properties of a SEB have been investinel junction consists of two parts. The first one,

II. THEORY FOR MODEL HAMILTONIAN
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Hs=H¢+He, ) (1) a;y 1 ®
al\T)= 5 ? y
represents the system in the absence of tunneling, where 4p° sim(ml )
) where the coefficienty,= Rk /Rt is the dimensionless junc-
H.=Q%/2C (2} tion conductance. The Matsubara frequencigs- 271/,

which will be relevant to our future analysis and calculation,

d lie in the region much smaller than the bandwidhof the
metal. For such frequencies the Fourier transformufr)
reduces to the simple form

is the Coulomb charging energy when a cha@gis added to
the junction with capacitandg. The electrodes are modele
as free quasiparticle systems described by

HEZE 8kGC;ngU+2 gqo'cgg-ch'a (3) _ at|(1)||
k,o q,0 at(w|)— A7

(©)

where thechannel indexs includes both the transverse and

the spin quantum numbers. The longitudinal wave vectors in T?e electromatgrclietlc enV|rong1§ntthof the h;lnlgledtunnsl
the left electrode is labeled by, and in the right electrode junction represented bio, caused by the on-chip leads an

by g. ¢, (or c_,) is the creation operator of an electron with pads, etc., W.'” be modeled by a transmission ﬁf‘*"h'_cg
o go’ > ) can be described by a Caldeira-Leggett HamiltoRiaf®
energys,,, (Or £4,) in the left (or right) electrode. The sec-

ond part ofH describes the tunneling processes of electrons, % 2 2
He= 2, 9 . #n (10)
=2, 2L,

H,= tkaoCraCao EXP(—i@)+H.C], 4
t ng [tharCirC R—ie) ] @ for an infinite series oE C circuits. InH, the first part is the

charging energy of all capacitors and the second part is the
magnetic energy of the corresponding inductors. The eigen-
frequency of thenth LC circuit is given byv,=1/\J/L,C,,

nd the spectral density

wheret,, is the transition amplitude of an electron tunnel-
ing from the statejo in the right electrode to the staler in

the left one. During the tunneling the channel indexs a
invariant. Here we have neglected the tunneling time, which

is approprite for metallic tunnel junctions. Otherwise the tun- 2 C3
nel Hamiltonian must be modified 24 The operatore is IV =72, ——S(v—rp) (1)
conjugate toQ via the commutation relation n-1 2€

[0.Q]=—ie is determined by the external impedance. The operagqrs

andq,, obey the commutation relation

To avoid possible ambiguity in our theoretical analysis, = _ies

. . . . [¢m,0n] 1€0mn -

before introducing the electromagnetice environment, let us _ _ _
first write down the functional-integral representation of theThe electromagnetic environmeHt, is coupled to the tun-

partition function ofH***2 nel junctionH, bilinearly,
Pne [
— ~Sole(7)] R n _
Zy f Dge : () Hin==2 2+ 2 e (12

In the actionSy[ ¢]=S[ ¢ ]+ S ¢], The second term at the right-hand side of the above equation
is a physical counter term similar to the one introduced in the
B P formulation of the dissipative quantum Brownian motfdn.
Sclel= fo dT4Ec 6) The partition functionZ of the total HamiltoniarH=H,
+Hg,+ Hiy: can be similarly obtained in the functional inte-
describes the kinetic part of the system, whEge=e%/2C is  gral representation as
the elementary charging energy, and

Z=f Dgonﬂl Do, eXF{_So[QD]

Cn.ﬁ - n2
(7 _f:dT e (= @n)

267 T 26’
is resulted from the influence of tunneling processes. With n
the commonly used approximation that the transition ampli-The path integrals over the bath modes are Gaussian, and
tudet,q, in (4) is a constant,,,=t, the junction resistance thus can be evaluated exactly. From the condition of vanish-
Ry can be calculated as ing first variation of the action with respect ¢g,, we obtain
the classical equation of motion for the phaseg

B (B
Slel=— fo deo dr’ay(7—7")cod o(7)— ¢(7')]

] . (13

Rr=(47?[t|?pip,N) "1,

) . _ _ ont V20— @n)=0.
wherep, (or p,) is the density of state in the lefor right) ent va(e=¢n)
electrode, andN is the number of channels. In this case theThe solution to this linear differential equation with the
damping kernek,(7) can be expressed as boundary conditions
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on(B)=n(0)=no system geometry that can smear out dramatically the Cou-
, lomb charging effect, as will be shown in the following sec-
IS tions.
sin -
o ()= M ll. QUANTUM ADMITTANCE
n sinh(v,B)

The quantum admittancé(w) of a single tunnel junction

1 (- i ;
> += | d+ sin / / under a gengral elec_:tromagneth environment can be calcu-
#no vy fo T M) e () lated conveniently with the path-integral approach by gener-
_ alizing the Kubo formula for this systef?®-%0
sinh(v,,7) 1 (8, . ,
+m QDno—V—f d7’" sinl{(B—v,)7'] B .
n n-ar Y(w)=w Y lim f dre'2(T1(7)1(0))}, (22
ioj—w0+isJ0
Xe(7)). (14) Where'AI'T is the time-ordering operator in imaginary time.
) o The correlation function is calculated as
The corresponding action is then calculated as
STek1=S9+Sul o). 15 (1)=2" [ Dee Sl 2e%ar- )
|
Wheresﬁfo) depends only on the boundary valyg,, and xcof o(7)— @(7) ]+ e, 7t e, 7 T},

1 (8 B (23
Sex[so]=§ fo dffo dr’ ael 7= 7 ) @(7)—@(7')]%

(16)

B
The damping kernel of the electromagnetic environment |T[¢,T]:_Zef dr'a(7—7")sife(7)—¢(7')].
ae(T) can be expressed in a Fourier series 0 (24)

with the current functional

e T)= L D aew)e?” (17) At very low temperature one can use the instantonlike or
B the renormalization-group techniques to evaluate the parti-
tion function?®~1"3132phyt not the correlation function nor
the quantum conductance, which are usually calculated
= dv J(v) w|2 nl_JmericaIIy_?o HO\_/vever, if th_e temperature is not very low, _
Aoy W)) = —f — (18  with a semiclassical approximation we can evaluate analyti-
0 cally all path integrals to obtain a systematic treatment of the
related to the spectral densify). a.(w,) is thus propor- influence of fluctuations in the form of a series expansion of

tional to the Fourier tramsform of the admittarde(w) of BE.. Anof[her advantage of the semicla_ssical method is that
the electromagnetic environméiitin terms of the Matsub- the result is stable, because the fluctuation modes are of large

with the Fourier coefficients

T v a)|2+1/2

ara frequences, this relation is simply eigenvalues® Such relatively-high-temperature semiclassi-
cal results of ultrasmall tunnel junctions turn out to be very
R Ve —i|w])| )| meaningful, in view of the recent measurements of Coulomb

e 0)) = — yp= : (19  blockade  effects  performed at  not-very-low

temperaturé®?13334|n the following theoretical analysis,

Both S’ in Eq. (15) and the contribution to action from We Will use the semiclassical method. _
the fluctuations around classical paths are independept of ~ L€t Us at first evaluate the partition function. The total
Therefore, they will generate an irrelevant prefactor in the®ction is now approximated by a Gaussian form,
partition functionZ. We can neglect this factor and obtain

. B > 1 (B
from Eq. (13) the final result S [(P]:f dr—+ = f dr
em o 4E. 2 )o

Z=| D —3[<P], 20 B
f ve 0 xfodr'aww—r')[<p<r>—¢(r'>]2, (25

with the total action

Sel=Sl¢e]+Sed ¢]. (21)

We should point out that althoud®| ¢] is a periodic func-
tion of ¢, the total actiorS[ ¢] is not. The physical origin of The above approximation means that the contribution of the
the nonperiodic feature o8] ¢] is the continuous charge tunneling resistance in the action is replaced by an equivalent
transfer between the two electrodes via the external circuitPhmic resistance. Higher-order variations of the action be-
which suppresses the discrete nature of the change of chargend the Gaussian approximataion can be calculated in the
due to the tunneling processes. It is this modification of thdorm of a power series oBE.. However, when calculating

where

ay(7) = ay(7)+ aed 7). (26)
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the current correlation function, which is normalized By
the power series correction factor in the denominatais
cancelled by similar factor in the numerator. Her8g,,[ ¢ ]
given by Eq.(25) turns out to be the approprite form for
calculating the quantum admittance as a seriegBf. We

notice that an arbitrary patip(r) may be expressed as a
Fourier series,

@(T)=|:E_m @€, 27)

with the complex amplitudes
o= tigl

under the conditionp ;= ¢ . Hence, the semiclassical ac-
tion may be evaluated accordingly to give

ssem[cp]=|§1 Mo 2+ ?), (28)

where the eigenvalues, are
2

x.:zw—E'C—z[a«womex(wo]. 29

Now the partition function can be directly calculated accord-

ing to the formula

(30

- aw
Zsem= —.
semi I];[l B)\I

The current autocorrelation functio@23) will be evalu-
ated in the same way. L&l (7)I(7')), represent the first
term at the right-hand side of E¢23). By performing a
series expansion in powers pp(7)— ¢(7')], we can ex-

press(I(7)I(7')), as

1
1_421 ﬂ)\n)

Yy (w)=4e%w 1 lim {
iwj—w+id
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(D))= 262 (7~ T/)zs—e;ij D e Seenl

_ 12
[e(T)—@(7")] N

X
2

1_

(31)

Making use of the Fourier series of path6r), we obtain

1
<|(T)|(T')>1=2e2at(r—r')[1—2n21 e
“ coswp(t—17") )
T v

(32

Substituting this expression ¢f(7)1(7")), into Eq.(22), we
obtain the contribution to the admittance from the first term
at the right-hand side of Eq23),

lim

iwj—w+idl

501
123, e

)

The second term on the right part of E§3) can be evalu-
ated in the same way, although the algebra is more compli-
cated. In terms of the eigenvalues of the fluctuation modes
and the Fourier tramsform of the damping kernel, its contri-
bution to the admittance is derived as

Yl(w)=2e2w_1[

o+ op) + a0 — w,)

B\n

n=1

+O[(BE,)?]. (33

2a(w))

N N

oo

BAn

n=1

" 2 a1+ on) + (01— 0n) ~2a(@p) | 8a(w))

>

n=1

+O[(BE,)?]. (34)

BAq

N

So far our theoretical analysis is for a general electromagsample this external resistance can be varied in a controllable
netic environment. In the rest of this paper we will present avay. In this case we then have(—i|w|)=1/Rs, and thus
detail quantitative study on dc  conductanceEg. (19) becomes linear in frequency

G=lim,_ o{Im Y(w)} for a specific case that the electromag-
netic environment contains only an Ohmic resistance. Such
electromagnetic environment is relevant to recent
experiment&?! with which our theoretical result can be
compared.

aex|wl|

e W)=~ 5 (39
where a.,= Rk /Rey is the dimensionless conductance con-
tributed by the electromagnetic environment. Substituting
into Eq. (29) this aew|) and thea;(w,) given by Eq.(9),

we obtain the eigenvelug, for the simple resistance envi-
We will investegate the dc conductance of a single tunnetonment. If | is very large,\ is dominated by the term

junction connected in series with a resistafg. In a real w|2/2EC, and is insensitive to the tunneling terms represented

IV. SIMPLE ELECTROMAGNETIC ENVIRONMENT
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by aq(w) and «(w,). Hence, the corresponding effect 60.0
turns out to be an uninteresting prefactor and contributes
nothing to the conductance. Fef much less than the band-

width D, the eigenvalues reduce to

2
a)l W) 40.0 -

T2, 27 (36)

wherea,,= a;+ aqy. Inserting the eigenvalues into E@3),
after a straightforward algebra, we obtain

A

1/Ag

20.0 -

w—0

0.0 ‘ ‘ . .
0.0 20 40 6.0 8.0 10.0

ke T/E,

:2e2(

2
1= [V(pwt 1)—‘1’(1)]}

ar W (ot 1)

T TS [ FONBEY, (3D

FIG. 1. 1Ag as a function of the normalized temperature

. . kgT/E. for the dimensionless junction conductaneg=0.5, with
’ B c
whereW(z) and¥’(z) are, respectively, the digamma and various values of the dimensionless external conductange 10

trigamma functions. The parameteus and ., are defined (solid curve, 50 (dotted curve, 100 (dashed curve and 150(dot-
as dashed curve The caseg,= 10 and 100 correspond closely to the
=, BEJS27%  i=t,w. (39) two measured samples in Ref. 20 and Ref. 21, respectively.

Now we calculate from E¢34) the second part of the dc Which can be considered as a measure of the effective Cou-

conductances,=1im,, o{Im Y,(w)}. When carrying out the lomb 'charging energy: smalle_rkg corresponds to weaker
limits at the right-hand side of Eq34), the orders in the €ffective  Coulomb — charging ~energy. In recent
series of BE, become mixed. This makes the calculation ofexperiment&*! Pekola and co-workers have manufactured a

G, very complicated, yet straightforward. The final result isSingle tunnel junction withay=Ry /R;=0.5 and measured

1/Ag as a function of normalized temperatukgT/E_ for
2

a; different values ofxe,= Ry /Rey. Rey CONtains two contribu-
Gy=— Rea {ay=4[V(uyt+1)-V(1)]} tions Rey= Rey.int Rex.com WhereRe, iy is the intrinsic value
W of the circuit, which is of the order of the free space imped-
Aoy 4at3 ance\ugl/eq=377Q) and Ry, conis experimentally contro-
+mq’ (twt1)— Read [W(uwt+1)—W(1)] lable. At high-temperature Ak is found to be linear in
" kgT/E.. Extrapolating this high temperature straight line to
+O[(BE¢)?]. (39 zero temperature, it was found that the zero-temperature off-

Consequently, the dc conductance of a single tunneling juncs-et (1Ag)o is positive and decreases with diminishiag, .
X : . . . Our theory has reproduced these observed features as shown
tion under the resistance environment is derived as

in Fig. 1 for e4=Rg/R;=0.5. For high temperature, Ag

1 BE, oy W ( g+ 1)~ V(1) can be readily derived as
G= -
Rext Rt Ty Mw 1 3a, kgT (0.6+0.20,)ay 42
2 Ag_ aex Ec dex . 42
+W' (uy+1) |+ O[(BEL)?]|. (40

Thus, the offset is simply (Ng),=(0.6+0.2,,) a\,/ aey.
In the high-temperature limit, the tunneling system exhibitsFor the case that the tunnel conductangés much smaller
the conventional Ohmic behavi@qnn=1/(Rr+ Ry as ex- than the electromagnetic environmental conductangg
pected. and in the vicinity ofu,,<1, the offset can be well approxi-
mated by the very simple form (Af),=0.6+0.2Rx /Re.
V. RESULTS AND DISCUSSION Hence, if we takdRq, 7= 3772, we obtain (1Ag),=14 for
, , . Rexco=0 and (1AQ)o=2 for Rey coi= 3 k), which agree
To demonstrate the mﬂuence of electromagnenc enviroNgyactly with the observed valuddl An effective-
ment on Coulomb charging effec'gs, let us introduce the d"capacitance model has been propd&tito explain these
mensionless conductance correction, measured offset values. The so-calculated ()} is smaller
than the experimental value by a factor 5 Ry, .o~ 0, and
fails to explain the case dRey cori= 3 k(2.
BEc oy V(py+1)—¥(1) , For a fixed value oBE., Ag is a function of the junction
=7 o +W (gt 1) conductancey, and the electromagnetic environmental con-
ductance aey. Using a standard formalism, it has been
+O[(BE)?], (41) prover?* that for high temperature, in the plane of and

AgE 1-G(Rext RT)
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40 ‘ , ‘ , m?Ag/BE, as a function of the external conductaneg,
exhibits a peak. Such an interesting feature has been ob-
served very recently, but has not appeared in the literature
yet2! The physics of this peak structure can be explained as
follows. Once an electron tunnels through the junction from
the left side to the right side, it can return to the left side via
the external circuit. Therefore, the larger is the external con-
ductancea,,, the faster the tunnel junction caalax to its
initial charge configuration. Consequently, the effective Cou-
lomb charging energy is reduced and sa. This conclu-
sion then agrees with the one reached in Ref. 5 and Ref. 6. It
is worthwhile to mention that in the limit of very high tun-
neling rate or very largey., such thatu,>1, Eq.(41) is

Ag (in units of [iEc/n2 )

simplified to
00k ‘ : ‘ '
0.0 100.0 200.0 300.0 400.0 500.0
2a awBE
o, _ ex wPc .
Ag —asv In[ 52 +1 \If(l)}, 43

FIG. 2. Ag in units of BE./#? as a function of the dimension-
less external conductaneg, for BE.=0.2, with various values of
the dimensionless junction conductanee=0.1 (solid curve, 1.0
(dot-dashed curye 10.0 (dotted curve, and 100.0(dashed curve

which is not analytical iny,. Therefore, the method fo cal-
culating G in Ref. 23 based on the Fermi golden rule is no
longer valid here.

The picture is entirely different at the other end of very

aex, the ratioAg/BE. has an absolute maximum value 1/3. small external cond_uctan(zf\ex, or very large ex}ernal resis-
tanceR.,/Rk . In this case the external returning path from

However, the functional dependence b/ SE, on «; and the right side of the junction to the left side is heavily

ey NaS never been obtained. Our theory allows us to CalCl’BIocked. Hence, once an electron tunnels through the junc-

late such important results, which are shown in Fig. 2 for. " - .
BE.=0.2 and in Fig. 3 forBE,=0.02. In each figure the tion, its probability to tunnel bgck is much larger than that to
o . : - travel through the external circuit. Eventually, an electron
ratio m“Ag/BE. is plotted as a function o, for @;,=0.1 : :
: spends most of the time tunneling back and forth, and so
(solid curve, 1.0 (dot-dashed curye 10.0 (dotted curve ) . ;
. X higher-order tunneling terms must be taken into account,
and 100.0dashed curve It is clear that in they;- ¢, plane, SR
even though each tunnel process is still incoherently sequen-

wr?e?g?\s’oys Zﬁ('mirzz;/rzlflﬁnf%ﬁ if:callfesalrrc]:r;[?gv:aejlsoaat tial. Such tunneling processes cannot be treated with the
T e UK Fermi golden rule either. In fact, the system is in a dynamical

Fhe value of th'S. absolute maximum is just 1/3.’ correspondétate with an equivalent reduced effective Coulomb charging
ing to the charging effects due to the geometric capacitanc

of the ultrasmall tunnel junction, 8nergy. Each curve in Fig. 2 and Fig. 3 then drops down to

; . : . ) Zero asaey approaches zero, at which the external circuit is
fWe nct)tt_:ces tlhat |nfbc2>tAh I7|g|.£2 ‘anrF'g' 3 fcr;r iﬂ)t(er?i Valluecompletely blocked. This point of view is similar to that
O.tﬁex' T?T alue 8 Wt gdﬁblc bec €ases monotonica fytha peares in the investigation of the statistical behavior of a

A o i e anderstandable because an nerease o Uinge elcton boi?tt i Nevernless, i he presen
X ¢ ; ", _problem the renormalization of the capacitance is dynamical
duction of the effective Coulomb charging energy. On the> P y

ther hand. f fixed val fthe iuncti duct rather than static. To our knowledge, such dynamical renor-
other hand, for a fixed value of the junction conauctanee )iz ati0n of the charging energy in the regime of very small

external conductance., is discovered for the first time.

4.0

VI. REMARKS

We have used a nonperturbative approach to derive the
quantum admittance of a single tunnel junction in the pres-

2 ence of an electromagnetic environment. Besides the case
o with an Ohmic environment, which has been investigated in
T 20}/ the present work, our theoretical formulation is very general
é / ---------------------------------- and can be conveniently used to study the effects of non-
5 } e Ohmic environments. If the electromagnetic environment
ol contains a frequency-dependent part described by a transmis-

g ] sion line>®263the quantum admittance of the system as a
/ function of frequency, which is of great interest, can be ana-
J lyzed with our theory. Such theoretical results can be com-

0.0

200.0 300.0 400.0

aex

100.0 500.0

FIG. 3. The same as Fig. 2 but f@E.=0.02.

pared with experiments in a very direct manfkf® With a
slight modification of the action, we can also investigate the
behavior of an array of tunnel junctions. If the junction array
has a pure Ohmic environment, the dc conductance of the
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system can be calculated by evaluating the mean value of the ACKNOWLEDGMENTS
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