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Charging ultrasmall tunnel junctions in an electromagnetic environment
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We have investigated the quantum admittance of an ultrasmall tunnel junction with arbitrary tunneling
strength under an electromagnetic environment. Using the functional-integral approach a close analytical
expression of the quantum admittance is derived for a general electromagnetic environment. We then consider
a specific controllable environment where a resistance is connected in series with the tunneling junction, for
which we derived the dc quantum conductance from the zero-frequency limit of the imaginary part of the
quantum admittance. For such an electromagnetic environment the dc conductance has been investigated in
recent experiments, and our numerical results agree quantitatively very well with the measurements. Our
complete numerical results for the entire range of junction conductance and electromagnetic environmental
conductance confirmed the few existing theoretical conclusions.@S0163-1829~97!02843-9#
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I. INTRODUCTION

In semiclassical theory of Coulomb blockade,1,2 electron
tunneling is controlled by the charging energy, which is d
termined by the junction capacitance. While the existence
this elementary charging effect is clearly seen in multijun
tion configurations,3 in a single junction, because of the stra
capacitance, only partial blockade has been observed.4 The
question is then, including the electromagnetic environm
what is the effective junction capacitance? The work of D
voret et al.5 has shown that external electrical circuit h
strong impact on the effect of Coulomb blockade in a sin
junction, and under standard experimental conditions wh
the external resistance is much smaller than the resist
quantumRK5h/e2, the Coulomb gap is totally smeared o
at low voltages and at low temperature. A similar result w
also obtained by Girvinet al.6 In both works, as well as in
most existing studies on charging ultrasmall tunnel junctio
the tunnel Hamiltonian was treated perturbatively1,7 using
the Fermi golden rule. This lowest-order perturbative a
proach is valid for weak tunneling strength.

With increasing tunneling strength, one must go beyo
the Fermi golden rule to include higher-order tunneling p
cesses. The conventional perturbative calculation is very
dious, and has been used to study the statistical propertie
a single electron box~SEB!.8–10In a SEB an island is formed
between a tunnel junction and a gate capacitor. This is
simplest structure exhibiting the charging effect. Even
such a simplest system, it is very difficult to derive the p
tition function beyond the second order of the dimensionl
tunnel conductanceRK /RT , where RT is the tunnel
resistance.10 Therefore, an entirely different approach is r
quired to investigate the physics associated to strong tun
ing strength.

The functional-integral method has been used to study
open, undriven tunnel junction.11–13 As an extension of this
work, the relevant properties of a SEB have been inve
560163-1829/97/56~19!/12404~7!/$10.00
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gated with the path-integral representation of the partit
function.13–18It has been proved19 that a formal perturbation
expansion of the partition function results in exactly t
same form as that derived with the path-integral meth
provided that the channel number of the tunnel junction
very large, which is the case for metallic tunnel junction
Furthermore, based on the functional-integral formulism
Monte Carlo simulation can be constructed for the en
regime from weak to strong tunneling strength. The Mon
Carlo simulation has been performed for the SEB and a v
smooth interpolation between the weak-tunneling and
strong-tunneling regime has been obtained.18 Therefore,
functional integral is a reliable powerful tool to study ultra
mall metallic tunnel junctions with arbitrary tunneling rate

Since most experimental investigations on ultrasmall t
nel junctions measure the current response to applied v
age, a relevant theoretical study must take into account
influence of the electromagnetic environment. This is
goal of the present work, which will use the function-integr
approach. In Sec. II we introduce the model Hamiltonian
a single tunnel junction under an electromagnetic envir
ment in a general form, and perform a theoretical analysis
arbitrary tunneling rate. In Sec. III we continue to derive t
quantum admittance of such a system in a close analy
form. Then, in Sec. IV we restrict ourselves to the simp
controllable electromagnetic environment, which allows
to compare our theoretical results with the rece
measurements.20,21For this case we only need the dc condu
tance, which is the zero-frequency limit of the imaginary p
of the quantum admittance. The numerical results will
presented in Sec. V, which agree well with experiments.20,21

Finally, in Sec. VI we give a concluding remark.

II. THEORY FOR MODEL HAMILTONIAN

The HamiltonianH05Hs1Ht of an open, undriven tun-
nel junction consists of two parts. The first one,
12 404 © 1997 The American Physical Society
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56 12 405CHARGING ULTRASMALL TUNNEL JUNCTIONS IN AN . . .
Hs5Hc1He , ~1!

represents the system in the absence of tunneling, wher

Hc5Q2/2C ~2!

is the Coulomb charging energy when a chargeQ is added to
the junction with capacitanceC. The electrodes are modele
as free quasiparticle systems described by

He5(
k,s

«kscks
1 cks1(

q,s
«qscqs

1 cqs , ~3!

where thechannel indexs includes both the transverse an
the spin quantum numbers. The longitudinal wave vector
the left electrode is labeled byk, and in the right electrode
by q. cks

1 ~or cqs
1 ! is the creation operator of an electron wi

energy«ks ~or «qs! in the left ~or right! electrode. The sec
ond part ofH describes the tunneling processes of electro

Ht5(
kqs

@ tkqscks
1 cqs exp~2 iw!1H.c.#, ~4!

wheretkqs is the transition amplitude of an electron tunne
ing from the stateqs in the right electrode to the stateks in
the left one. During the tunneling the channel indexs is
invariant. Here we have neglected the tunneling time, wh
is approprite for metallic tunnel junctions. Otherwise the tu
nel Hamiltonian must be modified.22–24 The operatorw is
conjugate toQ via the commutation relation

@w,Q#52 ie.

To avoid possible ambiguity in our theoretical analys
before introducing the electromagnetice environment, le
first write down the functional-integral representation of t
partition function ofH0

11,12

Z05E Dwe2S0[w~t!] . ~5!

In the actionS0@w#5Sc@w#1St@w#,

Sc@w#5E
0

b

dt
ẇ2

4Ec
~6!

describes the kinetic part of the system, whereEc5e2/2C is
the elementary charging energy, and

St@w#52E
0

b

dtE
0

b

dt8a t~t2t8!cos@w~t!2w~t8!#

~7!

is resulted from the influence of tunneling processes. W
the commonly used approximation that the transition am
tude tkqs in ~4! is a constanttkqs5t, the junction resistance
RT can be calculated as

RT5~4p2utu2r lr rN!21,

wherer l ~or r r! is the density of state in the left~or right!
electrode, andN is the number of channels. In this case t
damping kernela t(t) can be expressed as
in

s,

h
-

,
s

h
i-

a t~t!5
a t

4b2

1

sin2~pt/b!
, ~8!

where the coefficienta t5RK /RT is the dimensionless junc
tion conductance. The Matsubara frequenciesv l52p l /b,
which will be relevant to our future analysis and calculatio
lie in the region much smaller than the bandwidthD of the
metal. For such frequencies the Fourier transform ofa t(t)
reduces to the simple form

a t~v l !52
a tuv l u

4p
. ~9!

The electromagnetic environment of the single tun
junction represented byH0 , caused by the on-chip leads an
pads, etc., will be modeled by a transmission line,6 which
can be described by a Caldeira-Leggett Hamiltonian,5,6,25–27

Hex5 (
n51

` F qn
2

2Cn
1

wn
2

2e2Ln
G , ~10!

for an infinite series ofLC circuits. InHex the first part is the
charging energy of all capacitors and the second part is
magnetic energy of the corresponding inductors. The eig
frequency of thenth LC circuit is given bynn51/ALnCn,
and the spectral density

J~n!5p (
n51

` Cnnn
3

2e2 d~n2nn! ~11!

is determined by the external impedance. The operatorswn
andqn obey the commutation relation

@wm ,qn#52 iedm,n .

The electromagnetic environmentHex is coupled to the tun-
nel junctionH0 bilinearly,

H int52 (
n51

`
wnw

e2Ln
1 (

n51

`
w2

2e2Ln
. ~12!

The second term at the right-hand side of the above equa
is a physical counter term similar to the one introduced in
formulation of the dissipative quantum Brownian motion.27

The partition functionZ of the total HamiltonianH5H0
1Hex1H int can be similarly obtained in the functional inte
gral representation as

Z5E Dw )
n51

` E Dwn expH 2S0@w#

2E
0

b

dtFCnẇn
2

2e2 1
~w2wn!2

2e2Ln
G J . ~13!

The path integrals over the bath modes are Gaussian,
thus can be evaluated exactly. From the condition of van
ing first variation of the action with respect town , we obtain
the classical equation of motion for the phasewn ,

ẅn1nn
2~w2wn!50.

The solution to this linear differential equation with th
boundary conditions
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12 406 56X. H. WANG AND K. A. CHAO
wn~b!5wn~0!5wn0

is

wn
~cl!~t !5

sinh@nn~b2t!#

sinh~nnb!

3Fwn01
1

nn
E

0

t

dt8 sinh~nnt8!w~t8!G
1

sinh~nnt!

sinh~nnb! Fwn02
1

nn
E

t

b

dt8 sinh@~b2nn!t8#

3w~t8!G . ~14!

The corresponding action is then calculated as

S@wn
~cl!#5Sno

~cl!1Sex@w#, ~15!

whereSno
(cl) depends only on the boundary valuewn0 , and

Sex@w#5
1

2 E
0

b

dtE
0

b

dt8aex~t2t8!@w~t!2w~t8!#2.

~16!

The damping kernel of the electromagnetic environm
aex(t) can be expressed in a Fourier series

aex~t!5
1

b (
l 52`

`

aex~v l !e
iv lt ~17!

with the Fourier coefficients

aex~v l !52E
0

` dn

p

J~n!

n

v l
2

v l
21n2 ~18!

related to the spectral densityJ(n). aex(v l) is thus propor-
tional to the Fourier tramsform of the admittanceYe(v) of
the electromagnetic environment.26 In terms of the Matsub-
ara frequences, this relation is simply

aex~v l !52
RKYe~2 i uv l u!uv l u

4p
. ~19!

Both Sno
(cl) in Eq. ~15! and the contribution to action from

the fluctuations around classical paths are independent ow.
Therefore, they will generate an irrelevant prefactor in
partition functionZ. We can neglect this factor and obta
from Eq. ~13! the final result

Z5E Dwe2S[w] , ~20!

with the total action

S@w#5S0@w#1Sex@w#. ~21!

We should point out that althoughS0@w# is a periodic func-
tion of w, the total actionS@w# is not. The physical origin of
the nonperiodic feature ofS@w# is the continuous charg
transfer between the two electrodes via the external circ
which suppresses the discrete nature of the change of ch
due to the tunneling processes. It is this modification of
t

e

it,
rge
e

system geometry that can smear out dramatically the C
lomb charging effect, as will be shown in the following se
tions.

III. QUANTUM ADMITTANCE

The quantum admittanceY(v) of a single tunnel junction
under a general electromagnetic environment can be ca
lated conveniently with the path-integral approach by gen
alizing the Kubo formula for this system12,28–30

Y~v!5v21H lim
iv l→v1 id

E
0

b

dteiv lt^T̂tI ~t!I ~0!&J , ~22!

where T̂t is the time-ordering operator in imaginary tim
The correlation function is calculated as

^I ~t!I ~t8!&5Z21E Dwe2S[w]$2e2a t~t2t8!

3cos@w~t!2w~t8!#1I T@w,t#I T@w,t8#%,

~23!

with the current functional

I T@w,t#522eE
0

b

dt8a t~t2t8!sin@w~t!2w~t8!#.

~24!

At very low temperature one can use the instantonlike
the renormalization-group techniques to evaluate the pa
tion function,15–17,31,32but not the correlation function no
the quantum conductance, which are usually calcula
numerically.30 However, if the temperature is not very low
with a semiclassical approximation we can evaluate ana
cally all path integrals to obtain a systematic treatment of
influence of fluctuations in the form of a series expansion
bEc . Another advantage of the semiclassical method is t
the result is stable, because the fluctuation modes are of l
eigenvalues.16 Such relatively-high-temperature semiclas
cal results of ultrasmall tunnel junctions turn out to be ve
meaningful, in view of the recent measurements of Coulo
blockade effects performed at not-very-lo
temperature.20,21,33,34 In the following theoretical analysis
we will use the semiclassical method.

Let us at first evaluate the partition function. The to
action is now approximated by a Gaussian form,

Ssemi@w#5E
0

b

dt
ẇ2

4Ec
1

1

2 E
0

b

dt

3E
0

b

dt8aw~t2t8!@w~t!2w~t8!#2, ~25!

where

aw~t!5a t~t!1aex~t!. ~26!

The above approximation means that the contribution of
tunneling resistance in the action is replaced by an equiva
Ohmic resistance. Higher-order variations of the action
yond the Gaussian approximataion can be calculated in
form of a power series ofbEc . However, when calculating
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56 12 407CHARGING ULTRASMALL TUNNEL JUNCTIONS IN AN . . .
the current correlation function, which is normalized byZ,
the power series correction factor in the denominatorZ is
cancelled by similar factor in the numerator. Hence,Ssemi@w#
given by Eq.~25! turns out to be the approprite form fo
calculating the quantum admittance as a series ofbEc . We
notice that an arbitrary pathw~t! may be expressed as
Fourier series,

w~t!5 (
l 52`

`

w le
iv lt, ~27!

with the complex amplitudes

w l5w l81 iw l9

under the conditionw2 l5w l* . Hence, the semiclassical a
tion may be evaluated accordingly to give

Ssemi@w#5(
l 51

`

l l~w l8
21w l9

2!, ~28!

where the eigenvaluesl l are

l l5
v l

2

2Ec
22@a t~v l !1aex~v l !#. ~29!

Now the partition function can be directly calculated acco
ing to the formula

Zsemi5)
l 51

`
p

bl l
. ~30!

The current autocorrelation function~23! will be evalu-
ated in the same way. Let^I (t)I (t8)&1 represent the firs
term at the right-hand side of Eq.~23!. By performing a
series expansion in powers of@w(t)2w(t8)#, we can ex-
press^I (t)I (t8)&1 as
ag
t
ce
g-
uc
en
e

ne
-

^I ~t!I ~t8!&152e2a t~t2t8!Zsemi
21 E Dwe2Ssemi[w]

3F12
@w~t!2w~t8!#2

2
1••• G . ~31!

Making use of the Fourier series of pathsw~t!, we obtain

^I ~t!I ~t8!&152e2a t~t2t8!F122(
n51

`
1

bln

12(
n51

`
cosvn~t2t8!

bln
G1O@~bEc!

2#.

~32!

Substituting this expression of^I (t)I (t8)&1 into Eq.~22!, we
obtain the contribution to the admittance from the first te
at the right-hand side of Eq.~23!,

Y1~v!52e2v21H lim
iv l→v1 id

F S 122(
n51

`
1

bln
Da t~v l !

1 (
n51

`
a t~v l1vn!1a t~v l2vn!

bln
G J

1O@~bEc!
2#. ~33!

The second term on the right part of Eq.~23! can be evalu-
ated in the same way, although the algebra is more com
cated. In terms of the eigenvalues of the fluctuation mo
and the Fourier tramsform of the damping kernel, its con
bution to the admittance is derived as
Y2~v!54e2v21H lim
iv l→v1 id

F S 124(
n51

`
1

bln
Da t

2~v l !

l l
1

2a t~v l !

l l

3 (
n51

`
a t~v l1vn!1a t~v l2vn!22a t~vn!

bln
1

8a t
3~v l !

l l
2 (

n51

`
1

bln
G J 1O@~bEc!

2#. ~34!
able

n-
ing

i-

ted
So far our theoretical analysis is for a general electrom
netic environment. In the rest of this paper we will presen
detail quantitative study on dc conductan
G[ limv→0$Im Y(v)% for a specific case that the electroma
netic environment contains only an Ohmic resistance. S
electromagnetic environment is relevant to rec
experiments20,21 with which our theoretical result can b
compared.

IV. SIMPLE ELECTROMAGNETIC ENVIRONMENT

We will investegate the dc conductance of a single tun
junction connected in series with a resistanceRex. In a real
-
a

h
t

l

sample this external resistance can be varied in a controll
way. In this case we then haveYe(2 i uv l u)51/Rex, and thus
Eq. ~19! becomes linear in frequency

aex~v l !52
aexuv l u

4p
, ~35!

whereaex5RK /Rex is the dimensionless conductance co
tributed by the electromagnetic environment. Substitut
into Eq. ~29! this aex(v l) and thea t(v l) given by Eq.~9!,
we obtain the eigenveluel l for the simple resistance env
ronment. If l is very large,l is dominated by the term
v l

2/2Ec , and is insensitive to the tunneling terms represen
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12 408 56X. H. WANG AND K. A. CHAO
by aex(v l) and a t(v l). Hence, the corresponding effe
turns out to be an uninteresting prefactor and contribu
nothing to the conductance. Forv l much less than the band
width D, the eigenvalues reduce to

l l5
v l

2

2Ec
1

awv l

2p
, ~36!

whereaw5a t1aex. Inserting the eigenvalues into Eq.~33!,
after a straightforward algebra, we obtain

G15 lim
v→0

$Im Y1~v!%

52e2H F12
2

aw
@C~mw11!2C~1!#G

3
a t

4p
2

m tC8~mw11!

2p J 1O@~bEc!
2#, ~37!

whereC(z) and C8(z) are, respectively, the digamma an
trigamma functions. The parametersm t and mw are defined
as

m i5a ibEc/2p2; i 5t,w. ~38!

Now we calculate from Eq.~34! the second part of the d
conductanceG25 limv→0$Im Y2(v)%. When carrying out the
limits at the right-hand side of Eq.~34!, the orders in the
series ofbEc become mixed. This makes the calculation
G2 very complicated, yet straightforward. The final result

G252
a t

2

RKaw
$aw24@C~mw11!2C~1!#%

1
4m ta t

RKaw
C8~mw11!2

4a t
3

RKaw
3 @C~mw11!2C~1!#

1O@~bEc!
2#. ~39!

Consequently, the dc conductance of a single tunneling ju
tion under the resistance environment is derived as

G5
1

Rex1RT
H 12

bEc

p2

aex

aw
FC~mw11!2C~1!

mw

1C8~mw11!G1O@~bEc!
2#J . ~40!

In the high-temperature limit, the tunneling system exhib
the conventional Ohmic behaviorGOhm51/(RT1Rex) as ex-
pected.

V. RESULTS AND DISCUSSION

To demonstrate the influence of electromagnetic envir
ment on Coulomb charging effects, let us introduce the
mensionless conductance correction,

Dg[12G~Rex1RT!

5
bEc

p2

aex

aw
FC~mw11!2C~1!

mw
1C8~mw11!G

1O@~bEc!
2#, ~41!
s

f

c-

s

-
i-

which can be considered as a measure of the effective C
lomb charging energy: smallerDg corresponds to weake
effective Coulomb charging energy. In rece
experiments20,21Pekola and co-workers have manufacture
single tunnel junction witha t5RK /Rt50.5 and measured
1/Dg as a function of normalized temperaturekBT/Ec for
different values ofaex5RK /Rex. Rex contains two contribu-
tions Rex5Rex,in1Rex,con, whereRex,in is the intrinsic value
of the circuit, which is of the order of the free space impe
anceAm0 /«0.377V and Rex,con is experimentally contro-
lable. At high-temperature 1/Dg is found to be linear in
kBT/Ec . Extrapolating this high temperature straight line
zero temperature, it was found that the zero-temperature
set (1/Dg)0 is positive and decreases with diminishingaex.
Our theory has reproduced these observed features as s
in Fig. 1 for a t5RK /Rt50.5. For high temperature, 1/Dg
can be readily derived as

1

Dg
5

3aw

aex

kBT

Ec
1

~0.610.2aw!aw

aex
. ~42!

Thus, the offset is simply (1/Dg)05(0.610.2aw)aw /aex.
For the case that the tunnel conductancea t is much smaller
than the electromagnetic environmental conductanceaex,
and in the vicinity ofmw!1, the offset can be well approxi
mated by the very simple form (1/Dg)050.610.2RK /Rex.
Hence, if we takeRex,in5377V, we obtain (1/Dg)0.14 for
Rex,con50 and (1/Dg)0.2 for Rex,con53 kV, which agree
exactly with the observed values.20,21 An effective-
capacitance model has been proposed20,21 to explain these
measured offset values. The so-calculated (1/Dg)0 is smaller
than the experimental value by a factor 5 forRex,con50, and
fails to explain the case ofRex,con53 kV.

For a fixed value ofbEc , Dg is a function of the junction
conductancea t and the electromagnetic environmental co
ductanceaex. Using a standard formalism, it has bee
proven34 that for high temperature, in the plane ofa t and

FIG. 1. 1/Dg as a function of the normalized temperatu
kBT/Ec for the dimensionless junction conductancea t50.5, with
various values of the dimensionless external conductanceaex510
~solid curve!, 50 ~dotted curve!, 100 ~dashed curve!, and 150~dot-
dashed curve!. The casesaex510 and 100 correspond closely to th
two measured samples in Ref. 20 and Ref. 21, respectively.
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56 12 409CHARGING ULTRASMALL TUNNEL JUNCTIONS IN AN . . .
aex, the ratioDg/bEc has an absolute maximum value 1/
However, the functional dependence ofDg/bEc on a t and
aex has never been obtained. Our theory allows us to ca
late such important results, which are shown in Fig. 2
bEc50.2 and in Fig. 3 forbEc50.02. In each figure the
ratio p2Dg/bEc is plotted as a function ofaex for a t50.1
~solid curve!, 1.0 ~dot-dashed curve!, 10.0 ~dotted curve!,
and 100.0~dashed curve!. It is clear that in thea t-aex plane,
the absolute maximum value ofDg/bEc lies in the region
whereRT@Rex>RK . A careful numerical search reveals th
the value of this absolute maximum is just 1/3, correspo
ing to the charging effects due to the geometric capacita
of the ultrasmall tunnel junction.

We noticed that in both Fig. 2 and Fig. 3, for a fixed val
of aex, the value ofp2Dg/bEc decreases monotonicall
with a t . This is understandable because an increase of
junction conductance~or the tunnel strength! leads to a re-
duction of the effective Coulomb charging energy. On t
other hand, for a fixed value of the junction conductancea t ,

FIG. 2. Dg in units of bEc /p2 as a function of the dimension
less external conductanceaex for bEc50.2, with various values of
the dimensionless junction conductancea t50.1 ~solid curve!, 1.0
~dot-dashed curve!, 10.0 ~dotted curve!, and 100.0~dashed curve!.

FIG. 3. The same as Fig. 2 but forbEc50.02.
u-
r

-
ce

he

e

p2Dg/bEc as a function of the external conductanceaex

exhibits a peak. Such an interesting feature has been
served very recently, but has not appeared in the litera
yet.21 The physics of this peak structure can be explained
follows. Once an electron tunnels through the junction fro
the left side to the right side, it can return to the left side v
the external circuit. Therefore, the larger is the external c
ductanceaex, the faster the tunnel junction canrelax to its
initial charge configuration. Consequently, the effective Co
lomb charging energy is reduced and so isDg. This conclu-
sion then agrees with the one reached in Ref. 5 and Ref.
is worthwhile to mention that in the limit of very high tun
neling rate or very largeaex such thatmw@1, Eq. ~41! is
simplified to

Dg5
2aex

aw
2 F lnH awbEc

2p2 J 112C~1!G , ~43!

which is not analytical ina t . Therefore, the method fo cal
culatingG in Ref. 23 based on the Fermi golden rule is
longer valid here.

The picture is entirely different at the other end of ve
small external conductanceaex, or very large external resis
tanceRex/RK . In this case the external returning path fro
the right side of the junction to the left side is heavi
blocked. Hence, once an electron tunnels through the ju
tion, its probability to tunnel back is much larger than that
travel through the external circuit. Eventually, an electr
spends most of the time tunneling back and forth, and
higher-order tunneling terms must be taken into accou
even though each tunnel process is still incoherently sequ
tial. Such tunneling processes cannot be treated with
Fermi golden rule either. In fact, the system is in a dynami
state with an equivalent reduced effective Coulomb charg
energy. Each curve in Fig. 2 and Fig. 3 then drops down
zero asaex approaches zero, at which the external circuit
completely blocked. This point of view is similar to tha
appeares in the investigation of the statistical behavior o
single electron box.10,14–19,32 Nevertheless, in the presen
problem the renormalization of the capacitance is dynam
rather than static. To our knowledge, such dynamical ren
malization of the charging energy in the regime of very sm
external conductanceaex is discovered for the first time.

VI. REMARKS

We have used a nonperturbative approach to derive
quantum admittance of a single tunnel junction in the pr
ence of an electromagnetic environment. Besides the c
with an Ohmic environment, which has been investigated
the present work, our theoretical formulation is very gene
and can be conveniently used to study the effects of n
Ohmic environments. If the electromagnetic environme
contains a frequency-dependent part described by a trans
sion line,5,6,26,35the quantum admittance of the system as
function of frequency, which is of great interest, can be a
lyzed with our theory. Such theoretical results can be co
pared with experiments in a very direct manner.21,36 With a
slight modification of the action, we can also investigate
behavior of an array of tunnel junctions. If the junction arr
has a pure Ohmic environment, the dc conductance of
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system can be calculated by evaluating the mean value o
current through the external resistance.37 Finally, we should
mention that very recently a dissipation-drive
superconductor-insulator transition in a Josephson junc
array has been observed by changing the external imped
continuously.38 Using the theoretical approach developed
the present work, this problem can be investigated theo
cally at a quantitative level.
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