PHYSICAL REVIEW B VOLUME 56, NUMBER 19 15 NOVEMBER 1997-I

Magnitude and size scaling of intervalley coupling in semiconductor alloys and superlattices
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Coupling between differenf, X, andL band-structure valleys is responsible fay level anticrossing in
superlattices as a function of period, pressure, and electric field arid)ftoptical bowing” of band gaps in
random alloys. We investigate the symmetry, magnitude, and size scaling of intervalley coupling in semicon-
ductor superlattices and alloys by direct supercell calculations, performed with screened pseudopotentials and
a plane-wave basis, considering up t§ afoms/supercell. Projecting the calculated electronic wave functions
; of alloys or superlattices onto the bulk states of the constituent zinc-blende materials shoscthvatain
a “majority representation” from one or more zinc-blende stage¥he intervalley couplind(i,j) between
the alloy stateg); and; then includes a termR(y, y")V(y,y") due to the “majority representationsy and
y' of ¢ andy;, respectively, plus residual terms due to the minority representations. We find the following:
(i) In alloys the orbital overlap functior=(y,y') is large, since the wave functions are extended. The
intervalley coupling elemer¥/(y,y') exhibits simple selection rules: being zero fdr,{,X1c), (I'1c,L3ae),

(X3, XYo), etc. (“weak coupling”), and nonzero forI(;.,Xac), (I'1c,L1c), (Lac.X1e), €te. (“strong cou-
pling”). This explains why thd'-like conduction band of mixed-cation alloys contains zinc-blehgg and

L,. character, but noX,.. In the case of strong couplin(i,j) scales as 1/Q, where() is the volume,

while in the weak-coupling case the entire coupling originates from the “minority representation,” and is
20-100 times smaller. The minority representation, however, contributes to the bowing of the band gap vs
composition.(ii) In superlatticesalthough the above selection rule fé(y,y’) still exists, the magnitude of

the intervalley coupling is governed by the overlap functiefy,y’). For simple superlattices;(y,y') is

small, since the wave functions are localized in particular segnméwsak coupling”). Consequently, the
“majority representation” contributes 5-100 times less than in the analogous case of alloys. Furthermore,
E(i,j) scales as b, wheren is the superlattice perioflS0163-18207)05744-5

I. INTRODUCTION In the second type of manifestation of intervalley cou-
pling, a state of the composite system is dominated by con-
When an electronic state of a composite systerg.,A/B tributions from a single valleye.g.,I') in the constituent
heterostructureA/B nanostructure, oA;_,B, alloy) con-  solids. Here the intervalley coupling is demonstrated by the
sists of bulk Bloch states Originating froemfewband struc- existence of minority contributions fromherva"ey minima
ture valleys [, X,L) of the constituent solidé andB, we (e.g.,L) in the same state of the composite system. This is
say that the system exhibits “intervalley coupling.” There shown in Fig. 2a) for the I'-like conduction-band minimum
are two types of manifestations of intervalley couplings: ~ (CBM) of the Ga-AlysAs alloy. Its wave function)()(r)
In the first type, two states of the composite system are
composed each from a different band structure valley of the

50 . .

parent bulk system. When an external fiéddg, pressuré;® - 3w T T T A
.y Y5 . . . . S— n=14
alloy compositior,® electri® and magnetic fields is 40 | 2 180 Xio 1
scanned, the energies of the two states of the composite sy. B B 179k Erx 4 A
tem will anticross due to the mixingcoupling between a0 | B sl 1
them. Figure 1 illustrates this case by depictisge the in- Hc'.XSC o 1'77 ?
B v w (R I 1 L b 7 T

sed the calculated dependence of two conduction-band en

ergy levelsT'{(T";.) andI'y(X;.) of the (GaAs)/(AlIAS),
(001) superlattice on the external pressure. The states hav
the samel’; symmetry in the superlattice, yet they are de-
rived from distinct valleysI';. andX;., respectively of the
zinc-blende constituents. The anticrossing g4p’,X) (the
point of closest approagtcan be calculated or measured,
thus providing the magnitude of thg .- X, intervalley cou-
pling in the superlattice. Figure 1 shows how the magnitude

of the I'y.- Xy anticrossing gap oscillates with the superlat-  F|G. 1. Magnitudes oE(T",X) anticrossing gap as functions of
tice periodn, and illustrates how the couplifig;c-Xsc With  superlattice perioah in (GaAs),/(AlAs), (001 superlattices. The

a different stateXs. oscillates with a different phase. These inset shows the change of the energy levels as a function of external
behaviors will be analyzed below. pressure fon=14.

Anticrossing gaps E (I',X) (meV)

Superlattice period n
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. . existence or absencef intervalley coupling, this is often

le-0 | M ] discussed in the literature by considering the overall symme-
[ (a) try of the composite systef:** This type of analysis can be
Te1 b T E used, for example, to explditwhy thel";.-X;. anticrossing
oy gap is zero for odaeh (Fig. 1), while the anticrossing gap for
S te2 b L . I'1-X5c is zero for evenn. But the applicability of the
'§ L symmetry-based analysis is limited to highly symmetric
T s k- l l i composite systems. In many cases, such as the alloy system
o g9 $03 28 illustrated in Fig. 2a), the overall symmetry is too low to be
% §Z ggg Z§ useful in this respect. Regardifig), themagnitude and scal-
g et o § o] ing of intervalley coupling is important for understand-
@ e §§ g % g i i i il In i § H ing optical bowing in alloy$,® the indirect optical
les * e o o 06 transition without phonon interactidri? the resonant inter-
° valley tunneling in quantum well electron transmission,
% 28 and the characteristic pressure-induced changes of photo-
5 0 luminescencé*? Regardingiii ), the size scaling dE(y, ')
o is related to the order of the transition from direct to indirect
4: 3.2 gaps. IfE(I',X)—0, for infinite alloy supercells, then the
g a4 I'— X transition in ALGa,_,As asx changes is first ordér.
S Otherwise, it is second order.
z 86 Here we will analyze the magnitudes and scalings of in-
T s tervalley couplings for alloys and superlattices. We find that
S o . . L } the magnitude of intervalley coupling comes from a “major-
> 0.2 0.4 0.6 08 1 ity contribution” and a “minority contribution.” In the case

AlAs - GaAs of alloys, whether or not the majority contribution is zero is
Composition x of GaxAl.x As determined by a selection rule we deriige. (10) below].
When the majority contribution is not zero, the magnitude of
the intervalley coupling is 20—100 times larger than the cases
where the majority contribution is zero and the intervalley
coupling scales as {f), where() is the volume of super-
cell. In the cases of simple superlattices, we find that the
the sum of all points equals 1b) The VCA alloy energies for majority contribution is always small, due to a vanishing

different compositionx. The vertical dashed line corresponds to overlap fu_nctlor[Eq. (7) below]. In_the_se cases, th_e interval-
_ ley coupling comes from the minority contribution terms,
x=0.7 for Gg -AlysAS

and it scales as &/ wheren is the period of the superlattice.

FIG. 2. (a) Spectral analysifEq. (1)] of the I'-like CBM wave
function of a 327 680-atom supercell representlng the random
Gay7AlgAs alloy. The spectrurrP(kx,ky’kz) m|Am’(kx,ky'kz)|
plotted as a function ok,. Each diamond symbol represents one
(ke .k, ,k;) point. The value oP®™ at theT point is 0.9136, and

was calculated via a plane-wave screened pseudopotential
method using a-33 000 atom cubic supercdbee Sec. I\
It is then projected onto a set of virtual-crystal-

II. MAJORITY AND MINORITY CONTRIBUTIONS
TO INTERVALLEY COUPLING

approximationVCA) zinc-blende Bloch functiong . (r): It is useful to define a “majority representation” for a
given eigenstate of the composite system using the spectral
. ) expansion of Eq(1). As shown in Fig. 2a) (computational
— VCA
lﬂ(')(f)—E A£1|1> k() 1) details will be given in Sec. I}l a single zinc-blende wave

vector (k=T", and in fact a single zinc-blende stakg)
wherek is the reciprocal vector of the supercell within the contributes more than 90% of the total weight to the alloy
zinc-blende Brillouin zone andn is the band index. The I'-type CBM. ThisI';. constituent state will thus be referred
amplitudePg®V==  |ASEM|? is shown in Fig. 2a) vs thek  as the “majority representation” of thE alloy state. A simi-
points of the supercell. As we can see, a single zinc-blendiar analysis of thel-type CBM of the (GaA9gs/(AlAS)gs
componenk=TI" contributes 90% of the total weight of the superlattice at zero pressure is shown in Fig. 3. We see that
alloy CBM wave function. Further analysis shows that thealthough the spectral functioR®M=3,|ASEM2 peaks at
weight onk=I" comes mainly from a single zinc-blende the zinc-blende wave vectdt=0, the single zinc-blende
VCA statel’;.. The 10% minority contribution of othek  state {";.) accounts for only 43% of the total spectral
points [mostly from theL point in Fig. a)] results from  weight. Including the thre& points around” (enclosed box
intervalley coupling. Although small, these minor{t?fBM} in Fig. 3 accounts for 93% of the total weight, whereas
components contribute significantly to the optical bowiag inclusion of fivek points accounts for 99.6% of the total. To
nonlinear dependence of the alloy eigenvalues on composelaborate on this discussion, we separate the right-hand side

tion) in this systenf:?® of Eq. (1) into two terms:

We are interested here in establishiingthe existence or
absence of intervalley coupling(y,y’) between given #(r AD VCA I A(' VCA (|
statesy and y/, (i) the magnitude of the coupling, ari ) (= 2 o ko + 2k Png ke + 3k 2 knic(F)-

its scaling with the systems size. Regarding itémi.e., the 2
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FIG. 3. The spectral analysi&q. (1)] of the I'-like CBM state
of a (GaAsg/(AlAs)ys (001)  superlattice. P&EMky,kz)
=2m|A%B(“§'Xkaykz)|2 is plotted as a function ok, andk,=k,=0
for this supercell. Thé>, value at thel” point is 0.43.

The first term is limited to the neighborhoatk of k, and
gives the “majority representation.5k equals zero for al-
loys (Fig. 2), but includes a few points for superlatticgsg.
3). We will use y=(ng,kg) to denote the constituent basis
function at the center of the majority representation.

The anticrossing gafE(y,y') between the stateg!()
[with a majority contributiony=(ng,ko)] and ¢\ [with a
majority contributiony’ =(n¢,k¢)] is

E(r.y) =20Vl =2 3 A% Al

o ¢ Kb+ oK
VCA VCA
x<¢n0rk0+5k|v(r)|¢n6,k6+5k’>
+ 2 'R’ kK, &)

n,n’ ,kk’

where V(r) is the total potential of the composite system,

and the sums ovek andk’ are centered arounk, andkj

(ko# ko), respectively, with noncommon domains. In Eq.
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der this assumptionAV,g(r) must have Ty symmetry
around its origin. This is clear that if we sBi,=1, then
AV pp(r)=V(r;1N—1)-V(r;0,N), which hasTy symme-
try. Equation (4) is satisfied, e.g., by common empirical
pseudopotentid~1’ or other non-self-consistent potential
schemes when there is no atomic relaxations.
Substituting Eq(4) into Eq. (3) gives an anticrossing gap

E(y,y")=2(¢V\V[¢1)=2F (v, ¥ )V(v,7y")

+2 >

n,n’ kk’

"R’(n,n’ ,k,k"). (5)

Here

F(ry)= 2 A% A ot s S(Ko—kg+ ok—oK')
Sk, sk’ 070

(6)
is an envelope overlap function, and
1 ik-RO
S(k)=1; 2 € Fa W
N RO

is a structure factor, while the VCA intervalley coupling
element is

V(7,7 ) =N(pY A AVag(n)| ¢7,7").

8)
Also note that, if we usepy“*, 4"~ to replacey and

9 in Eq. (5), we have a singl&-point (SKP) anticrossing
gap,

Eske7,7') =2( Y AV(1)] 6,7 =2S(ko—kp)V(7,7").
)

We have introduced the quantily into Egs.(7) and (8),
which is the total number of primary cells in the system, to
ensure thaV(y,y’) is an intensive quantityindependent of
the system size TheR’(n,n’ ,k,k’) term in Eq.(5) contains

the residualsR of Eq. (3), and additional residual terms
VCA

(3), the first term comes from the majority representationwhich are produced when we fep|a¢ﬁ¥oc,ﬁo+ ak With ¢

term in Eq.(2), while R(n,n’,k,k") includes the residuals.

in the evaluation of Eq(8) in the cases of superlattices. We

We will first discuss ways to estimate the magnitude ofwill call the first term in Eq.(5) the majority contribution to

the first term in Eq(3) under a simplified but common as-
sumption about the potenti®(r) (we will discuss the pos-
sible errors of this assumption in Sec.)VWe will assume

the intervalley coupling, while the residual tef in Eq. (5)
the minority contribution.
From the above definitions we can now derive the central

that the effective potential is given by a linear superpositiorresult of this section. We define o, and X, states by

of overlapping(but not necessarily spheri¢atomic poten-
tials AVg(r) on ideal, unrelaxed lattice sitd®’. We con-

choosing the origin of the point group operation at the anion
site. As a result, in the systems we studied here, the lowest

sider a composite system made of a zinc-blende lattice witdonduction band state 4t point is theX,. (anionS+cation

Na A atoms,Ng B atoms (both cation and No+Ng=N
anionsC. UsingV(r;Na,Ng) to denote the total potential of
this system, we consider the form

V(r;Na,Ng)=V(r;ON)+ >, AV,g(r—RY),
R}

(4)

whereV(r,0N) is the total potential of the puBC crystal,
and R,‘i is the ideal(unrelaxed cation atomic position of

atom A.AV,g(r) is the change in potential due to a substi-

tuation of oneB atom with oneA atom.AV p(r) is assumed
to be independent of the local environment aro}d Un-

P) and the next lowest state is th&. (cation S+anionP).
For mixed-cation alloys, we find thaf(y,y’) of the follow-
ing pairs are exactly zero for the potential of Ed):

V(I'1¢,X1¢) =V(I'1¢,L3e) :V(X)l(c 'X>1/c) =V( ){c vxgc) =0.

(10
[ForV(Xi¢,XY.) andV(X].,X%.), (X,y) can be replaced by
(x,2) or (y,z)]. For mixed-anion alloys, we need to ex-
changeX; with X5 in Eqg. (10). These selection rules can be
derived by considering the symmetries f* and theT,
symmetry of AV,g(r) in Eg. (8). We see that for
superposition-type potentials without lattice relaxation, the
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entire intervalley coupling between the states of Etp))  perlatticelI-X couplings close to experimental valuésThe
originates from the minority representation of the wave func-alloy optical bowing parameters calculated using these em-
tions. On the other hand, for other pairs of states, we have pirical pseudopotentials also agree well with experimental
nonzero majority contribution to the couplifigrovided that  results'®*?°For bulk AC andBC crystals, the wave functions

the overlap factoF(y,vy’) is not zerd. are close to self-consistent local-density approximatiot
In the remainder of this paper, we will show that we canresults.
distinguish two main types of intervalley couplings: We use two methods to solve the single-particle Schro

(i) Large majority contribution in alloy (“strong cou- dinger equation12): For systems containing up to 30 000
pling”): This is the coupling between the “VCA-allowed atoms, we have used the “folded spectrum method”
pairs” [e.g., I'ic-Xae, Iic-Lic, Xie-Lies Xie-Lae, and  (FSM).* Instead of solving the original Hamiltonid, this

3 X% which are not in Eq(10)]. We will see that, in  method solves the folded HamiltoniaHl - €)%, Wheree,o
alloys, where the coupling states are extended and have i@ a reference energy placed inside the band gap. The com-
large overlapF(y,y"), the majority term alone, using the putational effort of this method scales linearly to the size of
model potential, can explain the full coupling quantitatively. the system. For systems containing more than 3066 up
The full coupling will be calculated by a direct diagonaliza- to a few million) atoms, the folded spectrum method be-
tion technique(see Sec. I, while the model coupling will  comes too expensive to use. For these cases, we have used a

be represented by the leading terms of E&5-(10). Evalu-  “linear combination of bulk bands(LCBB) method'® This
ating the structure factd®(ko—kg) using the random distri- method expands the system eigenstate wave functions by the
bution of A atoms in Eq(7), we have constituent bulk Bloch wave functions at makypoints. By
selecting the physically important basis functions, we can
alloy, " — ' . ! / diagonalize a million-atom system by using a few thousand
Emay (7.7")=2F(7.7)V(7.7)=2S(ko~koV(7.7") basis functions. The resulting eigenvalues have errors of just
8x(1—x) a few meV with respect to a full basig.g., the FSM ap-
=V—n V7 (1) proach. The intervalley coupling amplitudes obtained with

the LCBB method are very close to the “exact” results ob-

which scales as 102, where QxN is the volume of the tained with the folded spectrum method for systems where
system andk is the alloy composition of constitueAt Note  both methods can be applied.
that, for an alloy, this majority contribution term coincides  Being able to calculate the eigenstates and eigenvalues of
with the singlek-point anticrossing gap of E¢9). We will  a given system, the intervalley coupling is obtained by per-
see later that this is no longer true for superlattices. forming a few calculations of Eq12) at different pressures.

(i) Small majority contribution (“weak coupling”): The anticrossing curves shown in the inset of Fig. 1 are
There are two cases where this happdas:Couplings be- obtained and the anticrossing g&gvy,y’) is measured di-
tween the “VCA-forbidden” states of Eq(10) in an alloy rectly from the curves. The wavefunctions can also be pro-
system. In this case, the majority contribution is exactly zerojected to the VCA basis to obtain the spectral analysis shown
and the entire coupling comes from the minority contribu-in Figs. 2 and 3.
tion. We found that in these cases the magnitude of the cou-
pling is 20—100 times smaller than in the strong-coupling

case.(b) Intervalley couplings in simple superlattices. The IV. INTERVALLEY COUPLINGS IN ALLOYS:
majority contributions of these couplings are always small STRONG OR WEAK COUPLINGS ACCORDING
due to a vanishing overlap factéi(y,y’) stemming from TO SELECTION RULE

the localization of the wave functions. The magnitude of the

. . . A. Si li
coupling scales as i, wheren is the period of the super- 1z€ sealing

lattice. Figure 4 shows the magnitudes of thieectly calculated
M- Xqe and T'ye-Xge anticrogsing gapssymbols er the
lIl. DIRECT CALCULATIONS OF THE INTERVALLEY Ga sAlosAs alloys as a function of the supercell size, rang-
COUPLINGS ing from N=10"-1CF atoms. We assume unrelaxed atomic

sites and a superposition potential. We see that, as pointed
To examine the different models of intervalley coupling, out by Koiller and Capa2,the I'-X coupling E(y,y') ap-
we need benchmark accurate calculations. To do so, wgroaches zero for an infinitely large alloy supercell. This
solve the single-particle Schdimger equation implies that the optical transition changes abruptly from a
direct transition to ar;ﬁeigsdirect transition when theand X
192 ) Dy i states cross each otHet: For finite supercellsE(y,y') is
[ 2 V2+V(NANg) Ty (N =y (n), (12 not zero, and thus can be measured experimentally from the
using a Superposition of atomic screened pseudopoteﬂﬁims:optica.' transition. The finite Supercell size of the aIon can be
realized by the confinement of the wave functions, either due
to natural composition fluctuation in ideal allo§fs,or
V(r;Na,Ng)= :;B . RE va([r=R|). (13 through controlled growth of alloy quantum défsThe mag-
TR e nitude ofE(y,v’) can also be estimated from our model: the
Herev (r) is the screened pseudopotential fittetb bulk  solid line in Fig. 4 shows the predicted curve for the con-
band structures and band offsets. Previous calculations usirfigguration averaged magnitude of tfig .- X3, coupling by
the same empirical pseudopotentials mo@#®M) yield su-  considering only the majority contribution terfiq. (11)].
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S 100 : (11)). We can now see that the spectral densky

2 majority term =3 |Ankl? is small arounck=X. First, X3, couples only
g of Tye Xac weakly into the alloy CBM, sinceV“A(X3,) is far above
x< 10 _\.\-\/.\! e/“A(I';.), so the energy denominator in E@5) is large.

= As a result, we can ignore the contributionXf. state in Eq.

W oqt Te-Xze 1 (14). Furthermore, according to EGLO), (#{' V|3 ") is

§ L S exactly zero. Thus the correspondidg , for X;. should

g 0.1r ‘"“*-\‘-\_’ g also be very smal{nonzero value comes only from second-
£ Fo X order perturbation effects Thus Py==|An, /% is small

8 0.01k > \\1" jf__* aroundX. On the other handP, aroundL is much larger
s *-- and forms a peak, because the corresponding coupling is not
g 0.001 l required to be zero by Eq(10). Using V(I';.,L1c)

¢  =0.467 eV calculated from our EPM potential, aeff™"
—e¥ch=0.091 eV from Fig. &), from Egs.(11) and (15)
we obtain thatAElC=O.67>< 1073, which is close to the di-

FIG. 4. The directly calculated anticrossing gapd’;c,X1c) rectly calculated result of 0.5710 3, as shown in Fig. @).
and E(I';¢,X3) (symbolg for random GgsAlosAs alloys at dif-  Thys, in the cation-mixed alloys, tHelike CBM has a ma-

ferent supercell sizes. The soli_d line is the mEjority contribution ijority representation originating from zinc blenflg., and a
the E(I's¢, X3c) from Eq.(11) [with V(I's¢, X30) =0.374 eV for the - in oty representation originating frofn,.. .
pseudopotentials used h¢r&he dashed line is drawn to guide the

eye.

10° 10

Total number of atoms in the alloy supercell

D. Effect of intervalley coupling on alloy optical bowing

We useV(I'(,X3:) =0.374 eV, obtained from our wave- The existence of minorit@,, , terms for (1,k) # y in Eq.
functions. This gives (for x=0.5 alloy composition (14) contributes significantly to the bowing of the alloy
EZe¥(T1¢,X3c) = 1.06//N eV, which agrees well with the valence-band maximurVBM) and CBM states. The bow-
directly calculated valuef=ig. 4), demonstrating that in this ing coefficientby is defined in the following description of
case, the contribution of the minority representatiam  the alloy energy:

cluded in the direct calculation, but omitted in the model

calculation is small. E(X)=Eg+ax—byXx(1—Xx), (16)

wherex is the alloy composition an, is the energy for one
constituent crystal correspondingxe-0. The bowing coef-

It is clear from Fig. 4 that thd';.-X3. anticrossing gap ficientb,,, can be divided into contributions from VCA states
(“strong coupling”) is 20100 times larger than tha.-Xic  (intrinsic bowing and contributions from intervalley
results(“weak coupling”). This can be explained by the fact coupling (repulsion effedt byy=byca+ beoupi- The inter-
that the majority contribution of thE,-X;. coupling in Eq.  valley coupling effect can be expressed as a second-order
(5) is zero according to Eq10), while, for I'y.-X5. cou-  perturbation terl”?1[bcoum=AEy/X(1—X)]i
pling, it is not zero.

B. Why is I' ;.- X3, coupling stronger than I" - X

V(r,nk)|?

1
C. L. minority representation AEyZX(l—X)N %; e (17)
Y

Figure Za) shows that the largestinority representation

to the G@ Al 4As alloy comes fronlL, not X. This is sur- <
prising since at this composition the energy leveXaf are £ '%F
closer tol';; than the level ot ;. [Fig. 2(b)]. This phenom- =
. . . X 10k E
enon can be explained using perturbation theory. When the .- i single-k-point ]
majority representation has a large coefficient, the spectral iy L resutt: 1h
expansion formula in Eg2) can be further simplified as 2 :
g 01 [ .
> ]
PN =AY D A 19 5 | TNy .
(n,K)#y g 001 F | e~ Xge —— ‘\ij} direct cale. |
L . . . S i - s * Its: 1/n3
The minority amplitude#\, x can be obtained approximately g | TeXte resulte: 1n
using first-order perturbation theory, oot - 100
( ¢\V/CA|V| ¢>]/(IZ(A Superlattice period n
~ s - 15
nk en— e\y’CA A9 FIG. 5. The anticrossing gaf&(I';¢,X1c) andE(T' ;¢ ,X3c) for

o ) o (GaAs),/(AlAs) , superlattices of different periods n, using differ-
We see that the minority representati@p, is directly pro-  ent empirical pseudopotentials. The type-1l EPM results correspond
portional to <¢>\V/CA|V| e =F (7,7 )V(y,7'), which is  toreal physical situations for GaAs/AlAs systems. The upper curve
the majority contribution term to the anticrossing gap in Eq.is the singlek-point prediction of Eq(9).
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TABLE |. Magnitudes of singles-point intervalley coupling(in meV) ($y“AV(r)|¢}") evaluated
using VCA wave functions. The potenti(r) is obtained using a cubic supercell containing 64 atoms. The
values in the upper half of the table are predicted to be zero by superposition assumptin Evger which
<¢¥°A|V(r)|¢\y’,CA>:S(ko— ko V(y,y") [Eq. (9)]. RMS stands for root mean square values. “NZ” in the
last column stands for “not zero.”

<¢)7|V|¢7’> <¢y|v| ¢y'> <¢y|v|¢y’>

Gay sAlg sAs Ing sGay sAs INg sGay sAS <¢y|AU| ¢y')
y—v' LDA (unrelaxedl EPM (unrelaxed EPM (relaxed S V(y,y')
Te— X%, 0.046 0 —4.55 > 0
Te— XY, 0.027 0 7.46 2 0
Tie— X2, —0.042 0 —2.84 0 0
X5 =X, —0.020 0 —-3.49 0 0
XX~ X2, —0.147 0 9.06 ;:g 0
X{—X5 —0.008 0 —4.74 2 0
Iy LD (1) —0.004 0 -3.11 ? 0
- Lglcll)(z) 0.029 0 —3.07 > 0
XX — XY, 0.004 0 -1.07 0 0
XY= X5, 0.003 0 -0.75 0 0
Tie— X%, —-0.01 0 0.79 0 NZ
X5 X —0.04 0 1.49 0 NZ
LD X2, 0.24 0 4.91 0 NZ
LD _xz_ —-0.28 0 —3.64 0 NZ
RMS 0.109 0 4.33
[ye— X5 38.78 8.65 -10.67 > NZ
Tie— XY, 116.40 25.96 —32.60 z NZ
X5~ X, 139.70 -36.16 123.30 2 NZ
Xhe—X5 46.56 —12.05 40.86 % NZ
rlc:L(lili —91.18 —38.35 —6.52 i_i NZ
L{D (11 149.60 1.19 19.80 ? NZ
LD X 19.70 —18.68 2.18 ? NZ
LD XY, 19.48 —18.68 1.21 ? NZ
L{ED —37.45 —10.86 —20.00 32 NZ
L{D —37.64 —10.86 —26.21 > NZ
RMS 84.27 21.46 44.25

whereV(r,nk) is just theV(y,y') of Eq. (8). This second- Here |bcgy(coup)|>|bygu(coup)|; this is because the in-
order perturbation in eigenenergy corresponds to the firstervalley coupling is much stronger in the conduction band
order perturbation in wave function of E@5). If we neglect than in the valence band. Using the selection rule of(EQ),

the intervalley coupling, i.e., if we use only the majority we can further analyze that thegy(coup) of the alloyI";
representation statg as the alloy wave function, we obtain state is mainly due to minority representatiorLgf, instead
biot=byca - In the case of GaAl,_,As, we find thatbyca of minority representation a.

=—0.38 eV for thel'|.-I'y5, energy gap, while the experi-
mental result ishXP'=0.37 eV?® This large discrepancy is
due tobeyp=bir—byca . In our current supercell calcula-
tion, b,,=0.45 eV?° which is close to the experimental re- WEAK COUPLING DUE TO SMA,LL OVERLAP

sult. The large differencbyca— byt cOmes mainly from in- FUNCTION F(y.7")

tervalley couplings in the conduction band. If we separatea. why is I'-X coupling weaker in superlattices than in alloys
the band gaf,,; into begy—byem » We find that

V. INTERVALLEY COUPLINGS IN SUPERLATTICES:

In Fig. 1, we see the magnitudes of the anticrossing gaps
of theI";.-X3. andl' .- X4 pairs in(00D) (AlAs),/(GaAs),
superlattices. Although in the superlattice the.- X5, cou-
pling is larger than thd';.-X;. coupling, surprisingly the
bygw=—0.05, bcgy=0.78: Coupling, difference is not as large as in the case of the Bk sAs

random alloy(Fig. 4), where the ratio was 20—100. To see
bygy=—0.10, bcgy=0.35: Total. (18 how much of thd™; .- X5, coupling comes from the majority

bygu=—0.05, bcgy=—0.43: VCA,
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contribution, we compare in Fig. 5 the directly calculatedfactor expi(kp—ky)-r] in the evaluation of Eq(6). This

I' ;- X3¢ anticrossing gap with the results obtained using theagain can be proved using the envelope function of an
singlek-point coupling of Eq.(9). In the alloy, this single- effective-mass model.

k-point coupling represented the majority contribution term, In conclusion the majority contribution of the intervalley
and thus agreed well with the directly calculated res@itg.  coupling of one-dimensiona{lD) superlattices is always
4). But in superlattices, the singlepoint result is much much smaller than the singlepoint result. This is due to the
larger(5—100 timeythan the directly calculated results. Fur- small value ofF(y,y’), regardless whether the band align-
thermore, while the results of the sindtepoint coupling ment is type | or Il. The resulting superlattice anticrossing
scale in superlattice asri/wheren is the superlattice pe- gaps scale asi?, wheren is the period of the superlattice.
riod, our directly calculated' ;.- X3, andI';.-X;. couplings  Although we do not explicitly study quantum wires and
scale as 1®. We find that these differences are due to thequantum dots in this paper, we point out that the above con-
localization of the superlattice stateé) and 4. As a re- clusion is also true for 2D quantum wires and 3D quantum
sult, the extended single-point VCA state&ﬁ\y’CA and ¢VCA dots?® wheren is the linear dimensiofinot the area or vol-

: ! Y
cannot be used to represefit) and 4{1) adequately: Due to ume of the nanostructure.

izati (1) (i) i
g](erl(;(c)alrzz?zns?;ﬁu rigd rlﬁtu dse‘::a(t(;Sk)thsagvsgagsmgsg there is aé layer in the superlattice. This is demonstrated
’ 9 ! by placing one monolayer of AlAs in the middle of

using envelope functions of an effective-mass model. If theGaAs region in the (GaASy//(AIAS)e; superlattice
97 97

barrier of the effective-mass model is infiniti(I",X) is >
zero. If the3 barrier if finite, analytical solutions lead to [EEIfAGatﬁZAIQ(ff(z)l(gnaté?gg(spi\rzgssg]ﬁ irLljcSrlenf?setshelog/%?r:es
F(I',X)=Lin®. This explains the B scaling in Fig. 5. from the origcinal c0.19 meV to 23 meV. This is due to the
increase of~(y,y’); thus the increase of the majority con-
tribution. On the other hand, tHe, .- X, anticrossing is 1.6
meV, much smaller than thE,.- X5, result. This is due to
In a GaAs/AlAs system, the conduction-band energies ofhe still vanished majority contribution ;.- X, according
the constituents have the following alignmet; 4T 1c) to Eq. (10).

<eans(I'1c)s  €candX1c)> €ains(X1c), and  €gaad Xac)

However, this conclusion is no longer true if

B. Effect of type-l/type-1l band offsets on coupling

> epns(Xac). Thus the superlattice state induced frbmy is V1. NONSUPERPOSITION EEEECTS

localized in the GaAs region, while the Superlattice states ON INTERVALLEY COUPLING

induced fromX,. and X5, are localized in the AlAs region.

This band-level alignment is called “type-II” alignmeft. Our analytical model involves the use of selection rule

In type-ll systems, the overlap functidf(I",X) has contri- Eq. (10). This rule is satisfied under the assumption of a
butions only from the interface, and hasnd/scaling for ~ superpositional potential of unrelaxed atoms, i.e., .
largen, which explains the 1 scaling of thel';.-X3, cou-  Here we will test the validity of this approximation, i.e., the
pling as shown in Fig. 5. Since the overall interaction be-effects of self-consistent potential and atomic relaxations on
tween the two localized states is proportional to the overlag=g- (4).

between their envelope-function overlaps, the residual term

in Eq. (5) also scales as 7, which explains whyl";.-X; A. Effects of self-consistency on superposition assumption

also scales as ﬂ.?' . . . . We use the self-consistent local density approximation
The above discussions involve intervalley couplings be'(LDA) (Ref. 21 to generate potentia¥/(r:Ns,Ng). The

Sself-consistent potential can no longer be written as the sum

of the atomic potentials as in E(f). Instead of checking Eq.

(4) directly [which might be subjected to the uncertainty of

s aym O
changed the pseudopotential, of Eq. (13), so that the d?ﬂmtl?,ngvaB(JCAR_A)]’ we chloose to evaluate the
€cand'1c) <e€mns(I'1c), €cand X1c) < €aias(X1c), and quantl.ty<¢y |V(r)|¢7’ >_ESKP(y’y,){2 of _Eq. (9). By
€caad Xac) < €aas(Xac). Thus thel's¢, X;¢, and Xz, states Checklng the values of thodfesk(y,y’)’s which are pre-
are now all localized in the GaAs region. To compare resultdicted to be zero by Eq¢4) and(9), we know how much the
with the original type-Il case, we also fitted(I';.,Xs)  SUPErposition assumptidieg. (4)] is violated. .
=0.401 eV, close to the original EPM value of 0.374 ev. e use a 64-atom random gflosAs supercell with

We ensured that the Ga-Al atomic pseudopotential differunrelaxed atomic positions. This system is large enough to

ences in the reciprocal space are similar to those in the orig€ontain many different local Ga and Al arrangements; thus it

nal potentials. The typed;.-Xs, andT';.-X;, anticrossing Is useful to test Eq(4) under these different sitgations. Su-
gaps are plotted in Fig. 5. Their values are seen to be larg&€'cell LDA potential Vi pa(r;Na,Ng) and zinc-blende
than the type-1l results by a factor of 1.5-2, but they still LD\'/A&A VCQ\/CAwave functions  are us.ed to evaluate
have the same 67 scaling. The value of th&,.-Xs. anti-  (#y |VI¢,, ™). The results are shown in the second col-
crossing gap is still much smaller than the sinkdpeint ~ umn of Table I. In the analytical modgEq. (9)], the values
results. This indicates that the majority contribution of theof the upper half of Table (case } are predicted to be zero,
I';c-X3e coupling in Eq.(5) is still much smaller than the either because 0#(y,y’)=0 from Eq.(10), or because of
singlek-point result. This is again due to the small value of S(ko—ks)=0. In  the direct LDA calculation,

the overlap functiorF(y,y’) («1/n%), caused by the phase (¢\;CA|V|¢>\;,CA> is not zero, but it is small: the root-mean-

(type-1l alignment. We would like to know what happens
when thel’ and X states are localized in the same region
(type-1 alignment?’ To study this, we have deliberately
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square(rms) value for the LDA results is 0.11 meV. On the
other hand, the values at the lower half of Tabl@ase I)

are not predicted to be zero by symmetry; they have a rm
value of 84 meV, about 1000 times larger than the values o
case |. So, the violation of the superposition assumpgtin
(4)] due to the self-consistent potential is very small, only

0.1% as measured by tlées\y’CA|V|¢\y/,CA) values.

B. Effects of atomic relaxation on superposition assumption

As we see above, the self-consistent LDA potential doe:
not violate Eq.(4) very much. Thus, here we will use the
EPM to generate the total potentM(r;N,,Ng). We calcu-
lated an g sGay sAs 64-atom supercell with the same sub-
stitutional configuration as the above (GAlysAs system
(Ga—In, Al-Ga). We used valence-force-fiel FF) (Ref.

28) method to relax the atomic positions. The fully relaxed
atomic positions have average displacements of 0.13 A for FIG. 6. ($3°A|V| 4, *)’s as functions of the degree of atomic
anions, and 0.05 A for cations. Note that although the totafelaxationsa [Eq. (19)]. The system is a 64-atomJgGa, sAs alloy
potential can be written as a summation of the atomicsupercell as in Table I. The solid lines are predicted to be zero by
screened potentials as in Ed.3), Eq. (4) which uses unre- superposition assumption of Ed), (9), and(10). They are mainly
laxed ideal positiorR? [instead of the relaxed positidd, as ~ Second-order functions af.

in Eq. (13)]is now not satisfied. As beforég’“|V| qs\y’,CA)
is calculated using the EPM VCA wave functiogg“* and
VCA

CQUCA| v | 0YSAS (meV)

-30

40 - 1 L 1 L
0.4 0.6 0.8

Magnitude of atomic relaxation parameter o,

folded spectr%m methd8land the linear combination of bulk
¢, . The results are reported in the fourth column of Tablgband method” A model [Egs. (5)—(10)] of the magnitudes

. f the intervalley coupling is provided based on spectral
. As we can see, the rms value in the upper part of Table . . ,
(case ) is about 4.3 meV, much larger thgﬂ thg correspond analysis of the wave functior£q. (2)1. The magnitude of

ing LDA value without atomic relaxation. But it is still about the coupling can be divided into a majority contribution term
ten times smaller than the rms value of 44 meV in the lowe

rand a minority contribution terdEq. (5)]. The majority con-

tribution term F(y,y')V(y,y') is determined by a selec-
part of Table I(case ). tion rule onV(y,y") [Eq. (10)] and the magnitude of the
overlap functionF (v, ') [Eq. (6)]. In general, there are two
cases of the intervalley coupling§) “ Strong coupling’
whereF(v,y') is not small anav(y,y’) is not zero, thus

For comparison, thé¢\y’CA|v|¢\y’FA>’s of the unrelaxed the majority contribution is dominant and large. This hap-

Ing sGa, sAS system are also reported in column 3 of Table I.Pens for T'je-Xze, Tie-Lic, Xie-Lic, Xie-Lae, and
We see that the values in the lower part of Table | haveXs.-X}. couplings in cation-mixed alloygii) “ Weak cou-
changed dramaticly after the system was relaxed. It is interpling,” where the majority contribution is zero or small, and
esting to know hom(¢V°A|V|¢\y/f:A>’s change as functions thus the intervalley coupling comes from the minority con-

of the magnitudes of the relaxations. To achieve differenfibution (or the majority and the minority contributions have

degrees of relaxations, we have changed the VFF parametéf@mparable magnitudgsThis happens fofa) “VCA forbid-
as follow: den” T'y-Xie, TieLae, X e-XY, andX].-X}%, couplings
in cation-mixed alloys. Here the majority contribution is zero
because/(v,y')=0, due to the selection rule of EL0).
(b) All intervalley couplings in simple superlattices, wires,
and dots. Here the majority contribution is small because the
small value ofF(y,y’) due to the localization of the wave
functions (regardless whether the coupling states are local-
ized in the same place or in different plages

Regarding the magnitudes and size scalings of the inter-
valley couplings, we found the following(l) The strong
[';.-X3c coupling in a GgeAlgsAs alloy scales as 30,
where() is the volume of the system. This scaling and the
magnitude of the coupling can be described quantitatively by
the majority contribution ternwhich in this case, equals the
singlek-point resulty. (2) Weak I';1.-X;. coupling in a

In this paper, we have calculated the intervalley couplinggsa sAl g sAs alloy is 20—100 times smaller than thg.- X3¢
for alloys and superlattices. Empirical pseudopotentials argoupling. Its majority contribution is zero due to the selec-

C. Error of superposition assumption as a function
of the relaxation magnitude

P;-\(B):%(PA_*' Pg)* 3 a(Pa—Pg), (19

where the+/— sign is for A and B atoms, respectively.
Thus, whena=0, there is no relaxation, and when=1,
there is full relaxation. The resultingpy*|V| ¢ ~")'s as
functions of the degree of relaxationsare shown in Fig. 6.
From Fig. 6, we found thdi) For the (y,y’) pairs of case |,
the <¢\7’CA|V|¢\7’?A)’S are mainly second-order functions of
a. (i) For the (y,y') of case II, the<¢\y’CA|V|¢\y/,CA)'s are
mainly linear functions ofx with fairly large slopes.

VII. CONCLUSIONS

used to construct the total potentj&g. (13)] and the single-
particle Schrodinger’s equatidiEq. (12)] is solved for su-

percells containing up to a few million atoms, using theP

tion rule of Eq.(10). (3) For the Gg-Al, sAs alloy, the CBM
has al-point majority representation peak in its spectrum

°BM “and anL-point minority representation peak, due to
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the selection rule of Eq10). This minority representation is
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average 0.13 A atomic relaxation. The magnitude of this

important in order to obtain the correct bowing coefficientsviolation is roughly a second-order function of the magni-
of the alloy eigenstates(4) In a simple superlattice tude of the atomic relaxations.

(GaAs),/(AlAS) ,, bothI' .- X, andI' ;.- X5, couplings are
weak coupling, due to the vanishing overlap fadgry, y')

Finally, throughout this paper, we discussed only cation-
mixed (or cation-substitutedsystems. In the case of anion-

caused by wave-function localization. The coupling magni-mixed system, the same conclusions about the relative am-
tudes scale as }. They are 5-100 times smaller than the plitudes between different intervalley couplings can be

singlek-point coupling (which describes well the “strong
couplings” in alloyg. This is true for both type-l and -l
band alignments in nanostructurgS) The selection rule of

Eqg. (10) can be violated in reality due to the fact that real

obtained after we exchange the notationXef and X5 .
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