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Far-infrared edge modes in quantum dots
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We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external
magnetic fields. We present a microscopic description based on a variational solution of the equation of motion
for any axially symmetric confining potential and multipole mode. Numerical results for dots with different
numbers of electrons, whose ground state is described within a local current density-functional theory, are
discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at
B50, we show that the classical hydrodynamic dispersion law for edge wavesv(q) ;Aq ln (q0 /q) holds
when quantum and finite-size effects are taken into account.@S0163-1829~97!01644-5#
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I. INTRODUCTION

Collective excitations induced in finite fermion system
by external probes have been extensively studied in the
years. Particular effort has been devoted to an understan
of the giant dipole resonance in nuclei,1 and of the plasmon
mode in metallic clusters.2–5 Recently, a strong collective
state has also been observed in quantum dot structur6,7

These collective modes all have in common the feature
beingL51, S50 excited states induced by a dipolar exte
nal radiation which is the dominant component of the el
tromagnetic field when its wavelength is much larger th
the size of the system. Dipole modes correspond to osc
tions of protons against neutrons in nuclei, and of electr
against the positive background in metal clusters and
structures. Whereas in nuclei the restoring force of the c
lective motion is the symmetry potential which acts diffe
ently on protons than on neutrons, in metal clusters and
it arises from the Coulomb interaction between ions a
electrons.

Collective states with multipolarityL.1 were predicted
to exist, and have been observed in nuclei. At present,
have a complete systematics of quadrupole (L52) and oc-
tupole (L53) collective excitations in nuclei.1,8,9 Multipole
collective states in3He droplets have also been studied,10–12

but have not been experimentally detected so far. In m
clusters, the predicted multipole states13,14also have not been
observed. The basic reason is the experimental difficul
arising from the fact that free clusters are produced and a
lyzed on-fly, with the added difficulty in the case of3He
drops of being electrically neutral systems.

Far-infrared absorption spectroscopy experiments
large radius quantum dots submitted to a static external m
netic fieldB have likely evidenced quadrupole excitation7

and an anticrossing between theL51 and 2 resonances, eac
of them split into two branches, one with negative and
other with positiveB dispersion. We recall that, for thes
systems,L has to be understood as the angular momen
about an axis perpendicular to the dot plane.

The collective spectrum of quantum dots has been
560163-1829/97/56~19!/12375~11!/$10.00
st
ing

.
f

-
-
n
a-
s

ot
l-

ts
d

e

al

s
a-

n
g-

-

m

d-

dressed in different ways. An explanation based on class
arguments can be found in Ref. 7 In Refs. 15–18, use
been made of an edge-magnetoplasmon model, wherea
Refs. 19 and 20 a Hartree random-phase approxima
~RPA! method has been employed, and a Hartree-Fock R
one in Ref. 21. Multipole modes have been considered
Refs. 15 and 20. All these approaches neglect the elec
correlation energy, and therefore, no microscopic calcula
of L>1 modes exists which incorporates exchange corr
tion energy as well as quantum effects arising from finite s
and shell structure of dots in a magnetic field. A workab
yet reliable formalism that takes into account all these effe
is called for to describe these excitations. In this paper
present one of such possible formalisms. It is based on
equation of motion method within the framework of a loc
current density-functional theory~CDFT!.22 This functional
theory is well suited to study electronic systems in prese
of a magnetic field, and has been successfully employe
study ground-state~g.s.! properties of quantum dots.23

This paper is organized as follows. We describe the eq
tion of motion method in Sec. II, as well as the basics of
strength function and its moments~sum rules! needed to in-
terpret the experimental and theoretical results. In Sec. III
present a rigorous solution of the dipole mode in the case
the full Pauli many-electron Hamiltonian with a parabo
lateral confining potential. The exactness of the dipole so
tion in this case, irrespective of the value of the magne
field, has been discussed in Refs. 24 and 25. Here we h
obtained this result in a way that yields an explicit expres
not only for the spectrum, but also for the eigenstates. In S
IV we present a variational approach to the description
multipole excitations in which exchange and correlation
fects are taken into account within CDFT. We show in S
V that for neutral large dots atB50, these excitacions build
an edge wave with dispersion relation of the ty
v(q);Aq ln(q0 /q). Detailed numerical results are present
in Sec. VI for dots with different number of electrons, an
the concluding remarks are presented in Sec. VII. Finally,
appendix contains some technical details.
12 375 © 1997 The American Physical Society
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II. EQUATION-OF-MOTION METHOD

We considerN electrons moving in thez50 plane where
they are confined by the dot potentialV1~r! with
r 5Ax21y2. On this system it may act a constant magne
field in the z direction described by the vector potenti
AW 51/2(2y,x,0)B, and we suppose that the system can
described by theN-electron Pauli Hamiltonian:

H5(
i 51

N H 1

2m*
FpW i1

e

c
AW ~rW i !G2

1V1~r i !1 1
2 g* mB* sW i•BW J

1(
i , j

N

Vc~ urW i2rW j u!, ~1!

wherem* is the electron effective mass which together w
a dielectric constante and gyromagnetic factorg* are char-
acteristics of the semiconductor~for example,g* 520.44,
e512.4, andm* 50.067me in GaAs!, mB* is the effective

Bohr magnetonmB* 5\e/(2m* c), sW is the Pauli matrix vec-
tor, andVc is the electron-electron (e-e) interaction

Vc~ urW i2rW j u!5
e2

e

1

urW i2rW j u
. ~2!

Equation~1! can be rewritten as

H5(
i 51

N H pW i
2

2m*
1 1

2 vcl zi
1 1

8 m* vc
2r i

21 1
2 g* mB* Bszi

1V1~r i !J 1(
i , j

N

Vc~ urW i2rW j u!, ~3!

wherevc5eB/m* c is the cyclotron frequency andl zi
is the

angular momentum operator about thez axis:

l z52 i\
]

]u
. ~4!

Given the exact g.s.u0& of the N-electron system, it is
possible to obtain the exact spectrum corresponding t
broad class of collective vibrations if one is able to find
operatorO1 such that the following equation of motion
fulfilled:

@H,O1#5\vO1. ~5!

The stateO1u0& has an excitation energy\v, and the g.s.
fulfills Ou0&50. As the excited states have a well-defin
angular momentum, so the operatorsO1 must have. Conse
quently, one has to solve Eq.~5! for eachL value.

When a magnetic field acts perpendicularly on the do
causes a splitting of the excitedB50 states into two
branches of energy\v6L , each carrying an angular mo
memtum6\L over that of the g.s. It implies that, beside
Eq. ~5!, the physically acceptableO6L

1 operators have to ful-
fill

@Lz ,O6L
1 #56\LO6L

1 ~6!
c

e

a

it

with L51,2,3, . . . andLz5( i 51
N l zi

. If \L0 is the angular

momentum ofu0&, the statesu6L&[ O6L
1 u0& have an angu-

lar momentum\~L06L!.
To ease the formulas that otherwise would be very cu

bersome, from now on we shall be using effective atom
units, defined by\5e2/e5m* 5 1. In this system of units,
the length unit is the Bohr radiusa0 times e/m* , and the
energy unit is the Hartree timesm* /e2, which we calla0* and
EH* , respectively. For GaAs we havea0* ; 97.94 Å and
EH* ;11.86 meV.

It is obvious that to find these operators is in general
difficult a task as to solve the Schro¨dinger equation corre-
sponding to the Hamiltonian Eq.~1! for the vibrational
states, and one is led to solve Eq.~5! in an approximate way,
one of these being, for example, the random-phase appr
mation. Another fruitful approximation, originally propose
by Feynman to describe density excitations of superfl
4He,26 consists of making an ansatz onO1u0&. Acting upon
u0& with Eq. ~5! and projecting ontoO1u0&, one obtains

v5
^0u†O,@H,O1#‡u0&

^0u@O,O1#u0&
. ~7!

Equations~5! and ~7! are completely equivalent ifu0& is the
exact ground state, andO1 is the sought operator. The ad
vantage of Eq.~7! is that we may look for approximate so
lutions of variational type, guessingO1 and obtainingu0&
within a workable, yet accurate scheme, such as the lo
density approximation~LDA ! at B50, or CDFT atBÞ0. To
find these approximate solutions is the subject of Sec.
We shall also see that, remarkably, Eqs.~1! and ~7! have
exact solutions in the dipole case when the confining pot
tial has a parabolic form.

The excitation spectrum of the system is usually prob
by different external fields, or given the well-defined angu
momentum of the excited states, by a selectedL-polar com-
ponent of the field. For an excitation operatorF representing
it, a useful, often experimentally accessible quantity, is
so-called strength function

S~E!5(
n

u^nuFu0&u2d~E2En!, ~8!

whereEn andun& are, respectively, the excitation energy a
the excited state, and the sum or integral in the case of c
tinuum spectrum extends over all excited states of the s
tem. Of special interest are some energy moments of
strength function

mk5E EkS~E!5(
n

En
ku^nuFu0&u2, ~9!

which we shall call sum rules~SR’s!. They are them1 and
m3 moments, which can be also written as

m15 1
2 ^0u†F1,@H,F#‡u0&,

~10!

m35
1

2
^0u@†H,@H,F1#‡,@H,F##u0&.
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These SR’s have been extensively studied in the literatur1,8

For the present purposes it is enough to recall that, if o
one excited state is contributing toS(E), E3[(m3 /m1)12

coincides with the corresponding excitation energy. In
more physical situation, whenever the strength is conc
trated in a narrow, ‘‘high’’-energy region,E3 is a fair ap-
proximation to the resonant energy. We callE3 the scaling
energy becausem3 can also be obtained by scaling theu0&
wave function as

uh&5eh[H,F] u0&, ~11!

and then carrying out the following derivative:

m35
1

2

]2

]h2
^huHuh&uh50 . ~12!

The m3 sum rule can be obtained either from Eq.~10! or
~12!. The latter allows one to identifym3 as the restoring
force that causes the collective vibration, and, conseque
to identify m1 with the collective mass parameter.

We want to stress that not all possible approximat
schemes fulfill them1 andm3 sum rules in the sense that
direct evaluation of Eq.~9! yields the same result as Eq
~10!. A test on the consistency of the approximations ma
to get the g.s. and excitation spectrum, is the fulfillment
these SR’s, especially ofm1, which is very model indepen
dent.

III. EXACT SOLUTION OF THE DIPOLE MODE FOR
THE PARABOLIC CONFINING POTENTIAL

It has been frequently argued in the literature th
V1(r )51/2v0

2r 2 can be a good approximation of the confi
ing potential. That is the case, for example, when the num
of electrons in the dot is small as compared with the num
of positive ionsN1 that produce the confining potential.27 If
that approximation holds, it is easy to check that the so
tions of Eq.~7! for the Hamiltonian Eq.~3! andL51 are

O1
15

1

2
S v̄

N
D 1/2S Q2

i

v̄
PD ,

~13!

O2
15

1

2
S v̄

N
D 1/2S Q12

i

v̄
P1D ,

where

Q5(
i 51

N

~xi1 iy i ![(
i 51

N

qi ,

~14!

P5(
i 51

N

~pxi1 ipyi![(
i 51

N

pi ,

and

v̄5S v0
21

vc
2

4 D 1/2

. ~15!

The corresponding frequencies are
ly

a
n-

ly,

n

e
f

t

er
r

-

v65v̄6
vc

2
, ~16!

and it is easy to verify that

@Lz ,O6
1#56O6

1 . ~17!

The statesO6
1u0& are normalized to unity and orthogona

carrying an angular momentum (L061!. This exact result
stems from the translational invariance of the electro
electron interaction for which@( i , j

N Vc(urW i2rW j u),P# 50, and
consequently it is independent of thee-e interaction, pro-
vided it is local.25

It is a simple matter to check that the statesu61& exhaust
them1 andm3 SR’s for the dipole operatorD5( i 51

N xi , and
that the dipole strength is equally distributed between the
One obtains

m1~D !5 1
2 N, ~18!

m3~D !5 1
2 N~v̄21 3

4 vc
2!, ~19!

u^0uDu11&u25u^0uDu21&u25
1

4

N

v̄
, ~20!

and, for example,

v1u^0uDu11&u21v2u^0uDu21&u25
N

2
5m1~D !. ~21!

It is interesting to notice that in theB50 limit, v15v25
E3(D) 5 v0. This result is independent of the number
electrons in the dot, in agreement with the generalized Ko
theorem.28 The parabolicity of the potential is expected
break down when the number of electrons in the dot
creases, and the electronic density extends up to the edg
the dot. Departure ofV1(r ) from the parabolic law origi-
nates anN dependence inv6 andE3(D).

The exact solution to Eq.~5! can be used to obtain th
static dipole polarizability of the dota(D), which is twice
the m21(D) sum rule:1,8

m21~D !5
1

v1
u^0uDu11&u21

1

v2
u^0uDu21&u25

N

2v0
2

.

~22!

Consequently, in the parabolic potential approximation
dipole polarizability is independent of the magnetic field. W
expecta(D) to beB dependent in the case of a more gene
confining potential. Using that27

v0
25

N1

R3
, ~23!

we obtain

a~D !5R3
N

N1
. ~24!

The R dependence could have been anticipated from a
mensional analysis.
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Let us finally discuss the nature of the dipole modes w
regard to their geometrical shape. If we consider the tra
tion density associated with the excited statesu61&

r tr~rW !5^0ur̂O6
1u0&5^0u@ r̂,O6

1#u0&, ~25!

wherer̂ is theN-electron density operator

r̂5(
i 51

N

d~rW2rW i !, ~26!

it is easy to obtain

r tr~rW !}r8~r !e6 iu, ~27!

wherer(r ) is the g.s. electronic density, and the prime d
notes ther derivative. This transition density is characteris
of an edge excitation.

IV. VARIATIONAL SOLUTION FOR GENERAL AXIALLY
SYMMETRIC POTENTIALS

When the confining potential is no longer parabolic, irr
spective of the value of the magnetic field and of the mu
polarity of the mode, the equation of motion~5! cannot be
solved exactly, and we resort to an approximate met
based on Eq.~7!. In the dipole case, the natural guess for t
O6

1 operators is

O1
15a1~Q2 ib1P!,

~28!

O2
15a2~Q12 ib2P1!,

whereb6 are variational parameters anda6 have to be de-
termined from the normalization condition. This process c
indeed be carried out, and one obtains the dipole spectru
the system.

At this point, we consider it more convenient to gener
ize theQ andP operators in such a way that the calculati
can be done for anyL value. To this end, we have first take
the following QL:

QL5(
i 51

N

r i
LeiLu i[(

i 51

N

qL
i . ~29!

This choice is inspired in that (kr) LeiLu is the smallk ex-
pansion of the functionJL(kr)eiLu, which is the restriction to
the z50 plane of the general solution of the Laplace eq
tion in cylindrical coordinates.JL is theL Bessel function of
the first kind.29

Next, we have taken as partner ofQL in the O1 expres-
sion the operator

RL5(
i 51

N

qL21p, ~30!

where thei -particle index is implicit in the particle and mo
mentum coordinates. This choice is again guided by the
act dipole case, since the conmutator@H,QL# yields a com-
bination of QL and RL , which reduces to the one we hav
found in Sec. III whenL51.
h
i-

-

-
-

d

n
of

-

-

x-

We have thus considered asO6L
1 operators the following

combinations:

O1L
1 5a1~QL2 ib1LRL!,

~31!

O2L
1 5a2~QL

12 ib2LRL
1!.

Equations~31! reduce to Eqs.~28! for L51, and the pro-
posed operators fulfill Eq.~6!. These modes are edge mod
whose transition densities read

r tr
6L~rW !5^0u@ r̂,O6L

1 #u0&}r L21r8~r !e6 iLu. ~32!

To minimize Eq.~7!, it is necessary to have a descriptio
of the g.s.u0&. We have taken for it the Kohn-Sham sate bu
from single-particle~s.p.! wave functions obtained in the
framework of the CDFT of Ref. 23. We refer the reader
that work for the details. For the present purposes, it
enough to recall that the s.p. wave functionsfnls(r ,u) are
separable inr andu variables as

fnls~r ,u!5unls~r !e2 i l u, ~33!

with l 50,61,62, . . . being the orbital angular momentum
of the s.p. state. Upon minimization, one obtains

v6L5
16b6~Lvc14L2ṽ1!1b6

2 ~ṽ3
21L3vcṽ1!

2b662b6
2 L2ṽ1

,

~34!

b65
Aṽ3

223L4ṽ1
26L2ṽ1

ṽ3
224L4ṽ1

2
,

~35!

a6
2 5

1

4b6~m16b6L2G!
,

where

ṽ3
25

m̃3

m1
1

L

4
vc

2, ~36!

ṽ15
G

m1
[

1

m1
~L21!E drWr 2L24g~r !, ~37!

m15L2E drWr 2L22r~r !, ~38!

m̃35m̃3~T!1m̃3~ee!1m̃3~1e!, ~39!

with

m̃3~T!5L2~L21!E drWr 2L24@Lt12~L22!l#, ~40!

m̃3~ee!54pL2
~2L21!!!

2LL!
E

0

`

r8~r !drH 1

r E0

r

@2~L11!

3r8~r 8!r 82L1r9~r 8!r 82L11#ELS r 8

r Ddr8
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1r 2LE
r

`Fr8~r 8!

r 8
2r9~r 8!GELS r

r 8
D dr8

2
2L11L!

~2L11!!!
r 2Lr8~r !J 22pL2E

0

`

drr8~r !

3H r 2L23E
0

r

@4r 82r8~r 8!

1r 83r9~r 8!#E1S r 8

r Ddr81r 2LE
r

`Fr8~r 8!

r 8

2r9~r 8!GE1S r

r 8
D dr82 4

3 r 2Lr8~r !J , ~41!

m̃3~1e!52pL2E
0

`

drV1~r !@~2L21!r 2L22r8~r !

1r 2L21r9#. ~42!

Besides the particle and kinetic-energy densities

r~r !5(
nls

unls
2 ~r !, ~43!

t~r !5^0u(
i

,Q d~rW2r i
W !,W u0&5(

nls
S unls82 1

l 2

r 2
unls

2 D ,

~44!

in these equations we introduced the densities

g~r !52 (
nl s

l unl s
2 ~r !5r j p~r !, ~45!

l~r !5 (
nl s

l 2

r 2
unl s

2 ~r !, ~46!

as well as theEL function

EL~z![
p

2
F~2 1

2 ,L1 1
2 ;L11;z2!, ~47!

where F is the hypergeometrical function.29 The density
l(r ) represents a sort of centrifugal kinetic-energy dens
It can be shown that in the zeroth-order Thomas-Fermi~TF!
approximationl(r )5 1

2t(r), similar to thel(r )5 2
3 t(r ) rela-

tion holding in three dimensions.30 The functionj p(r ) is the
paramagnetic current density.23 It is worthwhile to see that,
at B50, g(r ) vanishes due to time-reversal invariance.
contribution at high magnetic fields is crucial to have we
behavedB-dependent collective energies. Equations~34!–
~42! constitute the main outcome of the present section,
will be used in Sec. VI to obtain numerical results with
CDFT.

The goal of describing the multipole modes in a situat
as general as possible makes these expressions look
cumbersome at first sight. However, the following can
noted.

~i! For L51 and the parabolic V1 , one recovers the ex
act solution.
.

d

ery
e

~ii ! For any L and zero magnetic field,b651/ṽ3 and
O6L

1 u0& merge into a degenerate state of energy

v6L5S m̃3

m1
D 12

. ~48!

This is precisely theB50 scaling energyE3(QL), sincem1
is actually the generalm1(QL) sum rule, and, as is outline
in the Appendix, m̃3 reduces to the zero magnetic fie
m3(QL) sum rule makingg(r )50. This result is the varia-
tional analog of the case we have discussed for the dip
mode in a parabolicV1 .

~iii ! In the L51 case, irrespective ofB, all terms inm̃3

but m̃3(1e) vanish, and for any axially symmetric ioni
potentialV1(r ) we find

v615S vc
2

4
1

1

2NE drWDV1~r !r~r ! D 1/2

6
vc

2
, ~49!

which reduces again to the exact case if V15 1
2v0

2r 2.
~iv! For anyB, the statesu6L& and their energies satisf

the m1 sum rule, i.e.,

m1~QL!5L2E drWr 2L22r~r !5v1u^0u@QL ,O1L
1 #u0&u2

1v2u^0u@QL ,O2L
1 #u0&u2. ~50!

This implies that, althoughO6L
1 u0& are only approximate so

lutions to theL-polar excitation spectrum, within our metho
there are no other excited collective states correspondin
that multipolarity built as coherent superposition of o
electron-hole states. The sum rule

m3~QL!5m̃3~T!1
3

4
L2vc

2m113vcL
3G1m̃3~ee!

1m̃3~1e! ~51!

is also fulfilled. Moreover, the square transition amplitud
to the u6L& states are equal,

u^0u@QL ,O1L
1 #u0&u25u^0u@QL ,O2L

1 #u0&u2. ~52!

The fulfillment of m1 and m3 constitutes a rather stringen
test on our variational method.

~v! It is worth noticing that in all cases, there is no explic
contribution to these formulas arising from the exchange c
relation energy terms in the CDFT Hamiltonian. This is b
causeQL is a solution of the two-dimensional Laplace equ
tion. A similar result holds in three dimensions within th
LDA if one takes forQL a solution of the correspondin
Laplace equation.31

V. EDGE WAVES IN NEUTRAL LARGE DOTS AT B50

It is possible to use the scaling energyE3, which is a good
approximation of the collective excitation energy atB50, to
obtain the dispersion relation of the edge waves in the c
of a neutral large dot. Under these conditions, the g.s. e
tronic density is constant everywhere apart from a narr
region along the border of the disk. Letr05N/(pR2) be that
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12 380 56LIPPARINI, BARBERÁN, BARRANCO, PI, AND SERRA
density, and leta be the width of the edge region. Using th
zeroth-order TF approximation to the kinetic and centrifu
kinetic-energy densities

t5pr2,

~53!

l5 1
2 t,

one obtains, from Eqs.~38! and ~40!–~42!,

m15pr0LR2L, ~54!

m̃3~T!52L2~L21!p2r0
2R2L22, ~55!

m̃3~ee!1m̃3~1e!54pL2R2L21r0
2 ~2L21!!!

2LL!
FL~z!,

~56!

with z512O(a/R) at least, and

FL~z![
p

2
F~ 1

2 ,L1 1
2 ;L11;z2!, ~57!

which diverges atz51. Physically, this divergency is asso
ciated with the known divergency of the electric field at t
edge of the disk in the case of a constant electron densi32

see below.
Thus

E3
252pr0

L~L21!

R2
14

r0

R

~2L21!!!

2L~L21!!
FL~z!. ~58!

FL(z) can be written as a function ofF0(z), which is the
elliptic function K (z).29

~2L21!!!

2LL!
FL~z!5F0~z!2 (

m51

L
1

2m21
. ~59!

Using this, we obtain

E3
252pr0

L~L21!

R2
14r0

L

RF1

2
F1~z!112 (

m51

L
1

2m21G .

~60!

On the other hand,F1(z) can be related to the electric fiel
E(r ) generated by the electrons at the edge of the disk:

2r0F1~z!52
dV

dr U
r→R

5E~r !r→R . ~61!

The divergency ofE(r ) at r 5R is removed when one con
siders the existence of the edge width:32

E~R!52r0 ln S g
R

a D , ~62!

whereg is a constant that depends on the precise way
electronic density goes to zero atR. Thus
l

;

e

E3
252pr0

L~L21!

R2
14r0

L

RF1

2
ln S g

R

a D11

2 (
m51

L
1

2m21G . ~63!

If L@1 but still N@L, that expression can be further elab
rated since

(
m51

L
1

2m21
; 1

2 ~C1 ln L !1 ln 2, ~64!

where C is the Euler constant 0.5772 . . . . Introducing the
wave vectorq5L/R, and keeping only the leadingq term,
we obtain

E35v~q!5A2r0q ln ~q0 /q!, ~65!

whereq05g/(ab) andb50.964.
Result ~65! can also be obtained using classic

hydrodynamics.32 It is worthwhile to notice that the above
v(q)model differs from that obtained within the edg
magnetoplasmon model~Refs. 15–17!:

v~q!5S 4p

3
r0qD 1/2

, ~66!

which isA2/3 times that of the two-dimensional plasma fr
quency. We would like to stress that, to obtain t
Aqln(q0 /q) dispersion relation, it is crucial to take into ac
count width effects in the electronic density. These effe
are important in quantum dots, where the number of el
trons usually is much less than the number of ions, and
any case the electron density has a non-negligible edge
gion.

VI. NUMERICAL RESULTS

We have applied the method of Sec. IV to dots made
N56, 20, 30, 42, and 56 electrons. We have taken the va
of g* ,e andm* indicated after Eq.~1!, andN15125, i.e., a
positive density of;431011 ions/cm2. This corresponds to
a GaAs disk of about 1000-Å radius modeling the posit
background.

The g.s. of the dots has been obtained using the CDFT
Ref. 23. We checked that we reproduce their results when
use the sameV1 . For large dots and intense magnetic field
sometimes one has to face severe convergence problem
the solution of the Kohn-Sham equations. Rather than a
ficiency of the numerical algorithm, we consider it as a co
sequence of an inherent characteristic of the system u
study, namely the existence of a very dense s.p. energy s
trum. To overcome it, on the one hand, and to carry out
calculations under conditions closer to the experimen
ones, on the other hand, we have found it convenien
approach the description of the collective spectrum as
low-temperature limit of the results obtained from the fin
temperature generalization of the formalism of Sec. II~see
Ref. 33!, and of the Kohn-Sham equations~see, for example,
Ref. 34!. Consequently, the numerical results we discuss
low have been obtained at a temperatureT; 1–2 K. A com-
parison with several cases in which theT50 calculation is
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easy to converge, allows us to state that the small temp
ture we use does not influence the results here prese
Thermal effects on the collective spectrum of quantum d
will be described in detail elsewhere.

Figures 1 and 2 show the electronic densities correspo
ing to dots withN56, 30, and 56 electrons forB50, and for
B55 T, respectively. Figures 3–5 display theB-dependent,
multipolar spectrum of the same dots up toL54. This is the
interesting region where the crossing betweenv1L andv2L8
branches may occur and has been experimentally obse
The energies are drawn in meV, and the magnetic field in
These figures show that as thev2L energies go to zero, the
may reach a value comparable to the electron-hole s.p.
ergy difference at a rather moderateB value. When this hap-
pens, the collective state lies within the s.p. excitations
gion, and experiences a strong Landau damping, losing
collectivity and eventually being washed out. This is one
the reasons why thev1L branch has been experimental
observed up to higherB values than thev2L branch.7

The structures appearing along theL.1 curves are due to
drastic changes in the particle, kinetic and paramagnetic
rent densities of the dot arising from the effect ofB through

FIG. 1. Electronic densities in (a0* ) 22 as a function ofr in a0* ,
for dots withN56, 30, and 56 electrons, andB50.

FIG. 2. Same as Fig. 1, forB55 T.
ra-
ed.
ts

d-

ed.
.

n-

-
its
f

r-

the exchage-correlation energy, which has a profound in
ence on them~see Fig. 3 of Ref. 23!. The structures in the
v6L branches roughly correspond to values ofB at which
the total g.s. spin has a minimum. For example, forN56 we
have that 2S is equal to 2 atB51 T, to zero atB52 T, and
to 2 atB;3 T. ForN556, one has that 2S513 atB54 T,
7 atB;5 T, and 8 atB56 T. For theN56 dot, the rising of
the v1L.1 curves atB;5 T is due to the full alignment of
the electron spins. No similar risings show up forN530 and
56 because for them, the alignment occurs atB values higher
than those displayed in the figures.

It can be seen from Figs. 3–5 that the crossing betw
v11 andv2L branches does not follow a clearN systemat-
ics. We have also plotted in Fig. 4 theE3(QL) energies for
L51 and 4~dashed lines!. The scaling energy is reproducin
v1L to within 10–20 %, since thev2L branch is contribut-
ing to m3~QL) with the same weight as thev1L one, and the
negative B-dispersion energies are going to zero rath
slowly.

We also display in Fig. 5~dashed lines!, the collective
energies obtained for a parabolic potential whosev0 has
been fixed to 5.6 meV in order to reproduce thev1 energy at

FIG. 3. v6L energies in meV as a function ofB in T for
L51 –4, corresponding toN56.

FIG. 4. Same as Fig. 3 forN530. The dashed lines are th
E3(QL) energies forL51 and 4.
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B50. It is worth noticing that this value does not equal t
one which fits the Coulomb potential generated by the 10
Å-radius disk charged withN15125 ions near the origin
which is 4.4 meV, and consequently,v0 has to be interpreted
here as an effective parameter to reproduce the dipole en
at zero magnetic field. ForL51, to the scale of the figure
both calculations coincide. It may be seen that theB slopes
of the v6L branches forL52 –4 are roughly the same fo
the parabolic and disk confining potentials.

At B50, Figs. 6 and 7 show, forN56 and 56, respec
tively, the different relative contributions tom3 coming from
kinetic and Coulomb energies, as a function ofL. The Cou-
lomb energy is also decomposed intoe-e and dot-electron
(1e) energies. These figures show that, for smallL values,
m3 is dominated by the (1e) contribution, the kinetic and
(e-e) ones being of minor importance. However, for a fix
N the kinetic contribution eventually takes over the Coulom
energy contribution. This occurs at an angular moment

FIG. 5. Same as Fig. 3 forN556. The dashed lines represe
v6L.1 obtained using a parabolic potential instead of the one g
erated by the disk.

FIG. 6. Decomposition ofm3(QL) into kinetic ~solid line!, total
Coulomb ~dashed line!, (e-e)-component~dash-dotted line!, and
(1e)-component~dotted line! contributions as a function ofL for
the N56 dot atB50. The lines are drawn to guide the eye.
-

rgy

m

Lcr which increases whenN increases. SinceQL behaves as
;r L, the higher theL, the more external its influence on the
electronic density. This means that for large enoughL, it just
acts on the s.p. wave functions having the largerl angular
momentum and radial quantum numbern. Consequently, it
no longer generates collective but s.p. excitations. As colle
tivity has its origin in interparticle effects, it was argued in
Ref. 14 thatLcr roughly represents the largestL collective
mode the system can sustain, since forL.Lcr the restoring
force represented bym3 is basically determined by an inde-
pendent particle property like the kinetic energy. This crite
rion yields Lcr; 4, 6, and 8 forN56, 30, and 56, respec-
tively.

In Fig. 8 we represent the energy of modes withL51 –4
at B50, as a function of the number of electrons in the do
The ratiosv3 /v1 andv2 /v1 have, forN.20, average val-
ues 1.68 and 1.37, respectively, instead of 3 and 2 as cor
sponds to the harmonic-oscillator sequence. It is appare
from that figure theN dependence ofvL . As we already
discussed, only for the dipole mode in the case of a parabo
confining potential does one havev15v0. The deviation

n-
FIG. 7. Same as Fig. 6 forN556.

FIG. 8. Zero magnetic fieldvL energies in meV forL51 –4, as
a function ofN.
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56 12 383FAR-INFRARED EDGE MODES IN QUANTUM DOTS
from that rule becomes more and more important as th
number of electrons in the dot increases. This was alread
discussed in Ref. 19. TheN dependence ofvL.1 is more
complex, and this is due to the interplay between kinetic an
Coulomb energy contributions to the excitation energy. I
can be easily understood from Eq.~58!, which shows that the
contribution of the kinetic energy term is important for small
N and increases with increasingL. For fixedL, the Coulomb
energy eventually dominates, andvL.1 depends onN in a
way similar to the dipole mode.

Finally, we have also studied the collective spectrum o
the N56 dot in the parabolic potential withv055.6 meV,
and have found that, as expected, thevL.1 energies atB50
depend onN. For example,v2 decreases from 8.2 to 7.5
meV, v3 decreases from 10.9 to 9.0 meV, andv4 decreases
from 14.3 to 10.4 meV when one goes fromN56 to 56.

So far, we presented a systematic study carried out und
well-defined conditions which could render a comparison
with the results of a given experiment difficult, since there
are several variables that have to be fixed at the experimen
values to permit a sensible comparison. To end this sectio
we compare some results obtained within our formalism wit
the experimental data of Ref. 7. This is possible only in par
because, in that work, theL51 and 2 well-defined branch
were obtained for a dot made of a large number of electron
N5210. At present, this is too large a value for us to dea
with microscopically. Let us remind the reader that the s.p
wave functions behave near the origin asr u l u ~see, for ex-
ample, Ref. 24!, and since the s.p. levels are nondegenera
when BÞ0, large N’s imply large s.p. angular momenta.
Consequently, we have only attempted to describe th
N525, R51000-Å dot. This can be inferred from the value
of the dipole energy Demelet al. found atB50, thatN1;
28. For this dot, the ratiov2 /v1 they obtained is around 2, a
value we are unable to reproduce, whereas for theN5210
dot it is;1.5, in better agreement with our systematics. Nev
ertheless, it can be seen from Fig. 9 thatv11 and E3(Q1)
nicely reproduce the positiveB-dispersion branch, which is

FIG. 9. v61 ~solid lines! andE3(Q1) ~dashed line! energies in
meV as a function ofB in T, for a dot ofR51000 Å,N1528, and
N525. The values ofe, g* , andm* are those of GaAs given in the
text. The points are experimental results taken from Ref. 6.
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the only one for which a detailed comparison is possible
We notice that the influence of the dot-dot interaction h

not been considered in the comparison with the experim
That effect was estimated in Ref. 25, and it can be shown
have a negligible influence on the frequency of the collect
modes for the experimental dot array of Ref. 7 because
dot-dot distance is much larger~about ten times larger! than
the dot radius.

VII. SUMMARY

In this work we used a variational approach similar to t
one proposed by Feynmann in the case of liquid4He, to
describe the multipole spectrum of quantum dots. One of
merits of the method is that quantum and finite-size effe
can be taken into account. It may be easily applied to d
hosting several tens of electrons. Rather than in the met
itself, this limitation has its origin in technical difficultie
inherent to current microscopic approaches to handle a la
number of electrons in intense magnetic fields.

The ground state of the dots has been described wi
current density functional theory. This has permitted us
incorporate, in a description of the spectrum, an exchan
correlation energy contribution that takes naturally into a
count current effects appearing at nonzero magnetic field

We presented a systematic description of edge mode
to L54 in the region of interest to describe level crossing
nonzero magnetic fields. We gave explicit formulas for t
m1 andm3 sum rules corresponding to the general multipo
operator Eq.~29!, which reduce to very simple expression
in the dipole case, Eqs.~A23!. These sum rules are exa
within CDFT, and may be of interest to check the accura
of any detailed calculation of theL-mode strength, similarly
to the way they are currently used within time-depend
local-density approximation.35 Besides this practical applica
tion, it is worth noticing that there are few studies in th
literature of anm3 sum rule corresponding to a physical sit
ation where time-reversal invariance is violated~see, for ex-
ample, Refs. 36 and 37 for the three-dimensional polari
electron gas!.

For large neutral dots at zero magnetic field, we show
that the classical hydrodynamic dispersion law for ed
wavesv(q) ;Aq ln (q0 /q) holds when quantum and finite
size effects are taken into account. Finally, we also show
that in the case of a parabolic potential, the dipole mode
be exactly solved, yielding the well-known classical formu
for v61. The exactness of the dipole collective spectrum w
stressed in Refs. 24 and 25. Here we obtained it in a diffe
way, and went a step further explaining the structure of
u61& collective states. This allowed us to obtain a variation
solution valid for any axially symmetric lateral confining po
tential.
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APPENDIX

In this appendix we give some hints about how to der
Eqs.~34!–~42!, and the sum rulesm1 andm3 corresponding
to the external one-body operatorQL of Eq. ~29!, which are
given in Eqs.~38! and~51!. The details of the method we us
here can be found in Refs. 1,8,14 and 31.

We fix our attention on the operatorO1L
1 of Eq. ~31!; the

operatorO2L
1 is handled similarly. The double conmutator

the numerator of Eq.~7! can be decomposed into thre
pieces:

†O1L ,@H,O1L
1 #‡5a1

2 $†QL
1 ,@H,QL#‡

1 ib1L~†RL
1 ,@H,QL#‡2†QL

1 ,@H,RL#‡!

1b1
2 L2

†RL
1 ,@H,RL#‡%. ~A1!

Splitting the Hamiltonian Eq.~3! into a one-body termH0

and a two-body termV5( i , j V (urW i2rW j u), and using that
QL is a local operator which commutates withV, one obtains

@H,QL#5@H0 ,QL#52 iLRL1 1
2 LvcQL , ~A2!

where we used the conmutation relations

@T,QL#52 iLRL , @Lz ,QL#5LQL . ~A3!

From Eq.~A2! and

@QL
1 ,P#52iLQL21

1 , @Lz ,P#5P, ~A4!

it is then inmediate to derive, for the first two terms of E
~A1!, the results

^0u†QL
1 ,@H,QL#‡u0&52L2E r 2L22r~r !drW52m1 ,

~A5!

^0u†RL
1 ,@H,QL#‡2†QL

1 ,@H,RL#‡u0&522i ~vcm114LG!,
~A6!

where

G5 1
4 ^0u@RL

1 ,RL#u0&5~L21!E drWr 2L24g~r !. ~A7!

To evaluate†RL
1 ,@H,RL#‡, we first calculate

@H,RL#5@H0 ,RL#1@V,RL#. ~A8!

The first term gives

@H0 ,RL#52 i ~L21!(
i 51

N

qL22p21 1
2 LvcRL1

i

4
vc

2QL

1 i(
i 51

N

~]x1 i ]y!V1~r i !qL21 , ~A9!

and it is then straightforward to recover the results of E
~40! and ~42! for

m̃3~T!5
L2

2
^0uFRL

1 ,2 i ~L21!(
i 51

N

qL22p2G u0&

~A10!

and
e

.

.

m̃3~1e!5
L2

2
^0uFRL

1 ,i(
i 51

N

~]x1 i ]y!V1~r i !qL21G u0&.

~A11!

The remaining two terms in Eq.~A9! give

^0uFRL
1 ,

L

2
vcRLG u0&52LvcG, ~A12!

which yields the Eq.~37! term, and

^0uFRL
1 ,

i

4
vc

2QLG u0&5
1

2

vc
2

L
m1 , ~A13!

which yields the second term in Eq.~36!.
There remains the problem of evaluating t

^0u†RL
1 ,@V,RL#‡u0& term. We have done this within CDFT

by scaling the CDFT g.s. as

uh&5ehRLu0&, ~A14!

and then calculating the derivative

1

2

]2

]h2
^huVuh&uh50 , ~A15!

where

^huVuh&5 1
2 E rh~rW1!rh~rW2!

urW12rW2u
drW1drW2 ~A16!

and

rh~rW !5^hu(
i 51

N

d~rW2rW i !uh&5r1hr11h2r21•••,

~A17!

with

r152Lr L21r8~r !eiLu, ~A18!

r25 1
2 L2~2L21!r 2L23r8~r !1

1

2
L2r 2L22r9. ~A19!

From Eqs.~A14!–~A19!, one obtains the result Eq.~41!:

m̃3~ee!5
L2

2
^0u†RL

1 ,@V,RL#‡u0&. ~A20!

It is seen that the exchange-correlation energy does not
any explicit contribution tom̃3(ee). However, it affects g.s.
magnitudes liker(r ) and the other densities, thus implicitl
influencing all these quantities.

The commutator@O1L
1 ,O1L# of the denominator of Eq.

~7! is easily evaluated to be
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^0u@O1L
1 ,O1L#u0&5a1

2 ^0u@QL2 ib1LRL ,QL
1

1 ib1LRL
1#u0&

54a1
2 ~b1m11b1

2 L2G!. ~A21!

The cubic energy weighted sum rule Eq.~10! for the external
operatorQL is given by

m35 1
2 ^0u†@H,2 iLRL

11 1
2 LvcQL

1#,2 iLRL1 1
2 LvcQL‡u0&,

~A22!

where we employed Eq.~A2!. Using the previous result it is
easy to recover the expression Eq.~51!, which atB50 re-
duces tom̃3 @Eq. ~39!# with g(r )50.
Let us finally indicate that, for the dipole operator, them1
andm3 sum rules for any value ofB and an axially symmet-
ric confining potentialV1 have the simple expressions

m1~D !5
N

2
,

~A23!

m3~D !5
N

2
vc

21 1
4 E DV1~r !r~r !drW.
*Permanent address: Dipartimento di Fisica, Universita` di Trento,
38050 Povo, Italy.
1E. Lipparini and S. Stringari, Phys. Rep.175, 103 ~1989!.
2W. Ekardt, Phys. Rev. Lett.52, 1925~1984!.
3M. Brack, Rev. Mod. Phys.65, 677 ~1993!.
4W. de Heer, Rev. Mod. Phys.65, 611 ~1993!.
5M. Rocca, Surf. Sci. Rep.22, 1 ~1995!.
6Ch. Sikorski and U. Merkt, Phys. Rev. Lett.62, 2164~1989!.
7T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Re

Lett. 64, 788 ~1990!.
8O. Bohigas, A. M. Lane, and J. Martorell, Phys. Rep.51, 267

~1979!.
9F. E. Bertrand, Nucl. Phys. A354, 129c~1981!.

10Ll. Serra, F. Garcias, M. Barranco, J. Navarro, and Nguyen V
Giai, Z. Phys. D20, 277 ~1991!.

11Ll. Serra, J. Navarro, M. Barranco, and Nguyen Van Giai, Phy
Rev. Lett.67, 2311~1991!.

12S. Weisgerber and P.-G. Reinhard, Z. Phys. D23, 275 ~1992!.
13W. Ekardt, Phys. Rev. B32, 1961~1985!.
14Ll. Serra, F. Garcias, M. Barranco, J. Navarro, C. Balba´s, and A.
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