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Far-infrared edge modes in quantum dots
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We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external
magnetic fields. We present a microscopic description based on a variational solution of the equation of motion
for any axially symmetric confining potential and multipole mode. Numerical results for dots with different
numbers of electrons, whose ground state is described within a local current density-functional theory, are
discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at
B=0, we show that the classical hydrodynamic dispersion law for edge wa{gs ~/q In (qo/g) holds
when guantum and finite-size effects are taken into acc¢86163-18207)01644-3

I. INTRODUCTION dressed in different ways. An explanation based on classical

arguments can be found in Ref. 7 In Refs. 15-18, use has

Collective excitations induced in finite fermion systemsbeen made of an edge-magnetoplasmon model, whereas in
by external probes have been extensively studied in the laRefs. 19 and 20 a Hartree random-phase approximation
years. Particular effort has been devoted to an understandin®@PA) method has been employed, and a Hartree-Fock RPA
of the giant dipole resonance in nucteand of the plasmon one in Ref. 21. Multipole modes have been considered in
mode in metallic cluster$®> Recently, a strong collective Refs. 15 and 20. All these approaches neglect the electron
state has also been observed in quantum dot structires.correlation energy, and therefore, no microscopic calculation
These collective modes all have in common the feature off | =1 modes exists which incorporates exchange correla-
beingL =1, S=0 excited states induced by a dipolar exter-(on energy as well as quantum effects arising from finite size
nal radiation which is the dominant component of the elecyq she|l structure of dots in a magnetic field. A workable,
tromagnetic field when its wavelength is much larger thary o rejighe formalism that takes into account all these effects

against the positive background in metal clusters and d equation of motion method within the framework of a local
structures. Whereas in nuclei the restoring force of the col- d ¢ densitv-functional th DET) 22 This functional
lective motion is the symmetry potential which acts differ- current density-functional theoCDFT). IS functiona

ently on protons than on neutrons, in metal clusters and dol@eory is Wel,l sgited to study electronic systems in presence
it arises from the Coulomb interaction between ions and®’ @ magnetic field, and has been successfully employed to
electrons. study ground-statég.s) properties of quantum dofs.

Collective states with multipolarity >1 were predicted ~ ThiS paper is organized as follows. We describe the equa-
to exist, and have been observed in nuclei. At present, whon of motion method in Sec. Il, as well as the basics of the

have a Comp|ete Systematics of quadrupcﬂe:@) and oc- Strength function and its momer(‘ﬂ.lm rU|e$ needed to in-
tupole (L=23) collective excitations in nucléi®°® Multipole  terpret the experimental and theoretical results. In Sec. Il we
collective states irfHe droplets have also been studf8d?  present a rigorous solution of the dipole mode in the case of
but have not been experimentally detected so far. In metdhe full Pauli many-electron Hamiltonian with a parabolic
clusters, the predicted multipole stdfe¥'also have not been lateral confining potential. The exactness of the dipole solu-
observed. The basic reason is the experimental difficultieion in this case, irrespective of the value of the magnetic
arising from the fact that free clusters are produced and andield, has been discussed in Refs. 24 and 25. Here we have
lyzed on-fly, with the added difficulty in the case 8He  obtained this result in a way that yields an explicit expresion
drops of being electrically neutral systems. not only for the spectrum, but also for the eigenstates. In Sec.
Far-infrared absorption spectroscopy experiments oV we present a variational approach to the description of
large radius quantum dots submitted to a static external magnultipole excitations in which exchange and correlation ef-
netic field B have likely evidenced quadrupole excitatidns, fects are taken into account within CDFT. We show in Sec.
and an anticrossing between the: 1 and 2 resonances, each V that for neutral large dots &=0, these excitacions build
of them split into two branches, one with negative and anan edge wave with dispersion relation of the type
other with positiveB dispersion. We recall that, for these w(q)~ vq In(gy/q). Detailed numerical results are presented
systemsL has to be understood as the angular momentunm Sec. VI for dots with different number of electrons, and
about an axis perpendicular to the dot plane. the concluding remarks are presented in Sec. VII. Finally, an
The collective spectrum of quantum dots has been adappendix contains some technical details.
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Il. EQUATION-OF-MOTION METHOD with L=1,2,3 ... and LzinN:llzi. If AL, is the angular

We consideiN electrons moving in the=0 plane where momentum of0), the stateg=L)= O, |0) have an angu-
they are confined by the dot potentiaV,(r) with  lar momentunvi(Lo*L). _
r=+yxZ+yZ2 On this system it may act a constant magnetic 10 €ase the formulas that otherwise would be very cum-

field in the z direction described by the vector potential Persome, from now on we shall be using effective atomic

5\:1/2(_%)(’0)5’ and we suppose that the system can beunits, defined byi =e?/e=m* = 1. In this system of units,

L2 ; : M
described by thé\-electron Pauli Hamiltonian: the Iength_ l.m't Is the Boh_r radluszo t|m_es e/m”, arld the
energy unit is the Hartree timas* /e“, which we callag and

o 2 ¥, respectively. For GaAs we hava~ 97.94 A and
H=2, [ —{pi+ AT | +Vi(r)+1g* uho B Ef,~11.86 meV.
=1 {2m ¢ It is obvious that to find these operators is in general as

N difficult a task as to solve the Scliinger equation corre-
+2 V (|F-—F-|) (1) sponding to the Hamiltonian Eql) for the vibrational
= oot states, and one is led to solve Eg) in an approximate way,

. ) i . one of these being, for example, the random-phase approxi-
wherem* is the electron effective mass which together with ,4ii0n. Another fruitful approximation, originally proposed

a dielectric constané and gyromagnetic factcg’; are char-  py Feynman to describe density excitations of superfluid
acteristics of the semiconductdior example,g* = —0.44, “He 25 consists of making an ansatz an'|0). Acting upon
€=12.4, andm* =0.067n, in Gaiﬁ\s), pg is the effective |0y with Eq. (5) and projecting onte@*|0), one obtains

Bohr magnetornug =%e/(2m*c), o is the Pauli matrix vec-

tor, andV, is the electron-electrone(e) interaction _(0[][O,[H,0"]]|0) @
o2 (0[[0,07]|0)
Vc(|ri_r1|): € |F-—F-| 2 Equations(5) and(7) are completely equivalent [D) is the
b exact ground state, ar@d™ is the sought operator. The ad-
Equation(1) can be rewritten as vantage of Eq(7) is that we may look for approximate so-
lutions of variational type, guessin@* and obtaining|0)
N 5|2 within a workable, yet accurate scheme, such as the local-
H=> —— 3w, T gm* wiri+39* ugBo, density approximatiolLDA) atB=0, or CDFT atB+0. To
=1 [2m find these approximate solutions is the subject of Sec. IV.
N We shall also see that, remarkably, E¢E) and (7) have
+V. (1) +2 Ve(Iri—1))), (3)  exact solutions in the dipole case when the confining poten-
1< tial has a parabolic form.

i ) The excitation spectrum of the system is usually probed
wherew.=eB/m*c is the cyclotron frequency arld is the  py gifferent external fields, or given the well-defined angular
angular momentum operator about thaxis: momentum of the excited states, by a seledtgublar com-
ponent of the field. For an excitation operakorepresenting
it, a useful, often experimentally accessible quantity, is the
so-called strength function

I, —ihﬁ. (4)
Given the exact g.50) of the N-electron system, it is . 2
possible to obtain the e>xact spectrum corresponding to a S(E)_; [(n[F[0)[*6(E~Ey), (8)
broad class of collective vibrations if one is able to find an
operatorO™ such that the following equation of motion is WhereE, and|n) are, respectively, the excitation energy and
fulfilled: the excited state, and the sum or integral in the case of con-
tinuum spectrum extends over all excited states of the sys-
[H,0"]=hwO". (5) tem. Of special interest are some energy moments of the
strength function
The stateD™|0) has an excitation enerdyw, and the g.s.
fulfills O|0)=0. As the excited states have a well-defined K
angular momentum, so the operat@3 must have. Conse- meJ EkS(E)=§n: Eql(nIFI0)I, ©)
quently, one has to solve E(p) for eachL value.
When a magnetic field acts perpendicularly on the dot, itwvhich we shall call sum ruleéSR’s). They are then; and
causes a splitting of the exciteB=0 states into two m3 moments, which can be also written as
branches of energyiw-.,, each carrying an angular mo-
memtum=#%L over that of the g.s. It implies that, besides m,=3(0|[F*,[H,F]]|0),
Eq. (5), the physically acceptabl®?, operators have to ful- (10)
fill

1
[L,, 0, ]=+4LOT, 6) m3=2(O|[[H,[H,F"]],[H,F]][0).
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These SR'’s have been extensively studied in the literatiire. g

For the present purposes it is enough to recall that, if only w+=wi7, (16)
one excited state is contributing ®(E), Es=(mg/m,)*?

coincides with the corresponding excitation energy. In aand it is easy to verify that

more physical situation, whenever the strength is concen-

trated in a narrow, “high”-energy regiork, is a fair ap- [L,,0f]=+0". 17
proximation to the resonant energy. We daj the scaling
energy becausm; can also be obtained by scaling t@

wave function as

The statesO1|0) are normalized to unity and orthogonal,
carrying an angular momentuni{+ 1). This exact result
stems from the translational invariance of the electron-
| 7)=e"H:Fl|0), (1) electron interaction for which= (%, V.(|r;—r;|),P] =0, and
consequently it is independent of tleee interaction, pro-
vided it is local®
2 It is a simple matter to check that the stafesl) exhaust
(77| | 7)] =0- (12)  them; andm; SR’s for the dipole operatd® =X ,x;, and
that the dipole strength is equally distributed between them.

The m; sum rule can be obtained either from E40) or ~ One obtains

(12). The latter allows one to identifyn; as the restoring

force that causes the collective vibration, and, consequently,

to identify m; with the collective mass parameter. T3 2
We want to stress that not all possible approximation m3(D)=3N(w”+;w), (19

schemes fulfill them; andm; sum rules in the sense that a

direct evaluation of Eq(9) yields the same result as Egs. 5 , 1N

(10). A test on the consistency of the approximations made [(0|D[+1)[*=[{0[D|-1)| i (20)

. . . . w

to get the g.s. and excitation spectrum, is the fulfillment of

these SR'’s, especially afy;, which is very model indepen- and, for example,

dent.

and then carrying out the following derivative:

m32

ml(D):%Ni (18)

N
2 _ 2_ _
Il. EXACT SOLUTION OF THE DIPOLE MODE FOR w+|<0|D| + 1>| to- |<O|D| 1>| =my(D). (22)

THE PARABOLIC CONFINING POTENTIAL
It is interesting to notice that in thB=0 limit, o, =w_=

It has been frequently argued in the literature thate (D) = w,. This result is independent of the number of

V..(r)=1/203r? can be a good approximation of the confin- electrons in the dot, in agreement with the generalized Kohn
ing potential. That is the case, for example, when the numbetheoren?® The parabolicity of the potential is expected to
of electrons in the dot is small as compared with the numbebreak down when the number of electrons in the dot in-
of positive ionsN ;. that produce the confining potentfllf  creases, and the electronic density extends up to the edge of
that approximation holds, it is easy to check that the soluthe dot. Departure 0¥, (r) from the parabolic law origi-
tions of Eq.(7) for the Hamiltonian Eq(3) andL=1 are nates arN dependence iw. andE3(D).
The exact solution to Eq5) can be used to obtain the

1/2 .
O*—E « _ I—_P static dipole polarizability of the do&(D), which is twice
+72\N o | them_,(D) sum rule}®
(13 1 1
L 1) i m_;(D)= —[(0|D|+1)|*+ —|(0|D| - 1>|2
07:_ _ Q+_:P+ , +
2\N ® (22)
where Consequently, in the parabolic potential approximation the
dipole polarizability is independent of the magnetic field. We
N ) i expecta(D) to beB dependent in the case of a more general
QZEl (Xi+|yi)Ei§1 a, confining potential. Using th&t
(14) N
N N w(%:R—;, (23
P=2, (px+ipy)=2, p'
- we obtain
and
N
2\ 12 a(D)=R®—. (24)
— W N,
w= w0+ 7 (15

The R dependence could have been anticipated from a di-
The corresponding frequencies are mensional analysis.
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Let us finally discuss the nature of the dipole modes with We have thus considered s, operators the following
regard to their geometrical shape. If we consider the transicombinations:
tion density associated with the excited stgted)
Ol =a.(Q —ib,LRy),

pu(r)=(0|p0]0)=(0|[p,0:]/0), (25 (31)
wherep is the N-electron density operator Ol =a (Q —ib_LR/).
N Equations(31) reduce to Eqs(28) for L=1, and the pro-
2 (r— ; (26) posed operators fulfill Eq6). These modes are edge modes
=1 whose transition densities read
it is easy to obtain Pt (F)=(0|[p,OF ]|0y=rt~1p! (r)e*iLe. (32)
pu(N)ecp’ (e, (27 To minimize Eq.(7), it is necessary to have a description

of the g.s]0). We have taken for it the Kohn-Sham sate built
from single-particle(s.p) wave functions obtained in the
framework of the CDFT of Ref. 23. We refer the reader to
that work for the details. For the present purposes, it is
enough to recall that the s.p. wave functiopg(r,6) are
separable i and @ variables as

— —ile
When the confining potential is no longer parabolic, irre- Gnia(r,0)=Ups(r)e”"", (33
spective of the value of the magnetic field and of the multi-with |=0,+1,+2, ... being the orbital angular momentum

polarity of the mode, the equation of motigh) cannot be  of the s.p. state. Upon minimization, one obtains
solved exactly, and we resort to an approximate method

wherep(r) is the g.s. electronic density, and the prime de-
notes the derivative. This transition density is characteristic
of an edge excitation.

IV. VARIATIONAL SOLUTION FOR GENERAL AXIALLY
SYMMETRIC POTENTIALS

based on Eq(7). In the dipole case, the natural guess for the 1+b.(Loc+4L%w;) + b2 (w3+ L3ww,)
+ . Wi = _~ )
O operators is -t 2b. +2b? L %0,
O}=a,(Q-ib,P), (34)
(28) X Voi-3L%7= 1%,

O =a_(Q"—ib_P"), S BT
whereb.. are variational parameters aad have to be de- (39
termined from the normalization condition. This process can 1
indeed be carried out, and one obtains the dipole spectrum of at= ,
the system. T 4b.(myb.L7T)

At this point, we consider it more convenient to general-Where
ize theQ andP operators in such a way that the calculation
can be done for anl value. To this end, we have first taken ~
the following Q, : pr LN sz (36)
' m 4°¢
N N
= bi= 29 ~ r >
Q Z:l Z 29 wlza——(L 1 jdrrz""‘)/(r), (37)
1

This choice is inspired in thatk¢) “e'-? is the smallk ex-
pansion of the functiod, (kr)e'“?, which is the restriction to _ zf > oo
the z=0 plane of the general solution of the Laplace equa- my=L" | drr p(r), (38)

tion in cylindrical coordinates], is theL Bessel function of

the first kind?® m3=mg(T)+my(ee) +ms(+e), (39)
Next, we have taken as partner @f in the O" expres- )

sion the operator with

N

m (T)=L2(L—1)J drrt = [L7+2(L—2)\], (40
Ru=2) d-p, (30) ’
where thei-particle index is implicit in the particle and mo- = (2Lt

. . S i . ms(ee)=4mxL L— p (r)dr [2(L+1)

mentum coordinates. This choice is again guided by the ex- 241!
act dipole case, since the conmutdtbr,Q, ] yields a com- ,
bination of Q, andR, , which reduces to the one we have Peerygr2L o meery 2L+ LA
found in Sec. Ill wherL=1. X (rr = p(rr 1B, | dr
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p'(r')

!

_pn(r/)

+r2'-J’
r

r
EL(—/)dI”
r
2L+1L! o
] B _ 2 ’
L r<p (r)] 27l fo drp'(r)
r
X[rZLSJ [4r12pr(r1)
0

dr’+r2'-J
r

dr’—%rZLp’(r)], (41

!

+r'3p"<r'>]El(r7 P

r/

r
—p"(r')|Eq .

!

my(+e)= —WLZFdrv+(r)[(2L—1)r2L—2p’(r)
0

+r2"1p", (42)

Besides the particle and kinetic-energy densities

p(r>=; u (1), (43)

|2
12 2
ur‘lla+ r_zunla '

r(r>=<0|2 v*5<r*—r7>v*|0>=n2

(44)

in these equations we introduced the densities
D)= =2 Aun (1) =rig(r), (45)

/2
()= 2 —uh, (1), (46)
n‘o
as well as thee, function
v

E()=75F(-3,L+3L+1.2%, (47)

12 379

(i) For anyL and zero magnetic fieldy., =1/w; and
01,|0) merge into a degenerate state of energy

~ |12
thZ(—) . (48)

This is precisely th&=0 scaling energ¥s(Q,), sincem;
is actually the generah;(Q,) sum rule, and, as is outlined

in the Appendix,m; reduces to the zero magnetic field
m3(Q.) sum rule makingy(r)=0. This result is the varia-
tional analog of the case we have discussed for the dipole
mode in a paraboli/, .

(i) In theL=1 case, irrespective @, all terms inms
but ms(+e) vanish, and for any axially symmetric ionic
potentialV . (r) we find
wg
4

W=

1 i w2,
+mj drAV+(r)p(r)> i?, (49)

which reduces again to the exact case 'u[ﬂd%wgrz.

(iv) For anyB, the state$+L) and their energies satisfy
them; sum rule, i.e.,

ml(QL>=L2fdFrzL‘2p<r>=w+|<0|[QL,OXL]IO>|2

+w_[(0[[Q_,0% ]|0)[2. (50)

This implies that, althougl®, |0) are only approximate so-
lutions to thel -polar excitation spectrum, within our method
there are no other excited collective states corresponding to
that multipolarity built as coherent superposition of one
electron-hole states. The sum rule

_ 3 —_
ms(QL)=mg(T)+ 7 L2w2m; + 3w LT + my(ee)

+my(+e) (51)

is also fulfilled. Moreover, the square transition amplitudes
to the|£L) states are equal,

{0I[QL.OF1I0)[*=K0I[QL.O ][0)%.  (52)

where F is the hypergeometrical functidfi. The density  The fulfillment of m; and ms constitutes a rather stringent
\(r) represents a sort of centrifugal kinetic-energy densitytest on our variational method.

It can be shown that in the zeroth-order Thomas-Féfrf)

approximationh (r) =3(r), similar to thex(r)=5(r) rela-
tion holding in three dimensior.The function;j p(r) is the
paramagnetic current densftylt is worthwhile to see that,

(v) It is worth noticing that in all cases, there is no explicit
contribution to these formulas arising from the exchange cor-
relation energy terms in the CDFT Hamiltonian. This is be-
causeQ, is a solution of the two-dimensional Laplace equa-

atB=0, y(r) vanishes due to time-reversal invariance. Itstion. A similar result holds in three dimensions within the
contribution at high magnetic fields is crucial to have well- LDA if one takes forQ, a solution of the corresponding

behavedB-dependent collective energies. Equatidfd)—

Laplace equatiofi*

(42) constitute the main outcome of the present section, and
will be used in Sec. VI to obtain numerical results within V. EDGE WAVES IN NEUTRAL LARGE DOTS AT B=0

CDFT.

The goal of describing the multipole modes in a situation

It is possible to use the scaling enetgy, which is a good

as general as possible makes these expressions look veapproximation of the collective excitation energyBat 0, to
cumbersome at first sight. However, the following can beobtain the dispersion relation of the edge waves in the case

noted.

of a neutral large dot. Under these conditions, the g.s. elec-

(i) ForL=1 and the parabolic V, one recovers the ex- tronic density is constant everywhere apart from a narrow

act solution.

region along the border of the disk. Leg=N/(7R?) be that
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density, and let be the width of the edge region. Using the L(L—1) Ll R
zeroth-order TF approximation to the kinetic and centrifugal E§:277p0—2+4p0§ > In{y=|+1
kinetic-energy densities R a
L
_ .2 1
TP - . (63
(53) m=1 2m—1
. If L>1 but still N>L, that expression can be further elabo-
A=z, rated since
one obtains, from Eq<$38) and (40)—(42), L 1
~3(C+InL)+In2, 64
m1:7TPOLR2L, (54) mE:]_ 2m-1 2( ) ( )
_ ) ) 2ol 2 where C is the Euler constant 0.527 . . . Introducing the
ma(T)=2L(L—1) 7 pgR""7, (59  wave vectorg=L/R, and keeping only the leading term,
we obtain
~ - s _q p(2L=1)N
ms(ee)+my(+e)=47L2R? " 1p2—————F (2), Es=w(q)=v2peq In (do/q), (65

Ll
Z L (56) Whereqo=7/(aB) and 3=0.964.
Result (65 can also be obtained using classical
with z=1—0(a/R) at least, and hydrodynamics? It is worthwhile to notice that the above-
w(g)model differs from that obtained within the edge-

T magnetoplasmon modé@Refs. 15-1Y.
FLU=aF(3L+EL+1:22), (57 ooneep ® ’
2 A 1/2

which diverges az=1. Physically, this divergency is asso- ©(q)= (?p°q> ’ (66)

ciated with the known divergency of the electric field at the = ) i i
edge of the disk in the case of a constant electron deffsity; Which is y2/3 times that of the two-dimensional plasma fre-
see below. quency. We would like to stress that, to obtain the

Thus vain(qe/qg) dispersion relation, it is crucial to take into ac-
count width effects in the electronic density. These effects
are important in quantum dots, where the number of elec-

— -1
E%szPOLl)+4@ L= F.(z). (58  trons usually is much less than the number of ions, and in
R? R 2bL—-1) any case the electron density has a non-negligible edge re-

gion.

F_(2) can be written as a function d¥,(z), which is the
elliptic functionK (z).*? VI. NUMERICAL RESULTS
(2L—1)!! L 1 We have applied the method of Sec. IV to dots made of
TFL(Z): Fo(Z)—mE_l =1 (59 N=86, 20, 30, 42, and 56 electrons. We have taken the values
: B of g*,e andm* indicated after Eq(1), andN, =125, i.e., a
positive density of~4x 10' ions/cn?. This corresponds to
a GaAs disk of about 1000-A radius modeling the positive
1 L 1 background.
“F(2)+1- > _ The g.s. of the dots has been obtained using the CDFT of
2 m=12m—1 Ref. 23. We checked that we reproduce their results when we
(60) use the sam¥ . . For large dots and intense magnetic fields,
Lo sometimes one has to face severe convergence problems in
On the other handr4(z) can be related to the electric field o gojution of the Kohn-Sham equations. Rather than a de-
E(r) generated by the electrons at the edge of the disk:  ficiency of the numerical algorithm, we consider it as a con-
sequence of an inherent characteristic of the system under
_ study, namely the existence of a very dense s.p. energy spec-
=E(r)r_r. (61) i .
rum. To overcome it, on the one hand, and to carry out the
calculations under conditions closer to the experimental
The divergency oE(r) atr =R is removed when one con- ones, on the other hand, we have found it convenient to
siders the existence of the edge width: approach the description of the collective spectrum as the
low-temperature limit of the results obtained from the finite
R temperature generalization of the formalism of Secdske
E(R)=2po In ( 75)* (62  Ref. 33, and of the Kohn-Sham equatio(see, for example,
Ref. 34. Consequently, the numerical results we discuss be-
where y is a constant that depends on the precise way théow have been obtained at a temperafiire 1-2 K. A com-
electronic density goes to zero Rt Thus parison with several cases in which tiie=0 calculation is

Using this, we obtain

B2 oot g b
3= £TPo R2 Por

2poF1(2) av
poFil2)=——~
dr r—R
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0.4

B=0

, (meV)

: 0 2 4 6
r(ay) B(T)

FIG. 3. w., energies in meV as a function & in T for

. L —2 , -
FIG. 1. Electronic densities iraf) ~* as a function of in ag , L=1-4, corresponding tb=6.

for dots withN=6, 30, and 56 electrons, ari=0.

easy to converge, allows us to state that the small temper};tr-]e exchage-correla_tion energy, which has a profou_nd influ-
ture we use does not influence the results here presente%‘t.1Ce on thenisee Fig. 3 of Ref. 26 The structures n the
Thermal effects on the collective spectrum of quantum dotg’*L branches roughly co.rr.espond fo valuestbfat which
will be described in detail elsewhere. the total g.s. spin has a minimum. For example Net 6 we

Figures 1 and 2 show the electronic densities correspond!2Ve that Bis equal to 2 aB=1 T, to zero aB=2 T, and
ing to dots withN=6, 30, and 56 electrons f@&=0, and for 0 2 8tB~3 T. FOrN=56, one has that2=13 atB=4 T,
B=5 T, respectively. Figures 3-5 display tBedependent, 7atB~5T,and8aB=6T. .For theN=6 dot, th.e rising of
multipolar spectrum of the same dots uplte 4. This is the the w.>1 Curves a‘B”?’ T IS c_iu_e to the full alignment of
interesting region where the crossing between andw the electron spins. No S|m|I{:1r risings sho up N)F30. and
branches may occur and has been experimentally observegf Pecause for them, the alignment occurB aalues higher
The energies are drawn in meV, and the magnetic field in Tthan those displayed in the figures. .
These figures show that as the, energies go to zero, they It can be seen from Figs. 3—5 that the crossing between
may reach a value comparable to the electron-hole s.p. ef2+1 andw_, branches dogs not follow a cIeNrsysFemat-
ergy difference at a rather moder&evalue. When this hap- 1cS- We have also plotted in Fig. 4 tiiey(Q,) energies for
pens, the collective state lies within the s.p. excitations rel- =1 and 4(dashed lineks The scaling energy is reproducing
gion, and experiences a strong Landau damping, losing it¢+L t0 Within 10-20 %, since the_, branch is contribut-
collectivity and eventually being washed out. This is one of"d 10 M3(Q.) with the same weight as the, one, and the
the reasons why the,, branch has been experimentally Negative B-dispersion energies are going to zero rather
observed up to highe® values than thes_, branch’ slowly. _ o _ _

The structures appearing along the 1 curves are due to e also display in Fig. Sdashed lineg the collective
drastic changes in the particle, kinetic and paramagnetic cuf2n€rdies obtained for a parabolic potential whesg has
rent densities of the dot arising from the effectiothrough ~ P€en fixed to 5.6 meV in order to reproduce thgenergy at

30

0.4

B=5T N=30 ——E,

,, (meV)

B(M)

FIG. 4. Same as Fig. 3 foN=30. The dashed lines are the
FIG. 2. Same as Fig. 1, f@=5 T. E3(Q.) energies folL=1 and 4.
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30

N=56

@, (meV)

B(M

FIG. 5. Same as Fig. 3 fdl=56. The dashed lines represent FIG. 7. Same as Fig. 6 fad=56.
w+| -1 Obtained using a parabolic potential instead of the one gen-

erated by the disk. L. which increases wheN increases. Sinc®, behaves as

~rl, the higher thd_, the more external its influence on the

B=0. It is worth noticing that this value does not equal theelectronic densitv. This means that for large enolialt iust
one which fits the Coulomb potential generated by the 1000- Y- 9 gn

A-radius disk charged withN, =125 ions near the origin acts on the s.p. wave functions having the Iargangular_
which is 4.4 meV, and consequently, has to be interpreted momentum and radial quantum numberConsequently, it

here as an effective parameter to reproduce the dipole energlijxcl) longer generates collective but s.p. excitations. As collec-
at zero magnetic field. Fdr=1, to the scale of the figure ity has its origin in interparticle effects, it was argued in

both calculations coincide. It may be seen that Bhslopes Ref, 14 thatl.o roughly reprgsen_ts the Iargelstcollectlye
- mode the system can sustain, sincelforL ., the restoring
of the v, branches forl.=2-4 are roughly the same for force represented by, is basically determined by an inde-
the parabolic and disk confining potentials. endentp article pro 3ert like theykinetic ener yThis crite-
At B=0, Figs. 6 and 7 show, fol=6 and 56, respec- P P property 9y

tively, the different relative contributions to; coming from '[il\c/)enl yieldsLe~ 4, 6, and 8 foN=6, 30, and 56, respec-
kinetic and Coulomb energies, as a functionLofThe Cou- Iny.Fi 8 we represent the enerav of modes with 1 —4
lomb energy is also decomposed irdee and dot-electron B 9. P! 9y X
(+e) energies. These figures show that, for srhaifalues atB=0, as a function of the number of electrons in the dot.

; gies. g oo L ' The ratiosw;/w, andw,/w, have, forN>20, average val-
m, is dominated by the {e) contribution, the kinetic and ues 1.68 and 1.37, respectively, instead of 3 and 2 as corre-
(e-e) ones being of minor importance. However, for a fixed . ) P Y,

N the kinetic contribution eventually takes over the CouIomb?rz?]:"jtié[oﬁghfreh?g&oggbojﬁggg; i(:}ue:;ewlet ;r:;)g;rent
. . . L .
energy contribution. This occurs at an angular rnomentunEiiscussed, only for the dipole mode in the case of a parabolic

confining potential does one have;=w,. The deviation
100
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FIG. 6. Decomposition ofn3(Q,) into kinetic (solid line), total N
Coulomb (dashed ling (e-e)-component(dash-dotted ling and
(+e)-componentdotted ling contributions as a function df for FIG. 8. Zero magnetic field_ energies in meV foL=1-4, as

the N=6 dot atB=0. The lines are drawn to guide the eye. a function ofN.
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the only one for which a detailed comparison is possible.
We notice that the influence of the dot-dot interaction has
not been considered in the comparison with the experiment.
N=25 That effect was estimated in Ref. 25, and it can be shown to
have a negligible influence on the frequency of the collective
modes for the experimental dot array of Ref. 7 because the
dot-dot distance is much largéabout ten times larggthan
the dot radius.

E(meV)

VIl. SUMMARY

In this work we used a variational approach similar to the
one proposed by Feynmann in the case of ligfide, to
describe the multipole spectrum of quantum dots. One of the
merits of the method is that quantum and finite-size effects
can be taken into account. It may be easily applied to dots
hosting several tens of electrons. Rather than in the method

FIG. 9. w., (solid lines andE4(Q,) (dashed lingenergies in  itself, this limitation has its origin in technical difficulties
meV as a function oB in T, for a dot ofR=1000 A,N, =28, and  inherent to current microscopic approaches to handle a large
N=25. The values o€, g*, andm* are those of GaAs given inthe number of electrons in intense magnetic fields.
text. The points are experimental results taken from Ref. 6. The ground state of the dots has been described within
current density functional theory. This has permitted us to
'éncorporate, in a description of the spectrum, an exchange-
correlation energy contribution that takes naturally into ac-
dount current effects appearing at nonzero magnetic fields.
We presented a systematic description of edge modes up
L=4 in the region of interest to describe level crossing at
nonzero magnetic fields. We gave explicit formulas for the
m; andmg sum rules corresponding to the general multipole
operator Eq(29), which reduce to very simple expressions
in the dipole case, Eq§A23). These sum rules are exact
within CDFT, and may be of interest to check the accuracy
fof any detailed calculation of the-mode strength, similarly
to the way they are currently used within time-dependent
local-density approximatio?r. Besides this practical applica-
tion, it is worth noticing that there are few studies in the
literature of anmg sum rule corresponding to a physical situ-

from that rule becomes more and more important as th
number of electrons in the dot increases. This was alread
discussed in Ref. 19. ThH dependence of -, is more
complex, and this is due to the interplay between kinetic anq0
Coulomb energy contributions to the excitation energy. It
can be easily understood from E§8), which shows that the
contribution of the kinetic energy term is important for small
N and increases with increasihg For fixedL, the Coulomb
energy eventually dominates, ang -, depends orN in a
way similar to the dipole mode.

Finally, we have also studied the collective spectrum o
the N=6 dot in the parabolic potential with;=5.6 meV,
and have found that, as expected, the., energies aB=0
depend onN. For example,w, decreases from 8.2 to 7.5

meV, wg decreases from 10.9 to 9.0 meV, ang decreases ation where time-reversal invariance is violatsee, for ex-

from 14.3 to 10.4 meV when one goes frd+6 to 56. ample, Refs. 36 and 37 for the three-dimensional polarized
So far, we presented a systematic study carried out undeer

: . : X lectron gap
well-defined conditions which could render a comparison For large neutral dots at zero magnetic field, we showed
with the results of a given experiment difficult, since theretri ’
a

are several variables that have to be fixed at the experiment a the classical_hydrodynamic dispersion law for edge
) . ; P - wavesw(q) ~+vq In (qy/g) holds when quantum and finite-
values to permit a sensible comparison. To end this section, , .
size effects are taken into account. Finally, we also showed

we compare some results obtained within our formalism W|thIhat in the case of a parabolic potential, the dipole mode can

the experimental data of Ref. 7. This is possible only in par%e exactly solved, yielding the well-known classical formula

because, n that work, the=1 and 2 well-defined branch for w..,. The exactness of the dipole collective spectrum was
were obtained for a dot made of a large number of electrons

N=210. At present, this is to large a value for us to dealStressed in Refs. 24 and 25. Here we _obtained it in a different
with microscopicall);. Let us remind the reader that the S_pway, and W?m a step fur_ther explaining the s_tructurg qf the
wave functions behave near the origin % (see, for ex- 1i1)_col|ect_|ve states. T.h|s allowed us to obtain ayapauonal

X ' solution valid for any axially symmetric lateral confining po-
ample, Ref. 24 and since the s.p. levels are nondegenerat

when B#0, large N’'s imply large s.p. angular momenta. fential
Consequently, we have only attempted to describe the

N =25, R=1000-A dot. This can be inferred from the value

of the dipole energy Demadt al. found atB=0, thatN, ~

28. For this dot, the rati@,/w; they obtained is around 2, a It is a pleasure to thank Luis Brey for a useful correspon-
value we are unable to reproduce, whereas forNlke210  dence. This work was performed under Grant Nos. PB95-
dot itis~1.5, in better agreement with our systematics. Nev-1249 and PB95-0492 from CICYT, SAB95-0388 from
ertheless, it can be seen from Fig. 9 that; and E5(Q) DGID, Spain, and GRQ94-1022 from Generalitat of Catalu-
nicely reproduce the positivB-dispersion branch, which is nya.
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N

v .
In this appendix we give some hints about how to derive R "2‘1 (axﬂay)\/*(r‘)q“l} 10).
Egs.(34)—(42), and the sum rules; andm; corresponding (A11)
to the external one-body operat@j of Eq. (29), which are
given in Egs(38) and(51). The details of the method we use The remaining two terms in EGA9) give
here can be found in Refs. 1,8,14 and 31.

APPENDIX L2
ma(+e)= ?<0|

We fix our attention on the operat@?, of Eq.(31); the . L
operatorO | is handled similarly. The double conmutator in (0| R{ vacRL} |0)=2LwI, (A12)
the numerator of Eq(7) can be decomposed into three
pieces: which yields the Eq(37) term, and
[0, .[H,07 J1=a%{[Q/ .[H.Q.]] _ L2
[ ®
+ib, L([R [H,Q1-[Q/ .[H.RID) (Ol R ,zwiQL}|0>=§fm1, (AL3)
+bZ LR [H,RIT. (A1)

which yields the second term in E(B6).

Splitting the Hamiltonian Eq(3) into a one-body ternH, There remains the problem of evaluating the
and a two-body terV==;_; V (|r;—r;|), and using that (O][R, ,[V,R_]]|0) term. We have done this within CDFT
Q. is a local operator which commutates withone obtains by scaling the CDFT g.s. as

_ — 1
[H,QL]1=[Ho,Qu]=—~ILR +3L0QL, (A2) |7)=e"|0), (A14)
where we used the conmutation relations
_ and then calculating the derivative
[T.Q]=—IiLR, [L;,Q]=LQ.. (A3)
From Eq.(A2) and 1 92
5 {7V, (A15)
[Q,P]=2iLQ[_;, [L.,P]=P, (Ad) &
it is then inmediate to derive, for the first two terms of Eq. where
(A1), the results
+ 2 2L-2 e 1 Pn( 1)P7;( 2)
(O|[Q[ ,[H,Q.1llo)=2L%] r p(rydr=2m,, (nlVIny=3 —|r 5 drydr, (A16)
(A5) 1 2
and
(O[[R,[H,Q.11-[Q/ .[H,R.11|0)= — 2i(wm; +4LT),
(6) N
where PV =(n 2 80 =r)m)=p+ npst n'part -,
N Al7
I'=20|[R/ ,RL]|0>=(L—1)f drrt=%y(r). (A7) (ALD
with
To evaluatdR," ,[H,R_]], we first calculate
[H,RUI=[Ho,RUI+[V.R.]. (A8) pi=—Lrtp'(n)et?, (A18)
The first term gives 1
N , p2=3L2(2L=1)r®%p! (N +5L2r?72p". (A19)

) i
[Ho.Ru]==i(L=1)2, qu2p*+ sLocR + 7 0ZQL
From Egs.(A14)—(A19), one obtains the result E1):

i (FiaV (a1, (A9) L2
a my(ee) = <0|[RL [V,R_]1]|0). (A20)
and it is then straightforward to recover the results of Egs.

(40) and (42) for It is seen that the exchange-correlation energy does not give

_ L2 N any explicit contribution tang(ee). However, it affects g.s.
my(T)= 7(0| R, —i(L-1)> qL_2p2}|O> magnitudes likep(r) and the other densities, thus implicitly
=1 influencing all these quantities.

(A10) The commutatof O, ,0, ] of the denominator of Eq.
and (7) is easily evaluated to be
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(0[[0F,,0,,.1/0y)=a%(0|[Q,—ib, LR, ,Q Let us finally indicate that, for the dipole operator, the
_ B andm; sum rules for any value d@ and an axially symmet-
+ib,LR]|0) ric confining potentiaV . have the simple expressions

=4a%(b,m;+b2L2T). (A21)

N

The cubic energy weighted sum rule Ef0) for the external _

operatorQ, is given by
mg=3(0|[[H,—iLR/ +3LwcQ,],—iLR + 3L 0cQ]|0),
(A22)

where we employed EqA2). Using the previous result it is
easy to recover the expression E§1), which atB=0 re-

duces tom; [Eq. (39)] with y(r)=0.

(A23)

my(D) = gw§+%f AV, (r)p(r)dr.
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