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Direct calculation of Slater-Koster parameters: Fourfold-coordinated silicon/boron phases

A. K. McMahan and J. E. Klepeis
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550

~Received 28 May 1997!

The need for tight-binding total-energy representations of interatomic forces has renewed interest in Slater-
Koster parametrization of electron band structure. For larger numbers of parameters, as in multicomponent
systems, and to truly test issues of transferability, it is advantageous to have means of directly calculating these
parameters. Here we derive analytic expressions for the two-center Slater-Koster hopping parameters, effective
site energies, and effective crystal-field parameters in terms of the one-electron Hamiltonianmatrix elements in
any localized minimal basis, and analogous quantities for the overlap. We apply these expressions to the cubic
diamond phases of Si and B, and the zinc-blende phase of SiB at three volumes each, usingspd, nonorthogo-
nal full potential linear muffin-tin orbital matrix elements calculated with a linked or contracted minimal basis.
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I. INTRODUCTION

The use of tight-binding formalism to parametrize ele
tron band structures dates from the early work of Slater
Koster,1 and has continued to the present.2–6 When supple-
mented with information as to how the associated parame
vary with interatomic separation, and usually also by expl
interatomic potentials, one can construct total-energy fu
tionals of the atomic positions.7–18 There has been conside
able interest in such tight-binding total-energy represen
tions to provide interatomic forces for structural relaxatio7

and for molecular-dynamics simulations.19 In much of this
work, parametrized functional forms or splines defining t
interatomic separation dependence of the various Sla
Koster parameters and interatomic potentials are fit by n
linear minimization to anab initio data base of band struc
tures and total energies. Interesting developments include
use of non-pairwise-additive functional forms for the inte
atomic potentials and Slater-Koster interactions,11–14 aug-
mentation of theab initio data base by forces,15 and the use
of local-environment-dependent site energies,16–18 some-
times in place of interatomic potentials.18

As the number of required parameters grows roughly q
dratically with the number of chemical species in multico
ponent systems, and in order to truly test issues of trans
ability, it is useful to have means of directly calculatin
Slater-Koster parameters. Andersen and co-workers im
mented a basis of screened muffin-tin orbitals to creat
two-center formulation of the one-electron problem with
the atomic sphere approximation,20 which has been use
to extract Slater-Koster parameters for orthogo
representations.21 Porezaget al. calculated nonorthogona
Slater-Koster parameters using a basis of slightly contra
pseudoatom eigenfunctions,22 and generated successful tigh
binding total-energy representations for a number of mu
component systems using such parameters.23

It is the purpose of the present paper to demonstrate
any ab initio band-structure method which is implement
with a localized basis, or can be projected onto such
basis,24 can also be used to provide a simple and direct c
culation of the associated Slater-Koster parameters given
560163-1829/97/56~19!/12250~13!/$10.00
-
d

rs
it
c-

-

e
r-

n-

he

-
-
r-

e-
a

l

d

i-

at

a
l-
he

k-dependent Hamiltonianmatrix elements, and similarly for
the overlap. We derive analytic expressions which uniqu
define the two-center Slater-Koster hopping parameters
terms of these matrix elements. Moreover, by assembling
matrices from a linked or contracted minimal basis, i.e.,
using optimized fixed linear combinations of a larger set
basis functions employed by theab initio band-structure
code, one may obtain Slater-Koster representations of a
racy approaching that obtained from fits to the one-elect
eigenvalues.6 Our approach is purely deterministic, withou
the need for any fitting. In this way we are able to avoid t
problems associated with multiple local minima, whic
means that the additional effort to calculate parameters
many component systems is minimal. Furthermore, we
now directly study effects such as making the two-cen
approximation, and obtain additional insights concerning
general characteristics of the parameters themselves.

Site energies and crystal-field interactions are also es
tial parts of two-center representations of electron ba
structure. While the true or bare site energies and crys
field parameters are underdetermined by the matrix elem
for a single structure, the Hamiltonian for a given structu
behaves as if it were characterized by generally a small n
ber of effectivesite energies and crystal-field interactio
which can be determined, along with definitions of thes
effective parameters in terms of sums over the bare crys
field interactions. Both the effective site energies, which
the usual site energies which would be obtained by fits to
band structure, and the effective crystal-field interactio
vary with local environment due to these structure-depend
expansions.16,17 Moreover, by a simple transformation of th
crystal-field parameters, we demonstrate the formal simi
ity of the effective site energy expansions to sums over
teratomic potentials, which justifies the trade-off between
teratomic potentials and environmental-dependent
energies in recent work.18

As an application of the present method, we calculated
Slater-Koster parameters at three different volumes for
cubic diamond phases of Si and B, and for zinc-blende S
The resultant hopping parameters are relatively transfer
over these chemical and atomic-volume variations
12 250 © 1997 The American Physical Society
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56 12 251DIRECT CALCULATION OF SLATER-KOSTER . . .
fourfold-coordinated phases. However, preliminary tests f
other structures suggest some coordination dependence t
hopping parameters, so that environment-dependent f
tional forms14 may be needed for a transferable represen
tion of theseab initio parameters. This is beyond the sco
of the present paper, for which the primary focus is t
method for calculating the tight-binding parameters. In t
regard it is to be emphasized that our directly calcula
parameters give a comparable, and reasonably accurate
resentation of the band structure for all phases and all c
dinations considered.

Our choice of the silicon-boron system has been m
vated in part by concern over boron diffusion in Si-bas
semiconductor devices during fabrication, which is an is
of some importance as feature sizes are increasingly redu
Significant insight into the atomic-scale migration mech
nisms has been achieved withab initio local-density-
functional methods;25 however, these methods become t
expensive for systematic investigation of larger B aggrega
in Si, and so a tight-binding total-energy representat
would be valuable. While silicon-boron interactions ha
been added26 to a near-neighbor,sp, orthogonal tight-
binding total-energy representation for Si,9 and successfully
used to examine single B impurities in Si,27 additional B-B
interactions would be needed for larger B aggregates. Fur
extension of a Si/B representation to the ternary Si/B/H s
tem would also enable simulation of the deposition proces
for p-type material using diborane and silane.

In the remainder of this paper we describe the method
calculating the Slater-Koster parameters in Sec. II, detail
the full potential linear muffin-tin orbital~FP-LMTO!
method used here in Sec. III, and our numerical results
Sec. IV. We present a summary in Sec. V.

II. CALCULATION OF SLATER-KOSTER PARAMETERS

The Slater-Koster parameters may be calculated dire
from minimal basis, one-electron Hamiltonian,k-dependent
matrix elementsfor a suitable localized basis. In this sectio
we show that even when imposing the common two-cen
approximation, there are closed-form expressions which
late the Slater-Koster hopping parameters to unique lin
combinations of these matrix elements. Crystal-field ter
can be obtained in a similar manner. In contrast to the h
ping parameters, however, only specific sums of the crys
field parameters over atomic shells may be determined f
given structure. Our approach is similar in spirit to calcul
ing the Slater-Koster matrix elements directly, as in a lin
combination of atomic orbitals approach, but there are
number of advantages which will become evident below.

Matrix elements of the one-electron Hamiltonian may
written

Hqlm,q8 l 8m8
k

5Hqlm,ql 8m8
0 dqq81DHqlm,q8 l 8m8

k , ~1!

separating intrasite and intersite terms,

Hqlm,ql 8m8
0

5^0qlmuHu0ql 8m8&, ~2!

DHqlm,q8 l 8m8
k

5 (
R

R1q8Þq

eik•R^0qlmuHuRq8l 8m8&, ~3!
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respectively, which implies

Hqlm,ql 8m8
0

5
1

N (
k

Hqlm,ql 8m8
k . ~4!

Here uRqlm& represents an orbital of angular and magne
quantum numbersl and m, respectively, at locationR1q,
with R a Bravais lattice vector, andq a basis vector. Basis
vectors will also have an associated typet to distinguish
equivalent from inequivalent sites, for example the two d
ferent sites (q1Þq2) which are equivalent (t15t2) in cubic
diamond but inequivalent (t1Þt2) in the zinc-blende struc-
ture.

In the remainder of this section, we describe Slater-Kos
expansions for the two terms given by Eqs.~2! and ~3!, be-
ginning with the latter. The expansion ofH0 is in terms of
site energies,«, and crystal-field parameters,x; while that
for DHk is in terms of intersite hopping parameters,t. Analo-
gous expansions exist for the overlap matrix, where we
note the hopping parameters bys. For bases which areon-
site orthonormal, O0 is the identity, so that site energ
analogs are unity, while crystal-field analogs are zero.

A. Hopping parameters

In the two-center approximation1,6 one assumes that~i!
the potential terms in the one-electron operatorH may be
represented as a sum of spherical potentials centered a
the various atom sites, and~ii ! that three-center integrals ca
be ignored. If this approximation is imposed, Eq.~3! may be
expanded in Slater-Koster hopping parametersttt8 l l 8m(d),
where t is the type of atom at basis positionq, and m
50, . . . ,min(l ,l 8) is the magnetic quantum number abo
the interatomic axisR1q82q,

DHqlm,q8 l 8m8
k ' (

R

R1q8Þq

eik•R(
m

gm~ lm,l 8m8,R1q82q̂!

3ttt8 l l 8m~ uR1q82qu! ~5!

'(
n

q,q8

(
m

Gnm
k ~ lm,l 8m8!ttt8 l l 8m~dn!. ~6!

Here,

Gnm
k ~ lm,l 8m8!

[ (
R

uR1q82qu5dn

eik•Rgm~ lm,l 8m8,R1q82q̂!,

~7!

and Eq.~6! reformulates the expansion in terms of shells,n,
of atomsR1q8 at distancedn[uR1q82qu from the atom at
q. The ‘‘q,q 8’’ over the sum in Eq.~6! signifies that only
those shells aboutq involving periodic images ofq 8 are
considered. The real geometric factorsgm( lm,l 8m8,d̂) are
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12 252 56A. K. McMAHAN AND J. E. KLEPEIS
tabulated in the original Slater-Koster paper1 as well as Table
20-1 of Harrison’s book,8 e.g.,gs(s,px ,d̂)5d̂• x̂. We takem
to designate the customary real linear combinations
spherical harmonics which appear in these tables.

Equations~5! and~6! may be inverted using the orthogo
nality relations

1

N (
k

eik•~R2R8!5dR,R8, ~8!

and28

(
m,m8

gm~ lm,l 8m8,d̂!gm8~ lm,l 8m8,d̂!5~22dms!dmm8.

~9!

The first gives

1

N (
k

e2 ik•RHqlm,q8 l 8m8
k

'(
m

gm~ lm,l 8m8,R1q82q̂!

3ttt8 l l 8m~ uR1q82qu!, ~10!

where the full Hamiltonian may be used sinceH0 projects
out of the left-hand side foruR1q82quÞ0. The nature of
the two-centerapproximationis clear from Eq.~10!: the m

5s,p, . . . geometric functionsgm( lm,l 8m8,R1q82q̂) are
in general an incomplete basis for them,m8 dependence o
theql ,q8l 8 block of (ke

2 ik•RHqlm,q8 l 8m8
k . However, sincetm

are by definition coefficients of the existing basis functio
gm , the second orthogonality relation gives a precise re
for these hopping parameters in spite of the approximate
ture of Eqs.~5! and ~6!,

ttt8 l l 8m~ uR1q82qu!5~22dms!21
1

N (
k,m,m8

e2 ik•R

3gm~ lm,l 8m8,R1q82q̂!

3Hqlm,q8 l 8m8
k . ~11!

If Eq. ~11! is then formally averaged over the identical r
sults for allzn neighborsR1q8 in the same shell,n, aboutq,
one obtains

ttt8 l l 8m~dn!5@~22dms!znN#21

3 (
k,m,m8

Gnm
k* ~ lm,l 8m8!Hqlm,q8 l 8m8

k , ~12!

which is the inversion of Eq.~6!. Note that here and else
where we consider all atoms in a given shell to be equi
lent, and therefore assign different values to the shell in
n, shoulduR11q12qu5uR21q22qu for two different basis
positionsq 1 and q 2. Equation~12! is also the result which
would be obtained from a least-squares optimization of
agreement in Eqs.~5! and~6! for a givenql , q8l 8 block. This
equation is particularly useful, since it is still valid
the k sum is replaced by an appropriately weighted s
over the irreducible wedge of the Brillouin zone. Th
f

,
lt
a-

-
x

e

follows since the matrix dot produc
(m,m8gm( lm,l 8m8,d̂1)gm8( lm,l 8m8,d̂2) for different direc-
tions is a function ofd̂1•d̂2, and is therefore invariant unde
symmetry operations.

B. Site energies and crystal-field parameters

A consistent application of the two-center approximati
will admit one-electron potential terms fromH in Eq. ~2! at
sites other than 0q. Chadi16 noted that these crystal-fiel
terms will have the the same kind of expansion as in Eq.~5!,

Hqlm,ql 8m8
0 '«t ld l l 8dmm8

1 (
R,q8

R1q8Þq

(
m

gm~ lm,l 8m8,R1q82q̂!

3xt l l 8t8m~ uR1q82qu! ~13!

'«t ld l l 8dmm81(
n

q

(
m

Gnm
0 ~ lm,l 8m8!

3xt l l 8tnm~dn!. ~14!

Here «t l are the orbital site energies,xt l l 8tnm(dn) are the
Slater-Koster crystal-field parameters, and the shell sum
Eq. ~14! covers all shells of atoms aboutq. The index order
in xt l l 8tnm is a reminder that both thel and l 8 orbitals are at

the site of typet, while the one-electron potential is at th
site of typetn .

In contrast to the hopping parameter case, the absenc
k dependence in Eqs.~13! and~14! results in an insufficient
number of equations to determine the ‘‘bare’’ crystal-fie
parameters,x, from the Hamiltonian matrix elements for
singlestructure. The number of linearly independent geom
ric matricesGnm

0 ( l ,l 8)[@Gnm
0 ( lm,l 8m8)# for all n and m

now determines how many parameters can be determ
from them,m8 dependence of eachql ,ql 8 block of H0. It is
therefore convenient to rewrite Eq.~14!, retaining the largest
subset ofGnm

0 in which all members are linearly indepen
dent,

Hqlm,ql 8m8
0 '«t l

effd l l 8dmm8

1 (
n,mPLI

q

Gnm
0 ~ lm,l 8m8!xt l l 8tnm

eff
~dn!, ~15!

thereby defining effective site energy«eff and crystal-field
parametersxeff, which can be determined from the matrix
elements ofH0. There are, for example, ten such effecti
parameters for the zinc-blende structure (t51,2) treated in
an spd basis: six«t l

eff and four crystal-field parameters~one
pd and onedd interaction for orbitals of eacht). While the
structure of the one-electron Hamiltonian matrixbehavesas
if these were the only crystal-field interactions in the zin
blende structure, each effective site energy«eff and crystal-
field interactionxeff is a fixed sum, for this structure, over a
infinite number of the ‘‘bare’’ crystal-field interactions in Eq
~14!.
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The structure of Eqs.~14! and~15! is complicated by the
fact that the matrices@dmm8# ~for l 5 l 8) andG nm

0 ( l ,l 8), for
different m, are not mutually orthogonal. The orthogonali
relation between thegm’s, Eq. ~9!, does not carry over to the
Gnm

0 ’s because of the different directions involved in t
neighbor sum in Eq.~7!. However, there is a transformatio
which restores this orthogonality ifg, G, x, andxeff in Eqs.
~13!–~15! are all replaced by the transformed quantitiesg̃ ,
G̃, x̃ , and x̃eff, as defined in the Appendix. We denote t
transformed counterpart of them index by a, so that
G̃na

0 ( l ,l 8)•G̃n8a8
0 ( l ,l 8)}daa8. Moreover, for l 5 l 8, the a

50 geometric function is now proportional to the identi
matrix

G̃n0
0 ~ lm,lm8!5

zn

A2l 11
dmm8, ~16!

wherezn is the number of neighbors in shelln. This means
that the«t l and all x̃ t l l tn0(dn) contribute to the one-electro
Hamiltonian in exactly the same way, as coefficients
dmm8, and can never be unraveled from the matrix eleme
for a single structure. It is convenient to lump all of thes
contributions into the effective site energies, so that

«t l
eff5

1

~2l 11!N (
k,m

Hqlm,qlm
k ~17!

5«t l1(
n

t
zn

A2l 11
x̃ t l l tn0~dn! ~18!

define the effective site energies and their expansions in
bare parameters, respectively.

In terms of the original crystal-field parameters,

x̃ t l l t805
1

A2l 11
(
m

~22dms!xt l l t8m[A2l 11xt l l t8
av ,

~19!

so that

«t l
eff5«t l1(

n

t

znxt l l tn

av ~dn!, ~20!

wherexav may be viewed as the average ofxm5x umu over an
extendedm range,m52 l , . . . ,l .

«t l
eff in Eq. ~17! are the usual site energies that would

obtained from fits to band structures or matrix elements
solids if crystal field is ignored, while the«t l are analogs of
isolated-atom site energies. Even though crystal-field in
actions may be formally ignored in such fits,«t l

eff are never-
theless intrinsically dependent on local environment,16,17

which is a reflection of the expansions in Eqs.~18! or ~20!.
When crystal-field interactions are formally included in re
resentations, the ‘‘trace’’ definition of the effective site e
ergies in Eq.~17! is the most convenient since~1! the envi-
ronmental dependence reduces to the simples-like absence
of geometric factors forall l as seen in Eqs.~18! or ~20!, and
~2! the remaining crystal-field interactions preserve the tr
due to the orthogonality just discussed, e.g., the sp
f
ts

he

r

r-

-

e
t-

tings D«(Eg) and D«(T2g) caused byx̃dd1 ~see below! in
cubic crystals are such that 2D«(Eg)13D«(T2g)50.

For a crystal with only one equivalent site, and if thel
dependence ofxav in Eq. ~20! were ignored, the effect of this
equation on the one-electron eigenvalue sum is form
identical for an orthogonal basis to the eigenvalue sum
would be obtained using the bare site energies« plus a pair-
wise sum over the ‘‘interatomic potential’’xav(d). This is
similar to what Cohen and co-workers did by neglecting
pair-potential sum yet using environmental-dependent
pressions for their on-site terms in their recent nonorthogo
tight-binding total-energy method.18 The formal equivalence
breaks down for nonorthogonal bases, where band struc
shifts also modify thet ’s, and for two or more inequivalen
sites, where the analogy would require expansions ab
sites of other types besidest in Eq. ~20!. Nevertheless, it
seems clear that the use of environmentally dependent
energies, especially given their more flexiblel -dependent
form, may well obviate the need for interatomic potential

For the casesl l 8aÞ l l 0, the counterparts of Eqs.~17! and
~18! are

(
nPLI

t

Mn8nx̃ t l l 8tna
eff

~dn!

5
1

N (
k,m,m8

G̃n8a
0

~ lm,l 8m8!Hqlm,ql 8m8
k ~21!

5(
n

t

Mn8,nx̃ t l l 8tna~dn!, ~22!

where, for the givenl l 8a,

Mn8n5 (
m,m8

G̃n8a
0

~ lm,l 8m8!G̃na
0 ~ lm,l 8m8!. ~23!

Heren andn8 in Eq. ~21! are restricted to the subset of she
for which the G̃na

0 ( lm,l 8m8) are linearly independent, i.e
@Mn8n# has an inverse. Given the inverse of this structu
dependent matrix, Eq.~21! provides values of the effective
crystal-field parameters, while Eq.~22! defines their expan-
sion in the bare parameters for all shellsn. It is straightfor-
ward to program this treatment, beginning with calculati
of the G̃na

0 out to some shell cutoff, examination of thes
matrices for linear independency, and then solution of E
~21!–~23!. The virtue of carrying out these calculations
the transformed ‘‘tilde’’ basis is decoupling of thea index.
Moreover, we found for a variety of structures that the effe
tive crystal-field interactions are the linear combinations
the Appendix. The familiarEg–T2g splitting of d states in
cubic crystals, for example, is due tox̃dd1

eff interactions, i.e.,
fixed linear combinations of the usuals, p, andd crystal-
field interactions in the ratios of 3:–4:1, respectively.

The pd crystal-field interaction alluded to above for th
cubic diamond and zinc-blende structures considered in
work provides a simple, concrete example. For these st
tures there is onlyonelinearly independent matrix among a
the G̃na

0 (p,d) or Gnm
0 (p,d):

Gns
0 ~pm,dm8!5cnG1s

0 ~pm,dm8!, ~24!
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Gnp
0 ~pm,dm8!52

2

A3
cnG1s

0 ~pm,dm8!, ~25!

G̃n0
0 ~pm,dm8!5A5/3cnG1s

0 ~pm,dm8!, ~26!

G̃n1
0 ~pm,dm8!50, ~27!

wherecn is a shell-dependent constant,c151, which is in
fact nonzero only for shells couplingq8Þq. The effective
interaction is clearly ofa50 nature, and if we choose it t
be for the first shell,M11 of Eq. ~23! is 80/9, and Eqs.~21!
and ~22! become

x̃ tpdt10
eff ~d1!5

9

80N (
k,m,m8

G̃10
0 ~pm,dm8!Hqpm,qdm8

k

~28!

5(
n

cnx̃ tpdtn0~dn!. ~29!

Since (aG̃1ax̃a5(mG1mxm , one could alternately se
xtpdt1p

eff (d1)50, and take this crystal-field interaction to b

of standardpds form, i.e., xtpdt1s
eff (d1)5A5/3x̃ tpdt10

eff (d1).

Since the transformed crystal-field interactions are not c
tomary, we take the latter approach in reporting our result
this paper.

III. FP-LMTO CALCULATIONS

The FP-LMTO method used here has been describe
detail elsewhere.29,30While it makes no shape approximatio
to the one-electron potential, space is divided up into v
umes within nonoverlapping muffin-tin spheres plus the
compassing interstitial region for computational conv
nience. The basis functions are augmented spherical Ha
functions of the formRnl(r )Ylm( r̂ ), whereRnl(r ) is a nu-
merical solution of the radial Schro¨dinger equation inside a
given muffin-tin sphere which is matched~value and slope!
to a spherical Hankel function outside the sphere. In addi
to the usual atomic quantum numbers, these basis funct
are characterized by decay energies2k2 of the Hankel-
function tails as well as the value of the muffin-tin radiu
RMT , at which the tail was joined to the numerical solutio
Accuracy is insured by the expansion of each atomic orb
in multiple augmented spherical Hankel functions of diffe
ing decay energies. In the present work, we have gener
self-consistent one-electron potentials and our accurate
LMTO band structure using threes basis functions (2k25
20.01, 21, and 22.3 Ry!, three p functions ~similarly!,
and oned function (2k2520.01 Ry! for every Si and B
atom. The irreducible wedges were sampled with 60 po
for both the cubic diamond~cd! and zinc-blende~zb! struc-
tures.

The present FP-LMTO method makes use of a sepa
expansion of the electrondensityin terms of atom-centered
and possibly interstitial-sphere-centered augmented sphe
Hankel functions to facilitate solution of the Poisso
equation.29,30 We have used 98 functions per site in the
expansions, corresponding to two decay energies,2k25
s-
in

in

l-
-
-
kel

n
ns

,
.
l

-
ed
P-

ts

te

cal

21 and23 Ry, andl max56, and included such expansion
in interstitial spheres for both cd and zb structures.

The HamiltonianHk and overlapOk matrices, which are
represented by the Slater-Koster expansions of the prev
section, are obtained in separate minimal basis calculati
at 28 points in the irreducible wedge, using the se
consistent one-electron potentials obtained in the multiplk
calculations described above. In simplest application, e
minimal-basis atomic orbital could be taken to be a sin
augmented spherical Hankel function. In this work, w
choose a more accurate representation by using fixed li
combinations of two augmented spherical Hankel functio
for eachspd atomic orbital. Such linked or contracted bas
are common in quantum chemistry calculations, e.g., wh
contracted sums of Gaussians are used as atomic orb
The present linked basis differs from a regular two-k calcu-
lation in that the ratio of coefficients for the two augment
spherical Hankel functions isk independent. The set of suc
relative coefficients for the varioust l were determined for
each phase at its equilibrium volume by minimization of t
occupied one-electron eigenvalue sums for the linked, m
mal basis, using the fixed self-consistent potentials. T
same relative coefficients andk values were then used fo
the other two volumes in each case. We also tried choos
these parameters by optimizing the agreement between
minimal-basis and best multiple-k band structure, as well a
the agreement between the Slater-Koster generated
structure and the best band structure. Neither showed sig
cant improvement over the simple one-electron eigenva
sum minimization.

The asymptotic behavior of especially the overlap ho
ping parameterss(d) will be governed by the exponentia
coefficientk in the Hankel function tails. In order to genera
reasonably localized representations, we fixed the decay
ergy of the most extended Hankel function tail to be2k1

2

520.5 Ry, which should reduce values ofs(d) by roughly
two orders of magnitude over a 3.5-Å range. We chose
decay energy for the tail of the second augmented sphe
Hankel function in each linked combination to be2k2

2;
21.5 Ry. Relative to thes(d)’s which would be obtained
using just the singlek1 basis function, we found consistentl
larger s(d) magnitudes, which also drop off more slow
with distance when using the linked basis. The changes
larger with largerl 1 l 8, and for thesll 8s(d), range from
30–60 % increases at the near-neighbor distance to facto
;2–5 at the fourth-neighbor distance for thes andp param-
eters of cd Si. That is, on adding themore localizedk2
component, the variational freedom in forming the link
basis has still chosen to formmore extendedminimal basis
orbitals. The one-electron bands are, by the way, dram
cally improved with the linked basis for the open cd and
structures.

In general we find some differences between the sa
overlap functions,s(d), as calculated for different structure
and stoichiometries, although for the present fourfo
coordinated phases the agreement is generally;20% or bet-
ter. Given the desire for a transferable basis, however,
have performed unitary ‘‘rotations’’ of eachk-dependent
one-electron problem, (Hk2lOk)x50→(Hrot

k 2lOrot
k )y

50, where, suppressing thek index,
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Hrot5Orot
1/2O21/2HO21/2Orot

1/2. ~30!

O rot
k , which define these rotations, were calculated from a

lytic expressions for the complete set ofd-dependent func-
tions stt8 l l 8m(d), which will be given subsequently. Thes
analytic forms were actually fit to a subset of our direc
calculated parameters, so that theO rot

k andO k are not very
different. The virtue of this approach is that, without chan
ing the band structure, it provides a perfectly transfera
overlap which is exactly represented by two-center exp
sions, so that issues of nontransferability or non-two-cen
effects need be addressed only for the Hamiltonian matr
H rot

k . The numerical results presented in this paper will
for these rotated Hamiltonian matrices, and we will theref
make only brief comments on the overlap matrices in S
IV.

Finally, as a bookkeeping note, the Hamiltonian and ov
lap matrices generated routinely by our FP-LMTO code
not correspond to normalized orbitals. Before any other
erations, therefore, we apply the same unitary transforma
Lqlm,q8 l 8m8[dqq8d l l 8dmm8lt l to both Hamiltonian and over
lap matrices for eachk, so as to insure normalization. I
practice we choose theselt l so that the overlap analog o
«t l

eff51, since we find the overlap analog of the effecti
crystal-field interactions to be nearly zero~generally 0.001 or
smaller!. For comparison, near-neighbor magnitudes
stt8sss are typically in the range 0.3–0.4.

IV. NUMERICAL RESULTS

In this section we present numerical results for the
rectly calculated tight-binding parameters obtained for the
phases of Si and B, and zb SiB, each at three different
umes. Comparison is first made between the resultant ti
binding bands and our best multiple-k band structure, with
differences analyzed in terms of the choice of minimal ba
orbitals as well as the presence of non-two-center effe
Plots of the calculated hopping parameters,ttt8 l l 8m(d), are
then presented to illustrate general features in both dista
and angular momentum dependence, as well as variat
over the phases considered. A more practical test of trans
ability is provided by examining the band structure genera
by a single set of analytic functions fit to all of the calculat
t(d)’s for the set of fourfold-coordinated phases.

A. Band structure

There are two levels of approximation inherent in typic
tight-binding band structures. The first is associated w
limitations of the particular minimal basis chosen, and
second is the two-center approximation made to the mini
basis matrix elements. These approximations are illustra
by the dotted lines in Figs. 1 and 2, respectively, where
band structure for zb SiB is presented at equilibrium volum
In both cases the solid lines show our most rigoro
multiple-k band structure, provided for comparison, with
Fermi energy taken as the zero of energy. We shall con
niently refer to the lowest four bands, those below the
spective gaps~e.g., from;2 to 3 eV in Fig. 1!, as valence
bands, and the bands above as conduction bands,
though zb SiB and cd B are metals.
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The dotted lines in Fig. 1 show the results of FP-LMT
calculations with a linked,spd minimal basis. The rms dif-
ference between these and the mutiple-k bands is 0.03 eV for
the four valence bands, and 0.33 eV for the lowest cond
tion band, based on a comparison at 145 points through
the irreducible wedge. The linking coefficients defining th
minimal basis were obtained by minimization of the occ
pied one-electron eigenvalue sum, i.e., states«<0. If this
optimization is extended upwards in energy to include
lowest few conduction bands, agreement for the lowest c
duction band improves from 0.33 to 0.15 eV, with only
small degradation of the valence-band agreement. The do
lines in Fig. 2 show the tight-binding bands obtained us
parameters calculated from the minimal-basis matrix e

FIG. 1. Comparison of the minimal basis generated band st
ture ~dots! to the best multiple-k band structure~solid lines! for zb
SiB at equilibrium volume. The zero of energy is the latter Fer
energy.

FIG. 2. Comparison of the tight-binding band structure~dots! to
the best multiple-k band structure~solid lines! for zb SiB at equi-
librium volume. The zero of energy is the latter Fermi energy.
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ments reflected in Fig. 1, and a cutoff ofdmax51.8a, where
a is the lattice constant. The rms difference between
dotted and solid bands in this figure is 0.10 eV for the fo
valence bands, and 0.30 eV for the lowest conduction ba
The modified linking coefficients just mentioned, while im
proving the lowest minimal-basis conduction band, actua
degrade the corresponding tight-binding comparison fr
0.30 to 0.53 eV. We believe this behavior reflects non-tw
center effects, as will be discussed below.

It should be emphasized that the tight-binding agreem
seen in Fig. 2 can be significantly improved with standa
nonlinear minimization of the difference between the tw
sets of bands. In the case of cd Si, for example, the analo
Fig. 2 exhibits discrepancies of 0.13 and 0.14 for the fo
valence bands and the lowest conduction band, respecti
and 0.18 eV for all;6 bands up to 4 eV above the valenc
band maximum. If the latter rms is minimized by adjusti
site energies and selected coefficients of analytic fits to
calculatedt(di), it can be quickly reduced from 0.18 to 0.0
eV. This demonstrates that our directly calculated parame
are indeed good starting points for such an optimization,
makes contact with previous experience, e.g., a 0.1-eV
fit to all bands up to 6 eV above the valence-ba
maximum,4 obtained with a nonorthogonalsp ~versus our
spd) basis. Nevertheless, we do not pursue such minim
tion of band differences in the present work, because it
scures the issue of transferability in that the roles of differ
parameters are less well defined by the band structure a
in contrast to the matrix elements, effectively band struct
plus eigenvectors.

Our tight-binding parameters are calculated directly fro
the minimal basis matrix elements, and represent the
possible two-center approximation to such matrix eleme
A direct comparison of the tight-binding and minimal bas
representations is therefore a reflection of non-two-cente
fects, i.e., anm,m8 dependence which cannot be spanned
the two-center geometric factorsgm( lm,l 8m8,d̂), which
presumably originate from three-body terms. In the case
the zb SiB band structure, the rms difference between
dotted bands shown in Fig. 1 and those shown in Fig. 2
0.10 eV for the four valence bands, and 0.42 eV for
lowest conduction band, again evaluated throughout the
ducible wedge. These finite rms values reflect the exten
non-two-center contributions in the minimal basis matrix
ements which we believe is aggravated in the conduc
bands by the more itinerant nature31 of these states in com
parison to valence-band states.

We also routinely monitor the differences between tig
binding and minimal basis Hamiltonianmatrix elements, and
find these differences to saturate at finite rms values asdmax
is increased. In the present zb SiB case, for example,
saturation value for all nonzero matrix elements is 0.24
and is reached fordmax/a in the range 1.42–1.8. If we com
pare onlyss matrix elements, however, the rms differen
becomes arbitrarily small with increasingdmax, reflecting the
fact that the two-center approximation impacts only tho
degrees of freedom associated with multiple values of
magnetic quantum numberm, as can be seen from Eq.~10!.
The saturation rms value for the matrix element compari
also becomes smaller for the full set ofspd matrix elements
e
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if a more localized basis is used, e.g., it is 0.08 eV for t
one-k basis,k250.5 Ry, discussed in Sec. III. This is con
sistent with the intuitive expectation that a more localiz
basis should reduce the importance of three-center te
Unfortunately, while there is much improved agreement
tween minimal-basis and tight-binding band structures
this more localized one-k basis, both are in poor agreeme
with our accurate multiple-k result.

The converse effect, a more extended basis, is illustra
by the zb SiB modified linking coefficients mentioned abov
which improved the lowest minimal-basis conduction ba
but made the corresponding tight-binding band worse. T
modification generally increased the magnitudes of b
s(d) andt(d) parameters forl l 85 ld, which persisted for the
rotatedt(d)’s corresponding to the transferable overlap fun
tions. Theseld parameters are not on the whole larger tha
e.g., thepp parameters, indicating that an extended basis
necessary but not sufficient condition for significant thre
body effects. Harrison’s bond orbital treatment, for examp
suggests that the directionality ofsp3 hybrids may allow an
explicit two-center treatment for quite extended orbitals.8

As discussed in Sec. II B, the zb and cd structures may
characterized by two effective crystal-field interactions p
site for anspd basis, onepd and onedd interaction, dis-
counting those other crystal-field interactions which cou
to and are intrinsic parts of the effective site energies. B
effectivepd anddd interaction parameters have been calc
lated from the minimal-basis matrix elements, and their
fects are incorporated into the tight-binding bands in Fig.
The latter, although not small, has negligible impact on
valence and first few conduction bands, and we shall ign
it. The former, which may be conveniently treated as eff
tive near-neighbor s interactions, xSipdBs(d1) and
xBpdSis(d1), are responsible for a;1-eV shift in the lowest
conduction band throughout the Brillouin zone. If these
teractions were removed from the tight-binding bands in F
2, the lowest conduction band would drop by 1.04 and 1
eV at G andX, respectively, while the highest valence ba
would move upward by 0.36 and 0.01 eV, similarly. W
obtain very similar results for cd Si. In other words, the cub
diamond phase of Si would be a metal were it not forpd
crystal-field interactions. To be more precise, ansp basis
typically does give an insulating gap for cd Si. When addi
d states, the overall effect of the new hybridization intera
tions (t ’s! is to lower the lowest conduction band, which
offset by thepd crystal-field interactions tending to raise th
band.

B. Parameters

Figure 3 shows our directly calculated Si-Si hopping
teractions fors andp angular momenta. The figure include
results for Si-Si interactions in both cd Si~closed circles! and
in zb SiB ~open circles!, and for three volumes each (V/V0
50.8, 1, and 1.2! so that the points for each shell appear
triples. The roughly exponential behavior seen at the lar
separations persists as far as we have calculated,d511 Å, at
which point the largest parameters are less than 331024 eV
in size. The curves are fits, and the rms percentage sc
about them is 5% or less considering 15 points atd,5 Å.
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The corresponding scatter is larger forld interactions, al-
though generally less than;20%, except for thedds case at
32%, which may be seen in Fig. 4. In all cases the actual
differences for this same range are<0.1 eV. Note that these
parameters, a subset of which were used to generate Fi
are calculated from the matrix elements of our rota
Hamiltonians~see Sec. III! so that the corresponding overla
parameters are perfectly transferable and smooth by
struction.

FIG. 3. Calculated Si-Si Hamiltonian Slater-Koster paramete
t l l 8m(d), for s and p angular momentum. Results are shown f
Si-Si interactions in cd Si and zb SiB. The designation, e
‘‘ 2ppp ’’ signifies that2tppp(d) is plotted. The curves are fits a
tabulated in Table II.

FIG. 4. Si-Si Hamiltonian Slater-Koster parameterst l l 8s(d) for
all s interactions. Calculated results are shown for the Si-Sidds
interaction in cd Si and zb SiB. The curves are fits to these
similarly calculated results~not shown!, and are tabulated in Tabl
II. The designation, e.g., ‘‘2pds,’’ signifies that2tpds(d) is plot-
ted.
s

2,
d

n-

Many of the Slater-Koster parameters must change sig
approach 0 at smalld due to the nodal structure of the o
bitals. This is easily understood for the overlap parame
from simple orbital sketches, e.g.,spps(d) should be nega-
tive at large separations, yet approach the normalization
d→0. As a manifestation of these trends, we find many
the overlap parameters in the present work to bend ove
the smaller values ofd, similar to thetpps curve in Fig. 3.
This behavior is quite systematic, e.g., it is absent inssss(d),
and increases withl 1 l 8 for the others parameters,sll 8s(d).
In all cases, however, these overlap parameters retain
same sign throughout the range investigated in this w
(2.17,d,11 Å for Si-Si interactions!.

The situation for the Hamiltonian parameters is simil
although more dramatic, as seen in Fig. 4, where alls inter-
actions are shown. The increasing effect withl 1 l 8 may be
understood because the orbitals for largerl are both more
extended due to higher site energies in the present mate
but also because of narrower lobes which poke out farthe
the bond direction for thes interactions, and therefore cros
nodal planes of opposing orbitals at larger separation.
quantities plotted in Fig. 4,6t, have been chosen so th
parameters with the ‘‘correct’’ sign are positive, and sim
larly in Fig. 3. Thus it can be seen that the Si-Si ne
neighbortdds have the wrong sign because of the effect ju
discussed. This may not be generally true, since for a no
thogonal basis, the Hamiltonian Slater-Koster parameters
pend on the energy zero, i.e., an overall shift byD« of the
band-structure as a whole changest(d) to t(d)1D«s(d).
Nevertheless, we find the ratios2t(d)/s(d) to be relatively
flat ~independent ofd) for the sss cases, and increasingl
more negative and more down-turned at smalld for the
larger values ofl 1 l 8. Thus a general conclusion fors inter-
actions appears to be a general tendency for thes(d) to bend
over at smalld, more so for largerl 1 l 8, and that similar but
more pronouncedeffects occur for thet(d).

The sp subset of our calculated near-neighbor Slat
Koster parameters for cd Si at equilibrium volume are co
pared in Table I to results from two different band-structu
fits usingsp bases.4,6 The agreement is on the whole qui
good, with our largertsps and tppp magnitudes being the
most noticeable differences out of the range of the previ
work. If the cd Si band structure is calculated with just t
sp subset of our nonorthogonal parameters, the agreem
with the full spdcalculation is excellent for the lower half o
the valence band, and the most noticeable difference for
top half is thesp G point which is 0.8 eV higher than the
correspondingspd value. The lowest conduction-band stat
are fairly close atG; however, thesp band is significantly
higher ~3.8 eV! at X than thespd result, and similarly at
other zone face states. It is thed-state hybridization which
pushes the lowest conduction band down at these points,
we suspect that the smallertsps andtppp seen for Refs. 4 and
6 are required to achieve the same effect within ansp basis.

Our parameters fall off more slowly than do those in Re
4 and 6, where interactions through third neighbors w
sufficient to represent the band structure of cd Si. Our tig
binding band structure for cd Si atV5V0 is fully converged
by dmax51.42a, or eight distinct neighbor distances, with a
rms difference from our best multiple-k bands of 0.18 eV for

,

.,

d
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TABLE I. Comparison of near-neighbor (d52.351 Å! Slater-Koster parameters for cd Si at the expe
mental equilibrium volume. The overlap parameterss are dimensionless; the Hamiltonian parameterst are in
eV. The present parameters are a subset of the fullspd representation, whereas the others are fromsp
representations.

ssss ssps spps sppp tsss tsps tpps tppp

present 0.2700 20.3603 20.3590 0.2074 23.7423 3.9797 2.0430 21.6754
Ref. 4 0.2705 20.3426 20.3755 0.2614 23.2766 3.2668 1.9548 21.0335
Ref. 6 0.3036 20.3743 20.2455 0.1307 23.6463 2.7103 2.1462 21.3319
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states up to 4 eV above the valence-band top. This disc
ancy increases to 0.24 and 0.31 eV for five and three ne
bor distance cutoffs, respectively. The zb SiB tight-bindi
bands are also essentially converged bydmax51.42a at V
5V0, although the rms discrepancy in this case increa
from 0.13 to 0.34 eV at the five-neighbor-distance cuto
We have not yet systematically explored variation of t
decay energies of the augmented spherical Hankel func
tails as a way of creating more localized bases; however
noted that optimization of our linked minimal basis~two
such functions per atomic orbital with fixed relative coef
cients! had the opposite effect by creating moreextended
orbitals than either of the two-component augmented Han
functions, while simultaneously greatly improving the ba
structure. Although interactions through third neighbors
sufficient to represent the band structure alone for cd Si,4,6 it
is not yet clear whether the same is also true for the m
challenging case of matrix elements as confronted in
work. Sanchez-Portal, Artacho, and Soler24 have applied pro-
jection techniques toab initio plane-wave calculations for c
Si in order to obtain matrix elements in atomic orbital bas
While they found a standard atomic basis (sp, STO-4G! to
yield a fully converged band structure for interactio
through only third neighbors, they obtain both better ba
structure and more complete coverage of the Hilbert spac
occupied plane-wave eigenfunctions with a ‘‘scaled’’ atom
basis, which they note usually requires ‘‘a longer range
interactions.’’

Beyond comparing the parameters themselves as in Fi
a more practical test of transferability is to see how wel
single fixed set ofs(d), t(d) functions performs. To this end
Table II provides analytic fits to our calculated Slater-Kos
hopping parameterst, for all of the fourfold-coordinated
phases considered in this work. The functional form is

t~d!5A1dB1e2C1d1A2dB2e2C2d, ~31!

where the exponentsC150.7/a0 andC251.2/a0 for all pa-
rameters, anda0 is the Bohr radius. These choices ofC1 and
C2 were motivated by the decay energies used for the
augmented spherical Hankel functions in the linked ba
The same functional form was used to represent our perfe
transferable~by construction! overlap parameters, i.e., th
s(d) functions used to assemble the matricesO rot

k of Eq.
~30!. Recall that allt ’s cited and used in this paper we
obtained from theH rot

k matrices defined by this equation. Th
coefficients describing these analytics(d) functions are also
given in Table II.

To complete the representation of the bands, Table
gives the effective site energies andpd crystal-field terms.
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These are individually tabulated for the different structu
and volumes, as it is beyond the scope of the present pap
generate structurally dependent fits to these quantities.
known structure-dependent expansions given by Eqs.~18!
and~29!, however, provide the means for obtaining such fi
by varying parametrized analytic forms for thed dependence
of the bare crystal-field interactions so as to optimize
agreement in these equations. We are currently explo
such fits for a broader class of structures than discussed h
as well as the use of prior structure-dependent shifts of
bands so as to insure that the one-electron eigenvalue
alone would reproduce the total energies.18 As noted earlier,
such shifts modify thet ’s, and so we are also investigatin
possible representations of the differencesDttt8 l l 8m
[ttt8 l l 8m2(«t l1«t8 l 8)stt8 l l 8m/2, which would be invariant
under uniform shifts of the band structure, rather than of
t ’s themselves.

C. Transferability

Nonorthogonal bases are generally expected to yield m
transferable tight-binding parameters than orthogonal ba
While our results are consistent with this expectation, th
also raise the possibility that nonorthogonal hopping para
eters which accurately describe the best local-density b
structure and matrix elements may not be widely trans
able, without, for example, special environment-depend
representational procedures as are now being applied in
orthogonal case.14 We are currently investigating this issu
for a wider class of structures than the fourfold-coordina
phases considered in this work, and briefly mention so
preliminary results for other structures here in regard to
issue of transferability.

For both the fcc phase of Si~12-fold coordination! and the
B2 or CsCl phase of SiB~eightfold coordination!, we find
magnitudes of the nonorthogonal hopping parameters,t(d),
which are 10–30 % larger than would be indicated by the
to the fourfold coordinatedt ’s given in Table II, considering
the sp parameter subset over the first five-neighbor d
tances. As throughout this paper, theset(d)’s were obtained
using Eq. ~30! and therefore correspond to our standa
transferable overlap parameters,s(d), which are also given
in Table II. The effect on the band structure from using t
smallert(d)’s in the table is to give systematically narrow
bands by 20–25 % over those obtained with the directly c
culatedt ’s. The rms discrepancies with our best multiplek
band structure for states up to 4 eV above the Fermi level
consequently poor, over 1 eV, as may be seen in the ‘‘Ta
II t ’s’’ column of Table IV for fcc Si andB2 SiB. We also
removed an atom from the eight-atom cd Si cell, and rela
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TABLE II. Analytic fits to calculated Slater-Koster parameters for the fourfold-coordinated Si/B ph
In the name, ‘‘1’’ designates Si, and ‘‘2’’ B. The fits are of the forms,t5A1dB1e2C1d1A2dB2e2C2d, where
the superscriptsO andH designates ~dimensionless! and t ~eV!, respectively, ford in Å. The coefficients
C150.7/a051.322 81 andC251.2/a052.267 67, for all parameters, wherea0 is the Bohr radius. These fits
correspond to the rotated matrices discussed below Eq.~30!.

Name A1
O B1

O A2
O B2

O A1
H B1

H A2
H B2

H

11sss 20.630 48 20.40 231.874 59 1.07 254.906 97 0.59 6000.155 6125.20
11sps 26.036 11 0.63 34.644 1220.60 42.247 67 1.05 22911.813 92 23.60
11sds 4.140 61 0.78 2345.478 32 23.60 217.090 16 1.51 4740.042 1625.20
11pps 25.740 14 1.00 31.373 57 0.54 19.528 64 1.772479.683 76 20.24
11ppp 8.233 39 20.37 257.547 91 21.79 224.482 35 0.62 184.023 5221.80
11pds 3.697 03 1.20 226.680 44 0.74 231.738 09 1.38 138.769 77 2.26
11pdp 29.897 65 20.23 279.829 99 23.20 90.788 49 0.20 2146.385 30 1.89
11dds 8.878 96 0.70 221.636 44 1.99 2124.032 81 0.55 248.562 39 2.5
11ddp 28.258 32 0.17 415.955 1523.40 388.578 22 20.37 2695.119 30 1.61
11ddd 2696.721 19 24.75 24956.758 27 22.94 2195.317 70 20.71 212.242 36 1.71
12sss 4.652 94 0.39 213.643 77 21.01 259.576 07 0.42 514.291 4122.20
12sps 26.126 98 0.40 14.508 34 0.41 41.025 12 0.822696.010 09 22.40
12pss 27.382 25 0.44 15.916 17 0.73 38.875 40 1.032377.585 70 21.60
12sds 10.274 62 0.12 226.038 82 0.86 227.537 39 1.03 494.406 7721.06
12dss 9.692 42 0.20 222.647 42 1.01 223.122 99 1.26 200.637 9920.60
12pps 210.458 97 0.40 28.394 55 1.09 18.989 91 1.592339.432 59 20.55
12ppp 7.930 25 20.58 215.424 94 20.26 288.463 20 20.40 212.541 69 0.31
12pds 16.485 64 0.16 244.394 39 1.26 24.890 33 2.39 168.458 33 0.95
12pdp 21.324 28 0.60 22.514 35 2.77 180.469 4720.46 2531.495 31 0.60
12dps 11.809 09 0.25 233.176 81 1.18 27.991 19 2.01 161.940 54 0.62
12dpp 20.557 03 1.00 23.916 10 2.44 167.353 0220.52 2423.304 45 0.57
12dds 22.154 13 20.80 0.568 46 5.02 234.405 45 1.46 94.934 72 3.23
12ddp 239.455 69 20.92 93.566 19 0.19 478.845 8520.71 21203.102 43 0.85
12ddd 77.879 93 22.60 2165.338 30 21.27 125.554 86 25.20 21.928 00 4.40
22sss 3.570 88 0.42 27.873 29 22.20 241.748 99 0.65 176.337 5722.80
22sps 23.729 62 0.57 7.307 2920.40 29.872 12 1.01 2251.195 84 22.89
22sds 6.75536 0.26 215.23737 0.84 94.53670 25.20 26.870 10 4.65
22pps 23.678 31 0.74 11.498 99 0.20 22.854 34 1.272171.877 51 20.40
22ppp 3.496 80 20.37 27.664 09 22.40 237.952 18 20.11 59.117 86 0.17
22pds 5.011 70 0.60 216.760 47 0.90 223.798 58 1.17 143.508 47 1.39
22pdp 27.216 72 20.43 14.418 23 20.48 235.567 10 24.00 5.886 21 4.23
22dds 15.828 33 0.00 239.458 87 1.25 2308.309 24 20.40 619.911 57 1.57
22ddp 225.350 85 20.80 63.020 06 0.10 277.617 05 0.03 13.102 70 4.44
22ddd 22.603 67 21.99 249.087 00 21.07 26.453 01 20.39 211.000 90 3.39
n
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f the
both the internal parameter and atomic volume to obtai
mixed threefold- and fourfold-coordinated Si7-vacancy
phase. The corresponding rms discrepancy in this cas
better, 0.55 eV, which is still not particularly good, althou
a constant shift of the bands would reduce this discrepa
to 0.35 eV. Our directly calculatedt(d)’s, by contrast, give
about the same 0.1–0.2-eV rms discrepancy forall phases
we have considered, as may be seen in the ‘‘calct ’s’’ col-
umn in Table IV. Note that for all of the results cited
Table IV we have used our calculated, structure-depend
site energies and crystal-field terms. These are tabulate
Table III for the fourfold coordinated phases, except for t
dd crystal-field interactions, which have little impact in th
energy range. Since the Table IIt ’s are of less use for the
other coordinations, we have not given the correspond
site energies and crystal-field parameters in those cases
a

is

cy

nt
in

e

g

The implications of Table IV are that the fixedt(d) func-
tions given in Table II do reasonably well for chemical a
atomic-volume variation, but not for change in coordinatio
While suggestive, we feel it would be premature to make t
a general conclusion aboutab initio calculatedt ’s since our
parameters are a direct reflection of our choice of minim
basis atomic orbitals, and it remains to be seen whether o
choices can give comparable representation of the matrix
ements and band structure, and how that degree of free
impacts transferability. Moreover, even if there is coordin
tion dependence of the hopping parameters, more soph
cated environment-dependent analytic forms14 should still
permit fully transferable representations. These are subj
of future investigation, along with finding shorter-range
representations, and we emphasize that the major point o
present paper is the method of calculatingab initio param-
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eters whose success forall phases is demonstrated by th
‘‘calc t ’s’’ column in Table IV.

We find the transferability between close-packed a
fourfold-coordinated phases to be significantly worse for
thogonal bases, with occasional differences in thetor(d)’s up
to a factor of 2. In reverse of the nonorthogonal case, we
the close-packedtor(d)’s to be smaller in magnitude than th
open-packed values, consistent with recent observation14

Unfortunately, we find that Lo¨wdin orthogonalization32 also
amplifies non-two-center contributions in the resultant
thogonal Hamiltonian matrices, so that our directly calc

TABLE III. Effective site energies« l
eff and near-neighborpds

crystal-field interactionsxpds
eff in eV, for different sites in the phase

considered in this work. The latter are more precisely writ
xtpdt1s

eff (d1), and are listed according to the sitet where the orbitals
are located, whilet1 is the near-neighbor atom type.V0 is the
theoretical equilibrium volume corresponding to lattice constant
5.408, 4.624, and 4.014 Å for cd Si, zb SiB, and cd B, respectiv

Phase V/V0 site «s
eff «p

eff «d
eff xpds

eff

cd Si 0.8 Si 27.573 22.256 7.426 21.574
cd Si 1.0 Si 28.673 22.952 6.467 21.383
cd Si 1.2 Si 29.180 23.238 6.196 21.169
zb SiB 0.8 Si 27.293 21.707 8.290 21.408
zb SiB 1.0 Si 28.207 22.187 7.996 21.313
zb SiB 1.2 Si 28.735 22.516 7.694 21.171
zb SiB 0.8 B 25.846 20.963 14.116 21.770
zb SiB 1.0 B 27.136 21.649 13.782 21.758
zb SiB 1.2 B 27.772 22.070 13.847 21.634
cd B 0.8 B 26.908 21.136 15.850 21.841
cd B 1.0 B 28.017 21.829 15.601 21.701
cd B 1.2 B 28.558 22.266 15.896 21.536

TABLE IV. The rms agreement between tight-binding and a
curate multiple-k band structure for states up to 4 eV above t
Fermi level. Our directly calculatedt ’s ~‘‘calc t ’s’’ ! do reasonably
well for all coordinations (z); however, theset ’s display some co-
ordination dependence, so that a fit to just the values for fourf
coordinated phases~‘‘Table II t ’s’’ ! does not give accurate ban
structure at other coordinations. All tight-binding calculations u
thes’s in Table II. Tight-binding cutoffs have been chosen to insu
convergence of the rms values to;0.01 eV or better. Lattice con
stants a correspond to theoretical equilibrium volumes for t
middle cd Si and all other phases. Irreducible wedges were sam
with 145 ~cd, zb, fcc! and 120 (B2, Si7vac! points.

Phase a ~Å! z rms ~eV! rms ~eV!

calc t ’s Table II t ’s

cd Si 5.020 4 0.20 0.25
cd Si 5.408 4 0.18 0.18
cd Si 5.747 4 0.19 0.16
zb SiB 4.624 4 0.12 0.18
cd B 4.014 4 0.10 0.12
Si7vaca 5.134 3,4 0.18 0.55
B2 SiB 2.687 8 0.08 1.32
fcc Si 3.832 12 0.14 1.25

aSpace groupP 4̄3m, Si atoms at 3c and 4e (x50.224) sites.
d
-

d

.

-
-

lated orthogonal-basis, two-center tight-binding parame
give poorer representation of the band structure. We ob
better orthogonal basis tight-binding band structures by c
rying out Löwdin orthogonalization using the two-center a
proximate Hamiltonian and overlap matrices. This area
also under ongoing investigation.

V. SUMMARY

We have derived relatively simple analytic expressio
which define two-center Slater-Koster hopping paramet
effective site energies, and effective crystal-field parame
in terms ofk-dependent Hamiltonian matrix elements in a
localized minimal basis, and analogous quantities for
overlap. While directly applicable to band-structure metho
formulated in localized bases, these expressions could
be used, for example, by plane-wave-based calculat
which have been projected onto atomic-orbital bases.24

We have shown that a natural transformation of the cr
tal field parameters isolates that subset of these interact
which couples to the site energies, creating structu
dependent effective site energies«eff, which are in fact the
usual site energies that would be extracted from fits to
band structure of a single structure. Expansions of«eff in
terms of the bare crystal-field interactions resemble in
atomic potential sums, providing some support for the use
environment-dependent site energies in place of interato
potentials in recent tight-binding total-energy repr
sentations.18

Our calculated parameters provide thebest possibletwo
center representation of the Hamiltonian or overlap ma
elements, automatically projecting out the best two cen
approximations to three-center terms. Residual differen
between the minimal basis matrix elements and those re
structed from the tight-binding parameters therefore prov
a quantitative measure of non-two-center effects for a gi
basis and material.

We have used the expressions derived in this work
calculatespd, nonorthogonal tight-binding parameters in th
two-center approximation for fourfold-coordinated phases
Si, SiB, and B, at three volumes each. Theab initio matrix
elements were generated with a linked minimal basis us
the FP-LMTO method. Compared to our best FP-LMT
band structure, we obtain good tight-binding valence ba
~0.10–0.13-eV rms!, with the lowest conduction band treate
less well ~0.14–0.30 eV! due to larger intrinsic non-two-
center contributions in the corresponding FP-LMTO minim
basis matrix elements. We were able to quickly improve r
values for cd Si by a factor of;5 using standard nonlinea
minimization of the differences between the band structu
showing that our directly calculated parameters are ind
good starting points for such optimization. However, fits
band structure alone are underconstrained in compariso
representations of the matrix elements, effectively ba
structure plus eigenvectors, and therefore compromise
distinctions between two-center and non-two-center con
butions as well as between different parameters. While
may be advantageous in obtaining a smaller set of effec
parameters for a given structure, it will ultimately obscu
the issue of transferability especially for complex, multicom
ponent systems.
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A few test cases of higher and lower coordination ha
also been considered. While our directly calculated Sla
Koster parameters provide roughly equally good represe
tion of the matrix elements and band structure forall phases
considered, a single set of analytic hopping parameter fu
tions fit to the fourfold-coordinated values appears to be r
tively transferable over chemical and atomic-volume var
tion, though, not over change in coordination. Transfera
representation ofab initio calculated parameters may ther
fore require environment-dependent features, as have
considered in the orthogonal case.14
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APPENDIX

There is a unique transformation of the crystal-field p
rameters and the associated geometric factors

x̃ l l 8a5(
m

Tam~ l l 8!x l l 8m , ~A1!

g̃a~ lm,l 8m8,d̂!5(
m

gm~ lm,l 8m8,d̂!@T21~ l l 8!#ma ,

~A2!

which isolates those crystal-field contributionsx̃ l l 0 which
couple to the site energies, and which restores orthogon
of the matrix dot product

(
m,m8

g̃a~ lm,l 8m8,d̂1! g̃b~ lm,l 8m8,d̂2!5dab f l l 8a~ d̂1•d̂2!,

~A3!

when the directionsd̂1 and d̂2 are different. Heref l l 8a(x) is
a polynomial inx with f l l 8a(1)51. Note that the two-cente
expansion is preserved by construction,(a g̃ax̃a
5(mgmxm , and that we have suppressed type and shell d
ignations in the crystal-field parameters. IfG̃na

0 ( lm,l 8m8)

are defined in terms of theg̃a( lm,l 8m8,d̂) according to Eq.
~7!, then the orthogonality

(
m,m8

G̃na
0 ~ lm,l 8m8!G̃n8b

0
~ lm,l 8m8!}dab ~A4!

follows from Eq.~A3!.
For l< l 8<d, the transformation is

x̃ pp05~xpps12 xppp!/A3,

x̃ pp15~xpps2xppp!A2/3,

x̃ pd05~A3xpds22 xpdp!/A5,
e
r-
a-

c-
a-
-
le

en

.
l
e

-

ity

s-

x̃ pd15~xpds1A3xpdp!A2/5,

x̃dd05~xdds12 xddp12 xddd!/A5,

x̃dd15~3 xdds24 xddp1xddd!A2/35,

x̃dd25~xdds1xddp22 xddd!A2/7. ~A5!

These would be orthogonal combinations for eachl l 8, if con-
sidered over the fullm52 l , . . . ,l range (xm5x umu), for ex-
ample,(1,1,1)/A3 and (21,2,21)/A6 for l l 85pp. Using
the abbreviationgll 8m5gm( lm,l 8m8,d̂), and similarly for the
g̃ , the inverse transformations are

g̃pp05~gpps1gppp!/A3,

g̃pp15~2gpps2gppp!/A6,

g̃pd05~A3gpds2gpdp!/A5,

g̃pd15~2gpds1A3gpdp!/A10,

g̃dd05~gdds1gddp1gddd!/A5,

g̃dd15~6gdds24gddp1gddd!/A70,

g̃dd25~2gdds1gddp22gddd!/A14. ~A6!

Note that in matrix form, and for eachl l 8, T should act from
the left on column vector@xm#, while T21 should act from
the right on row vector@gm#, thus insuring (a g̃ax̃a
5(mgmxm . In regard to the matrix dot products, e.g., E
~A3!, but for the same directions,d̂15d̂2, the gm are or-
thogonal in them index with normalizations 22dms , while
the g̃a defined by Eqs.~A6! are orthonormal in thea index.
Note also thatg̃0( lm,lm8,d̂)5dmm8 /A2l 11.

The orthogonality relations Eqs.~9! and ~A3! for the gm

and g̃a , respectively, are ultimately properties of the rot
tion group matrices for different angular momentum33

Transforming these expressions to correspond to the cus
ary real orbitals is cumbersome, so that we have verified
orthogonality relations directly from the tabulated Slate
Koster geometric functions as in Table 20-1 of Harrison
book.8 To review the notation, our geometric functio
gs(px ,dxy ,d̂)5A3l 2m, for example, which is the coefficien
of Harrison’sVpds in his expression forEx,xy , where Harri-
son ~and we only in this sentence! usesl ,m,n to designate
the direction cosines definingd̂5( l ,m,n).

The orthogonality relations may be proved as follow
First, construct column vectorsL(d̂) from them dependence
of gs( lm,s,d̂) and note that the matricesgs( l ,l 8,d̂)
5@gs( lm,l 8m8,d̂)#5L(d̂)L8(d̂)T, where T signifies trans-
position of a column vector to a row vector. Second, co
struct the matricesDpd(d̂)5gp(p,d,d̂)1P(d̂)D(d̂)T2/A3
andDdd(d̂)5gd(d,d,d̂)2D(d̂)D(d̂)T/3 which are linear and
quadradic, respectively, in the direction cosines. A con



ar

d

ca-

12 262 56A. K. McMAHAN AND J. E. KLEPEIS
nient basis for representing either thegm or g̃a is thenpp —
1, P(d̂)P(d̂)T; pd — P(d̂)D(d̂)T, D pd(d̂); and dd — 1,
D(d̂)D(d̂)T, D dd(d̂), where 1 signifies the appropriate
identity matrix. Finally, the matrix dot productsgm( l ,l 8,d̂1)
•gm8( l ,l 8,d̂2) and g̃a( l ,l 8,d̂1)• g̃a8( l ,l 8,d̂2) for different di-
rectionsd̂1 and d̂2 may be expressed in terms of the scal
B
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L(d̂1)TL(d̂2)5d̂1•d̂2 and@3 (d̂1•d̂2)221#/2 for thep andd

cases, respectively;L(d̂1)TDl l 8(d̂2)L8(d̂1)52 d̂1•d̂2 /A3 and
2(d̂1•d̂2)212/3 for thepd anddd cases, respectively; an
Dl l 8(d̂1)•Dl l 8(d̂2)510 d̂1•d̂2/3 and @21 (d̂1•d̂2)222#/9 for
the pd anddd cases, respectively. In addition, there are s
lar constantsL(d̂)TL(d̂)51 and1•Ddd(d̂)5 5
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