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Direct calculation of Slater-Koster parameters: Fourfold-coordinated silicon/boron phases
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The need for tight-binding total-energy representations of interatomic forces has renewed interest in Slater-
Koster parametrization of electron band structure. For larger numbers of parameters, as in multicomponent
systems, and to truly test issues of transferability, it is advantageous to have means of directly calculating these
parameters. Here we derive analytic expressions for the two-center Slater-Koster hopping parameters, effective
site energies, and effective crystal-field parameters in terms of the one-electron Hamitatirelements in
any localized minimal basis, and analogous quantities for the overlap. We apply these expressions to the cubic
diamond phases of Si and B, and the zinc-blende phase of SiB at three volumes eackpdsimgnorthogo-
nal full potential linear muffin-tin orbital matrix elements calculated with a linked or contracted minimal basis.
[S0163-182697)08243-X

I. INTRODUCTION k-dependent Hamiltoniamatrix elementsand similarly for
the overlap. We derive analytic expressions which uniquely

The use of tight-binding formalism to parametrize elec-define the two-center Slater-Koster hopping parameters in
tron band structures dates from the early work of Slater anderms of these matrix elements. Moreover, by assembling the
Koster! and has continued to the presémft When supple- matrices from a linked or contracted minimal basis, i.e., by
mented with information as to how the associated parameteissing optimized fixed linear combinations of a larger set of
vary with interatomic separation, and usually also by explicitbasis functions employed by tha&b initio band-structure
interatomic potentials, one can construct total-energy funceode, one may obtain Slater-Koster representations of accu-
tionals of the atomic position's'8 There has been consider- racy approaching that obtained from fits to the one-electron
able interest in such tight-binding total-energy representaeigenvalue$.Our approach is purely deterministic, without
tions to provide interatomic forces for structural relaxafion the need for any fitting. In this way we are able to avoid the
and for molecular-dynamics simulatiof’sin much of this  problems associated with multiple local minima, which
work, parametrized functional forms or splines defining themeans that the additional effort to calculate parameters for
interatomic separation dependence of the various Slatemany component systems is minimal. Furthermore, we can
Koster parameters and interatomic potentials are fit by nonaow directly study effects such as making the two-center
linear minimization to arab initio data base of band struc- approximation, and obtain additional insights concerning the
tures and total energies. Interesting developments include thgeneral characteristics of the parameters themselves.
use of non-pairwise-additive functional forms for the inter-  Site energies and crystal-field interactions are also essen-
atomic potentials and Slater-Koster interactibhg? aug-  tial parts of two-center representations of electron band
mentation of theab initio data base by forces,and the use structure. While the true or bare site energies and crystal-
of local-environment-dependent site enerdfes® some- field parameters are underdetermined by the matrix elements
times in place of interatomic potentidfs. for a single structure, the Hamiltonian for a given structure

As the number of required parameters grows roughly quabehaves as if it were characterized by generally a small num-
dratically with the number of chemical species in multicom-ber of effectivesite energies and crystal-field interactions
ponent systems, and in order to truly test issues of transfewhich can be determined, along with definitions of these
ability, it is useful to have means of directly calculating effective parameters in terms of sums over the bare crystal-
Slater-Koster parameters. Andersen and co-workers impldield interactions. Both the effective site energies, which are
mented a basis of screened muffin-tin orbitals to create #he usual site energies which would be obtained by fits to the
two-center formulation of the one-electron problem withinband structure, and the effective crystal-field interactions
the atomic sphere approximati6hwhich has been used vary with local environment due to these structure-dependent
to extract Slater-Koster parameters for orthogonalexpansions®!’ Moreover, by a simple transformation of the
representationd- Porezaget al. calculated nonorthogonal crystal-field parameters, we demonstrate the formal similar-
Slater-Koster parameters using a basis of slightly contracteily of the effective site energy expansions to sums over in-
pseudoatom eigenfunctioASand generated successful tight- teratomic potentials, which justifies the trade-off between in-
binding total-energy representations for a number of multiteratomic potentials and environmental-dependent site
component systems using such parameters. energies in recent worl

It is the purpose of the present paper to demonstrate that As an application of the present method, we calculated the
any ab initio band-structure method which is implemented Slater-Koster parameters at three different volumes for the
with a localized basis, or can be projected onto such @ubic diamond phases of Si and B, and for zinc-blende SiB.
basis?* can also be used to provide a simple and direct calThe resultant hopping parameters are relatively transferable
culation of the associated Slater-Koster parameters given thever these chemical and atomic-volume variations for
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fourfold-coordinated phases. However, preliminary tests for respectively, which implies

other structures suggest some coordination dependence to the

hopping parameters, so that environment-dependent func- 1

tional forms* may be needed for a transferable representa- L — 2 Hek oo (4)

. e .. glm,gl’'m N glm,gl’m

tion of theseab initio parameters. This is beyond the scope k

of the present paper, for which the primary focus is the

method for calculating the tight-binding parameters. In thisHere |Rglm) represents an orbital of angular and magnetic

regard it is to be emphasized that our directly calculatedjuantum number$ and m, respectively, at locatiofR+q,

parameters give a comparable, and reasonably accurate, repith R a Bravais lattice vector, ang a basis vector. Basis

resentation of the band structure for all phases and all coorectors will also have an associated typdo distinguish

dinations considered. equivalent from inequivalent sites, for example the two dif-
Our choice of the silicon-boron system has been motiferent sites ¢, # qg,) which are equivalents; = 7,) in cubic

vated in part by concern over boron diffusion in Si-baseddiamond but inequivalentr{ # 7,) in the zinc-blende struc-

semiconductor devices during fabrication, which is an issueure.

of some importance as feature sizes are increasingly reduced. In the remainder of this section, we describe Slater-Koster

Significant insight into the atomic-scale migration mecha-expansions for the two terms given by E¢®) and(3), be-

nisms has been achieved withb initio local-density- ginning with the latter. The expansion BI° is in terms of

functional method$® however, these methods become toosite energiesg, and crystal-field parameterg,; while that

expensive for systematic investigation of larger B aggregatefor AHX is in terms of intersite hopping parametersinalo-

in Si, and so a tight-binding total-energy representatiorgous expansions exist for the overlap matrix, where we de-

would be valuable. While silicon-boron interactions havenote the hopping parameters by For bases which aren-

been added to a near-neighborsp, orthogonal tight- site orthonormal,O° is the identity, so that site energy

binding total-energy representation for°Sind successfully analogs are unity, while crystal-field analogs are zero.

used to examine single B impurities in Ziadditional B-B

interactions would be needed for larger B aggregates. Further

extension of a Si/B representation to the ternary Si/B/H sys- A. Hopping parameters
tem would also enable simulation of the deposition processes In the two-center approximatiofi one assumes that)
for p-type material using diborane and silane. the potential terms in the one-electron operatbmay be

In the remainder of this paper we describe the method ofepresented as a sum of spherical potentials centered about
calculating the Slater-Koster parameters in Sec. Il, details ofhe various atom sites, arii) that three-center integrals can
the full potential linear muffin-tin orbital(FP-LMTO)  be ignored. If this approximation is imposed, E8). may be
method used here in Sec. Ill, and our numerical results irexpanded in Slater-Koster hopping parametgrs; ., (d),

Sec. IV. We present a summary in Sec. V. where 7 is the type of atom at basis positiapy and u
=0,... min(l,I") is the magnetic quantum number about
Il. CALCULATION OF SLATER-KOSTER PARAMETERS the interatomic axiR+q’ —q,

The Slater-Koster parameters may be calculated directly
from minimal basis, one-electron Hamiltonidtxdependent _
matrix elementsor a suitable localized basis. In this section AHgm g1~ > €57 g, (Im1'm',R+q"—q)
we show that even when imposing the common two-center R K
approximation, there are closed-form expressions which re- th'nm(|R+ q’—ql) (5
late the Slater-Koster hopping parameters to unique linear
combinations of these matrix elements. Crystal-field terms )
can be obtained in a similar manner. In contrast to the hop- 4.9

n

R+q’#q

ping parameters, however, only specific sums of the crystal- ~
field parameters over atomic shells may be determined for a

given structure. Our approach is similar in spirit to calculat-

ing the Slater-Koster matrix elements directly, as in a lineat€re;
combination of atomic orbitals approach, but there are a

%GEM(”“,"m’)tn'n'u(dn)- 6)

number of advantages which will become evident below. Gﬁ (Im,1'm")
Matrix elements of the one-electron Hamiltonian may be .
written Rta’ —al=dn _
) , ) = > e*Rg, (Im,I'm",R+q"—0q),
— R
qum,q'l’m’_ qum,ql’m' 5QQ’+AHqu,q’I’m’ ! (l)
L . . . 7
separating intrasite and intersite terms, @
HO —(ogim|H|Ogl'm’). 2 and Eq.(6) reformu_lates the expansion in terms of sheils,
aim.qivm = {0GIm[H[ 0! "m’) @ of atomsR+q’ at distancel,=|R+q’ —qg| from the atom at
Rid’ g. The “g,q’'” over the sum in Eq.(6) signifies that only
a7 those shells abouq involving periodic images ofj’ are
AHK = e*Rogim|H|Rg'I'm’), (3 _ _ 1
alm.g’1"m 2R (0gim/HIRg » G considered. The real geometric factagg(Im,I'm’,d) are
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tabulated in the original Slater-Koster papas well as Table follows since the matrix dot product
20-1 of Harrison’s booR,e.g.,g,(s,py,d)=d-Xx. We takem =, vg,(Im,1'm’",d;)g,,.(Im,I'm’,d,) for different direc-
to designate the customary real linear combinations ofions is a function ofi; - d,, and is therefore invariant under
spherical harmonics which appear in these tables. symmetry operations.

Equations(5) and(6) may be inverted using the orthogo-

nality relations . . i
y B. Site energies and crystal-field parameters

E 2 ik-(R-R')_ 5 ®) A consistent application of the two-center approximation
N < € YRR will admit one-electron potential terms frohkh in Eq. (2) at
. sites other than @. Chad?® noted that these crystal-field
and terms will have the the same kind of expansion as in(Byg.
> g,(Im1'm’,d)g, (Im,1'm’,d)=(2-8,,) 8, Hoim.atm =€ it Sy
m,m’
(9) R+q'#q
The first gives + 2 X g,(ml'm R¥q =0
R,q’ M
l —ik- X ! ! R+ F— 13
N; o ik RH;Im,q’I’m’ X (|R+Q"—q]) (13
q
%% g'u(lm,llm/,ﬁ:q/\_q) ~87|5||15mm/+; % Ggﬂ(lm,l’m’)
XtTT/||/M(|R+q’—q|), (10) XXTH'Tn,u.(dn)' (14)

where the full Hamiltonian may be used sing@ projects Here &, are the orbital site energieg., ,(dy) are the

out of the left-hand sjde _foh_?+q’—q|;é0. The nature of Slater-Koster crystal-field parameters, and the shell sum in
the two-centerapproximationis clear from Eq.(10): the u g4 (14) covers all shells of atoms abogt The index order
=o,m, ... geometric functiong,,(Im,I'm’,R+q’—q) are  in y ., , is a reminder that both theand!’ orbitals are at

n gene/ra}I an '“Comp"iﬁi'gaﬁ's for them’ dependence of o sjte of typer, while the one-electron potential is at the
theql,q'l’ block of =, e qum’q,l,m,. However, sinceé,,  sijte of typer,,.

are by definition coefficients of the existing basis functions, |n contrast to the hopping parameter case, the absence of
g, the second orthogonality relation gives a precise resulk dependence in Eq$13) and(14) results in an insufficient

for these hopping parameters in spite of the approximate narumber of equations to determine the “bare” crystal-field

ture of Egs.(5) and(6), parametersy, from the Hamiltonian matrix elements for a
1 singlestructure. The number of linearly independent geomet-
. : ; 0 Yy — 0 !
t77f||fu(|R+Q’—Q|):(2_5 )_lﬁ 2 e ik-R ric matnces_(—:‘n#(l,l )=[Gp,(Im,I'm")] for all n and u _
kmm’ now determines how many parameters can be determined
R — from them,m’ dependence of eadfi,ql’ block of HC. It is
xXg,(Im,I'm",R+q"—q) therefore convenient to rewrite E(L4), retaining the largest
xHE (11) subset ofG,, in which all members are linearly indepen-
glm,q’l’'m dent,

If Eq. (11) is then formally averaged over the identical re-

sults for allz, neighborsR+q’ in the same shelh, aboutq, Hglm q|'mr*8$|ﬁ5” Sy
one obtains ’ q
- 0 ! ! eff
trritru(dn) =[ (2= 8,5)ZN] 71 +nzu Gnu(ImI'm")x2y . ,(dn), (19
X 2 GﬁfLUmJ'm’)H;m,q/.,mu (120 thereby defining effective site energy’™ and crystal-field
k,m,m’ parametersy®™, which can be determined from the matrix

which is the inversion of Eq(6). Note that here and else- elements ofH°. There are, for example, ten such effective
where we consider all atoms in a given shell to be equivaparameters for the zinc-blende structure=(1,2) treated in
lent, and therefore assign different values to the shell indern spd basis: sixe® and four crystal-field parametefsne

n, should|R;+qg;—q|=|R,+q,—q| for two different basis pd and onedd interaction for orbitals of each). While the
positionsq,; andq,. Equation(12) is also the result which structure of the one-electron Hamiltonian matbehavesas
would be obtained from a least-squares optimization of théf these were the only crystal-field interactions in the zinc-
agreement in Eqg5) and(6) for a givengl, gl block. This  blende structure, each effective site enes§§ and crystal-
equation is particularly useful, since it is still valid if field interactiony® is a fixed sum, for this structure, over an
the k sum is replaced by an appropriately weighted suminfinite number of the “bare” crystal-field interactions in Eq.
over the irreducible wedge of the Brillouin zone. This (14).
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The structure of Eqg14) and(19) is compllocated by the  tings Ae(E,) and Ae(T,) caused byyqq (see belowin
fact that the matricepomn ] (for I=1") andG,(1,1"), for  cubic crystals are such that\2 (Eg) +3A&(T,,) =0.
different u, are not mutually orthogonal. The orthogonality  For a crystal with only one equivalent site, and if the
relation between thg,,’s, Eq.(9), does not carry over to the dependence 0f?'in Eq.(20) were ignored, the effect of this
Gﬂﬂ’s because of the different directions involved in the equation on the one-electron eigenvalue sum is formally
neighbor sum in Eq(7). However, there is a transformation identical for an orthogonal basis to the eigenvalue sum that
which restores this orthogonality §, G, x, andx®" in Eqs.  would be obtained using the bare site energigdus a pair-
(13)—(15) are all replaced by the transformed quantiiges ~Wise sum over the “interatomic potentialy*(d). This is
G, ¥, and x°", as defined in the Appendix. We denote the Similar to what Cohen and co-workers did by neglecting the

transformed counterpart of the index by a, so that pair—p.otential sum yet_ using er_wiron_mental—dependent ex-
B0 (111)-8% ,(11")5,... Moreover, forl=1", the a pressions for their on-site terms in their recent nonorthogonal
nat’ n'a’\0l ) Paalt ' A . tight-binding total-energy methdd.The formal equivalence
=0 geometric function is now proportional to the identity jyreaks down for nonorthogonal bases, where band structure
matrix shifts also modify the’s, and for two or more inequivalent
sites, where the analogy would require expansions about
GO (Im,Im’) = Zn S (16) sites of other types besidesin Eg. (20). Nevertheless, it
no ' mm'’» . .
21 +1 seems clear that the use of environmentally dependent site
. ) ] ] energies, especially given their more flexiblelependent
wherez, is the nuLnber of neighbors in shell This means  form, may well obviate the need for interatomic potentials.
that thee ,; and all x ,y ; o(dy) contribute to the one-electron For the casel '« #110, the counterparts of Eq&l7) and
Hamiltonian in exactly the same way, as coefficients of(18) are
Smnv, @nd can never be unraveled from the matrix elements -
for a single structure. It is convenient to lump all of these Z M., e (dy)
contributions into the effective site energies, so that =t n'n Xl 7 7,alYn

1 1 ~0 ik
8tilﬁz(ZIJrl)N kzr:n Hglm,qlm (17 N kmEmr G o(Im M) H g g (21)
T z, ~ 7 ~
:87.+ Xl d 18 :2 Mn’,nXTII’Tna(dn)1 (22)
{ 2 \/mx 1l nO( n) ( ) n
define the effective site energies and their expansions in th¥here. for the giverl‘a,
bare parameters, respectively. _ _
In terms of the original crystal-field parameters, My = > Gg,a(lm,l 'm"HG2,(Im,I'm"). (23
m,m’

1 Heren andn’ in Eq. (21) are restricted to the subset of shells
Alar0=———— 2= 8,0 X u= 21+ 1YY,
Xrll70 2I+1§( ,L)Xn “ XAl r

for which the G® (Im,1’'m’) are linearly independent, i.e.,
(19 [M,/,] has an inverse. Given the inverse of this structure-
dependent matrix, Eq21) provides values of the effective
crystal-field parameters, while ER2) defines their expan-
r sion in the bare parameters for all sheilslt is straightfor-
Silff:gﬂJrE Zox2 . (dy), (20) ward tg program this treatment, beginning with calculation
n " of the G?, out to some shell cutoff, examination of these

wherey® mav be viewed as the averagexf= over an matrices for Iinegr independency, and then solution_ of Egs.
extenci(edﬂ raynge a=—I | 9= X (21)—(23). The virtue of carrying out these calculations in

Silff in Eq. (17) are the usual site energies that would bethe transformed “tilde” basis is decoupling of the index.

obtained from fits to band structures or matrix elements for'vI oreover, we found for a variety of structures that the effec-

solids if crystal field is ignored, while the,, are analogs of tive crystal-field interactions are the linear combinations in
) 7l . e _ s .
isolated-atom site energies. Even though crystal-field inter'Ehe _Appendlx. The fam'“aEQ_ T2g S,Pl'fﬁt”?g ofd _stateg n
actions may be formally ignored in such fitl are never- cubic crystals, for example, is due jdjg, interactions, i.e.,
theless intrinsically dependent on local environmi@df, fixed linear combinations of the usual , andé crystal-
which is a reflection of the expansions in E¢s8) or (20). field interactions in the ratios of 3:—4:1, respectively.

When crystal-field interactions are formally included in rep- '€ pd crystal-field interaction alluded to above for the
resentations, the “trace” definition of the effective site en- cubic diamond and zinc-blende structures considered in this

ergies in Eq(17) is the most convenient sin¢&) the envi- work provides a simple, concrete example. For these struc-
ronmental dependence reduces to the sinsgige absence Ures there is onlpnelinearly independent matrix among all
of geometric factors foall | as seen in Eqg18) or (20), and  the GJ,(p.d) or GJ,(p,d):

(2) the remaining crystal-field interactions preserve the trace 0 , o ,

due to the orthogonality just discussed, e.g., the split- Gho(pmdm’)=c,Gi,(pm,dm’), (24)

so that
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o 2 o —1 and—3 Ry, andl =6, and included such expansions
Gn-(pmdm’)=— ﬁCnGlo(pm’dm,)’ (25 in interstitial spheres for both cd and zb structures.

The HamiltonianH* and overlapO¥ matrices, which are
represented by the Slater-Koster expansions of the previous
section, are obtained in separate minimal basis calculations,
~0 at 28 points in the irreducible wedge, using the self-
Gni(pm,dm’)=0, (27 consistent one-electron potentials obtained in the multiple-
calculations described above. In simplest application, each

fact nonzero only for shells coupling’ #q. The effective minimal-basis atomic orbital could be taken to be a single
interaction is clearly ofx=0 nature, and if we choose it to @ugmented spherical Hankel function. In this work, we

be for the first shellMy, of Eq. (23) is 80/9, and Eqs(21) choose a more accurate representation by using fixed linear
and (22) become ’ combinations of two augmented spherical Hankel functions

for eachspd atomic orbital. Such linked or contracted bases

G2 (pm,dm’)=/5/3¢,GI (pm,dm’), (26)

wherec, is a shell-dependent constaet,=1, which is in

~cff 9 ~0 ik are common in quantum chemistry calculations, e.g., where
Xpar,0(d1) = 5o N > , GrolPmdm)H g, g contracted sums of Gaussians are used as atomic orbitals.
k,m,m (28) The present linked basis differs from a regular twaalcu-

lation in that the ratio of coefficients for the two augmented
spherical Hankel functions is independent. The set of such
=Z cn}'TpdTno(dn). (29 relative coefficients for the various were determined for
n each phase at its equilibrium volume by minimization of the
occupied one-electron eigenvalue sums for the linked, mini-
mal basis, using the fixed self-consistent potentials. The
same relative coefficients ane values were then used for
of standardpdo form, i.e., xinglU(d1)= \/S/BXESdTlo(dl). the other two volumes in each case. We also tried choosing

Since the transformed crystal-field interactions are not custhese parameters by optimizing the agreement between the

tomary, we take the latter approach in reporting our results ifninimal-basis and best multiple-band structure, as well as
this paper. the agreement between the Slater-Koster generated band

structure and the best band structure. Neither showed signifi-
cant improvement over the simple one-electron eigenvalue
sum minimization.
The FP-LMTO method used here has been described in The asymptotic behavior of especially the overlap hop-
detail elsewheré’*°While it makes no shape approximation ping parameters(d) will be governed by the exponential
to the one-electron potential, space is divided up into vol-coefficientx in the Hankel function tails. In order to generate
umes within nonoverlapping muffin-tin spheres plus the enfeasonably localized representations, we fixed the decay en-
compassing interstitial region for computational conve-ergy of the most extended Hankel function tail to bec
nience. The basis functions are augmented spherical Hankel —0.5 Ry, which should reduce values s(id) by roughly
functions of the formR,(r)Y,m(r), whereR,(r) is a nu-  two orders of magnltudg over a 3.5-A range. We chose t.he
merical solution of the radial Schimger equation inside a decay energy for the tail of the second augmented spherical
given muffin-tin sphere which is matchédalue and slope  Hankel function in each linked combination to berx;~
to a spherical Hankel function outside the sphere. In addition- 1.5 Ry. Relative to thes(d)’s which would be obtained
to the usual atomic quantum numbers, these basis functiontsing just the single; basis function, we found consistently
are characterized by decay energies® of the Hankel- larger s(d) magnitudes, which also drop off more slowly
function tails as well as the value of the muffin-tin radius, with distance when using the linked basis. The changes are
Ryt at which the tail was joined to the numerical solution. larger with largerl +1’, and for thes;,(d), range from
Accuracy is insured by the expansion of each atomic orbitaB0—60 % increases at the near-neighbor distance to factors of
in multiple augmented spherical Hankel functions of differ- ~2-5 at the fourth-neighbor distance for thandp param-
ing decay energies. In the present work, we have generatelers of cd Si. That is, on adding thmore localizedx,
self-consistent one-electron potentials and our accurate FRomponent, the variational freedom in forming the linked
LMTO band structure using threzbasis functions £ k?>=  basis has still chosen to formore extendedninimal basis
—0.01, —1, and —2.3 Ry), threep functions (similarly), orbitals. The one-electron bands are, by the way, dramati-
and oned function (— x>=—0.01 Ry for every Si and B  cally improved with the linked basis for the open cd and zb
atom. The irreducible wedges were sampled with 60 pointStructures.
for both the cubic diamonécd) and zinc-blendézb) struc- In general we find some differences between the same
tures. overlap functionss(d), as calculated for different structures
The present FP-LMTO method makes use of a separat@nd stoichiometries, although for the present fourfold-
expansion of the electrodensityin terms of atom-centered coordinated phases the agreement is generai9% or bet-
and possibly interstitial-sphere-centered augmented spherictgr. Given the desire for a transferable basis, however, we
Hankel functions to facilitate solution of the Poissonhave performed unitary “rotations” of eack-dependent
equatior?®3° We have used 98 functions per site in theseone-electron problem, HX—\OK)x=0—(HX,—\0X)y
expansions, corresponding to two decay energies’= =0, where, suppressing theindex,

Since =,G1aXo==,G1,X,, One could alternately set
ngdrlw(d1)=0, and take this crystal-field interaction to be

lll. FP-LMTO CALCULATIONS
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Hror= OfrO~ ¥2HO ~ Y2002, (30 10 =

rot

O¥,, which define these rotations, were calculated from ana-
lytic expressions for the complete set dfdependent func-
tions s, /,(d), which will be given subsequently. These
analytic forms were actually fit to a subset of our directly
calculated parameters, so that B&, and O are not very
different. The virtue of this approach is that, without chang-
ing the band structure, it provides a perfectly transferable
overlap which is exactly represented by two-center expan-
sions, so that issues of nontransferability or non-two-center
effects need be addressed only for the Hamiltonian matrices
HX .. The numerical results presented in this paper will be i
for these rotated Hamiltonian matrices, and we will therefore -10 ¢
make only brief comments on the overlap matrices in Sec.
V.

€ (eV)

Finally, as a bookkeeping note, the Hamiltonian and over- -15
lap matrices generated routinely by our FP-LMTO code do r X W L r K X
not correspond to normalized orbitals. Before any other op- )
erations, therefore, we apply the same unitary transformation FIG. 1. Comparison of the minimal basis generated band struc-
Agim,q'17m= Oqq’ Oi1» Smmr A 5y 10 both Hamiltonian and over-  ture (dots to the best multiplee band structurésolid lineg for zb
lap matrices for eaclk, so as to insure normalization. In SiB at equilibrium volume. The zero of energy is the latter Fermi
practice we choose these, so that the overlap analog of energy.
%=1, since we find the overlap analog of the effective ) o
crystal-field interactions to be nearly zegenerally 0.001 or The dotted lines in Fig. 1 show the results of FP-LMTO

Sma"epl For Comparison, near-neighbor magnitudes Ofcalculations with a |Inked$pd minimal basis. The rms dif-
S,.ssr are typically in the range 0.3-0.4. ference between these and the mutiplbands is 0.03 eV for

the four valence bands, and 0.33 eV for the lowest conduc-
tion band, based on a comparison at 145 points throughout
the irreducible wedge. The linking coefficients defining this
In th|s section we present numerical resu'ts for the d|_m|n|ma| baSiS were Obtained by minimization Of the OCCU-
rectly calculated tight-binding parameters obtained for the cdied one-electron eigenvalue sum, i.e., states0. If this
phases of Si and B, and zb SiB, each at three different voloPtimization is extended upwards in energy to include the
umes. Comparison is first made between the resultant tightowest few conduction bands, agreement for the lowest con-
binding bands and our best multipieband structure, with ~duction band improves from 0.33 to 0.15 eV, with only a
differences analyzed in terms of the choice of minimal basigmall degradation of the valence-band agreement. The dotted
orbitals as well as the presence of non-two-center effectdines in Fig. 2 show the tight-binding bands obtained using
Plots of the calculated hopping parametdrs;;,(d), are parameters calculated from the minimal-basis matrix ele-
then presented to illustrate general features in both distance
and angular momentum dependence, as well as variations 10
over the phases considered. A more practical test of transfer- i
ability is provided by examining the band structure generated
by a single set of analytic functions fit to all of the calculated 5 -\
t(d)’s for the set of fourfold-coordinated phases.

IV. NUMERICAL RESULTS

A. Band structure 0 I

There are two levels of approximation inherent in typical
tight-binding band structures. The first is associated with L
limitations of the particular minimal basis chosen, and the -5
second is the two-center approximation made to the minimal I
basis matrix elements. These approximations are illustrated

c(eV)

by the dotted lines in Figs. 1 and 2, respectively, where the -10

band structure for zb SiB is presented at equilibrium volume. 8

In both cases the solid lines show our most rigorous I

multiple-x band structure, provided for comparison, with its 5 L ]
Fermi energy taken as the zero of energy. We shall conve- r X W L r K X

niently refer to the lowest four bands, those below the re-

spective gapse.g., from~2 to 3 eV in Fig. 1, as valence FIG. 2. Comparison of the tight-binding band struct(dets to
bands, and the bands above as conduction bands, eveéf best multiplec band structurdsolid lines for zb SiB at equi-
though zb SiB and cd B are metals. librium volume. The zero of energy is the latter Fermi energy.
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ments reflected in Fig. 1, and a cutoff @f,,,=1.8a, where if @ more localized basis is used, e.g., it is 0.08 eV for the
a is the lattice constant. The rms difference between th@nex basis,x?=0.5 Ry, discussed in Sec. lll. This is con-
dotted and solid bands in this figure is 0.10 eV for the foursistent with the intuitive expectation that a more localized
valence bands, and 0.30 eV for the lowest conduction band?asis should reduce the importance of three-center terms.
The modified linking coefficients just mentioned, while im- Unfortunately, while there is much improved agreement be-
proving the lowest minimal-basis conduction band, actuallyfween minimal-basis and tight-binding band structures for
degrade the corresponding tight-binding comparison fronthis more localized one-basis, both are in poor agreement
0.30 to 0.53 eV. We believe this behavior reflects non-two-with our accurate multiplee result.
center effects, as will be discussed below. The converse effect, a more extended basis, is illustrated
It should be emphasized that the tight-binding agreemeriy the zb SiB modified linking coefficients mentioned above,
seen in Fig. 2 can be significantly improved with standarawhich improved the lowest minimal-basis conduction band
nonlinear minimization of the difference between the twobut made the corresponding tight-binding band worse. That
sets of bands. In the case of cd Si, for example, the analog #nodification generally increased the magnitudes of both
Fig. 2 exhibits discrepancies of 0.13 and 0.14 for the fours(d) andt(d) parameters foll ' =Id, which persisted for the
valence bands and the lowest conduction band, respectivelyotatedt(d)’s corresponding to the transferable overlap func-
and 0.18 eV for al~6 bands up to 4 eV above the valence-tions. Thesdd parameters are not on the whole larger than,
band maximum. If the latter rms is minimized by adjusting €.9., thepp parameters, indicating that an extended basis is a
site energies and selected coefficients of analytic fits to theecessary but not sufficient condition for significant three-
calculated(d;), it can be quickly reduced from 0.18 to 0.03 body effects. Harrison’s bond orbital treatment, for example,
eV. This demonstrates that our directly calculated parametef@!ggests that the directionality p® hybrids may allow an
are indeed good starting points for such an optimization, an@XPlicit two-center treatment for quite extended orbifals.
makes contact with previous experience, e.g., a 0.1-eV rms As discussed in Sec. Il B, the zb and cd structures may be
fit to all bands up to 6 eV above the valence-bandcharacterized by two effective crystal-field interactions per
maximum? obtained with a nonorthogonalp (versus our Siteé for anspd basis, onepd and onedd interaction, dis-
spd) basis. Nevertheless, we do not pursue such minimiza¢ounting thpsg o'gher crystal-field interactions wh|ch couple
tion of band differences in the present work, because it obt® anq are intrinsic parts o_f the effective site energies. Both
scures the issue of transferability in that the roles of differengffectivepd anddd interaction parameters have been calcu-
parameters are less well defined by the band structure alofd€d from the minimal-basis matrix elements, and their ef-

in contrast to the matrix elements, effectively band structurd€cts are incorporated into the tight-binding bands in Fig. 2.
plus eigenvectors. The latter, although not small, has negligible impact on the

Our tight-binding parameters are calculated directly fromvalence and first few conduction bands, and we shall ignore
the minimal basis matrix elements, and represent the bed The former, which may be conveniently treated as effec-
possible two-center approximation to such matrix elementsive near-neighbor o interactions, xsipds,(di) and
A direct comparison of the tight-binding and minimal basis Xapdsi-(d1), are responsible for & 1-eV shift in the lowest
representations is therefore a reflection of non-two-center eonduction band throughout the Brillouin zone. If these in-

fects, i.e., aiTm,m’ dependence which cannot be spanned byeractions were removed from the tight-binding bands in Fig.
the two-center geometric factorg, (Im,| 'm’,d), which 2, the lowest conduction band would drop by 1.04 and 1.08

presumably originate from three-body terms. In the case ofV atl’ andX, respectively, while the highest valence band

the zb SiB band structure, the rms difference between th}g/oul.d move.upward by 0.36 anq 0.01 eV, similarly. W?
dotted bands shown in Fig. 1 and those shown in Fig. 2 i btain very similar results for cd Si. In other words, the cubic

0.10 eV for the four valence bands, and 0.42 eV for thediamom.j thf‘se of .Si would be a metal were it not W
rystal-field interactions. To be more precise, gm basis

lowest conduction band, again evaluated throughout the irre="Ys v d i insulati for cd Si. Wh ddi
ducible wedge. These finite rms values reflect the extent oppically does give an insulating gap for cd Si. When adding
non-two-center contributions in the minimal basis matrix el-d States, the overall effect of the new hybridization interac-

ements which we believe is aggravated in the COI‘ldUCtiOIIIionS (t’s) is to lower the lowest conduction band, which is
bands by the more itinerant natétef these states in com- offset by thepd crystal-field interactions tending to raise this

parison to valence-band states. band.
We also routinely monitor the differences between tight

binding and minimal basis Hamiltonianatrix elements, and

find these differences to saturate at finite rms valued,as

is increased. In the present zb SiB case, for example, this Figure 3 shows our directly calculated Si-Si hopping in-

saturation value for all nonzero matrix elements is 0.24 eV{eractions fors andp angular momenta. The figure includes

and is reached fad,,,,/a in the range 1.42—-1.8. If we com- results for Si-Si interactions in both cd @losed circlesand

pare onlyss matrix elements, however, the rms differencein zb SiB (open circleg and for three volumes eacV(V,

becomes arbitrarily small with increasidg,,,, reflectingthe =0.8, 1, and 1.2so that the points for each shell appear in

fact that the two-center approximation impacts only thosdriples. The roughly exponential behavior seen at the larger

degrees of freedom associated with multiple values of theseparations persists as far as we have calculdted,1 A, at

magnetic quantum numbenm, as can be seen from E(L0).  which point the largest parameters are less thardl@ * eV

The saturation rms value for the matrix element comparisoiin size. The curves are fits, and the rms percentage scatter

also becomes smaller for the full setsyfd matrix elements  about them is 5% or less considering 15 pointsl&t5 A.

B. Parameters
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Many of the Slater-Koster parameters must change sign or
approach 0 at small due to the nodal structure of the or-
bitals. This is easily understood for the overlap parameters
from simple orbital sketches, e.g,,(d) should be nega-
tive at large separations, yet approach the normalization 1 as
d—0. As a manifestation of these trends, we find many of
the overlap parameters in the present work to bend over at
the smaller values ofi, similar to thet,,, curve in Fig. 3.
This behavior is quite systematic, e.g., it is absers,ig(d),
and increases with+1’ for the othero- parameterss); ,(d).

In all cases, however, these overlap parameters retain the
same sign throughout the range investigated in this work
(2.17<d< 11 A for Si-Si interactions

The situation for the Hamiltonian parameters is similar,
although more dramatic, as seen in Fig. 4, whererdtter-
actions are shown. The increasing effect withl’ may be
understood because the orbitals for largeare both more
extended due to higher site energies in the present materials,
but also because of narrower lobes which poke out farther in

FIG. 3. Calculated Si-Si Hamiltonian Slater-Koster parametersthe bond d|rect|on for the— |nteract|onS, and therefore Cross

ty/,(d), for s and p angular momentum. Results are shown for
Si-Si interactions in cd Si and_ zb SiB. The deS|gnat|or_1, e'g"quantities plotted in Fig. 4
(d) is plotted. The curves are fits as

* —ppm” signifies that—t
tabulated in Table II.

ppm

The corresponding scatter is larger fiak interactions, al-
though generally less than20%, except for theldo case at

nodal planes of opposing orbitals at larger separation. The
;+t, have been chosen so that
parameters with the “correct” sign are positive, and simi-
larly in Fig. 3. Thus it can be seen that the Si-Si near-
neighbort 4, have the wrong sign because of the effect just
discussed. This may not be generally true, since for a nonor-
thogonal basis, the Hamiltonian Slater-Koster parameters de-

32%, which may be seen in Fig. 4. In all cases the actual rmpend on the energy zero, i.e., an overall shiftdy of the
differences for this same range a=®.1 eV. Note that these band-structure as a whole changéd) to t(d)+Aes(d).
parameters, a subset of which were used to generate Fig. Revertheless, we find the ratiost(d)/s(d) to be relatively
are calculated from the matrix elements of our rotatediat (independent ofl) for the sso cases, and increasingly

Hamiltonians(see Sec. I)l so that the corresponding overlap
parameters are perfectly transferable and smooth by co

struction.

t(eV)

1k s ecdSi |
é ozb SiB |
/
2 .
P S T T [ NN T T S SO MY N SN AN T SO S
2 3 4 5

d (&)

6

more negative and more down-turned at sndhlfor the
rI]é\rger values of +1'. Thus a general conclusion ferinter-
actions appears to be a general tendency fos¢Hdg to bend

over at smald, more so for largel+1’, and that similar but
more pronounceeffects occur for the(d).

The sp subset of our calculated near-neighbor Slater-
Koster parameters for cd Si at equilibrium volume are com-
pared in Table | to results from two different band-structure
fits usingsp base$:® The agreement is on the whole quite
good, with our largettsy,, andt,,, magnitudes being the
most noticeable differences out of the range of the previous
work. If the cd Si band structure is calculated with just the
sp subset of our nonorthogonal parameters, the agreement
with the full spd calculation is excellent for the lower half of
the valence band, and the most noticeable difference for the
top half is thesp I" point which is 0.8 eV higher than the
corresponding pd value. The lowest conduction-band states
are fairly close afl"; however, thesp band is significantly
higher (3.8 eV) at X than thespd result, and similarly at
other zone face states. It is tldestate hybridization which
pushes the lowest conduction band down at these points, and
we suspect that the smallgy,, andt,,, seen for Refs. 4 and
6 are required to achieve the same effect withirsarbasis.

FIG. 4. Si-Si Hamiltonian Slater-Koster parametays,(d) for Our parameters fall off more slowly than do those in Refs.
all o interactions. Calculated results are shown for the Si& 4 and 6, where interactions through third neighbors were
interaction in cd Si and zb SiB. The curves are fits to these andufficient to represent the band structure of cd Si. Our tight-
similarly calculated resulténot shown, and are tabulated in Table binding band structure for cd Si 8=V, is fully converged
II. The designation, e.g., * pd,” signifies that—t,q,(d) is plot- by dma,=1.42a, or eight distinct neighbor distances, with an
ted. rms difference from our best multiple-bands of 0.18 eV for
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TABLE |. Comparison of near-neighbod & 2.351 A) Slater-Koster parameters for cd Si at the experi-
mental equilibrium volume. The overlap parameteese dimensionless; the Hamiltonian parametease in
eV. The present parameters are a subset of thesfudl representation, whereas the others are figm
representations.

Sssr Sspo Sppe Sppn tssr tspo' tppa’ tppﬂ'
present 0.2700 —-0.3603 —0.3590 0.2074 —3.7423 3.9797 2.0430 —1.6754

Ref. 4 0.2705 —0.3426 —-0.3755 0.2614 -—-3.2766 3.2668 1.9548 —1.0335
Ref. 6 0.3036 —0.3743 —0.2455 0.1307 —3.6463 2.7103 2.1462 —1.3319

states up to 4 eV above the valence-band top. This discrefd-hese are individually tabulated for the different structures
ancy increases to 0.24 and 0.31 eV for five and three neighand volumes, as it is beyond the scope of the present paper to
bor distance cutoffs, respectively. The zb SiB tight-bindinggenerate structurally dependent fits to these quantities. The
bands are also essentially convergedday,=1.42a at V known structure-dependent expansions given by ER).
=V,, although the rms discrepancy in this case increaseand(29), however, provide the means for obtaining such fits,
from 0.13 to 0.34 eV at the five-neighbor-distance cutoff.by varying parametrized analytic forms for tHelependence
We have not yet systematically explored variation of theof the bare crystal-field interactions so as to optimize the
decay energies of the augmented spherical Hankel functioagreement in these equations. We are currently exploring
tails as a way of creating more localized bases; however, wsuch fits for a broader class of structures than discussed here,
noted that optimization of our linked minimal basisvo  as well as the use of prior structure-dependent shifts of the
such functions per atomic orbital with fixed relative coeffi- bands so as to insure that the one-electron eigenvalue sum
cient had the opposite effect by creating mceetended alone would reproduce the total energi®é\s noted earlier,
orbitals than either of the two-component augmented Hankeduch shifts modify thd’s, and so we are also investigating
functions, while simultaneously greatly improving the bandpossible representations of the differencest, ./,
structure. Although interactions through third neighbors are=t, ., — (e 4+ £,//)S;.1i+,/2, which would be invariant
sufficient to represent the band structure alone for ct&i,  under uniform shifts of the band structure, rather than of the
is not yet clear whether the same is also true for the mor¢’s themselves.
challenging case of matrix elements as confronted in this
work. Sanchez-Portal, Artacho, and Séfdrave applied pro-
jection techniques tab initio plane-wave calculations for cd
Si in order to obtain matrix elements in atomic orbital bases. Nonorthogonal bases are generally expected to yield more
While they found a standard atomic bastp( STO-4G to  transferable tight-binding parameters than orthogonal bases.
yield a fully converged band structure for interactionsWhile our results are consistent with this expectation, they
through only third neighbors, they obtain both better bandalso raise the possibility that nonorthogonal hopping param-
structure and more complete coverage of the Hilbert space @fters which accurately describe the best local-density band
occupied plane-wave eigenfunctions with a “scaled” atomicstructure and matrix elements may not be widely transfer-
basis, which they note usually requires “a longer range ofable, without, for example, special environment-dependent
interactions.” representational procedures as are now being applied in the
Beyond comparing the parameters themselves as in Fig. ®rthogonal cast! We are currently investigating this issue
a more practical test of transferability is to see how well afor a wider class of structures than the fourfold-coordinated
single fixed set 0§(d), t(d) functions performs. To this end, phases considered in this work, and briefly mention some
Table Il provides analytic fits to our calculated Slater-Kosterpreliminary results for other structures here in regard to the
hopping parameters, for all of the fourfold-coordinated issue of transferability.

C. Transferability

phases considered in this work. The functional form is For both the fcc phase of §l2-fold coordinatiopnand the
B2 or CsClI phase of SiReightfold coordinatiop we find
t(d)=A,dB1e €19+ A,dB2eC2d, (31 magnitudes of the nonorthogonal hopping parametéd,

which are 10—30 % larger than would be indicated by the fits
where the exponent§;=0.7/a, andC,=1.2/a, for all pa-  to the fourfold coordinatetis given in Table II, considering
rameters, and, is the Bohr radius. These choices®f and  the sp parameter subset over the first five-neighbor dis-
C, were motivated by the decay energies used for the tweances. As throughout this paper, thég#)’s were obtained
augmented spherical Hankel functions in the linked basisusing Eq. (30) and therefore correspond to our standard
The same functional form was used to represent our perfecthtansferable overlap parametesgd), which are also given
transferable(by construction overlap parameters, i.e., the in Table Il. The effect on the band structure from using the
s(d) functions used to assemble the matri@§, of Eq.  smallert(d)’s in the table is to give systematically narrower
(30). Recall that allt’s cited and used in this paper were bands by 20—25 % over those obtained with the directly cal-
obtained from the4 ¥, matrices defined by this equation. The culatedt’s. The rms discrepancies with our best multigle-
coefficients describing these analysi@) functions are also band structure for states up to 4 eV above the Fermi level are
given in Table II. consequently poor, over 1 eV, as may be seen in the “Table

To complete the representation of the bands, Table Il t's” column of Table IV for fcc Si andB2 SiB. We also

gives the effective site energies apd crystal-field terms. removed an atom from the eight-atom cd Si cell, and relaxed
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TABLE Il. Analytic fits to calculated Slater-Koster parameters for the fourfold-coordinated Si/B phases.
In the name, “1” designates Si, and “2” B. The fits are of the fospti=A;dBe” €19+ A,dB2e 24 where
the superscript® andH designates (dimensionlessandt (eV), respectively, fod in A. The coefficients
C,=0.7/ap=1.322 81 andC,=1.2la,=2.267 67, for all parameters, wheag is the Bohr radius. These fits
correspond to the rotated matrices discussed below 3.

Name A9 BY A9 BY Al BY Al BY

llsso 20.63048 —0.40 —31.874 59 1.07 —54.906 97 0.59 6000.155 61—-5.20

1l1spo —6.036 11 0.63 34.644 12—-0.60 42.247 67 1.05-2911.81392 —3.60
1isdo 4.140 61 0.78 —345.47832 —3.60 —17.09016 151 4740.042 16-5.20
1l1lppo —5.740 14 1.00 31.37357 0.54 19.528 64 1.7~479.683 76 —0.24

1lilppm 8.23339 —-0.37 —57.54791 —1.79 —24.48235 0.62 184.023 52— 1.80
1llpdo 3.697 03 1.20 —26.68044 0.74 —31.73809 1.38 138.769 77 2.26
11pdw —9.89765 —0.23 279.829 99 —3.20 90.788 49 0.20 —146.385 30 1.89
1iddo 8.878 96 0.70 —21.63644 1.99 —124.032 81 0.55 248.562 39 2.52
1liddw —8.258 32 0.17 415.955 15—-3.40 388.57822 —0.37 —695.119 30 161
11ddé 2696.72119 —4.75 —4956.75827 —2.94 —195.31770 —0.71 212.242 36 1.71

12sso 4.652 94 0.39 —13.64377 —1.01 —59.57607 0.42 514.291 41—-2.20
12spo —6.126 98 0.40 14.508 34 0.41 41.02512 0.82-696.010 09 —2.40
12pso —7.38225 0.44 15.916 17 0.73 38.875 40 1.03-377.58570 —1.60
12sdo 10.274 62 0.12 —26.03882 0.86 —27.537 39 1.03 494.406 77—1.06
12dso 9.692 42 0.20 —22.647 42 1.01 —23.122 99 1.26 200.637 99— 0.60
12ppoc —10.458 97 0.40 28.394 55 1.09 18.989 91 1.59-339.43259 —0.55

12ppw 7.93025 —0.58 —15.42494 —0.26 —88.46320 —0.40 212.541 69 0.31
12pdo 16.485 64 0.16 —44.394 39 126 —4.89033 2.39 168.458 33 0.95

12pdw  —1.32428 0.60 —2.514 35 2.77 180.469 47—-0.46 —531.49531 0.60
12dpo 11.809 09 0.25 —33.17681 118 —7.99119 2.01 161.940 54 0.62
12dpm  —0.55703 1.00 —3.916 10 2.44 167.353 02—0.52 —423.304 45 0.57
12ddo —2.15413 -0.80 0.568 46 5.02 —34.405 45 1.46 94.934 72 3.23
l2ddmw —39.45569 —0.92 93.566 19 0.19 478.845 85-0.71 —1203.102 43 0.85
12ddé 77.87993 —2.60 —165.33830 —1.27 125.554 86 —5.20 —1.928 00 4.40
22sso 3.570 88 0.42 —7.87329 —220 —41.74899 0.65 176.337 57—2.80
22spo —3.729 62 0.57 7.307 29—-0.40 29.87212 1.01 —251.19584 —2.89
22sdo 6.75536 0.26 —15.23737 0.84 94.53670 —5.20 —6.870 10 4.65
22ppo —3.678 31 0.74 11.498 99 0.20 22.854 34 1.27171.87751 —0.40
22ppm 3.496 80 —0.37 —7.66409 —2.40 —37.95218 —0.11 59.117 86 0.17
22pdo 5.011 70 0.60 —16.76047 0.90 —23.798 58 1.17 143.508 47 1.39
22pdm  —7.21672 —0.43 14.418 23 —0.48 —35.567 10 —4.00 5.886 21 4.23
22ddo 15.828 33 0.00 —39.458 87 1.25 —308.309 24 —0.40 619.911 57 1.57
22ddw —25.35085 —0.80 63.020 06 0.10 —77.617 05 0.03 13.102 70 4.44

22dds 22.603 67 —1.99 —49.087 00 —1.07 26.45301 —0.39 —11.000 90 3.39

both the internal parameter and atomic volume to obtain a The implications of Table IV are that the fix¢(d) func-
mixed threefold- and fourfold-coordinated ,Sracancy tions given in Table Il do reasonably well for chemical and
phase. The corresponding rms discrepancy in this case &omic-volume variation, but not for change in coordination.
better, 0.55 eV, which is still not particularly good, although While suggestive, we feel it would be premature to make this
a constant shift of the bands would reduce this discrepancg general conclusion aboab initio calculatedt’s since our

to 0.35 eV. Our directly calculater{d)’s, by contrast, give parameters are a direct reflection of our choice of minimal
about the same 0.1-0.2-eV rms discrepancydibmphases basis atomic orbitals, and it remains to be seen whether other
we have considered, as may be seen in the “tal¢ col- choices can give comparable representation of the matrix el-
umn in Table IV. Note that for all of the results cited in ements and band structure, and how that degree of freedom
Table IV we have used our calculated, structure-dependenmpacts transferability. Moreover, even if there is coordina-
site energies and crystal-field terms. These are tabulated ion dependence of the hopping parameters, more sophisti-
Table 11l for the fourfold coordinated phases, except for thecated environment-dependent analytic fotfnshould still

dd crystal-field interactions, which have little impact in this permit fully transferable representations. These are subjects
energy range. Since the Tabletls are of less use for the of future investigation, along with finding shorter-ranged
other coordinations, we have not given the correspondingepresentations, and we emphasize that the major point of the
site energies and crystal-field parameters in those cases. present paper is the method of calculatady initio param-
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TABLE IIl. Effective site energiest" and near-neighbapdo lated orthogonal-basis, two-center tight-binding parameters
crystal-field interactionygfé,, in eV, for different sites in the phases give poorer representation of the band structure. We obtain
considered in this work. The latter are more precisely writtenpetter orthogonal basis tight-binding band structures by car-
X5par,0(d1), and are listed according to the sitevhere the orbitals  rying out Lowdin orthogonalization using the two-center ap-
are located, whiler, is the near-neighbor atom typ¥, is the  proximate Hamiltonian and overlap matrices. This area is
theoretical equilibrium volume corresponding to lattice constants olalso under ongoing investigation.

5.408, 4.624, and 4.014 A for cd Si, zb SiB, and cd B, respectively.

Phase VIV, site &' e gl Xons V. SUMMARY

cd Si 0.8 Si —7573 —2256 7.426 —1.574 We have derived relatively simple analytic expressions
cd Si 1.0 Si -8673 —-2952 6.467 -—-1.383  which define two-center Slater-Koster hopping parameters,
cd Si 1.2 Si —-9.180 -3.238 6.196 —1.169 effective site energies, and effective crystal-field parameters

zb SiB 0.8 Si —-7293 —1.707 8.200 —1.408 in terms ofk-dependent Hamiltonian matrix elements in any
zb SiB 1.0 Si —-8207 -2.187 7.996 —1.313 localized minimal basis, and analogous quantities for the
zb SIB 12 Si —-8735 -2516 7.694 —1171  overlap. While directly applicable to band-structure methods
sbSIB 08 B -5846 —-0963 14.116 —1.770 formulated in localized bases, these expressions could also
7b SiB 1.0 B -7136 —1.649 13.782 —1.758 be used, for example, by plane-wave-based calculations
b SIiB 1.2 B —7772 —2070 13.847 —1.634 which have been projected onto atomic-orbital b&8es.
cd B 0.8 B -6908 -1.136 15850 —1.841 We have shown that a natural transformation o_f the crys-
cdB 10 B _-8017 -1829 15601 —1.701 tal _f|eld parameters |solate_s that sut_)set of the_se interactions
«d B 12 B 8558 —2266 15.896 —1536 which couples to the site energies, creating structure-
dependent effective site energie¥', which are in fact the
usual site energies that would be extracted from fits to the
band structure of a single structure. Expansions: %f in
terms of the bare crystal-field interactions resemble inter-
tomic potential sums, providing some support for the use of
nvironment-dependent site energies in place of interatomic
potentials in recent tight-binding total-energy repre-
gentationsl.g
Our calculated parameters provide thest possibldwo

ked val . ith bservatf center representation of the Hamiltonian or overlap matrix
open-packed values, consistent with recent observ ONS.elements, automatically projecting out the best two center

Unfortunately, we find that Lwdin orthogonalizatioif also approximations to three-center terms. Residual differences
amplifies non-two-center contributions in the resultant or-yonveen the minimal basis matrix elements and those recon-
thogonal Hamiltonian matrices, so that our directly calCu-gt,cted from the tight-binding parameters therefore provide
a quantitative measure of non-two-center effects for a given
TABLE IV. The rms agreement between tight-binding and ac-pasis and material.
curate multiplex band structure for states up to 4 eV above the e have used the expressions derived in this work to
Fermi level. Our.dire.ctly calculateds (“calc t‘s"? do reasonably calculates pd, nonorthogonal tight-binding parameters in the
well for all coordinations £); however, thes¢'s display some co-  yq_center approximation for fourfold-coordinated phases of
ordination dependence, so that a fit to just the values for fourfoIdSi SiB. and B. at three volumes each. Tt initio matrix
coordinated phaseSTable Il t's”) does not give accurate band o0mants were generated with a linked minimal basis using
structure at other coordinations. All tight-binding calculations USeiha EP-LMTO method. Compared to our best FP-LMTO
thes’s in Table Il. Tight-binding cutoffs have been chosen to insure ) P

. band structure, we obtain good tight-binding valence bands
convergence of the rms values t60.01 eV or better. Lattice con- (0.10—0.13-eV rms with the | t duction band treated
stantsa correspond to theoretical equilibrium volumes for the 7~ - “EV Mg Wi € lowest conduction band treate

middle cd Si and all other phases. Irreducible wedges were samplégSS well (0.14-0.30 eV due to larger intrinsic non-two-

eters whose success fall phases is demonstrated by the
“calc t’s” column in Table IV.

We find the transferability between close-packed an
fourfold-coordinated phases to be significantly worse for or-
thogonal bases, with occasional differences intthed)’s up
to a factor of 2. In reverse of the nonorthogonal case, we fin
the close-packetf’(d)’s to be smaller in magnitude than the

with 145 (cd, zb, fcg and 120 B2, Si,vad points. center confcributions in the corresponding FP—LM.TO minimal
basis matrix elements. We were able to quickly improve rms
Phase a (A) 2 rms (eV) rms (eV) values for cd Si by a factor of-5 using standard nonlinear
calct's Table IIt's minimization of the differences between the band structures,
showing that our directly calculated parameters are indeed
cd Si 5.020 4 0.20 0.25 good starting points for such optimization. However, fits to
cd Si 5.408 4 0.18 0.18 band structure alone are underconstrained in comparison to
cd Si 5.747 4 0.19 0.16 representations of the matrix elements, effectively band
zb SiB 4.624 4 0.12 0.18 structure plus eigenvectors, and therefore compromise the
cd B 4.014 4 0.10 0.12 distinctions between two-center and non-two-center contri-
Si;vad@ 5134 34 0.18 0.55 butions as well as between different parameters. While this
B2 SiB 2.687 38 0.08 1.32 may be advantageous in obtaining a smaller set of effective
fcc Si 3.832 12 0.14 1.25 parameters for a given structure, it will ultimately obscure

— the issue of transferability especially for complex, multicom-
aSpace groug?43m, Si atoms at 8 and 4e (x=0.224) sites. ponent systems.
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A few test cases of higher and lower coordination have - _ +.3 /5
also been considered. While our directly calculated Slater- Xpo1= (Xpao +\3Xpar) '

Koster parameters provide roughly equally good representa-

tion of the matrix elements and band structuredbrphases

Xado=(XddoT 2 Xddnt 2 Xaas)/ /5,

considered, a single set of analytic hopping parameter func-

tions fit to the fourfold-coordinated values appears to be rela- Xadt= (3 Xddo— 4 Xddr T Xdds) V2/35,
tively transferable over chemical and atomic-volume varia- _
tion, though, not over change in coordination. Transferable Xdd2= (XddoT Xdda— 2 Xdds) V2/7. (A5)

representation oéb initio calculated parameters may there-

fore require environment-dependent features, as have bedmese would be orthogonal combinations for edchif con-

considered in the orthogonal caée.
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APPENDIX

There is a unique transformation of the crystal-field pa-

rameters and the associated geometric factors

;ll’a:; Ta/.L(”,)XII’,u,’ (Al)

go(Im1'm’,d)=2 g, (Im,I'm" [T 1(11")],.,
’ (A2)

which isolates those crystal-field contributioﬁq‘,‘o which

Gpa0=(V30pdr— Gpar) /5,
Gpa1=(29pgo+ V39par)/ V10,
Jddo=(Yddo T Iadn+ 9aas)/ V5,
Gar=(69ado — 49ddnt 9aas)/\ 70,
Gd2= (294do + Gadm— 29das)/ V14, (AB)
Note that in matrix form, and for eadh’, T should act from

the left on column vectofy ], while T~ should act from
the right on row vector[g,], thus insuring=,g,Xa

couple to the site energies, and which restores orthogonality- = ,g,x,, . In regard to the matrix dot products, e.g., Eq.

of the matrix dot product

2 ga(Im,1'm’,d)gg(im,'m’,dy) = 8.t (s - do),
m,m’
(A3)

when the directionsl; andd, are different. Herd ., ,(x) is
a polynomial inx with f,;,,(1)=1. Note that the two-center

expansion is preserved by constructiony g, x.

=2,0,.X,, and that we have suppressed type and shell de&

ignations in the crystal-field parameters. &, (Im,I'm’)

are defined in terms of thg,(Im,|’'m’,d) according to Eq.
(7), then the orthogonality

2 Go(ImI'm)G), (Im,I'm" )8, (Ad)
m,m’

follows from Eq.(A3).
For|<I’=<d, the transformation is

;(JppO: (Xppst2 prw)/\/§,
;pplz (pra'_prTr) V213,

;de: ( \/§Xpdo_ 2 Xpdﬂ')/\/gy

(A3), but for the same directionsl,=d,, the g, are or-
thogonal in theu index with normalizations 2 é,,,,, while
theg,, defined by Eqs(A6) are orthonormal in the index.
Note also thatyo(Im,Im’,d) = Sy /v21+ 1.

The orthogonality relations Eq¢9) and (A3) for theg,,
andg,, respectively, are ultimately properties of the rota-
tion group matrices for different angular momentgin.
Transforming these expressions to correspond to the custom-
ry real orbitals is cumbersome, so that we have verified the
orthogonality relations directly from the tabulated Slater-
Koster geometric functions as in Table 20-1 of Harrison’s
book® To review the notation, our geometric function
9,(Px.dxy,d) = y/31%m, for example, which is the coefficient
of Harrison’sV g, in his expression fok, ,,, where Harri-
son (and we only in this sentengaisesl,m,n to designate
the direction cosines defining= (I,m,n).

The orthogonality relations may be proved as follows.
First, construct column vectots(d) from them dependence
of g,(Im,s,d) and note that the matriceg,(l,I’,d)
=[g,(Im,I’'m’,d)]=L(d)L’(d)", whereT signifies trans-
position of a column vector to a row vector. Second, con-
struct the matricesA,q(d)=g,(p.d,d)+P(d)D(d)"2/y/3
andAy4(d)=gs(d,d,d)— D (d)D(d) /3 which are linear and
quadradic, respectively, in the direction cosines. A conve-
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nient basis for representing either g org, is thenpp — L(al)TL(aZ):al' az and[3 (al. 32)2_ 1]/2 for thep andd

1, E’(&)E’(&)T; pd — P(d)D(d)T, Ap4(d); anddd — 1, cases, respectively:(d;)TA, (d)L" (d;)=2d;-d,/\3 and
D(d)D(d)", Agq(d), where 1 signifies the appropriate  —(d, -d,)?+2/3 for thepd anddd cases, respectively; and
identity mAatrix. Fiﬂally, thAe mfttrix dotAproducg;(I J17,dy) Ay(dy)-Ay.(dy)=10d;-do/3 and[21 (d;-d,)2—2]/9 for
-0, (1,1",d5) and g,(l,1",d;)- g,/ (1,1",d,) for different di-  thepd anddd cases, respectively. In addition, there are sca-
rectionsd; andd, may be expressed in terms of the scalarslar constantd (d)TL(d)=1 and1-Ayq(d)=%.
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