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Theory for the electromigration wind force in dilute alloys
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A multiple scattering formulation for the electromigration wind force on atoms in dilute alloys is developed.
The theory describes electromigration via a vacancy mechanism. The method is used to calculate the wind
valence for electromigration in various host metals having a close-packed lattice structure, namely aluminum,
the noble metals copper, silver, and gold, and the 4d transition metals. The self-electromigration results for
aluminum and the noble metals compare well with experimental data. For the 4d metals small wind valences
are found, which make these metals attractive candidates for the experimental study of the direct valence.
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I. INTRODUCTION

An electric field, applied to a metal sample, causes
atomic current, besides the common electric current. T
process is called electromigration and has been studied
many years. Coehn and Specht1 reported a flow of hydrogen
atoms towards the cathode in palladium. This migration
interstitial atoms is a rather harmless manifestation of
effect. It offers the possibility to influence the concentrati
profile of impurity atoms along a sample. However, a n
flow of host atoms can also be the consequence of appl
an electric field. Clearly, this reduces the conductivity o
metal wire because of the formation of voids on one side
hillocks on the other side. In wires of normal size this tur
out not to be of great importance, because the atoms do
move very fast. In thin films, however, the situation is d
ferent. Thin films can carry higher current densities, beca
the heat, produced by the current, is transfered more easi
the environment. Therefore they can endure a current den
greater than 107A/cm2, while a bulk sample would mel
when the current density is 104A/cm2. Electromigration
damage in aluminum films is a well-known example.

The migration of atoms turns out to be influenced by
presence of impurities. Most important is the effect of cop
doping of Al films, which greatly reduces the electromigr
tion damage. This effect has been known for a long time
without an understanding of it, so impurities have be
added using the method of trial and error. Furthermore,
though the damage appears too fast for a device user,
still not fast enough for an experimental physicist. So,
effect is studied under so-called accelerated conditions,
high temperatures and high current densities. Unfortunat
the extrapolation to user conditions is not trivial, because
total atomic flow is a result of a number of competing co
tributions with different activation energies. All of this com
plicates the picture and demands a theoretical framework
which this paper is aimed to contribute.

Two ingredients are essential in the process of electro
gration, namely diffusion and a driving force. The motion
atoms due to diffusion is random. At lower temperatu
560163-1829/97/56~19!/12167~11!/$10.00
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diffusion along grain boundaries is dominant, but at hi
temperatures bulk diffusion becomes the most import
contribution. For accelerated conditions it is the leadi
mechanism and the atoms move by exchanging posit
with vacancies. The second ingredient, the driving force,
troduces a bias into the random motion of atoms. One c
tribution to that force is calculated in the present wo
namely the wind force due to scattering of electrons by
moving atom, which can be either a host atom or an impu
atom. A well-established quantum-mechanical expression
the wind force is available.2 Besides the wind force, the driv
ing force has a direct part. If the nuclear charge is not co
pletely screened, the electric field directly pushes the a
towards the cathode. This force has been the subject
controversy for many years.3,4 Both contributions are propor
tional to the electric field and the total driving force ca
therefore be written as

F5Fwind1Fdirect5~Zwind1Zdirect!eE5Z* eE. ~1!

The effective valenceZ* , which is the sum of the wind and
direct valence, has been measured for a lot of systems.3 Of-
ten the wind force dominates the direct force and, depend
on the system, the resulting total force can push the a
either to the anode or to the cathode.

The calculation of the wind force requires knowledge
the electronic structure of the alloy. An impurity in a dilu
alloy, in which the concentration of impurities is low, on
interacts with its direct environment of host atoms. The el
trons feel a potential, which only differs from the host p
tential in a small cluster of atoms containing the migrati
atom, the vacancy, and the surrounding host atoms affe
by charge transfer and lattice deformation. A Green’s fu
tion formulation of multiple scattering theory is used to ca
culate the electron wave function in the dilute alloy. Th
formalism is an extension of the Korringa-Kohn-Rostok
~KKR! method for the calculation of the band structure o
metal.5,6 The alloy is described with respect to a referen
system. The conventional choice of this reference system
the host metal, but then the electronic structure of the imp
12 167 © 1997 The American Physical Society
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12 168 56J. P. DEKKER, A. LODDER, AND J. van EK
tant saddle point configuration in electromigration cannot
described. This is due to the fact that the atoms in the a
system cannot be mapped onto the ones in the host sy
one-to-one. As proposed by Lodder7 an intermediate void
system is used, which does not contain any scatterers in
perturbed region. The original formulation,8 in which the
cluster of perturbed atoms is considered as a whole,
recently applied in a preliminary study of electromigration
copper and aluminum.9 This formulation is rather cumber
some and in the mean time we found a simpler single
formulation, in which each atom in the cluster is conside
separately, analogous to the formalism used for the desc
tion of interstitial impurities by Oppeneer and Lodder10 and
van Ek.11 The validity of this method is not limited to th
particular problem of substitutional electromigration. In
problems concerning dilute alloys the wave function can
calculated this way.

The multiple scattering expression for the wind force
elaborated in Sec. II. This section contains two subsectio
devoted to the wave function and the Green’s function m
trix, respectively. In Sec. III some details of the calculati
are given. The formalism is applied to metals with a clo
packed lattice structure in Sec. IV. Self-electromigration a
impurity electromigration in Al are treated in Sec. IV A, se
electromigration in the noble metals as well as impurity m
gration in Ag in Sec. IV B, and self-electromigration in 4d
transition metals in Sec. IV C. In Sec. V the main results
this paper are summarized.

Throughout the paper atomic units are used, such
\52m51. Exceptions are stated explicitly.

II. MULTIPLE-SCATTERING EXPRESSION
FOR THE WIND FORCE

In this section the quantum-mechanical equation for
wind force of Sorbelloet al.2

Fwind5(
k

d f ~k!^Cku2¹Rp
vpuCk&, ~2!

which traces back to the pioneering work of Bosvieux a
Friedel,12 and in which

d f ~k!5etkE•vkd f0~ek!/dek , ~3!

is expressed in computable quantities. In Eq.~2! the alloy
electron wave function,Ck , is supposed to be constructe
from the corresponding Bloch function, labeled by crys
momentumk and band indexn, combined ink5(k,n), and
having an energy eigenvalueek . In a simple ballistic picture
momentum is transfered from electrons to the atom beca
of scattering, resulting in the wind force. The momentu
transfered to this atom, with a potentialvp centered at posi-
tion Rp in the alloy, is proportional to the expectation valu
of the force operator2¹Rp

vp . When no electric field is
present, the electrons are distributed according to the Fe
Dirac function f 0(ek), leading to an exact cancellation o
forces. In other words, each push from the electrons in
direction is compensated, on the average, by one in the
posite direction. This symmetry is broken by the presence
the electric field, which alters the distribution function b
d f (k). The first and leading term of this deviation, Eq.~3!, is
e
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linear in the applied electric fieldE and proportional to the
electron transport relaxation timetk . In Eq. ~3! e is the
elementary charge andvk is the velocity of the electron. As
usual, in all applications, the transport relaxation time
taken constant throughout the Brillouin zone. All other qua
tities can be extracted from the electronic structure. T
method for the calculation of the electron wave functi
originally provided by Lodder8 will be used in a modified
way.

In the present formulation the crystal is divided into cel
For the host crystal these cells are the well-known Wign
Seitz cells containing local potentialsvh(x). For the alloy
these cells may have a different shape in the region of
impurity cluster and they contain local potentialsvp(x). The
local potentialsvh andvp consist of a spherical atomic po
tential surrounded by an interstitial region, where the pot
tial is constant. In order to evaluate the matrix element
pearing in Eq.~2!, the wave function is expanded in thepth
cell, centered atRp . In such a cell the wave function
Ck(r )5Ck(x1Rp) can be written as a linear combinatio
of regular solutionsRL

p of the Schro¨dinger equation with lo-
cal potentialvp, so

Ck~x1Rp!5(
L

ckpLRL
p~x!, ~4!

whereL5( l ,m) combines the angular momentum and ma
netic quantum numbers. The expansion coefficientsckpL will
be derived in Sec. II A. The basis functionsRL

p are con-
structed such that outside the atomic sphere they have
free-space form

RL
p~x!5 j L~x!2 i(

L8
tLL8
p hL8

1
~x!, ~5!

where j L(x) is the product of a spherical Bessel functio
j l(kx) and a spherical harmonicYL( x̂), hL

1(x) is a similar
product for the spherical Hankel functionhl

1(kx), k5AE
andtp is the scattering matrix for the potentialvp embedded
in free space. For a spherically symmetrical scatterer

matrix is diagonal and equalstLL8
p

52sinhl
peihl

p
dLL8 , the h

being the phase shifts.
In that case the wind force expression~2! can be elabo-

rated to the form

Fwind5(
k

d f ~k!2 Re(
L

(
m152~ l 11!

l 11

ckpL* DL; l 11,m1

3sin~h l 112h l !e
i ~h l 112h l !ckpl11,m1

, ~6!

according to Eqs.~26! and ~31! in Ref. 8, in which the vec-
torial matrix D is defined as

DLL85E dx̂YL~ x̂!x̂YL8~ x̂!. ~7!
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A. The wave function coefficients

The alloy wave function coefficients that appear in Eq.~4!
will be expressed in terms of wave function coefficien
ck jL

host, which appear in the local expansion of Bloch functi
Ck

host(r )5Ck
host(x1Rj ),

Ck
host~x1Rj !5(

L
ck jL

hostRL
j ~x!, ~8!

whereRL
j are the regular solutions of the Schro¨dinger equa-

tion within the Wigner-Seitz cell labeled byj and containth

instead oftp in their asymptotic form@see Eq.~5!#. Unper-
turbed atomic positionsRj in the host do not necessaril
coincide with one of the atomic positionsRp in the alloy.
The number of alloy sites may even differ from the numb
of host lattice sites. Therefore, although the alloy is d
scribed with respect to the host, the host system canno
used as a reference system straightforwardly. An interm
ate system is required, which will be referred to as the v
system. This system consists of a void region, where
potential is constant, surrounded by host atom potent
The void region is chosen to be as extended as the pertu
region in the dilute alloy. This system can serve as a re
ence system for both the host and the alloy, as it is rep
sented symbolically in Fig. 1. The relation between the h
and alloy wave function is given via the void wave functio
The alloy wave function is expressed in terms of the v
wave function by the Green’s function expression,8

Ck5Ck
void1Gvoid(

p
vpCk . ~9!

Analogously to Eqs.~4! and ~8! the void wave function can
be written in terms of local basis functions, being spheri
Bessel functions because of the constant potential in the
region

Ck
void~x1Rp!5(

L
ckpL

voidj L~x!. ~10!

Inside the void, the void Green’s function can be written

Gvoid~x1Rp ,x81Rp8!52 ik(
L

j L~x,!hL
1~x.!dpp8

1(
LL8

j L~x!GLL8
void,pp8 j L~x8!.

~11!

This expression with the void Green’s function matr
Gvoid,pp8 is a straightforward generalization of the express
for the Green’s function of free space

FIG. 1. The systems used in the description of the dilute a
~left!: the void system~center! and the host system~right!.
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G0~x1Rp ,x81Rp8!52 ik(
L

j L~x,!hL
1~x.!dpp8

3(
LL8

j L~x!BLL8
pp8 j L8~x8!, ~12!

in which the free-space propagation matrixB appears, de-
fined as

BLL8
pp8[BLL8~Rpp8!

54p i l 2 l 821k~12dpp8!(
L9

i l 9CLL8L9hL9
1

~Rpp8!.

~13!

The void Green’s function matrix will be given in Sec. II B
Combining Eqs.~9!, ~10!, and ~11! the following matrix

equation can be found:

ckpL
void5 (

p8L8
~12Gvoidt !LL8

pp8ckp8L8 . ~14!

Details of the derivation will be given in Appendix A. Fol
lowing the same procedure, void wave function coefficie
carrying the host position labelj can be expressed in term
of host coefficientsck jL

host,

ck jL
void5 (

j 8L8
~12Gvoidth!LL8

j j 8 ck j8L8
host . ~15!

SinceckpL
void andck jL

void are related by

ckpL
void5(

L1

JLL1

p j ck jL1

void , ~16!

Eqs.~14! and ~15! can be combined to

(
p8L8

~12Gvoidt !LL8
pp8ckp8L8

5 (
j 8L8L1

JLL1

p j ~12Gvoidth!L1L8
j j 8 ck j8L8

host . ~17!

It is noteworthy that in this equation two types of summ
tions over the angular momentum occur. The first type ha
natural cutoff because of the multiplication byt matrices,
and the second type, such as the summation overL1 , in
principle runs to infinity. The latter summation can be trea
analytically, to be shown in Appendix B, and the final equ
tion used in the actual calculations,

(
p8

~12Gvoidt !pp8ckp8

5b~k,Rp j!e
ik•Rpthck j

host2(
j 8
Gvoid,p j8thck j8

host,

~18!

only contains summations with a natural cutoff. Angular m
mentum labels have been dropped in order to simplify
notation. The matrixb(k,R) is defined by

y
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12 170 56J. P. DEKKER, A. LODDER, AND J. van EK
b~k,R!5(
j 8

B~R2Rj 8!e
2 ik•~R2R8!, ~19!

in which the summation runs overall lattice sites.
The host wave function coefficients occurring in Eq.~18!

are calculated by the KKR method according to

(
L8

MLL8~k!t l 8
h ck jL

host50. ~20!

This equation contains the KKR matrix

M ~k!5th21
2b~k!, ~21!

in which b(k)5b(k,0), defined by Eq.~19!.
In its original form the KKR method applies to muffin-ti

potentials. However, as shown by Nesbet,13 it is possible to
circumvent this restriction on the crystal potential in t
same way as has been done in the derivation of Eq.~17!.
Now we will use this procedure in the calculation of the vo
Green’s function.

B. The void Green’s function

The void Green’s function and the host Green’s funct
Gh are related by the Lippmann-Schwinger equation,

Gvoid5Gh2Gh(
j

v j
hGvoid. ~22!

The summation runs over the positions in the void. T
equation is again evaluated in the position representat
The host Green’s function is given by

Gh~x1Rj ,x81Rj 8!5(
L

RL~x,!SL~x.!d j j 8

1(
LL8

RL~x!GLL8
j j 8 RL~x8!. ~23!

Outside the atomic sphere the regular solutionsRL of the
local Schro¨dinger equation have the asymptotic form of E
~5! with tp replaced byth and the singular solutionsSL equal
2 ikhL

1 . First the void Green’s function matrixGvoid,j j 8, car-
rying host position labelsj and j 8, will be expressed in terms
of the host Green’s function matrixGj j 8, to be determined
later. To that end Eq.~22! is elaborated at the position
x1Rj andx81Rj 8 , where bothx andx8 are located close to
their cell centersRj andRj 8 respectively. Following similar
steps as in Appendix A one finds the relation

Gvoid,j j 85Gj j 82(
j 1

Gj j 1thGvoid,j 1 j 8, ~24!

where the angular momentum labels have been dropped.
matrix th is the same at all lattice sites, so the site label
been dropped. Iteration of this equation leads to

Gvoid,j j 85Gj j 82(
j 1 j 2

Gj j 1~ th21
1G! j 1 j 2

21 Gj 2 j 8. ~25!

The host Green’s function matrixG is calculated using the
Lippmann-Schwinger equation,
s
n.

.

he
s

Gh5G01G0(
j

v j
hGh, ~26!

G0 being the free-space Green’s function. The summat
runs over all host lattice sites. Working in the position re
resentation and using Eqs.~12! and ~23! one finds the fol-
lowing matrix equation:

Gj j 85Bj j 81(
j 1

Bj j 1thGj 1 j 8. ~27!

Taking the Fourier transform of this equation one finds

G~k![(
j 8
Gj j 8eik•R85b~k!1b~k!thG~k!. ~28!

This equation can be solved forG~k!,

G~k!5@12b~k!th#21b~k!

5b~k!1b~k!M 21~k!b~k!, ~29!

containing the KKR matrix, Eq.~21!. For the reverse Fourie
transform, using the right hand side of this equation, o
obtains

Gj j 85
1

VBZ
E

BZ
d3k@b~k!1b~k!M 21~k!b~k!#eik•R8,

~30!

in which thek summation has been replaced by an integ
over the Brillouin zone~BZ! with volumeVBZ .

By now, expressions forGvoid andG have been derived fo
centers j of host cells only. Interestingly, the generalize
relation

Gvoid,nn85Gnn82(
j 1 j 2

Gn j1~ th21
1G! j 1 j 2

21 Gj 2n8 ~31!

turns out to be valid also, carrying arbitrary position labelsn
and n8, which can refer to host as well as alloy position
The host Green’s function matrixGnn8 is calculated from

Gnn8[
1

VBZ
E

BZ
d3k@b~k,Rnn8!

1b~k,Rn!M 21~k!bT~2k,Rn8!#e
ik•Rnn8, ~32!

in which the matrixb(k,R) is defined in Eq.~19!. The deri-
vation is given in Appendix B.

Equation~18!, together with Eqs.~31! and ~32!, are the
key equations of the theory presented. The alloy wave fu
tion coefficientsckpL can be calculated, if the host wav
function coefficientsck jL

host and the matrixGvoid are known.
The host wave function coefficients can be calculated us
the KKR equation~20!. The matrixGvoid can be calculated
after evaluation of the Brillouin zone integral in Eq.~32!.

III. COMPUTATIONAL DETAILS

In this section a few quantities which are necessary in
calculation are discussed. As mentioned in Sec. II the tra
port relaxation timet is estimated from the measured res
tivity. The procedure is given in Sec. III A. The constructio
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56 12 171THEORY FOR THE ELECTROMIGRATION WIND FORCE . . .
of the potentials is discussed in Sec. III B. Finally, the p
cedure for the extraction of measurable quantities from
calculations is explained in Sec. III C.

A. The transport relaxation time t

Upon accepting the widely used isotropic transport rel
ation time approximation fort, the bulk conductivity~or the
inverse bulk resistivity! for cubic crystals is given by14

s5
1

r
5

e2t

4p3\

1

3 E
FS

dSkvk . ~33!

The integral of the electron velocityvk over the Fermi sur-
face is directly computable from the electronic structure
the host metal. The only quantity left is the transport rela
ation timet, to which the wind force is directly proportiona
as can be seen from Eqs.~2! and ~3!. Combining Eqs.~1!,
~2!, ~3!, and ~33!, the temperature dependent wind valen
can be written as

Zwind~T!5
K~T!

r~T!
. ~34!

The temperature dependence ofK comes from the tempera
ture dependence of the Fermi-Dirac function appearing
Eq. ~3! and can be neglected up to the melting temperatur
most metals. The remaining temperature dependence o
wind valence through the resistivity is well known from th
ballistic model by Fiks15 and Huntington and Grone16 and
from later more sophisticated models.17

It should be noted that the calculated transport relaxa
time can differ considerably from the free-electron transp
Drude relaxation time,tFE, arising from the equation

s5
1

r
5

ne2tFE

m
. ~35!

t can be as much as a factor of 17 larger thantFE, as was
found for palladium.18

B. Potentials

Both the host and alloy potentials are modeled by muf
tin potentials.19 The corresponding phase shifts,c.q. the t
matricesth and tp, serve as input for the computational pr
cedure. The alloy potentials are constructed only for t
positions of the migrating atom: the initial position and t
position half-way, the saddle point. When the atom is som
where else along the path, which runs along a straight lin
the ^110& direction, the phase shifts are calculated using
interpolation formula

h l
p~s!5cos2~ps!h l

p~0!1sin2~ps!h l
p~ 1

2 !. ~36!

The variable s runs from 0 to 1 along the path, s

h l
p(0)5h l

p, initial and halfwayh l
p( 1

2 )5h l
p,saddlepoint, wherep

refers to one of the perturbed atoms in the cluster or to
migrating atom. Thes dependence of the interpolation fo
mula guarantees a smooth behavior of the phase shifts a
saddle point.

A parameter, which influences the results of the calcu
tion, is the muffin-tin radius. The choice of this parameter
-
e

-

f
-

e

n
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n
rt
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o
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e

e
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-
s

bound by two conflicting conditions. On the one hand it mu
be small enough to leave some room for the migrating ato
while on the other hand it must be large enough such that
potential still reproduces the electronic properties of
metal as much as possible. For fcc metals a muffin-tin rad
of 0.325a is an optimal value.20

A real physical system is charge neutral. This can be
tablished using a generalized Friedel sum rule21 and a shift-
ing procedure proposed by Lasseter and Soven22 and suc-
cessfully applied in numerous systems. The potential of
atom is shifted by a constant value, which can be interpre
as the addition of charge on the muffin-tin sphere. For
different configurations during the jump various choices
possible for the shift procedure. If the migrating atom is
its initial position, the simplest choice is a shift of the pote
tials of all nearest neighbors of the vacancy by the sa
value. In the saddle point configuration all nearest neighb
of the two small moon-shaped vacancies surrounding the
grating atom can be shifted. We want to point out that in
latter configuration the small vacancies are not accoun
for, which means that the shifting procedure also must c
rect for the corresponding loss of charge in that region
space. This makes it unclear, what the shifting proced
means for the electronic properties. Due to these uncert
ties and the lack of self-consistent potentials we theref
have decided to use the phase shifts corresponding to
unshifted potentials. Test calculations show that the poten
shift leads to a maximum change in the wind valence
about 10% and in most cases of only a few percent. In v
of the limited accuracy of most measurements this is acc
able for the time being. In principle full-potential calcula
tions can reveal detailed information of the charge state
the impurity cluster.

C. Comparison with experiment

The calculated wind valence is a position depend
second-rank tensor. In order to compare with experiment
tensor has to be reduced to a scalar. The relevant compo
of the force is the one in the direction of the migration pa
which we indicate byŝ. Averaging over all orientations o
the lattice, simulating the polycrystalline samples used
practice, we yield for the scalar wind valence

Zwind5 ŝT
•Zwind• ŝ. ~37!

This scalar value must be averaged over the path, bec
the average force is the work done by it during the jum
divided by the length of the path. By this a frequently us
assumption, in which the wind force is taken as the aver
of its values at the initial and saddle point position,23 can be
tested.

IV. RESULTS FOR fcc METALS

The formalism described above is applied to metals w
the close-packed face-centered cubic~fcc! and hexagonal
close-packed~hcp! structures, the latter being replaced by
equivalent fcc structure. Wind valences are calculated
diffusing atoms in aluminum, the noble metals, and thed
transition metals and are compared to experimental data
results from previously published computational studies.
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A. Electromigration in aluminum

1. Self-electromigration

In Fig. 2 the solid line shows the variation of the sca
wind valence of a host atom in aluminum metal along
migration path. In addition the three partial wave contrib
tions toZwind are shown, namely thesp, pd, andd f contri-
butions, depending on the differencesh l 112h l as they ap-
pear in the expression for the matrix eleme
^Cku2¹Rp

vpuCk& in Eq. ~6!. The pd term is dominant
which is consistent with the values of the phase shifts of
moving aluminum atom, being 0.338, 0.395, 0.051, a
0.002 fors, p, d, and f , respectively, at the initial position
and 0.370, 0.430, 0.056, and 0.002 at the saddle poin
sinusoidal behavior of the wind valence along the path wo
justify the averaging procedure, which uses the values
initial and saddle point position only. Such a behavior see
to be obeyed in the figure. In Table I results for the init
and saddle point position, their average value and the a
age over the path are listed. In the first three columns
three partial contributions are shown. The fourth contains
sum of the three. In order to obtain these values the trans
relaxation time oft569 a.u. has been calculated using E
~33!, assuming the resistivity to equal the phonon part at 8
K, namelyr58.6 mVcm.24 Comparing the third and fourth
row one sees that the two point averageZwind differs 10%
from the path average value. In all tables values for the qu
tity K, defined in Eq.~34!, andZwind /t are given too. The
advantage of specifyingK is its weak temperature depen
dence ~only broadening of the Fermi-Dirac distribution!,

FIG. 2. The variation of the wind valence of a migrating ho
atom in aluminum at 800 K. Thesp, pd, andd f contributions are
given separately.
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while Zwind strongly depends on temperature throughr. The
variation ofK turns out to be less than 1% in a temperatu
range of 1000 K for aluminum, soK can be considered con
stant and is shown in the sixth column of Table I. The the
retically purest quantity to be extracted from our calculati
is Zwind /t, shown in the last column of this table. The ca
culation of this quantity requires no model for the resistiv
whatsoever. A disadvantage of this quantity is the difficu
in comparing it with experimental quantities.

Very recently Ernstet al.25 presented experimental resul
for bulk electromigration in aluminum. They found an effe
tive valence varying from25 at 683 K to23.3 at 883 K.
When we use the combination of the Eqs.~1! and ~34!,

Z* ~T!5Zdirect1
K

r~T!
, ~38!

in order to analyze these measurements, this leads to va
of K5245 mVcm and Zdirect511.4. The value ofK is
about 1.5 times larger than the calculated value
229 mVcm ~see Table I!, which is acceptable. It is interes
ing that the direct valence is very close to the value of h
the chemical valence as predicted by Bosvieux and Fried12

Sorbello26 has performed model-pseudopotential calcu
tions for self-electromigration in Al and found aK value of
2112 mVcm. Although a pseudopotential formulation
considered to be suitable for a nearly free-electron sys
like aluminum, his value is rather different from our calc
lated value and the experimental value found by Er
et al.25 On the other hand his value agrees approximat
with values given by Lodding,27 who refers to measuremen
by Penney.28 With respect to these experiments we point o
that all available theoretical models for bulk electromigrati
lead to a temperature dependence of the effective vale
according to Eq.~38!. The measurements of Penney cann
be fitted by this formula.

An interesting phenomenon is the influence of impurit
on the electromigration properties of aluminum. The be
known example is the addition of small amounts of copp
which reduces electromigration induced damage effectiv
In the hope that other impurities have a similar but stron
effect on electromigration in aluminum, experimentalis
tried palladium and silicon on anad hocbasis, but without
success. In order to contribute to a microscopic explana
we investigated the influence of copper, palladium, and s
con impurities that are located in the impurity cluster nea
migrating aluminum atom.29 However, we found30 that on
average the effect is small, although the presence of impu
atoms at particular positions can give rise to a considera
reduction of the wind valence. The presence of a palladi
atom induces a reduction of about 10% when averaged o

t

TABLE I. Results for self-electromigration in Al. At value of 69 a.u., based on a resistivityr58.6 mVcm at 800 K has been used.

Zwind(sp) Zwind(pd) Zwind(d f ) Zwind K (mVcm) Zwind /t

Initial position 0.05 21.24 20.12 21.31 211.3 20.019
Saddle point 20.13 26.45 0.31 26.27 254.0 20.091
Two point average 20.04 22.61 0.13 23.79 232.7 20.055
Path average 0.02 23.54 0.17 23.36 228.9 20.051
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all positions neighboring the migration path~shaded atoms in
Fig. 1!. The effect of silicon and copper is even smaller.

The presence of impurities changes the number of vale
electrons in the system. Within a rigid band model this c
responds to a change of the Fermi energy. A vacancy
copper atom lowers the Fermi level, while silicon raiseseF .
The addition of 1% of copper reduces the average numbe
valence electrons per atom from 3.0 to 2.98. According
our calculations30 this reduces the wind valence only by
few percent. The conclusion is that copper atoms do
reduce the wind valence of aluminum atoms directly throu
electronic effects.

Finally we mention the effect of impurities due to the
contribution to the electrical resistivity, which causes a d
crease of the wind valence. An addition of 1% of copp
induces a resistivity increase of about 10% and the w
valence will be reduced by about 10%.

We conclude that all impurity effects considered above
not induce a dramatic change in the value of the wind
lence. Therefore the reduction of the electromigration
duced damage cannot be attributed to them.

2. Impurities in aluminum

Besides effects on the electromigration properties of h
atoms, impurity atoms can electromigrate themselves.
principle, impurities can migrate in a direction opposite
host atom transport. However, the path dependent wind
lences of copper, palladium, and silicon, shown in Fig. 3,
have a negative sign and are larger in magnitude thanZwind
of aluminum, which is shown for comparison. This rath
accelerates the vacancy transport than slowing it down.
average wind valences of copper, silicon, and palladium
factors of 1.7, 2.8, and 7.8, respectively, larger thanZwind of
aluminum. This is in partial contradiction with measur
ments, quoted by Ho and Kwok3 in their review article, giv-
ing copper a smaller wind valence than host aluminum.
note that the calculated ratios are independent of the m
for the calculation oft, becauset is a host quantity. The fac
that the wind valences of the impurities have the same sig
not surprising, because the direction of the force is mai

FIG. 3. The position dependent wind valence of copper, pa
dium, and silicon impurities in Al.
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determined by the direction of the motion of the charge c
riers. It is worth noting, that the assumption of a sinusoi
variation of the wind valence along the path does not h
both for copper and palladium, which can be seen clearly
Fig. 3. This means that, in general, the average using o
the initial and saddle point position values is not a go
measure for the average over the entire path.

B. Electromigration in the noble metals

In this subsection self-electromigration in the noble m
als copper, silver, and gold is studied as well as impu
migration in silver.

1. Self-electromigration in copper, silver, and gold

The variation of K along the path for self-
electromigration in the noble metals copper~solid line!, sil-
ver ~dotted!, and gold~dashed! is shown in Fig. 4. A sign
change from positive at the initial site to negative furth
down the path is observed. This cannot be understood
terms of electron and hole conduction and a free-electr
like model is not able to reproduce such behavior.

The calculatedK values listed in Table II cannot be com
pared with experiment, because as far as a temperature
pendence of the effective valence has been measured,31,32the
results cannot be interpreted in terms of a constantK. But it
is interesting to compare them toK values calculated by
Gupta23 and Sorbello.26 Our values for copper and silve
compare very well with the ones of Gupta, while our val
for gold is a factor of two smaller. The values of Sorbello a
very different from our results, which is not surprising

- FIG. 4. Variation ofK along the path for self-electromigratio
in Cu, Ag, and Au.

TABLE II. CalculatedK values for the noble metals compare
with results by Gupta~Ref. 23! and Sorbello~Ref. 26!.

Present work Gupta~Ref. 23! Sorbello~Ref. 26!

Cu 233.3 231.5 2196
Ag 224.7 233.1 2171
Au 242.6 283.2 2229
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view of the pseudopotential method he used. However, s
lar trends are found in our and in Sorbello’s calculatio
gold shows the largest value ofK, while silver shows the
smallest. In the calculation of Gupta theK value of copper is
the smallest.

In Table III we give calculatedZwind and measuredZ*
values31–34 at a given temperatureT, while the last column
contains the quantityZwind /t. The calculated wind valence
are of the same order of magnitude as the experimenta
fective valences, except for the much largerZ* of Doan and
Brebec for silver.31 In order to make a detailed compariso
between theory and experiment more experimental infor
tion is needed.

2. Impurities in silver

This section is devoted to the wind valence of palladiu
silver, cadmium, indium, tin, and antimony impurities in s
ver. The series is part of row 5 in the Periodic System. T
calculated wind valence essentially follows the trend of
experimental residual resistivity24 as is shown in Fig. 5,
where both quantities are given as a function of the chem
valence. Both quantities are normalized with respect to
largest values, which occur for antimony. Note that the w
valence of the cadmium impurity is smaller than the one
the host atom.

With the exception of palladium, Doan35 investigated this
series of impurities experimentally and found the effect

TABLE III. Wind and effective valences for the noble meta
The second and third columns contain the calculated wind vale
and the measured effective valence, respectively, at the temper
shown in the fourth column. The last column contains the quan
Zwind~total! /t in atomic units.

Zwind Z* T (K) Zwind /t

Cu 23.5 24.3 ~Ref. 33! 1300 20.028
Ag 23.3 219.9 ~Ref. 31! 1150 20.021

25.1 ~Ref. 34!
Au 23.4 26.6 ~Ref. 32! 1289 20.037

FIG. 5. Measured residual resistivity and calculated wind
lence of Pd, Ag, Cd, In, Sn, and Sb impurities in Ag. Both curv
are normalized with respect to the Sb data.
i-
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f-

a-
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e
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f

valence to be linear withz(z11), where z5Zimp2ZAg ,
with Zimp andZAg the chemical valence of the impurity an
silver atoms, respectively. This dependence is a resul
Mott’s theory for Born scattering, which leads to a win
valence of an impurity atom proportional toz2 at its initial
position~neglecting backscattering from the vacancy! and to
Zimp

2 5(z11)2 at the saddle point. The calculatedZwind and
the measuredZ* at about 1150 K are given as a function
z(z11) in Fig. 6. Measurements and calculations show
similar trend, but the values do not agree. Neither the m
suredZ* nor the calculatedZwind of the silver atom show the
z(z11) dependence.

More information about the trend in the wind valence c
be extracted by considering thesp, pd, andd f contributions
separately. They are plotted in Fig. 7 for the initial a
saddle point position, respectively. A transport relaxat
time of t5243 is used, corresponding to a resistivity
r54.9 mVcm at 800 K.24 The pd term turns out to deter-
mine the overall behavior. It develops as soon as thep states
of the impurity atom are occupied, starting with indium
Note that for the saddle point configuration thesp term van-

ce
ure
y

-
s

FIG. 6. The solid circles give the calculated wind valence of
atoms Ag, Cd, In, Sn, and Sb, in Ag as a function ofz(z11),
wherez5Zatom2ZAg . The open circles are effective valences, me
sured by Doan~Ref. 35! at temperatures of approximately 1150 K

FIG. 7. sp, pd, andd f contributions to the wind valence of 4d
and 5sp impurities in Ag atT5800 K.



d
s
nt
a

tia
c

be
e
k

dg
d

al

ur
th

e

s
e

fa
a
s

b
h
ra
m
ic
m
f
t
e
-
k
ro
s
no

ng

ed

the

he
be

va-
nce
tly
able
ce,
.

he
he
ind
ve

d in

in
ure-
ct

i-
mp
ity
ce.
e of

le
avior
val-

nd
e-

rity
t’s
ved

u
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ishes when the 5s orbit is completely filled, at cadmium, an
leads to a relatively low wind valence of cadmium. A po
sible origin of it can be the following. In the saddle poi
configuration the impurity replaces two host atoms. For
impurity atom with filled 5s orbitals, two 5s electrons are
present, just as in the configuration with host atoms in ini
and final positions, which is just the host configuration. Su
an impurity at the saddle point resembles an unpertur
host state as far as thes electrons are concerned. It may b
the case that scattering involving these orbitals is wea
than when just one 5s electron is present.

C. Self-electromigration of the 4d transition metal

We also applied the theory to the 4d transition metals,
mainly as a challenge to experimentalists. To our knowle
only electrotransport in zirconium has been measure3

showing a small positive effective valence of 0.3. A sm
positive valence has also been measured for the 5d transition
metal platinum. Only metals with a close-packed struct
are considered in this series of calculations. Metals with
hexagonal close-packed~hcp! structure, namely, yttrium, zir-
conium, technetium, and ruthenium, are treated as fcc m
als.

Remarkable variations ofK along the path occur, a
shown for rhodium and ruthenium in Fig. 8. One observ
minima, maxima, and sign changes. Simple models will
to describe such features. It should be stressed that the v
tions occur in spite of the smoothly varying phase shifts,
they are likely to occur due to multiple scattering effects.

The K values averaged over the path are given in Ta
IV. In our procedure for the construction of the potentials t
atomic configuration is important. The electronic configu
tion of a free atom sometimes differs from that of an ato
embedded in a crystal. This is the case for palladium, wh
has a 4d95s1 configuration in the crystal, while the free ato
has a 4d105s0 configuration. The electronic configuration o
a host atom in a rhodium crystal lies somewhere between
4d85s1 and 4d95s0 configurations. As can be seen from th
table the value ofK depends only slightly on the configura
tion used. So the wind valence appears to be only wea
dependent on the precise electronic structure obtained f
non-self-consistent potentials. Although it remains intere
ing to investigate the influence of self-consistency we do

FIG. 8. Variation ofK along the migration path for Rh and R
self-electromigration.
-

n

l
h
d

er

e
,
l

e
e

t-

s
il
ria-
o

le
e
-

h

he

ly
m
t-
t

expect large effects for a metal like rhodium. Looking alo
the series in Table IV no clear trend is observed in theK
values.

Also shown are the wind valences at a certain~high! tem-
perature and the transport relaxation timet used to calculate
it. The effective valence of zirconium, which was measur
to be10.3, is not in contradiction with the value of20.4 for
the wind valence However, it should be mentioned that
experiments were done at high temperatures in thea phase
of zirconium. The wind valence for this phase, having t
bcc structure, will be calculated in the near future. As can
seen in the table, the wind valence in the 4d transition metals
turns out to be small. On the other hand, the chemical
lence can be rather large and therefore the effective vale
is dominated by the direct valence and varies only sligh
with temperature. Hence, these transition metals are suit
for the experimental determination of the direct valen
which has been the subject of a long-lasting controversy4

V. CONCLUSIONS

We have improved a Green’s function method for t
calculation of the electronic structure in dilute alloys. T
formalism has been applied to the calculation of the w
force in the case of substitutional electromigration. We ha
focused on fcc and hcp metals with the hcp metals treate
the fcc structure.

The calculated wind valence for self-electromigration
aluminum is in acceptable agreement with recent meas
ments of Ernstet al.25 We have also investigated the effe
of the presence of impurities on the wind valence of alum
num. Neither the presence of an impurity atom near the ju
path nor the impurity induced increase of the total resistiv
of aluminum induces a dramatic change of the wind valen
So, changes in the electronic structure due to the presenc
an impurity are not the reason for a reduction ofZwind .

The wind valence for self-electromigration in the nob
metals shows a sign change along the path. Such a beh
cannot be reproduced by simple models. Path averaged
ues show qualitative agreement with experiment.

Calculated wind valences of cadmium, indium, tin, a
antimony in silver roughly follow the measured residual r
sistivity and are approximately linear withz(z11), wherez
is the difference in chemical valence between the impu
and the silver. Such a trend was predicted within Mot
theory for Born scattering in metals and has been obser

TABLE IV. The calculatedK andZwind at a temperatureT for
the 4d transition metals. The transport relaxation timet at thatT is
given in atomic units.

K (mVcm) T (K) Zwind t (a.u.)

Y 93.2 1700 0.4 25.4
Zr 252.1 1700 20.4 13.7
Tc 34.8 1700 0.5 12.4
Ru 7.0 1500 0.2 10.6
Rh(4d85s1) 236.9 1700 21.0 13.0
Rh(4d95s0) 238.3 1700 21.0 12.7
Pd 258.6 1700 21.3 50.4
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12 176 56J. P. DEKKER, A. LODDER, AND J. van EK
experimentally, although the precise values of the wind
lence do not agree very well.

Finally the wind valences for self-electromigration in th
4d transition metals show a large variation in size and si
The average values often are small due to cancellation o
wind valence along the migration path. The effective valen
therefore is dominated by the direct valence and will dep
on temperature only weakly. Hence, measurements on t
metals are suitable to decide which model for the direct fo
is the correct one.
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APPENDIX A

First Eq. ~14! will be derived from Eq.~9!. In Eq. ~14!,
written in the position representation, one substitutes the
cal Schro¨dinger equation

vp~x!Ck~x1Rp!5~¹21E!Ck~x1Rp!. ~A1!

Then one applies Green’s theorem and uses the equatio
the void Green’s function

~¹21E!Gvoid~r ,r 8!5d~r2r 8!, ~A2!

as it holds inside the void region. By that the void wa
function can be written as a sum of spherical surface in
grals,

Ck
void~x1Rp!5(

p8
E

Sp8

dSp8@¹8Gvoid~x1Rp ,x81Rp8!#

3Ck~x81Rp8!2Gvoid~x1Rp ,x81Rp8!

3¹8Ck~x81Rp8!. ~A3!

Using Eq.~11! for the void Green’s function and the form o
the local basis functions at the boundaries of the cell in
~5!, Eq. ~A3! can be elaborated for smallx. This leads to the
expression~14! for the void wave function coefficients o
Eq. ~10! in terms of the alloy wave function coefficients o
Eq. ~4!.

Now we want to illustrate the derivation of Eq.~16!, the
relation betweenckpL

void andck jL
void . This can be found by work-

ing out the void wave function for a positio
r5x1Rj5xp1Rp , which is a position in the alloy cell la
beled byp and in the host cell labeled byj ,

Ck
void~r !5(

L
ckpL

voidj L~xp!5(
L

ck jL
voidj L~x!. ~A4!

The two Bessel functions centered at different positions
related by
-

.
he
e
d
se
e

r

o-

for

-

.

re

j L~x!5 j L~xp1Rp j!5(
L8

j L8~xp!JL8L
p j , ~A5!

in which the matrixJp j is given by

JLL8
p j

54p i l 2 l 8(
L9

i l 9CLL8L9 j L9~Rp j!. ~A6!

Substitution of this equation in Eq.~A4! automatically leads
to Eq. ~16!.

APPENDIX B

It will be shown how the infinite angular momentum sum
mation in Eq.~17! can be carried out analytically, leading t
Eq. ~18!. In addition Eq.~25! is generalized to Eq.~31!, valid
for arbitrary position labels.

First a relation betweenGvoid,pp8, present in the left hand
side of Eq.~17!, andGvoid,j j 8 will be derived. To that end the
void Green’s function Gvoid(r ,r 8) for the positions
r5x1Rj5xp1Rp and r 85x81Rj 85xp8

8 1Rp8 , see Eq.
~11!, is rewritten using the free-space Green’s function~12!.
It follows that

Gvoid~r ,r 8!5G0~r ,r 8!1(
LL8

j L~xp!~GLL8
void,pp82BLL8

pp8 ! j L~xp8
8 !

5G0~r ,r 8!1(
LL8

j L~x!~GLL8
void,j j 82BLL8

j j 8 ! j L~x8!.

~B1!

Applying Eq. ~B1! and using Eq.~A5! straightforwardly
leads to

Gvoid,pp85Bpp81Jp j~Gvoid,j j 82Bj j 8!Jj 8p8. ~B2!

Now the right hand side of Eq.~17! is rewritten using the
KKR equation~20! and Eq.~21!

(
j 8

Jp j~12Gvoidth! j j 8ck j8
host

5Jp jb~k!thck j
host2(

j 8
Jp jGvoid,j j 8thck j8

host. ~B3!

The first term on the right hand side of this equation can
evaluated using the expansion

Bp j85Jp jBj j 8, ~Rp j,Rj j 8!, ~B4!

which can be derived from an expansion for the Hankel fu
tion similar to Eq.~A5! for the Bessel function. From the
definition of b(k)[b(k,0), see Eq.~19!, it follows that

Jp jb~k!5b~k,Rp!eik•Rp2Bp j. ~B5!

Substituting this equation in Eq.~B3! the first term on the
right hand side of Eq.~18! appears, and one has to de
further with the terms,

2(
j 8

~Bp j8d j j 81Jp jGvoid,j j 8!thck j8
host. ~B6!

The sum of matricesBp j8d j j 81Jp jGvoid,j j 8 can be written as
Bp j81Jp j(Gvoid,j j 82Bj j 8). The latter sum is equal to
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Gvoid,p j8, given by Eq.~B2! with p8 replaced by a host labe
j 8. By this Eq.~B3! obtains the form of Eq.~18!.

Now we turn to the derivation of Eq.~31!. Substitution of
Eq. ~25! in Eq. ~B2! yields

Gvoid,pp85Bpp81Jp j~Gj j 82Bj j 8!Jj 8p8

2(
j 1 j 2

Jp jGj j 1~ th21
1G! j 1 j 2

21 Gj 2 j 8Jj 8p8. ~B7!

Regarding Eq.~30! for Gj j 8 one has to apply Eq.~B5! for a
further reduction. Using the straightforward generalization
the host Green’s function matrix~30!, defined by

Gpp8[
1

VBZ
E

BZ
d3k@b~k,Rpp8!

1b~k,Rp!M 21~k!bT~2k,Rp8!#e
ik•Rpp8, ~B8!

the following relations can be derived:
f

Jp j~Gj j 82Bj j 8!Jj 8p85Gpp82Bpp82Gp j8thBj 8p82Bp jthGjp8

1Bp jth~ th21
1G! j j 8thBj 8p8, ~B9a!

Jp jGj j 15Gp j12Bp jth~ th21
1G! j j 1, ~B9b!

Gj 2 j 8Jj 8p85Gj 2p82~ th21
1G! j 2 j 8thBj 8p8. ~B9c!

Substituting these equations in Eq.~B7! gives the desired
form ~31!,

Gvoid,pp85Gpp82(
j 1 j 2

Gp j1~ th21
1G! j 1 j 2

21 Gj 2p8. ~B10!
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