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Theory for the electromigration wind force in dilute alloys
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A multiple scattering formulation for the electromigration wind force on atoms in dilute alloys is developed.
The theory describes electromigration via a vacancy mechanism. The method is used to calculate the wind
valence for electromigration in various host metals having a close-packed lattice structure, namely aluminum,
the noble metals copper, silver, and gold, and thetrnsition metals. The self-electromigration results for
aluminum and the noble metals compare well with experimental data. Fordtieetals small wind valences
are found, which make these metals attractive candidates for the experimental study of the direct valence.
[S0163-182607)00643-1

[. INTRODUCTION diffusion along grain boundaries is dominant, but at high
temperatures bulk diffusion becomes the most important
An electric field, applied to a metal sample, causes argontribution. For accelerated conditions it is the leading
atomic current, besides the common electric current. Thignechanism and the atoms move by exchanging positions
process is called electromigration and has been studied fo¥ith vacancies. The second ingredient, the driving force, in-
many years. Coehn and Specteported a flow of hydrogen troduces a bias into the random motion of atoms. One con-
atoms towards the cathode in palladium. This migration offibution to that force is calculated in the present work,
interstitial atoms is a rather harmless manifestation of théamely the wind force due to scattering of electrons by the
effect. It offers the possibility to influence the concentrationMoving atom, which can be either a host atom or an impurity
proﬁ'e of |mpur|ty atoms a|ong a Samp|e_ However, a netatom.-AWe”'establis-hed quan-tum'mech-anical eXpreSSiqn for
flow of host atoms can also be the Consequence of app'yn’]ﬁ]e W|nd force IS aVa|Iab|éBeS|deS the W|nd force,.the ng'
an electric field. Clearly, this reduces the conductivity of alng force has a direct part. If the nuclear charge is not com-
metal wire because of the formation of voids on one side an@letely screened, the electric field directly pushes the atom
hillocks on the other side. In wires of normal size this turnstowards the cathode. This force has been the subject of a
out not to be of great importance, because the atoms do n§@ntroversy for many years Both contributions are propor-
move very fast. In thin f”msy however’ the situation is dif- tional to the electric field and the total driVing force can
ferent. Thin films can carry higher current densities, becausterefore be written as
the heat, produced by the current, is transfered more easily to
the environment. Therefore they can endure a current density F=Fuina™ Fairee= (Zwind T+ Zdirec) EE=Z* €E. 1)
greater than 10\/cm? while a bulk sample would melt
when the current density is 4@/cm? Electromigration The effective valenc&*, which is the sum of the wind and
damage in aluminum films is a well-known example. direct valence, has been measured for a lot of sysfedfs.
The migration of atoms turns out to be influenced by theten the wind force dominates the direct force and, depending
presence of impurities. Most important is the effect of coppeon the system, the resulting total force can push the atom
doping of Al films, which greatly reduces the electromigra- either to the anode or to the cathode.
tion damage. This effect has been known for a long time but The calculation of the wind force requires knowledge of
without an understanding of it, so impurities have beerthe electronic structure of the alloy. An impurity in a dilute
added using the method of trial and error. Furthermore, alalloy, in which the concentration of impurities is low, only
though the damage appears too fast for a device user, it isteracts with its direct environment of host atoms. The elec-
still not fast enough for an experimental physicist. So, thetrons feel a potential, which only differs from the host po-
effect is studied under so-called accelerated conditions, i.etential in a small cluster of atoms containing the migrating
high temperatures and high current densities. Unfortunatelyatom, the vacancy, and the surrounding host atoms affected
the extrapolation to user conditions is not trivial, because thdy charge transfer and lattice deformation. A Green’s func-
total atomic flow is a result of a number of competing con-tion formulation of multiple scattering theory is used to cal-
tributions with different activation energies. All of this com- culate the electron wave function in the dilute alloy. This
plicates the picture and demands a theoretical framework, tiormalism is an extension of the Korringa-Kohn-Rostoker
which this paper is aimed to contribute. (KKR) method for the calculation of the band structure of a
Two ingredients are essential in the process of electromimetal®® The alloy is described with respect to a reference
gration, namely diffusion and a driving force. The motion of system. The conventional choice of this reference system is
atoms due to diffusion is random. At lower temperaturesthe host metal, but then the electronic structure of the impor-
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tant saddle point configuration in electromigration cannot bdinear in the applied electric fiel& and proportional to the
described. This is due to the fact that the atoms in the alloglectron transport relaxation timg.. In Eq. (3) e is the
system cannot be mapped onto the ones in the host systesfementary charge ang is the velocity of the electron. As
one-to-one. As proposed by Loddean intermediate void usual, in all applications, the transport relaxation time is
system is used, which does not contain any scatterers in thtaken constant throughout the Brillouin zone. All other quan-
perturbed region. The original formulatiénin which the tities can be extracted from the electronic structure. The
cluster of perturbed atoms is considered as a whole, wasiethod for the calculation of the electron wave function
recently applied in a preliminary study of electromigration in originally provided by Loddérwill be used in a modified
copper and aluminum.This formulation is rather cumber- way.
some and in the mean time we found a simpler single site In the present formulation the crystal is divided into cells.
formulation, in which each atom in the cluster is considered~or the host crystal these cells are the well-known Wigner-
separately, analogous to the formalism used for the descrifSeitz cells containing local potentialg'(x). For the alloy
tion of interstitial impurities by Oppeneer and Lodtfeand  these cells may have a different shape in the region of the
van Ek! The validity of this method is not limited to the impurity cluster and they contain local potentiaR(x). The
particular problem of substitutional electromigration. In all local potentialss" andvP consist of a spherical atomic po-
problems concerning dilute alloys the wave function can beential surrounded by an interstitial region, where the poten-
calculated this way. tial is constant. In order to evaluate the matrix element ap-
The multiple scattering expression for the wind force ispearing in Eq(2), the wave function is expanded in tp¢h
elaborated in Sec. Il. This section contains two subsectiongell, centered atR,. In such a cell the wave function
devoted to the wave function and the Green’s function may, (r)=¥(x+R,) can be written as a linear combination
trix, respectively. In Sec. Ill some details of the calculationof regular solutionsR? of the Schrdinger equation with lo-
are given. The formalism is applied to metals with a closea| potentialv?, so
packed lattice structure in Sec. IV. Self-electromigration and
impurity electromigration in Al are treated in Sec. IV A, self-
electromigration in the noble metals as well as impurity mi-
gration in Ag in Sec. IV B, and self-electromigration ird 4 Widx+ RP):; C"F’LRE(X)’ “)
transition metals in Sec. IV C. In Sec. V the main results of

this paper are summarized.

Throughout the paper atomic units are used, such tha¥hereL=(l,m) combines the angular momentum and mag-
#=2m=1. Exceptions are stated explicitly. netic quantum numbers. The expansion coefficiepts will
be derived in Sec. Il A. The basis functioff are con-

structed such that outside the atomic sphere they have the

Il. MULTIPLE-SCATTERING EXPRESSION
free-space form

FOR THE WIND FORCE

In this section the quar;tum-mechanical equation for the
wind force of Sorbellcet al: RE(X):jL(X)_iE tEL’hljr’(X)’ (5)
L/

Fuina= 2 0f(K)(Wi| = Ve 0ol Vi), )
K where j (X) is the product of a spherical Bessel function

which traces back to the pioneering work of Bosvieux andii(xX) and a spherical harmoni¢ (), h;'(x) is a similar

Friedel!? and in which product for the spherical Hankel functidy” (kx), k= E
andtP is the scattering matrix for the potentia? embedded
of (k) =erE- v dfy(€)/dey, (3) in free space. For a spherically symmetrical scatterer this

L . i P
is expressed in computable quantities. In E2). the alloy ~ Matrix is diagonal and equat§ = —sin 7Pe"4,, the »
electron wave function¥,, is supposed to be constructed being the phase shifts.

from the corresponding Bloch function, labeled by crystal In that case the wind force expressi@®) can be elabo-
momentunk and band index, combined ink=(k,n), and  rated to the form

having an energy eigenvaluég. In a simple ballistic picture

momentum is transfered from electrons to the atom because l+1

of scattering, rgsulting in.the wind fprce. The moment_um Fwind:E S5f(K)2 ReE

transfered to this atom, with a potentig| centered at posi- K T
tion R, in the alloy, is proportional to the expectation value , ar=m)
of the force operator~Vg v,. When no electric field is Xsin(741— 7)€ Ckpl+1m,» ©®)
present, the electrons are distributed according to the Fermi-

Dirac function fy(e,), leading to an exact cancellation of according to Eqs(26) and(31) in Ref. 8, in which the vec-
forces. In other words, each push from the electrons in oneyrjal matrix D is defined as

direction is compensated, on the average, by one in the op-

posite direction. This symmetry is broken by the presence of

the electric field, which alters the distribution function by . A ann -

5t (k). The first and leading term of this deviation, E8), is DLL'_f dXYLOOXYLA(X). @)

*
CkaDL;H—l,ml
my=—(I+1)
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FIG. 1. The systems used in the description of the dilute alloy LEU 1 Ll ) (12
(left): the void systenicentej and the host systeimight). . . )
in which the free-space propagation matBxappears, de-

A. The wave function coefficients fined as

The alloy wave function coefficients that appear in .
will be expressed in terms of wave function coefficients
cL‘OSt, which appear in the local expansion of Bloch function

jL P [ S
\I,f(mstr):q,ﬂostx_i_ RJ); :47T|| ! lK(1_5ppr)z |I CLL’L"hz—//(Rpp’)'

L

BP =BLL/(Rpp)

(13

The void Green'’s function matrix will be given in Sec. Il B.

. Combining Egs(9), (10), and(11) the following matrix
whereR| are the regular solutions of the Sctimger equa-  equation can be found:
tion within the Wigner-Seitz cell labeled Gyand contairt"
instead oft? in their asymptotic forn{see Eq.(5)]. Unper- void . '
turbed atomic position®; in the host do not necessarily CkpL= 2 (1_gVOIdt)EE’CkD’L" (14)
L . . L. . p'L
coincide with one of the atomic positiorig, in the alloy. ' o . _ . _
The number of alloy sites may even differ from the numberDetails of the derivation will be given in Appendix A. Fol-
of host lattice sites. Therefore, although the alloy is delowing the same procedure, void wave function coefficients
scribed with respect to the host, the host system cannot bearrying the host position labglcan be expressed in terms
used as a reference system straightforwardly. An intermedief host coefficients:L‘?ft,
ate system is required, which will be referred to as the void
system. This system consists of a void region, where the cvoid _ E (1_g\,0idth)jj/ chost (15)
potential is constant, surrounded by host atom potentials. kiL LL"Zkj'L" "
The void region is chosen to be as extended as the perturbed _ _
region in the dilute alloy. This system can serve as a referSinceco! andc\” are related by
ence system for both the host and the alloy, as it is repre-

Pos(x+ Rj)=2 cpeRL(%), )

J-rLr

sented symbolically in Fig. 1. The relation between the host CVOidZE 3pi void (16)
and alloy wave function is given via the void wave function. kpL £ ThhomhiLy
The alloy wave function is expressed in terms of the void )
wave function by the Green’s function expression, Egs.(14) and(15) can be combined to

\I,k:q’\li()id_’_ GVOidE vp\I,k. (9) E (1—g"°idt)ff,ckp,,_,

p p!L/

Analogously to Egs(4) and(8) the void wave function can = > I (1_gv0idth)JLJ'L,C:JF’?E/ . (1
be written in terms of local basis functions, being spherical Ly, ¢ 1
Bessel functions because of the constant potential in the void ) ) )
region It is noteworthy that in this equation two types of summa-

tions over the angular momentum occur. The first type has a
_ _ natural cutoff because of the multiplication bymatrices,
WYO(x+ Rp)zz c‘,ig'EjL(x). (100  and the second type, such as the summation ayerin
L principle runs to infinity. The latter summation can be treated

Inside the void, the void Green'’s function can be written asa}nalytlcally, to be shown in Append|x B, and the final equa-
tion used in the actual calculations,

GYod(x+ Ry, X'+ Rp)=—i K; jLxoh(x=) Opp! E (1- gVOidt)pp'Ckp’
p’

i void,pp’ ;s . o
+LZL, JL(X)gLL, JL(X ) :b(k!Rpj)elk-RpjthCEjOSt_Z' gVOId,pJ thCE?,St,
J
(11 (18)

This expression with the void Green's function matriX only contains summations with a natural cutoff. Angular mo-
GYo4PP’ s a straightforward generalization of the expressionmentum labels have been dropped in order to simplify the
for the Green’s function of free space notation. The matribb(k,R) is defined by
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b(k,R)=2, B(R—R;)e " R-R), (19) G"=G°+G°Y vG", (26)
i’ J
in which the summation runs ovetl lattice sites. G° being the free-space Green’s function. The summation
The host wave function coefficients occurring in E&8)  runs over all host lattice sites. Working in the position rep-
are calculated by the KKR method according to resentation and using Eqgl2) and (23) one finds the fol-

lowing matrix equation:

> Myt elseo. (20) o
L' Gl'=Bii"+ > Bllithgiil’, (27)
This equation contains the KKR matrix h

. Taking the Fourier transform of this equation one finds
M(k)=t" "—b(k), (21

in which b(k) =b(k,0), defined by Eq(19). G(k)=2, gi'e*Ru'=p(k)+b(k)t"G(k).  (28)
In its original form the KKR method applies to muffin-tin i’

potentials. However, as shown by Nesbét, is possible to  This equation can be solved fgik),

circumvent this restriction on the crystal potential in the

same way as has been done in the derivation of (EQ. G(k)=[1-b(k)t"] b(k)

Now we will use this procedure in the calculation of the void

— -1
Green'’s function. =b(k)+b(k)M = (k)b(k), (29)
containing the KKR matrix, Eq21). For the reverse Fourier
B. The void Green’s function transform, using the right hand side of this equation, one

The void Green’s function and the host Green’s 1‘unctionObtains

G" are related by the Lippmann-Schwinger equation, ) 1 _
QJ"=Q— d3k[b(K)+b(k)M ~1(k)b(k)]e'* R,
BZ

Gvoid: Gh_ Gh; v ;‘IGVOid. (22) BZ (30)

The summation runs over the positions in the void. This" which th?k s_umma'uon ha; been replaced by an integral
over the Brillouin zongBZ) with volume Qg;.

equation is again evaluated in the position representation. : void .

The host Green’s function is given by By now, expressions fag'*'"“ andG h.ave been derived for
centersj of host cells only. Interestingly, the generalized
relation

Gh(x+Rj,x'+Rj,)=g RL(X<)SL(X=) 8/

gvoid,nn’:gnn’_z gnjl(th’l_F g)jzjlzgjzn’ (32
i1l
+2 ROOGI R, (23 R N
LL’ turns out to be valid also, carrying arbitrary position labels
Outside the atomic sphere the regular solutiéhsof the andn’, which c,an refer to hOSF ans, \_Ne” as alloy positions.
local Schialinger equation have the asymptotic form of Eq. The host Green’s function matri"" is calculated from

(5) with tP replaced byt" and the singular solutior§ equal

. + . . , . -ovoid i’ ! 1 3
—ikh| . First the void Green’s function matrig’®*! ", car- g =a0= d°k[b(k,Rnn)
rying host position labelg andj’, will be expressed in terms Bz /BZ
of the host Green’s function matrigl!’, to be determined +b(k,Ry)M YK)bT(—k,R,)]ek R (32)

later. To that end Eq(22) is elaborated at the positions _ _ ] ] _ _

x+R; andx’ +R;,, where bothx andx’ are located close to in Which the matrixb(k,R) is defined in Eq(19). The deri-

their cell centersR; andR;. respectively. Following similar Vation is given in Appendix B.

steps as in Appendix A one finds the relation Equation(18), together with Egs(31) and (32), are the
key equations of the theory presented. The alloy wave func-

voidjj’ _ jj,_z {i 1¢h void,jpj’ o4 tion coefficientsc,,. can be calculated, if the host wave
g =G = ght'g ' (24 function coefficientscy" and the matrixg“ are known.
The host wave function coefficients can be calculated using
where the angular momentum labels have been dropped. Thge KKR equation(20). The matrixG“?“ can be calculated
matrix t" is the same at all lattice sites, so the site label haifter evaluation of the Brillouin zone integral in E@2).
been dropped. Iteration of this equation leads to

L [ll. COMPUTATIONAL DETAILS
gvoidii’ = gii _2 Gla(th +g)]f1]_12g121 ) (25)

o In this section a few quantities which are necessary in the

calculation are discussed. As mentioned in Sec. Il the trans-
The host Green'’s function matrixis calculated using the port relaxation timer is estimated from the measured resis-
Lippmann-Schwinger equation, tivity. The procedure is given in Sec. Ill A. The construction
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of the potentials is discussed in Sec. Il B. Finally, the pro-bound by two conflicting conditions. On the one hand it must
cedure for the extraction of measurable quantities from thée small enough to leave some room for the migrating atom,

calculations is explained in Sec. Il C. while on the other hand it must be large enough such that the
potential still reproduces the electronic properties of the
A. The transport relaxation time = metal as much as possible. For fcc metals a muffin-tin radius

U ting the widel d isotropic t + relax 2 0-32% is an optimal valué®
pon accepting the widely used ISOlropic ransport réfax-— o4 physical system is charge neutral. This can be es-

f"‘“O” fime appfo.x".“?“‘)” for, Fhe Bullk co_ndu_ctivity(or ihe tablished using a generalized Friedel sum 7ubnd a shift-
inverse bulk resistivity for cubic crystals is given b ing procedure proposed by Lasseter and S#vend suc-
1 e?r 1 cessfully applied in numerous systems. The potential of the
=—=——a= f dSwy. (33)  atom is shifted by a constant value, which can be interpreted
p A4mh 3 Jrs as the addition of charge on the muffin-tin sphere. For the
The integral of the electron velocity, over the Fermi sur- different configurations during the jump various choices are
face is directly computable from the electronic structure ofP0SSible for the shift procedure. If the migrating atom is in
the host metal. The only quantity left is the transport relaxtS initial position, the s_lmplest choice is a shift of the poten-
ation time, to which the wind force is directly proportional ti&!s of all nearest neighbors of the vacancy by the same
as can be seen from Eq®) and (3). Combining Eqs(1), value. In the saddle point conﬂgurauon all nearest.nelghbor_s
(2), (3), and (33), the temperature dependent wind valence®f the two small moon-shaped vacancies surrounding the mi-

o

can be written as grating atom can be shifted. We want to point out that in the
latter configuration the small vacancies are not accounted

K(T) for, which means that the shifting procedure also must cor-

Zyind(T) = (M) (34 rect for the corresponding loss of charge in that region of

space. This makes it unclear, what the shifting procedure
The temperature dependencekoicomes from the tempera- means for the electronic properties. Due to these uncertain-
ture dependence of the Fermi-Dirac function appearing irties and the lack of self-consistent potentials we therefore
Eqg.(3) and can be neglected up to the melting temperature diave decided to use the phase shifts corresponding to the
most metals. The remaining temperature dependence of theshifted potentials. Test calculations show that the potential
wind valence through the resistivity is well known from the shift leads to a maximum change in the wind valence of
ballistic model by Fik& and Huntington and Grof2and  about 10% and in most cases of only a few percent. In view
from later more sophisticated modéls. of the limited accuracy of most measurements this is accept-

It should be noted that the calculated transport relaxatiorble for the time being. In principle full-potential calcula-

time can differ considerably from the free-electron transportions can reveal detailed information of the charge state of

Drude relaxation time7™E, arising from the equation the impurity cluster.
FE
o= E = ne’r . (35 C. Comparison with experiment
p m

The calculated wind valence is a position dependent
T can be as much as a factor of 17 larger th&R as was second-rank tensor. In order to compare with experiment the
found for palladiumt® tensor has to be reduced to a scalar. The relevant component
of the force is the one in the direction of the migration path,
B. Potentials which we indicate bys. Averaging over all orientations of

Both the host and alloy potentials are modeled by muffinthe lattice, simulating the polycrystalline samples used in

. ) . ; “practice, we vyield for the scalar wind valence

tin potentials!® The corresponding phase shiftsg. the t P y

matricest” andtP, serve as input for the computational pro- Zing=8" Zuing- S (37)
cedure. The alloy potentials are constructed only for two i —wne

positions of the migrating atom: the initial position and the This scalar value must be averaged over the path, because
position half-way, the saddle point. When the atom is somethe average force is the work done by it during the jump
where else along the path, which runs along a straight line iglivided by the length of the path. By this a frequently used
the (110 direction, the phase shifts are calculated using theéxssumption, in which the wind force is taken as the average
interpolation formula of its values at the initial and saddle point positfdrgan be
tested.
7P (s)=cos(7s) pP(0) +sir(ms) pf(3).  (36)

The variables runs from 0 to 1 along the path, so IV. RESULTS FOR fcc METALS

7P(0)= P& and halfway 7P(3)= 5P:s2ederoint wherep The formalism described above is applied to metals with
refers to one of the perturbed atoms in the cluster or to th¢he close-packed face-centered culdicc) and hexagonal
migrating atom. Thes dependence of the interpolation for- close-packedhcp structures, the latter being replaced by its
mula guarantees a smooth behavior of the phase shifts at tleguivalent fcc structure. Wind valences are calculated for
saddle point. diffusing atoms in aluminum, the noble metals, and tlie 4

A parameter, which influences the results of the calculatransition metals and are compared to experimental data and
tion, is the muffin-tin radius. The choice of this parameter isresults from previously published computational studies.
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2 . ; 1 while Z,,q Strongly depends on temperature throygihe
variation ofK turns out to be less than 1% in a temperature
__________ dt range of 1000 K for aluminum, sid can be considered con-
L - — stant and is shown in the sixth column of Table I. The theo-

retically purest quantity to be extracted from our calculation
IS Zying/ 7, Shown in the last column of this table. The cal-
culation of this quantity requires no model for the resistivity
whatsoever. A disadvantage of this quantity is the difficulty
in comparing it with experimental quantities.

Very recently Ernset al® presented experimental results
for bulk electromigration in aluminum. They found an effec-
tive valence varying from-5 at 683 K to—3.3 at 883 K.
When we use the combination of the E¢b) and (34),

0.0 0.2 0.4 0.6 0.8 1.0 K
(] Z*(T)= Z girect™ ﬁa (39

FIG. 2. The variation of the wind valence of a migrating host jn order to analyze these measurements, this leads to values
atom in aluminum at 800 K. Thep, pd, anddf contributions are ¢ K = _ 45 pQem and Zgeo= +1.4. The value ofK is
given separately. about 1.5 times larger than the calculated value of
o ) —29 uQcm (see Table), which is acceptable. It is interest-
A. Electromigration in aluminum ing that the direct valence is very close to the value of half
1. Self-electromigration the chemicegl valence as predicted by Bosvieux and Frigdel.
) o o Sorbelld® has performed model-pseudopotential calcula-
_In Fig. 2 the solid line shows the variation of the scalarijons for self-electromigration in Al and foundka value of
wind valence of a host atom in aluminum metal along the_ 1o pQcm. Although a pseudopotential formulation is

migration path. In addition the three partial wave contribu-cqnsidered to be suitable for a nearly free-electron system
tions t0Z,nq are shown, namely thep, pd, anddf contri- jixe ajuminum, his value is rather different from our calcu-

butions, depending on the differencep, ;— 7 as they ap-  |ated value and the experimental value found by Ernst
pear in the expression for the matrix elementg; 4125 On the other hand his value agrees approximately
<q’k|_VRpUp|q'k> in Eq. (6). The pd term is dominant yith values given by Lodding’ who refers to measurements
which is consistent with the values of the phase shifts of théyy Penney?® With respect to these experiments we point out
moving aluminum atom, being 0.338, 0.395, 0.051, andhat all available theoretical models for bulk electromigration
0.002 fors, p, d, andf, respectively, at the initial position lead to a temperature dependence of the effective valence
and 0.370, 0.430, 0.056, and 0.002 at the saddle point. According to Eq(38). The measurements of Penney cannot
sinusoidal behavior of the wind valence along the path wouldbe fitted by this formula.

justify the averaging procedure, which uses the values in An interesting phenomenon is the influence of impurities
initial and saddle point position only. Such a behavior seemsn the electromigration properties of aluminum. The best-
to be obeyed in the figure. In Table | results for the initial known example is the addition of small amounts of copper,
and saddle point position, their average value and the avewhich reduces electromigration induced damage effectively.
age over the path are listed. In the first three columns thén the hope that other impurities have a similar but stronger
three partial contributions are shown. The fourth contains theffect on electromigration in aluminum, experimentalists
sum of the three. In order to obtain these values the transpottied palladium and silicon on aad hocbasis, but without
relaxation time ofr=69 a.u. has been calculated using Eq.success. In order to contribute to a microscopic explanation
(33), assuming the resistivity to equal the phonon part at 80Qve investigated the influence of copper, palladium, and sili-
K, namely p=28.6 uQcm.?* Comparing the third and fourth con impurities that are located in the impurity cluster near a
row one sees that the two point averagg,q differs 10%  migrating aluminum ator’ However, we foundf that on
from the path average value. In all tables values for the quaraverage the effect is small, although the presence of impurity
tity K, defined in Eq.34), andZ,,;,q/ 7 are given too. The atoms at particular positions can give rise to a considerable
advantage of specifyin( is its weak temperature depen- reduction of the wind valence. The presence of a palladium
dence (only broadening of the Fermi-Dirac distributipn atom induces a reduction of about 10% when averaged over

TABLE I. Results for self-electromigration in Al. A value of 69 a.u., based on a resistivjty- 8.6 n{dcm at 800 K has been used.

Zyina(SP) Zying(Pd) Zying(df ) Zyjind K (uf2cm) Zying! T
Initial position 0.05 —-1.24 -0.12 -1.31 —-11.3 —0.019
Saddle point —0.13 —6.45 0.31 -6.27 —54.0 —0.091
Two point average —0.04 —2.61 0.13 -3.79 —-32.7 —0.055

Path average 0.02 —3.54 0.17 —-3.36 —28.9 —0.051
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FIG. 3. The position dependent wind valence of copper, palla- FIG. 4. Variation ofK along the path for self-electromigration
dium, and silicon impurities in Al. in Cu, Ag, and Au.

all positions neighboring the migration pe(g'haded atoms in determined by the direction of the motion of the Charge car-
Fig. 1). The effect of silicon and copper is even smaller. ~ fiers. It is worth noting, that the assumption of a sinusoidal
The presence of impurities changes the number of valenceariation of the wind valence along the path does not hold
electrons in the system. Within a rigid band model this cor-both for copper and palladium, which can be seen clearly in
responds to a change of the Fermi energy. A vacancy or kig. 3. This means that, in general, the average using only
copper atom lowers the Fermi level, while silicon raiges ~ the initial and saddle point position values is not a good
The addition of 1% of copper reduces the average number dheasure for the average over the entire path.
valence electrons per atom from 3.0 to 2.98. According to
our calculation® this reduces the wind valence only by a B. Electromigration in the noble metals
few percent. The conclusion is that copper atoms do not . . L
reduce the wind valence of aluminum atoms directly through ' this subsection self-electromigration in the noble met-
electronic effects. als copper, silver, and gold is studied as well as impurity
Finally we mention the effect of impurities due to their Migration in silver.
contribution to the electrical resistivity, which causes a de- S _
crease of the wind valence. An addition of 1% of copper 1. Self-electromigration in copper, silver, and gold
induces a resistivity increase of about 10% and the wind The variation of K along the path for self-
valence will be reduced by about 10%. electromigration in the noble metals copgsolid line), sil-
We conclude that all impurity effects considered above dayer (dotted, and gold(dashedl is shown in Fig. 4. A sign
not induce a dramatic change in the value of the wind vachange from positive at the initial site to negative further
lence. Therefore the reduction of the electromigration in-down the path is observed. This cannot be understood in

duced damage cannot be attributed to them. terms of electron and hole conduction and a free-electron-
like model is not able to reproduce such behavior.
2. Impurities in aluminum The calculateK values listed in Table Il cannot be com-

Besides effects on the electromigration properties of hos?ared with experlmen'g, because as far as a temperature de-
,pendence of the effective valence has been meastréthe

atoms, impurity atoms can electromigrate themselves. . . :
principle, impurities can migrate in a direction opposite to.resfUItS cannot be interpreted in terms of a conskanBut it
s interesting to compare them # values calculated by

host atom transport. However, the path dependent wind Vdéuptz? and Sorbelld® Our values for copper and silver

lences of copper, palladium, and silicon, shown in Fig. 3, a"compare very well with the ones of Gupta, while our value
have a negative sign and are larger in magnitude &gy, X ’
9 9 9 9 for gold is a factor of two smaller. The values of Sorbello are

of aluminum, which is shown for comparison. This rather orv different from our results. which is not surprising in
accelerates the vacancy transport than slowing it down. ThéEY ' P 9

average wind valences of copper, silicon, and palladium are
factors of 1.7, 2.8, and 7.8, respectively, larger tlggpy of
aluminum. This is in partial contradiction with measure-
ments, quoted by Ho and Kwdln their review article, giv-
ing copper a smaller wind valence than host aluminum. We

TABLE Il. CalculatedK values for the noble metals compared
with results by GuptdRef. 23 and SorbelloRef. 26.

Present work GuptéRef. 23 Sorbello(Ref. 26

note that the calculated ratios are independent of the mode&u —33.3 -315 —196
for the calculation ofr, becauseris a host quantity. The fact Ag —247 —-33.1 —-171
that the wind valences of the impurities have the same sign igy —42.6 -83.2 —229

not surprising, because the direction of the force is mainly
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TABLE Ill. Wind and effective valences for the noble metals.
The second and third columns contain the calculated wind valenc
and the measured effective valence, respectively, at the temperatu
shown in the fourth column. The last column contains the quantity
Zind(total) / 7 in atomic units.

Zyjind z* T (K) Zying! T

wind

Cu -3.5 —4.3(Ref. 33 1300 —0.028

Ag -3.3 —19.9(Ref. 3) 1150 —0.021
—5.1(Ref. 39

Au —-34 —6.6 (Ref. 32 1289 —0.037

-80 | e—e calculated Z .
O0——0 measured Z

view of the pseudopotential method he used. However, simi ~100 . l A
lar trends are found in our and in Sorbello’s calculations: Ag Cd In Sn Sb
gold shows the largest value #f, while silver shows the

smallest. In the calculation of Gupta tKevalue of copper is FIG. 6. The solid circles give the calculated wind valence of the
the smallest. atoms Ag, Cd, In, Sn, and Sb, in Ag as a functionzfz+1),

In Table 1ll we give calculated,,;,q and measure@* wherez=Z,,n—Zpq - The open circles are effectiv_e valences, mea-
values34at a given temperatur&, while the last column sured by Doar(Ref. 39 at temperatures of approximately 1150 K.
contains the quantity,,q/ 7. The calculated wind valences
are of the same order of magnitude as the experimental efralence to be linear witle(z+1), where 2=Zimp— Zng:

fective valences, except for the much largerof Doan and ith 7, andZ,, the chemical valence of the impurity and
Brebec for silver" In order to make a detailed comparison gjlyer atoms, respectively. This dependence is a result of
b_etvv_een theory and experiment more experimental informagoii's theory for Born scattering, which leads to a wind
tion is needed. valence of an impurity atom proportional #3 at its initial
S position(neglecting backscattering from the vacanapd to
2. Impurities in silver Z%,p=(z+1)? at the saddle point. The calculat&g,q and
This section is devoted to the wind valence of palladium the measure@* at about 1150 K are given as a function of
silver, cadmium, indium, tin, and antimony impurities in sil- z(z+1) in Fig. 6. Measurements and calculations show a
ver. The series is part of row 5 in the Periodic System. Thesimilar trend, but the values do not agree. Neither the mea-
calculated wind valence essentially follows the trend of thesuredZ* nor the calculated,,;,4 Of the silver atom show the
experimental residual resistiviy as is shown in Fig. 5, z(z+1) dependence.
where both quantities are given as a function of the chemical More information about the trend in the wind valence can
valence. Both quantities are normalized with respect to thée extracted by considering ts@, pd, anddf contributions
largest values, which occur for antimony. Note that the windseparately. They are plotted in Fig. 7 for the initial and
valence of the cadmium impurity is smaller than the one ofsaddle point position, respectively. A transport relaxation
the host atom. time of =243 is used, corresponding to a resistivity of
With the exception of palladium, Dodhinvestigated this p=4.9 uQlcm at 800 K2* The pd term turns out to deter-
series of impurities experimentally and found the effectivemine the overall behavior. It develops as soon agitlséates
of the impurity atom are occupied, starting with indium.
Note that for the saddle point configuration theterm van-

1.0 . , ,
2 0.8 G0 Pres ot 1o
N; Zwind
° O
€ 06 1
% -20 -20
a
E 0 4 T initial position saddle point
N =
= N -40 -40
£
) 0.2 r 1
o . -60 o0 S-p -60
I S v
Pd Ag Cd In Sn Sb 80

~80 Pd Ag Cd In Sn SbPd Ag Cd In Sn Sb
FIG. 5. Measured residual resistivity and calculated wind va-
lence of Pd, Ag, Cd, In, Sn, and Sb impurities in Ag. Both curves FIG. 7. sp, pd, anddf contributions to the wind valence ofi4
are normalized with respect to the Sb data. and 5sp impurities in Ag atT=2800 K.
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TABLE IV. The calculatedK andZ,;,q at a temperaturd& for

the 4d transition metals. The transport relaxation timat thatT is
S0y given in atomic units.
Ru
K (u2cm) T (K) Z pind 7 (a.u.)
= 0
g Y 93.2 1700 0.4 25.4
2’1 Zr —-52.1 1700 -04 13.7
50 Rh Tc 348 1700 0.5 12.4
Ru 7.0 1500 0.2 10.6
Rh(4d®5s?) -36.9 1700 -1.0 13.0
100 ‘ ‘ . . Rh(4d%5s°) -38.3 1700 1.0 12.7
0.0 0.2 0.4 0.6 0.8 1.0 Pd —58.6 1700 -1.3 50.4

S

FIG. 8. Variation ofK along the migration path for Rh and Ru

self-electromigration. expect large effects for a metal like rhodium. Looking along

the series in Table IV no clear trend is observed in khe
values.

Also shown are the wind valences at a ceriigh) tem-
perature and the transport relaxation timesed to calculate
it. The effective valence of zirconium, which was measured

ishes when the $orbit is completely filled, at cadmium, and
leads to a relatively low wind valence of cadmium. A pos-
sible origin of it can be the following. In the saddle point

configuration the impurity replaces two host atoms. For o be+ 0.3, is not in contradiction with the value ef0.4 for

Impurity atom W.'th filled 53 orblt_als, two > electrons_ are  the wind valence However, it should be mentioned that the
present, just as in the configuration with host atoms in 'n't'alexperiments were done at high temperatures incthgnase
and_final positions, which isju;t the host configuration. Sucl‘af zirconium. The wind valence for this phase, having the
an impurity at the saddle point resembles an unperturbe cc structure, will be calculated in the near future. As can be
host state as far as th_BeeIe_ctronfs are concern_ed. It_ may be seen in the table, the wind valence in thetansition metals
the case that scattering mvolymg these orbitals is Weaketrurns out to be small. On the other hand, the chemical va-
than when just one $electron is present. lence can be rather large and therefore the effective valence
is dominated by the direct valence and varies only slightly
C. Self-electromigration of the 4d transition metal with temperature. Hence, these transition metals are suitable
for the experimental determination of the direct valence,

We also applied the theory to thedransition metals, g\/hich has been the subject of a long-lasting controvérsy.

mainly as a challenge to experimentalists. To our knowledg
only electrotransport in zirconium has been meastred,
showing a small positive effective valence of 0.3. A small
positive valence has also been measured for thednsition
metal platinum. Only metals with a close-packed structure We have improved a Green’s function method for the
are considered in this series of calculations. Metals with thealculation of the electronic structure in dilute alloys. The
hexagonal close-packétcp structure, namely, yttrium, zir- formalism has been applied to the calculation of the wind
conium, technetium, and ruthenium, are treated as fcc meferce in the case of substitutional electromigration. We have
als. focused on fcc and hcp metals with the hcp metals treated in
Remarkable variations oK along the path occur, as the fcc structure.
shown for rhodium and ruthenium in Fig. 8. One observes The calculated wind valence for self-electromigration in
minima, maxima, and sign changes. Simple models will failaluminum is in acceptable agreement with recent measure-
to describe such features. It should be stressed that the variments of Ernset al?®> We have also investigated the effect
tions occur in spite of the smoothly varying phase shifts, sof the presence of impurities on the wind valence of alumi-
they are likely to occur due to multiple scattering effects. num. Neither the presence of an impurity atom near the jump
The K values averaged over the path are given in Tablgath nor the impurity induced increase of the total resistivity
IV. In our procedure for the construction of the potentials theof aluminum induces a dramatic change of the wind valence.
atomic configuration is important. The electronic configura-So, changes in the electronic structure due to the presence of
tion of a free atom sometimes differs from that of an atoman impurity are not the reason for a reductionZgf,.
embedded in a crystal. This is the case for palladium, which The wind valence for self-electromigration in the noble
has a 41°5s! configuration in the crystal, while the free atom metals shows a sign change along the path. Such a behavior
has a 41'%s° configuration. The electronic configuration of cannot be reproduced by simple models. Path averaged val-
a host atom in a rhodium crystal lies somewhere between thees show qualitative agreement with experiment.
4d85s! and 41°5s° configurations. As can be seen from the  Calculated wind valences of cadmium, indium, tin, and
table the value oK depends only slightly on the configura- antimony in silver roughly follow the measured residual re-
tion used. So the wind valence appears to be only weaklgistivity and are approximately linear witt{z+ 1), wherez
dependent on the precise electronic structure obtained frons the difference in chemical valence between the impurity
non-self-consistent potentials. Although it remains interestand the silver. Such a trend was predicted within Mott's
ing to investigate the influence of self-consistency we do notheory for Born scattering in metals and has been observed

V. CONCLUSIONS
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experimentally, although the precise values of the wind va- .

lence do not agree very well. L0 =1L (T Rpp) =2 jL(xp)30 (A5)
Finally the wind valences for self-electromigration in the . L'

4d transition metals show a large variation in size and signin which the matrixJ®) is given by

The average values often are small due to cancellation of the

wind valence along the migration path. The effective valence P =4S 0CL i (R, ). (A6)

therefore is dominated by the direct valence and will depend L L" Pl

on temperature only weal_<|y. He_nce, measurements on the%%bstitution of this equation in EgA4) automatically leads

metals are suitable to decide which model for the direct force[0 Eq. (16).

is the correct one.
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It will be shown how the infinite angular momentum sum-

This work was sponsored by the Stichting Nationalemation in Eq.(17) can be carried out analytically, leading to
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nancial support from the Nederlandse Organisatie voor First a relation betweeg"dPP’ present in the left hand
We'zten's'chappeluk Onderzodhletherlands Organization for side of Eq.(17), andG*4ii” will be derived. To that end the
Scientific Research, NWO void Green’s function GYr,r’) for the positions

r=x+R;=x,+R, and r'=x'"+R;=x,+R, , see Eq.
APPENDIX A (1), is rewritten using the free-space Green’s funciip®).

First Eq.(14) will be derived from Eq.(9). In Eq. (14), 'tfollows that
written in the position representation, one substitutes the lo- oo ,
cal Schralinger equation GVOId(I’,I"):GO(r,I”)-FLEU L) (GTPP =BEE LX)

VP(X)W(X+Rp) = (V2+E) Wy (x+R,). (A1) o
_ _ =GO(r 1)+ 2 oG =B,
Then one applies Green'’s theorem and uses the equation for LL’

the void Green’s function (B1)

(V2+E)GYd(r r')y=8(r—r'), (A2)  Applying Eqg. (B1) and using Eq.(A5) straightforwardly
leads to
as it holds inside the void region. By that the void wave oo’ , T
function can be written as a sum of spherical surface inte- GUoPP =BPP + gPi(gvotll —Bll gl P (B2)
grals, Now the right hand side of Eq17) is rewritten using the
KKR equation(20) and Eq.(21)
Pod(x+R) = J dS, [V'GYx+R, ,x" + Ry
k ( p) % Sy Sp [ ( p p )] 2 Jpj(l_gvoidth)jj’cz})ft
XW (X' +Rp ) — G4 x+R, X +Ry) '

XV W (X' +Ry). (A3) = JPIb(K)thepd™t- D) JPigredii e (B3)
j!

Using Eq.(11) for the void Green'’s function and the form of The first term on the right hand side of this equation can be
the local basis functions at the boundaries of the cell in Edeyajuated using the expansion

(5), Eq.(A3) can be elaborated for small This leads to the

expression(14) for the void wave function coefficients of BPI'=JPIBI', (R, <Rj"), (B4)

Eg E;L)O) in terms of the alloy wave function coefficients of which can be derived from an expansion for the Hankel func-
o : —— tion similar to Eq.(A5) for the Bessel function. From the
Now we want to illustrate the derivation of E(L6), the . r .

relation betvveem‘lj%'ﬁ andc‘ﬁ"Ld. This can be found by work- definition ofb(k?_b(k,O), see EQ(lg)’ it f_OHOWS that

ing out the void wave function for a position Jplb(k):b(k,Rp)e'k'Rpf—BpJ_ (B5)

r=x+R;j=X,+R,, which is a position in the alloy cell la-

beled byp and in the host cell labeled by Substituting this equation in EqB3) the first term on the

right hand side of Eq(18) appears, and one has to deal
further with the terms,

wmd(r):g CK%iEjL(xp)zg L), (A4 =2 (BPI gy, + JPigrodiiythe oo, (B6)
j!

The two Bessel functions centered at different positions ard he sum of mgtriceg}pj 8,j:+JIPIGvil” can be written as
related by BPI' +JPi(gvoidii’— Iy, The latter sum is equal to
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Gvdpi’  given by Eq.(B2) with p’ replaced by a host label

j". By this Eq.(B3) obtains the form of Eq(18).

Now we turn to the derivation of E¢31). Substitution of

Eqg. (25) in Eq. (B2) yields

goid.pp’ — gPP’ 4 3Pi( il —ii") Ji'P’

=) Jrigii (th '+ g)].‘ljlzngJ i (BY)

J1i2

Regarding Eq(30) for GIi" one has to apply EqB5) for a

12 177

JPi(gil" —BIi")Ji'P =gpp' _gPP' _ gPi'thgi’P’ — gPithgip’

+BPIt(t" T+ )i 'thBI"P', (BYa)
JPiglii=gpPi1— Bpith(thfl_;-g)iil, (B9b)
gjzj'JJ"D’:gizp'_(th71+g)121/thBi,pl. (B9c)

further reduction. Using the straightforward generalization of

the host Green’s function matri@0), defined by

gpp’E i
Q

d3k[b(k,Ryy
Bz JBZ Lotk Rpp)

+b(k,Ry)MY(k)bT(—k,R,)]e™ Rer', (BB)

the following relations can be derived:

Substituting these equations in E@®7) gives the desired
form (31),

G’ — gpp' = > gpjl(th‘1+g)j—lj12gizp’, (B10)
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