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Theoretical treatment of the nonlinear anelastic internal friction peaks
appearing in the cold-worked Al-based solid solutions
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Laboratory of Internal Friction and Defects in Solids, Institute of Solid State Physics, Chinese Academy of Sciences,

230031 Hefei, China
~Received 21 October 1996; revised manuscript received 21 January 1997!

The longitudinal and transverse diffusion equations of solute atoms along the dislocation core formulated
based on the dislocation kink model are solved with the numerical difference method. The theoretical internal
friction and modulus defect curves versus temperature and strain amplitude were calculated for the nonlinear
anelastic internal friction peaks~P0 , P18 , andP19 peaks!. The manifestations of these curves are compared with
the experimental results previously obtained in cold-worked Al-Mg and Al-Cu solid solutions around room
temperature.@S0163-1829~97!04025-3#
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I. INTRODUCTION

The nonlinear effect or strain amplitude dependence
the internal friction~IF! is a universal phenomenon at a rel
tively high strain level, which is mainly due to the nonline
interaction between defects in materials. At a very low str
amplitude, the IF is amplitude independent as pointed ou
the linear anelasticity. In a higher-strain-amplitude ran
however, the IF is generally amplitude dependent. In gene
there are two types of amplitude-dependent IF. One incre
monotonously with an increase of the strain amplitude a
can be explained quite well by the model of dislocati
breakaway@Granato-Lu¨cke ~GL! model# in which the point
defects interacting with the dislocation are treated as un
bile pinners.1 The other, which was observed by Keˆ2 in cold-
worked Al-Cu solid solutions and attributed to a model
dislocation dragging the mobile point defects~solute atoms!,
increases at first with the increase of the strain amplitude
decreases after passing a maximum, exhibiting an ampli
peak when the IF is plotted as a function of strain amplitu
Because it exhibits at the same time a temperature pea
the relaxation type, it is thus assigned by Keˆ3 with the name
of ‘‘nonlinear anelastic IF peak’’ and the characteristics
lated to this phenomenon are called ‘‘nonlinear anelas
ity.’’

In a previous paper by Keˆ,4 the mathematical analysis o
the dislocation core diffusion of point defects by Winkle
Gnieweket al.5 ~designated as the WG model! on the basis
of a double-loop string model was described. It was sho
that the theoretical IF curves derived by WG conform, in
certain extent, to the manifestations of the nonlinear anela
IF peaks appearing in cold-worked Al-Cu and Al-Mg spe
mens around room temperature which were attributed to
dislocation core diffusion. However, it was pointed out th
the physical picture on the basis of the string model is
clear, especially for the transverse core diffusion.

Recently, the diffusion equations of the solute atom alo
the dislocation core were figured out on the basis of
dislocation kink model.6,7 The relaxation time and the relax
ation strength associated with the longitudinal and transv
core diffusion of solute atoms under quasistatic stress h
560163-1829/97/56~1!/12~4!/$10.00
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been computed by analytically solving the diffusion equat
and were found to be nonlinear with respect to the app
stress amplitude. However, the IF and modulus defect
tained by assuming the relaxation process to be nearly a
bye type with nonlinear relaxation time and relaxati
strength are approximate in the case of the amplitu
dependent IF.7 To check the model more quantitatively,
more accurate method must be applied; i.e., these equa
must be solved under the case of sinusoidal external str

In this paper the diffusion equations of the solute ato
along the dislocation core for the three peaks are solved w
the numerical difference method in the case of externa
applied sinusoidal stress. The manifestation of the deri
theoretical curves of the IF and modulus defect is quite d
ferent from that obtained by the approximate method in R
7, but to a greater extent consistent with experimental res
previously obtained.

II. THEORETICAL TREATMENTS

A. Diffusion equation of the solute atom along dislocation core

In the case of theP18 peak, the diffusion equation and it
initial and boundary condition can be rewritten in the follow
ing form when a quasistatic external stress
applied:6 Diffusion equation:

]rL
]t

5
DL1

L2
]

]j S ]rL
]j

2a2jrLD ; ~1!

boundary condition:

F]rL
]j

2a2rLG
j511

5F]rL
]j

1a2rLG
j521

50; ~2!

normalized condition:

E
21

11

LrL~j,t !dj51; ~3!

initial condition:
12 © 1997 The American Physical Society
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rL~j,0!5
1

2L
, ~4!

where

a25
3~sbh!2L3

4PkT
, j5

x

L
, ~5!

andk is Boltzmann constant,T is the absolute temperature
t is the time,b is the magnitude of the Burger’s vector,h is
the height of kinks,L is the dislocation segment length, c
ordinatesx and y are along and perpendicular to the disl
cation line, respectively,DL1 is the longitudinal core diffu-
sion coefficient of the solute atom situated on the middle
the kink, andrL(j,t) is the longitudinal distribution function
of the solute atoms in the dislocation core and relates to
total distribution functionr(j,y,t) by

r~j,y,t !5rL~j,t !A b

2pkT
expF2

b~y2y0!
2

2kT G . ~6!

The anelastic strain can be calculated by

«A~ t !5
3Ls~bh!2L2

4P F791LE
21

11

rL~j,t !j2djG . ~7!

In the case of a sinusoidal external stress, the res
stated above are still true, as long as the changing freque
of the external stress is very low, e.g., in the low-frequen
IF measurement. Therefore, we can simply substitutes with
s5s0 sinvt in Eqs.~1!–~7! in the case of sinusoidal exte
nal stress.

In the case ofP0 andP19 peaks, the diffusion equation an
the initial and boundary conditions can be rewritten as f
lows ~only in the case of sinusoidal external stresss
5s0sinvt!: diffusion equation:

]rL
]t

5
DL2

L2
]

]j S ]rL
]j

2 frLD ; ~8!

boundary condition:

F]rL
]j

2 frLG
j511

5F]rL
]j

1 frLG
j521

50; ~9!

normalized condition:

E
21

11

LrL~j,t !dj51; ~10!

initial condition:

rL~j,0!5
1

2L
, ~11!

where

f52a0
2j sin2vt2

a0
2

2
j cos2f sin2~vt2f!

1g0sin~f!cos~vt2f!, ~12!
f

e

lts
cy
y

-

a0
25

~s0bh!2L3

PkT
, g05

s0bL
2

kT
tanu,

tanf5vtT5
vh2kT

2PLDT
~L22x2!,

and DL2 and DT are the longitudinal and transverse co
diffusion coefficients of the solute atom situated on the
tremities of the kink, respectively.

The total distribution functionr(j,y,t) is now the form

r~j,y,t !5rL~j,t !A b

2pkT
expH 2

b@y2d~ t !#2

2kT J ,
~13!

where

d~ t !5cosf
s0bL

bkT
sin~vt2f!. ~14!

The anelastic strain can be calculated by the equation

FIG. 1. Internal friction and modulus defect curves of theP18
peak vs temperature~a! and strain amplitude~b!. In ~a!, curves 1–3
correspond to the strain amplitude 0.5, 4, and 7.531026, respec-
tively; in ~b!, curves 1–4 correspond to the temperature 300, 3
340, and 360 K, respectively.
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«A~ t !5
Lb

2 E
21

1

djE
2`

`

dy SrL~j,t !rT~j,y,t !

5LL3
s0~bh!2

4P E
21

1

@4j2 sinvt1~12j2!cosf

3sin~vt2f!#rL~j,t !dj1
Ls0~bhL!2

3P
sinvt.

~15!

B. Internal friction and modulus defect
of the P0 , P18 , and P19 peaks

To calculate the IF and modulus defect under a period
external stress,s5s0sinvt, the partial differential equation
~1! or ~8! with its initial and boundary conditions~2!–~5! or
~9!–~12! must be solved numerically, and then the strain p
duced by the sidewise motion of the kink chain as a funct
of time can be obtained from Eq.~7! or ~15!. A definite
difference method is adopted to integrate the longitudi
distribution function with small steps of time andx coordi-
nate, and the IF and modulus defect can thus be compute
the following equations.

The dissipated elastic energy per vibration cycle is

FIG. 2. Internal friction and modulus defect curves of theP0

and P19 peaks vs temperature~a! and strain amplitude~b!. In ~a!,
curves 1–3 correspond to the strain amplitude 0.3, 1, and
31026, respectively; in~b!, curves 1–5 correspond to the temper
ture 320, 330, 340, 350, and 370 K, respectively.
al

-
n

l

by

DW5 R s d«52 R « ds

52s0 (
j50

2p/Dt

cos~ jDt !«~ jDt !Dt.

~16!

The stored elastic energy equals to the work done by
applied stress in the first quarter of a vibration cycle minu
quarter of the dissipated elastic energy:

W5E
0

p/2

s d«2
DW

4

5s0«S p

2Dt D2s0 (
j50

p/2Dt

cos~ jDt !«~ jDt !Dt2
DW

4
.

~17!

Internal friction is by definition

Q215
DW

2pW
. ~18!

.5 FIG. 3. Internal friction and modulus defect curves of theP18
peak vs temperature at various frequencies for two strain am
tudes of 331026 ~a! and 0.531026 ~b!. Curves 1–4 in~a! corre-
spond to different frequencies 0.05, 0.25, 1.25, and 6.25 Hz, res
tively, and curves 1–4 in~b! correspond to different frequencie
0.01, 0.05, 0.25, and 1.25 Hz, respectively.
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Modulus defect is by definition

DM

M
5
2GW

s0
2 21, ~19!

whereDt is the integration step of the time variablet85vt
used in the process of solving the partial differential equat
and«(t8)5«A(t8)1s/G is the total strain.

III. RESULTS

By numerical calculation, we take the typical paramet
in Al crystal: LL250.01, Gb355 eV, andL5103 b. The
measurement frequencyf is set to be 1 Hz. ConcerningDL
andDT , we have

DL15DL10expS 2
HL1

kT D , DL25DL20expS 2
HL2

kT D ,
DT5Dt0expS 2

Ht

kTD ,
and takeHL15HL250.5 eV andHt50.6 eV.8 The values
of DL10, DL20, andDt0 were chosen so that the optimu
temperature ofP0 , and P18 , and P19 peak is, respectively
320, 340, and 360 K ats0'0 ~extrapolated! and f51 Hz.

In Fig. 1 are given the variations of the IF and modul
defect versus temperature~a! and strain amplitude~b! for the
P18 peak. As the strain amplitude increases, theP18 peak in-
creases at first and then decreases in height and ha
changes position, as shown in Fig. 1~a!. This feature of the
P18 peak is contrary to that predicted by the approxim
method in Ref. 7, but does appear in our recent experim
At a very low strain amplitude, theP18 peak is nearly a stan
dard Debye peak as considered approximately in Ref. 7,
at high strain amplitude, theP18 peak is very broad and be
comes asymmetrical, as can be seen apparently in Fig.~a!,
which is in accordance with the experimental results in R
9. The modulus defect increases with the increase of t
perature~a! or strain amplitude~b!. The strain amplitude IF
curve shown in Fig. 1~b! reaches a very low value at th
higher-strain-amplitude side and its peak position shifts
ward a lower strain amplitude as the temperature increa
Although the shift direction of the amplitude peak with tem
n

s

dly

e
t.

ut

f.
-

-
s.

perature is same as that of Ref. 7, its shift amount is m
smaller and is more consistent with the experimental res
of theP18 peak in Al-Mg solid solutions.9

Figure 2 shows the variations of the IF and modulus
fect versus temperature~a! and strain amplitude~b! for P0
and P19 peaks. At a low strain amplitude, the two pea
~P0 andP18! overlap each other. TheP0 peak is very small,
while theP19 peak is relatively large. The modulus defect f
the two peaks increases with the increase of temperature
the strain amplitude increases, theP0 peak shifts toward
lower temperature and increases in height. In contrast,
P19 peak shifts toward higher temperature and decreases.
relatively high strain amplitude, the modulus defect increa
at first and then decreases with the increase of tempera
showing an abnormal effect. In the temperature range of
P0 peak, the amplitude IF curves shown in Fig. 2~b! exhibit
a peak at an appropriate temperature and their shift w
temperature is same as that of theP18 peak in Fig. 1~b!. All of
these characteristics of theP0 andP19 peaks are consisten
with experimental results in Ref. 9. However, the amplitu
IF curves in the temperature range of theP19 peak are rather
erratic, although anomalous amplitude dependence appe

To illustrate the anelasticity exhibited by the IF peaks,
choose theP18 peak as an example. In Fig. 3 shows the var
tion of the IF and modulus defect versus temperature at v
ous measurement frequencies calculated at two strain am
tudes@~a! 331026, ~b! 0.531026#. It can be seen that the
temperature IF peak and modulus defect curve shift tow
higher temperature with an increase of frequency, exhibit
the characteristic of relaxation type. Although the tempe
ture dependence of the peak height at two strain amplitu
is different, as shown in Fig. 3, the apparent activation en
gies at two strain amplitudes calculated by the method
peak temperature shift with frequency are same and b
consistent with the activation energy for dislocation core d
fusion, i.e., 0.5 eV. Therefore the activation energy for d
location core diffusion can be experimentally obtained by
nonlinear anelastic IF measurement.
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6T. S. Kêand Q. F. Fang, Phys. Status Solidi A158, 57 ~1996!.
7Q. F. Fang and T. S. Keˆ, Phys. Status Solidi A158, 405 ~1996!.
8Q. Tan and T. S. Keˆ, Phys. Status Solidi A122, K25 ~1990!.
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