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Slave-boson mean-field theory of the antiferromagnetic state
in the doubly degenerate Hubbard model: The half-filled case

Hideo Hasegawa
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184, Japan

~Received 6 February 1997!

The antiferromagnetic ground state of the half-filled Hubbard model with the doubly degenerate orbital has
been studied by using the slave-boson mean-field theory, which was previously proposed by the present author.
Numerical calculations for the simple cubic model have shown that the metal-insulator transition does not take
place except at the vanishing interaction point, in strong contrast with its paramagnetic solution. The energy
gap in the density of states of the antiferromagnetic insulator is much reduced by the effect of electron
correlation. The exchange interactionJ plays an important role in the antiferromagnetism: although forJ
50 the sublattice magnetic momentm in our theory is fairly smaller thanmHFA obtained in the Hartree-Fock
approximation,m for J/U.0.2 ~U is the Coulomb interaction! is increased to become comparable to
mHFA . Surprisingly, the antiferromagnetic state is easily destroyed if a small,negativeexchange interaction
(J/U,20.05) is introduced.@S0163-1829~97!06127-4#
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I. INTRODUCTION

Much progress has been made in our theoretical un
standing on the effect of electron correlation in systems s
as transition metals and high-Tc materials. Most of the the
oretical studies have been made for the single-band Hub
model1–3 ~SHM! for its simplicity. Actual systems, howeve
inevitably have the orbital degeneracy. It is necessary to
vestigate the role of the orbital degeneracy and the effec
Hund-rule coupling due to the exchange interaction fo
better understanding on strongly correlated systems.

In the last few years the Hubbard model with orbital d
generacy has been extensively studied by using var
methods such as the Gutzwiller approximation~GA!,4–6 the
slave-boson theory,7,8 the dynamical mean-field
approximation,9 and the projective self-consistent method10

The original GA proposed by Chao and Gutzwiller11 was
reformulated in Refs. 4–6. In a previous paper7 ~referred to
as I hereafter!, the present author developed the slave-bo
functional-integral method for the Hubbard model with
arbitrary, orbital degeneracy, by employing the method p
posed by Dorin and Schlottman12 for the Anderson lattice
model. Fre´sard and Kotliar8 independently developed an a
ternative slave-boson functional integral method. Th
slave-boson theories are the simple generalization of
Kotliar-Ruckenstein theory for the SHM~Ref. 13! to that for
the degenerate Hubbard model, and their saddle-point
proximation is equivalent to the GA.4–6,11In I we have stud-
ied the metal-insulator~MI ! transition of the doubly degen
erate Hubbard model~DHM! in the paramagnetic state. Th
MI transition takes place when the interaction strength
increased,4,6,9,10 just as in the case of the SHM.14 This MI
transition is shown to become the first-order one in the h
filled case when the exchange interaction is included.6,7

We should, however, recall the following facts havin
been established for the half-filled SHM:~a! in the paramag-
netic (P) state, the MI transition is not realized in the a
vanced theory going beyond the GA,15,16 except for the
560163-1829/97/56~3!/1196~8!/$10.00
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infinite-dimensional case (d5`).17 ~b! In the antiferromag-
netic ~AF! state, the MI transition occurs in neitherd51,2,
nor 3 ~Ref. 18! in the advanced theory, nor ind5` even
within the GA.19–22 These facts suggest that it is indispen
able to take into account the antiferromagnetic state in
cussing the MI transition in DHM.

One of the advantages of the slave-boson functional in
gral method over the GA is that it has a wider applicabil
than the GA. For example, we can deal with the system w
the complicated magnetic structures, such as the antife
magnetic state, by using the Green’s-function formalism.
will study in this paper the antiferromagnetic state of t
DHM by employing our slave-boson mean-field theory,7 in
order to clarify the above-mentioned issue relevant to the
transition and the roles of the degeneracy and the excha
interaction.

This paper is organized as follows: In Sec. II, we pres
a basic formulation of our slave-boson saddle-point appro
mation to deal with the antiferromagnetic state in the DH
after briefly reviewing I. Numerical calculations for th
simple-cubic lattice are presented in Sec. III. Section IV
devoted to conclusion and supplementary discussion.

II. FORMULATION

We adopt the Hubbard model with arbitrary, orbital d
generacyD, whose Hamiltonian is given by

H5(
s

(
i j

(
mm8

t i j
mm8cims

† cjm8s

1
1

2 (
i

(
~m,s!Þ~m8,s8!

Umm8
ss8 cims

† cimscim8s8
† cim8s8 ,

~1!

wherecims is an annihilation operator of an electron with a
orbital indexm and spins(5↑,↓) on the lattice sitei . The
1196 © 1997 The American Physical Society
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56 1197SLAVE-BOSON MEAN-FIELD THEORY OF THE . . .
electron hopping is assumed to be allowed only between

same subband:t i j
mm85t i jdmm8 for simplicity. The on-site in-

teractionUmm8
ss8 is given by

Umm8
ss8 5H U05U

U15U22J
U25U23J

for m5m8, sÞs8
for mÞm8, sÞs8
for mÞm8, s5s8,

~2!

~3!

~4!

whereU andJ are Coulomb and exchange interactions,
spectively.
e

-

In I we employed the boson operator introduced by Do
and Schlottman,12 and used the static approximation to g
the functional integral representation of the partition functi
given by7

Z5E DjE DnE DmE DnE )
l52

2D

Db~ l !exp~2bF!,

~5!

with
he
e2bF5expS 2b F(
i

(
m

~j immim2n imnim!1F0G DTr exp~2bHeff!, ~6a!

F05(
i

(
l52

2D

(
m1s1, . . . ,mls l

(
~ms,m8s8!

Umm8
ss8 bi ;m1s1, . . . ,mls l

~ l !† bi ;m1s1, . . . ,mls l
~ l ! . ~6b!

where the effective Hamiltonian is given by

Heff5(
s

(
i j

(
m

zimszjmst i j cims
† cjm8s1(

s
(
i

(
m

~n im2sj im!cims
† cims , ~7!

with

zims52~22nim!21/2nim
21/2FAeipims1Apimsbi

~2!1(
l53

2D

~bi
~ l21!

•bi
~ l !!msG . ~8!

In Eqs.~5!–~8!, Dj5P imj im etc.,j im (n im) is the exchange~charge! field in the subbandm at the sitei , andmim (nim) is the
magnetic moment~electron number!. The fourth summation in Eq.~6b! is performed over a pair of indices (ms,m8s8) with
(ms)Þ(m8s8) in the configuration: {m1s1,m2s2, . . . ,mls l} occupied byl electrons. The boson operatorbi

( l ) ,

bi
~ l ![bi ;m1s1 ,m2s2 ,...,mls l

~ l ! , ~9!

projects to the configuration ofl electrons with pairs of orbital and spin indices$ms%. Its full contraction, (bi
( l )bi

( l )), and
partial contraction, (bi

( l )
•bi

( l ))ms , are defined by

~bi
~ l !bi

~ l !![ (
m1s1 ,m2s2 ,...,mls l

bi ;m1s1 ,m2s2 ,...,mls l
~ l ! bi ;m1s1 ,m2s2 ,...,mls l

~ l ! , ~10!

~bi
~ l !bi

~ l !!mnsn
[ (

m1s1 ,m2s2 ,...,mn21sn21 ,mn11sm111,...,mls l

bi ;m1s1 ,m2s2 ,...,mls l
~ l ! bi ;m1s1 ,m2s2 ,...,mls l

~ l ! . ~11!

The empty state (ei) and singly occupied one with as spin electron (pims) are expressed in terms ofnim , mim , andbi
( l ) for

l>2 as7

ei5~bi
~0!bi

~0!!512(
m

nim1(
ms

(
l52

2D

@~ l21!/ l #~bi
~ l !bi

~ l !!ms , ~12!

pims5~bi
~1!bi

~1!!ms5~nim1smim!/22(
l52

2D

~bi
~ l !
•bi

~ l !!ms . ~13!

The expression for the functional integral given by Eqs.~5!–~13! is a generalization of the single-band model to t
degenerate-band model,21 and it has a transparent physical meaning.

When we apply our slave-boson functional integral method developed in I to the DHM (D52), the functional integral
becomes

Z5E DjE DmE DnE DnE Dd0E Dd1E )
s

DdsE )
s

DtsE Df exp@2b~F01F11F2!#, ~14!
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F05(
i

@2U0di012U1di11U2~di↑1di↓!12~U01U11U2!~ t i↑1t i↓1 f i !#, ~15!

with

F15(
im

@j immim1~m2n im!nim#, ~16!

F25E de f ~e!~21/p!Im Tr ln G~«!. ~17!

In Eqs. ~14!–~17!, f (e) is the Fermi-distribution function, anddi , t i , and f i denote the states with double, triple, an
quadruple occupations, respectively. In particular for doubly occupied states, we take into account the three kinds of
rations:di0 for a pair of electrons on the same orbital with opposite spin,di1 on the different orbital with opposite spin, an
dis on the different orbital with same spins.

The one-particle Green functionG(«) in Eq. ~17! is expressed as

G~«!5~«2Heff!
21, ~18!

where the effective HamiltonianHeff is given by

Heff5(
s

(
i j

(
m

qms
i j t i j cims

† cjms1(
s

(
i

(
m

~n im2sj im!cims
† cims , ~19!

the band-narrowing factorqms
i j being given by

qms
i j 5zimszjms , ~20!

with

zims5
2@Apis~Aei1Adis!1~Adi01Adi1!~Api2s1At is!1At i2s~Adi2s1Af i !#

~nim1smim!1/2~22nim2smim!1/2
, ~21!

ei5122nim12di012di11di↑1di↓14~ t i↑1t i↓!13 f i , ~22!

pims5~nim1smim!/22~di01di11dis!22t is2t i2s2 f i . ~23!
nt
e

ds

w

ne

le-
ia-
s:
In order to discuss the AF state, we divide the crystal i
two sublattices,A andB. We assume that for the AF wav
vector Q, the relation«k1Q52«k holds where«k is the
Fourier transform of the transfer integralt i j . We takej im in
Eq. ~19! as the staggered field given byj im5j (2j) for i
PA ( iPB), with the exchange fields in the two subban
assumed to be the same. The magnitude ofj will be deter-
mined by the variational condition, as will be shown belo
@Eq. ~30!#.

Since the effective transfer integral in Eq.~19! is ex-
pressed as a product form:zimst i j zjms , we can express the
one-electron Green function in terms of the locators defi
by23

Xims5~«2n im1sj im!/r ims, ~24!

where r ims5zims
2 5r Ams (r Bms) for iPA ( iPB). After a

simple calculation, we getF2 , given by

F25E d« f ~«!~1/p!

3Im (
mks

ln$qms
2 @XAms~«!XBms~«!2«k

2#%, ~25!
o

d

whereqms is given by

qms5zAmszBms5zmszm2s5Armsrm2s , ~26!

becausezAms5zBm2s5zms and r Ams5r Bm2s5rms .
The mean-field free energy is obtained from the sadd

point values of the integration variables for which the var
tional conditions yield the following simultaneous equation

nim5(
s

nims , ~27!

mim5(
s

snims , ~28!

m2n im1(
s

Rims~]r ims /]nim!50, ~29!

j im1(
s

Rims~]r ims /]mim!50, ~30!

2U01(
ms

Rims~]r ims /]di0!50, ~31!
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2U11(
ms

Rims~]r ims /]di1!50, ~32!

U21 (
ms8

Rims8~]r ims8 /]dis!50, ~33!

2~U01U11U2!1 (
ms8

Rims8~]r ims8 /]t is!50, ~34!

2~U01U11U2!1(
ms

Rims~]r ims /] f i !50, ~35!

In Eqs.~27!–~35!, Rims andnims are given by

Rims5]F2 /]r ims5E d« f ~e!~21/p!

3Im~Vms /rms!F0~Vms!, ~36!

nims5E d« f ~«!r ims~«!, ~37!

where the local densities of states at the site belonging
A andB sublattices are expressed as
ft

in
th

f-

n

m
e.

ex
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n-
e
-
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o
u
rg
to

r ims~«!52~pr Ams!21Im KAms~«! ~ iPA!,

52~pr Bms!21Im KBms~«! ~ iPB!, ~38!

with

KAms~«!5@XBms~«!/XAms~«!#1/2F0~Vms!, ~39!

KBms~«!5@XAms~«!/XBms~«!#1/2F0~Vms!, ~40!

Vms~«!5@XAms~«!XBms~«!#1/2, ~41!

F0~«!5E d«8r0~«8!/~«2«8!, ~42!

r0(«) being the unperturbed density of states.24

III. NUMERICAL CALCULATIONS

Numerical calculations have been performed for t
simple-cubic model with nearest-neighbor hoppingst. Input
parameters for our calculations are the noninteracting den
of states,r0(«), the Coulomb and exchange interactions,U
andJ, and the number of electrons per subband,n, which is
unity for the half-filled case. We employed the approxima
analytic expression forr0(«) of the simple-cubic lattice,
given by25
r0~«!5H A@92v2#1/22C@12v2#1/2 for uvu<1

A@92v2#1/22B@12~ uvu22!2#1/2 for 1,uvu<3

0 for uvu.3,

~43!
he
-

e

where v5«/2t, A/2t50.101081, B/2t50.128067, and
C/2t50.02. The energy and the interactions are herea
measured in units of half the total bandwidth,W512t. The
ground-state energy without interactions calculated by us
Eq. ~43! is «0520.3349, which is in good agreement wi
the exact value of20.3341.16 Since the relationse5 f and
ps5ts hold for the half-filled case, we have to sel
consistently solve Eqs.~27!–~42! for nine quantities:m, j,
d0 , d1 , d↑ , d↓ , t↑ , t↓ , and f , by using the Newton-Rapso
method. We performed the integrations given by Eqs.~36!
and~37! with the use of the contour integral along the co
plex energy axis,26 in order to reduce the computational tim

A. J50 case

We first show the calculated results for the vanishing
change interaction (J50), for whichd0 andd1 are equiva-
lent. Figure 1 shows the sublattice magnetizationm as a
function ofU. The antiferromagnetic state is realized for
infinitesimally small interaction. The magnetic moment i
creases with increasingU and asymptotically approaches th
saturated value of 1.0mB asU→`. Because of large fluctua
tions,m in GA is reduced by more than 50% than that in t
Hartree-Fock approximation~HFA! at U,1.

Figure 2 shows the spin-dependent local densities
states forU51.0. They have traces of the van Hove sing
larity of the simple-cubic density of states and clear ene
er

g

-

-

f
-
y

gaps characteristic of the antiferromagnetic insulator. T
energy gap in the GA (DGA50.114) is much reduced com
pared with that in the HFA (DHFA50.764). TheU depen-
dence of the energy gap is plotted in Fig. 1. BothDGA and

FIG. 1. The sublattice magnetizationm and the energy gapD as
a function ofU of the DHM with J50 in the GA~solid curve! and
in the HFA ~dotted curve!; the results of the SHM are shown by th
dashed curve~Ref. 21!.
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DHFA increase with increasingU becauseD52j, j being the
staggered exchange field. The ratio defined bya
5DGA /DHFA5jGA /jHFA is unity in the limits ofU→0 and
U→`, and it has a broad minimum ofa50.12 atU;0.6,
above whicha again increases:a50.15, 0.29, and 0.54 fo
U51.0, 1.5, and 2.0, respectively.

The band-narrowing factorq (5qm↑5qm↓ in our half-
filled model!, is shown as a function ofU in Fig. 3. In the
P state,q monotonously decreases with increasingU as
shown by the dotted curve, and it vanishes atU5Uc
512«054.019, whereUc denotes the critical interaction fo
the MI transition.4,6,7 On the contrary, theU dependence o
q in the AF state is quite different from that in theP state.
WhenU is increased from the zero value,q of the AF state

FIG. 2. The spin-dependent local densities of states forU
51.0 andJ50.0: ↑-spin ~solid curve! and ↓-spin ~dashed curve!
components in the GA, and↑-spin ~dot-dashed curve! and ↓-spin
~dotted curve! components in the HFA.

FIG. 3. The band-narrowing factorq as a function ofU of the
DHM with J50 in the AF state~solid curve! and in theP state
~dotted curve!, the result of the SHM in the AF state being show
by the dashed curve~Ref. 21!.
gradually departs from that of theP state, and it has the
minimum value of 0.837 atU51.4, above whichq increases
again. The effect of electron correlation on the ban
narrowing factor is not considerable although its effect
the energy gap~or the exchange field! is significant.

TheU dependence of the occupancies is shown in Fig
At U50 all the occupancies are 0.0625 (51/24). When the
U value is increased, onlyd↑ considerably increases, ap
proaching unity forU5`: d0(5d1) andt↑ have small peaks
at U;1 but decrease for largerU.

The U dependence of the ground-state energiesE is
shown in Fig. 5. The ground-state energy of the AF st
(EAF) calculated by the GA is not only lower than that of th
P state (EP) obtained by the GA but also lower than that
the AF state calculated by the HFA. The differenceDE
5EAF(GA)2EAF(HFA) expresses the energy gain by i

FIG. 4. The occupancies as a function ofU with J/U50, the
result of d↑ divided by a factor of ten being plotted by the do
dashed curve.

FIG. 5. TheU dependence of the ground-state energiesE of the
AF state withJ50 in the GA~solid curve! and in the HFA~dashed
curve!, and their difference:DE5EAF~GA!2EAF~HFA!. The result
of theP state in the GA is shown by the dotted curve.
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56 1201SLAVE-BOSON MEAN-FIELD THEORY OF THE . . .
cluding the effect of fluctuations, and its maximum value
20.056 atU50.95. The HFA for the Ne´el state is a good
description of the half-filled DHM in the limit ofU5`.

B. Finite J case

Next we introduce the exchange interactionJ into our
calculation. Figure 6 shows the sublattice magnetization
function of U1J for various choices of the ratio:J/U
50.1, 0.2, and 0.3. Note that the magnetization in the H
is universal when it is plotted againstU1J because its ex-
change field is given byjHFA5(1/2)(U1J)mHFA . As the
value of J/U is increased, the sublattice magnetization
increased as expected. This fact is more clearly seen in
7, where the sublattice magnetization and the ba
narrowing factor forU51.0 are plotted as a function ofJ.

FIG. 6. The sublattice magnetizationm as a function ofU1J of
the DHM with variousJ/U values in the GA~solid curve! and in
the HFA ~dotted curve!, the result of the SHM being shown by th
dashed curve~Ref. 21!.

FIG. 7. The sublattice magnetization forU51.0 as a function of
J in the GA ~solid curve! and in the HFA~dotted curve!; the result
of the band narrowing factor is also plotted~dot-dashed curve!.
a

s
ig.
-

The sublattice magnetization of the GA, particularly neaJ
50, is much increased when theJ value is increased, al
though such an increase inm is realized also in the HFA
result, but very small.

The interaction dependence of the band-narrowing fac
is shown in Fig. 8. It was recently pointed out6,7 that, when
J is finite, the first-order MI transition is realized in theP
state, as shown by dotted curves; it occurs atU1J52.21,
1.95, and 1.83 forJ/U50.1, 0.2, and 0.3, respectively. Ou
calculation shows that the situation is quite different in t
AF state:q decreases only slightly and never vanishes. T
minimum values ofq are 0.939, 0.965, and 0.975 forJ/U
50.1, 0.2, and 0.3, respectively.

Figure 9 shows the occupancies as a function ofU1J in
the typical case ofJ/U50.1. ForJ.0 the degeneracy be
tweend0 andd1 is removed and we getd0,d1 . When the

FIG. 8. The band-narrowing factorq as a function ofU1J of
the DHM with variousJ/U values in the AF state~solid curve! and
in theP state~dotted curve!; the result of the SHM in the AF state
is shown by the dashed curve~Ref. 21!.

FIG. 9. The occupancies forJ/U50.1 as a function ofU1J;
the result ofd↑ divided by a factor of ten is plotted by the do
dashed curve.
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1202 56HIDEO HASEGAWA
interaction is increased, onlyd↑ has an appreciable value
U1J.0.5, as in the case shown in Fig. 4.

Figure 10 shows the ground-state energies,EAF(GA),
EAF(HFA), andEP(GA), as a function of the interaction
We realized thatEAF(GA) is the lowest among the three fo
any U investigated. The maximum difference ofDE is
20.029 atU50.7.

IV. CONCLUSION AND DISCUSSION

To summarize, we have studied the antiferromagn
ground state in the DHM, employing our slave-boson me
field theory.7 Numerical calculations have shown that the M
transition does not take place in the antiferromagnetic s
tion for the half-filled DHM, which arises from a perfec
nesting characteristic of the model. This is in contrast w
the result in its paramagnetic solution,6,7 but is the same as
the half-filled SHM,21 as was discussed in the Introductio
Except atU5J50, the stable state is the antiferromagne
insulator, whose energy gap is much reduced by elec
correlation.

It is worth making a brief comparison between the resu
of the DHM and SHM. Dashed lines in Figs. 1, 3, 6, and
show the interaction dependence ofm, D, and q of the
SHM.21When we compare these results with the correspo
ing ones of the DHM, we notice that both the results are v
similar provided the exchange interaction is not small;J/U
.0.2. WhenJ is small, however,m, D, andq in the DHM
are fairly smaller than those in the SHM. Figure 7 shows t
the exchange interaction effectively works to increase
magnitude of sublattice moment in the DHM.

In order to more closely investigate the role of the e
change interaction on antiferromagnetism in the DHM,
have repeated a numerical calculation for thenegative J,
althoughJ is conventionally taken to be positive. We notic
in Fig. 7 that when the negative exchange interaction is
cluded, the sublattice magnetization forU51.0 is consider-
ably reduced and it disappears forJ/U,20.05. Figure 11

FIG. 10. The interaction dependence of the ground-state e
gies of the AF state withJ/U50.1 in the GA~solid curve! and in
the HFA ~dashed curve!, and their difference:DE5EAF~GA!
2EAF~HFA!. The result of theP state in the GA is shown by the
dotted curve.
ic
-

-

h

n

s

d-
y

t
e

-
e

-

shows the sublattice magnetization and the band-narrow
factor as a function ofU1J for J/U520.02. When the
interaction is increased, the magnetization first increase
U1J,1.2 but decreases at larger interaction. Surprisin
the antiferromagnetic state disappears atU1J>2.1, which
is in strong contrast with the HFA result shown by the dott
curve. Figure 12 shows the interaction dependence of
occupancies. The behavior of the double occupancies in
negativeJ case is rather different from that in the positiv
J case shown in Fig. 9. WhenJ is negative, the doubly
occupied state with the opposite spin between the differ
subbands is less favorable than that within the same subb
Furthermore thetriplet state expressed byd↑ ~or d↓! be-
comes less stable than thesinglet stateexpressed byd0 or
d1 , which works to suppress the antiferromagnetism. We
d0.d1.d↑ (5d↓) in the paramagnetic state atU1J
.2.1. The first-order MI transition occurs atU1J52.68. A

r- FIG. 11. The sublattice magnetizationm as a function ofU
1J with J/U520.02 in the GA ~solid curve! and in the HFA
~dotted curve!; the band narrowing factorq is shown by the dot-
dashed curve.

FIG. 12. The occupancies forJ/U520.02 as a function ofU
1J.
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56 1203SLAVE-BOSON MEAN-FIELD THEORY OF THE . . .
material with the anti-Hund-rule coupling (J,0) would
show unusual behavior if it exists.

The model Hamiltonian adopted in our study@Eq. ~1!# is
relevant to systems with partially filled narrow degener
bands. A typical example is V2O3, which is an antiferromag-
netic insulator~AFI! in the ground state and which shows t
MI transition between AFI, paramagnetic metal, and pa
magnetic insulator as a function of the temperature, the p
sure, and/or the chemical substitution. This phase diag
can be qualitatively understood with the SHM.21,27 The de-
generate Hubbard model has more variety than the S
because it has an additional, orbital degree of freedom
may show the orbital ordering besides the spin ordering.
e

-
s-
m

M
It
e

stability of the different phases in the degenerate band
pends not only on the values of the various interactions
cluded in the model Hamiltonian but also on the temperatu
It would be interesting to investigate the temperatu
interaction phase diagram of the DHM by generalizing o
approach21 in which the effects of electron correlation an
thermal spin fluctuations are properly taken into account
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