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Slave-boson mean-field theory of the antiferromagnetic state
in the doubly degenerate Hubbard model: The half-filled case

Hideo Hasegawa
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184, Japan
(Received 6 February 1997

The antiferromagnetic ground state of the half-filled Hubbard model with the doubly degenerate orbital has
been studied by using the slave-boson mean-field theory, which was previously proposed by the present author.
Numerical calculations for the simple cubic model have shown that the metal-insulator transition does not take
place except at the vanishing interaction point, in strong contrast with its paramagnetic solution. The energy
gap in the density of states of the antiferromagnetic insulator is much reduced by the effect of electron
correlation. The exchange interactidnplays an important role in the antiferromagnetism: althoughJfor
=0 the sublattice magnetic momemtin our theory is fairly smaller tham,, obtained in the Hartree-Fock
approximation,m for J/U>0.2 (U is the Coulomb interactionis increased to become comparable to
Myea - Surprisingly, the antiferromagnetic state is easily destroyed if a smeglativeexchange interaction
(J/JU<—0.05) is introduced[S0163-18207)06127-4

I. INTRODUCTION infinite-dimensional cased= ).’ (b) In the antiferromag-
netic (AF) state, the MI transition occurs in neithée= 1,2,

Much progress has been made in our theoretical undemnor 3 (Ref. 18 in the advanced theory, nor iti=« even
standing on the effect of electron correlation in systems suchithin the GA*~?2These facts suggest that it is indispens-
as transition metals and high: materials. Most of the the- able to take into account the antiferromagnetic state in dis-
oretical studies have been made for the single-band Hubbaf#ssing the MI transition in DHM.
model—2 (SHM) for its simplicity. Actual systems, however, ~ One of the advantages of the slave-boson functional inte-
inevitably have the orbital degeneracy. It is necessary to ingral method over the GA is that it has a wider applicability
vestigate the role of the orbital degeneracy and the effect df'an the GA. For example, we can deal with the system with
Hund-rule coupling due to the exchange interaction for 4N€ complicated magnetic structures, such as the antiferro-
better understanding on strongly correlated systems. magnetic state, by using the Green’s-function formalism. We

In the last few years the Hubbard model with orbital de_wiII study in this paper the antiferromagnetic state of the

generacy has been extensively studied by using varioulgHNI by employing our slave-boson mean-field thebi,

: S -6 order to clarify the above-mentioned issue relevant to the Ml
methods such as the §3 utzwiller approm_mat(@A), the transition and the roles of the degeneracy and the exchange
slave-boson  theory® the dynamical mean-field

. . " . interaction.
approxmatlong, and the projective self-consistent methdd. This paper is organized as follows: In Sec. II, we present

The original GA proposed by Chao and Gutzwiewas 4 pasic formulation of our slave-boson saddle-point approxi-
reformulated in Refs. 4-6. In a previous papgeferred to  mation to deal with the antiferromagnetic state in the DHM,
as | hereaftgr the present author developed the slave-bosongter priefly reviewing 1. Numerical calculations for the
functional-integral method for the Hubbard model with ansimple-cubic lattice are presented in Sec. Ill. Section IV is
arbitrary, orbital degeneracy, by employing the method prodevoted to conclusion and supplementary discussion.
posed by Dorin and Schlottmé&nfor the Anderson lattice

model. Freard and Kotlidt independently developed an al-

ternative slave-boson functional integral method. These Il. FORMULATION

‘ngi‘: rbgi%rlletr?setgir:\etshg?y ;gftr?émspﬁemgein%alti;?gg? fc?rf the \ve adopt the Hubbard model with arbitrary, orbital de-

the degenerate Hubbard model, and their saddle-point ag_eneracyD, whose Hamiltonian is given by

proximation is equivalent to the G&A®*In | we have stud-

ied the metal-insulatofMl) transition of the doubly degen- H=S S S mmof o

erate Hubbard mod€DHM) in the paramagnetic state. The - - ij Yimevjm'o

MI transition takes place when the interaction strength is

increased;®*just as in the case of the SHM.This MI 1

transition is shown to become the first-order one in the half- t3 Z >

filled case when the exchange interaction is inclutied.
We should, however, recall the following facts having @

been established for the half-filled SHK&) in the paramag-

netic (P) state, the MI transition is not realized in the ad- wherec;,,, is an annihilation operator of an electron with an

vanced theory going beyond the GA!® except for the orbital indexm and spina(=1,|) on the lattice sité. The

o i mn

oo’ T
Umm’cimacimocim’g—’cim' !y

(m,o)#(m’,a")
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electron hopping is assumed to be allowed only between the In | we employed the boson operator introduced by Dorin
same subband?™ =t;; 5, for simplicity. The on-site in- and Schlottman? and used the static approximation to get
' J the functional integral representation of the partition function

oo’

teractionU . is given by given by
Uo=U for m=m’, o#o’ (2) 2D
U;(rrn': U,=U-23 for m#m’, o#0o’ (3) Z:ngf va ij DnjH Db(l)exrx_ﬂq)),
U,=U-3J for m#m’, o=0¢’, (4) =2
5
whereU andJ are Coulomb and exchange interactions, re- ©
spectively. with
e’”’=exp(—ﬁ {Z 2 (&mMin= VimNim) + @o | | Tr exp(— BHer), (63)
2D
(DOZZ E 2 E U;{rm'bi(;ll)‘r‘lrlrrl ..... m|rr|bi(;ll?n1(rl ..... myo (Gb)
i =2 moq, ..., Mo (mo,m'a’)
where the effective Hamiltonian is given by
Heﬁzz ; % ZimrrzjmrrtijCiTmaij’rr_FE 2| % (Vim_o'fim)ciTmoCim(rv (7)
with
2D
Zimozz(z_nim)llznimllz[ \/eipima+ pimabi(2)+2:3 (bglil)'bi(l))ma . (8)

In Egs.(5)—(8), D&=11;néim €tc.,&m (vim) is the exchangécharge field in the subbandh at the site, andm,, (n;;,) is the
magnetic momentelectron number The fourth summation in Ed6b) is performed over a pair of indicesng,m’ ') with
(ma)#(m’ ') in the configuration: fn;o;,m,0, . .. Moy} occupied byl electrons. The boson operataff’ ,

b{'=b{!) 9

|;mlol,m2(r2 ..... mla'l'

projects to the configuration df electrons with pairs of orbital and spin indicgmia}. Its full contraction, b{"b{"’), and
partial contraction, i§"-b{")) ., are defined by

(b’b= X T A« A (10

myoq,Mooy, ..., myoy L Terer Tl L e e
OO _ 2 (0] (M
(bi bi )mnrrn_ bi;mlol,m202 ..... m|(r|bi;m1(rl,m202 ..... mo* (11)
Myo1,Mp072, My _107-1,Mn4+ 10 m411,-..M 0

The empty stateq|) and singly occupied one with @ spin electron g;,,,) are expressed in terms of,,, M;,, andbi(') for
=2 ad

2D
&=(b/7b(")=1-2 nin+ X X [(1= 1160 ), (12
m mo |1=2
2D
Pimo= (BD{")mg= (Nim + oMi)/2= 2 (B} b))y (13
=2

The expression for the functional integral given by E¢9—(13) is a generalization of the single-band model to the
degenerate-band modéland it has a transparent physical meaning.

When we apply our slave-boson functional integral method developed in | to the OBH¥2(), the functional integral
becomes

z:f Dgf DmJ DVJ Dnj DdOJ Ddljl(_r[ Dd, H Dth Df exd — B(Py+ D, +Dy)], (14)
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®o= 2, [2Uodjo+2U di +U,(di; +di ) +2(Ug+ U+ Up) (4 +t + )], (15)

with
<1>1=% [&imMim+ (= Vi) Nin ], (16)
(I)zzf de f(e)(—1/m)Im TrIn G(eg). (17

In Egs. (14)—(17), f(e) is the Fermi-distribution function, and;, t;, and f; denote the states with double, triple, and
guadruple occupations, respectively. In particular for doubly occupied states, we take into account the three kinds of configu-
rations:d;, for a pair of electrons on the same orbital with opposite spipon the different orbital with opposite spin, and
d;, on the different orbital with same spin
The one-particle Green functid@(e) in Eq. (17) is expressed as
G(s)=(s—Hen) ™, (18)

where the effective HamiltoniaH o is given by

Her=2 2 2 Gt ClmoCimot 2 2 2 (Vim0 6im) Cim Cimer (19

the band-narrowing facthinjw being given by

qi‘]j’]o': ZimgZjmo » (20)

with

_ 2[Vpio(Ver+ Vdig) + (Vig+ Vi) (Vpi— o Vi) + V- (Vi + VF)]

(21)

mo (Nim+ 0'mim)llz(z_ Nim— O'mim)l/2
ei: 1_2nim+ 2d|o+2d|l+d|T+d|l+4(t|T+t|l)+3f| y (22)
Pimo= (Nim+0Min)/2—=(dio+diy +dig) =2t , =t — f;. (23

In order to discuss the AF state, we divide the crystal intowhereq,,, is given by
two sublatticesA andB. We assume that for the AF wave
vector Q, the relatione. o= —ey holds wheregy is the AUmo=ZamoZBmo = ZmoZm—o= N mol m—o » (26)
Fourier transform of the transfer integtgl. We takeé;, in
Eqg. (19) as the staggered field given By,=¢& (—¢) for i
e A (i e B), with the exchange fields in the two subbands
assumed to be the same. The magnitudé€ wfll be deter-
mined by the variational condition, as will be shown below
[Eq. (30)].

Since the effective transfer integral in E(L9) is ex- Nim= 2 Nime » (27
pressed as a product form;,,ti;zjm,, We can express the 7
one-electron Green function in terms of the locators defined

becausaAmU’: ZBm—o~ Zmo and rAm(r= er—U'z rmo' .

The mean-field free energy is obtained from the saddle-
point values of the integration variables for which the varia-
tional conditions yield the following simultaneous equations:

by23 I"r]imzz 0Nime (28)
Xime= (&= Vim T 0&im)/Timos (24)
wWhere rime=22,=" amo (Tamo) fOr i €A (i eB). After a /-L_Vim"_; Rime(9rime/ INim) =0, (29)

simple calculation, we geb,, given by

(I)Z:f de f(8)(1/7T) gim—i_; Rimo(ﬁrimalamim)zoa (30)

X1m zk: IN{a%,[ Xame(&)Xeme(8) — €&}, (25 2Ug+ X Rimo(dFime/ddig) =0, (31
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Pima(8) == (7T ame) 1M Kame(&) (i €A),

2U;+ X Rime(Time/ddi) =0, (32

e ' — — (T amy) 1M Kgno(e)  (iB), (38)
with
U”% Rimo (Mima /301) =0, 33 K amo(8) =[Xamo(8)/ Xamo(£)1Y2F o(Qmy),  (39)
Kemo(8) =[Xame(8)/ Xama(£) 1Y2F o(Qmy),  (40)
2(Uo+Us+U2)+ 2 Rimgr (Fimgr [ti5) =0, (34) O o)X ()Xo () ]2 )
mo’ mol€) =L AAmMme\ € ) ABme\ € ’

2(Ug+ U1+U2)+m20 Rima(rime/9f;)=0, (35 Fo(s):f de'po(e’)(e—¢'), (42

In Egs.(27)~(35), R, andn;, are given by po(e) being the unperturbed density of statés.

Ill. NUMERICAL CALCULATIONS

Rime =D, /3r; (,:fd f -1 . .
m 27 7m s (&) ™ Numerical calculations have been performed for the

simple-cubic model with nearest-neighbor hoppihgfput
parameters for our calculations are the noninteracting density
of states,pq(e), the Coulomb and exchange interactiobs,
nim(,=f de f(&)pims(€), (37) andJ, and the number of electrons per subbamdwhich is
unity for the half-filled case. We employed the approximate,
where the local densities of states at the site belonging tanalytic expression fopg(e) of the simple-cubic lattice,

le(Qma'/rmo')FO(Qmo')l (36)

A andB sublattices are expressed as given by®
|
A[9— w?]Y2—C[1— w?]}? for |w|<1
pole)=4 A[9—w?]Y¥*-B[1—-(Jo|-2)2]"?  for 1<|w|<3 (43
0 for |w|>3,

where w=¢/2t, A/2t=0.101081, B/2t=0.128067, and gaps characteristic of the antiferromagnetic insulator. The
C/2t=0.02. The energy and the interactions are hereafteenergy gap in the GAXg,=0.114) is much reduced com-
measured in units of half the total bandwidiN=12t. The pared with that in the HFA £,,ro=0.764). TheU depen-
ground-state energy without interactions calculated by usinglence of the energy gap is plotted in Fig. 1. Bdthg, and

Eq. (43) is eg=—0.3349, which is in good agreement with

the exact value of-0.33411° Since the relatione=f and

p,=t, hold for the half-filled case, we have to self- 0 2
consistently solve Eq€27)—(42) for nine quantitiesm, &, | — DHmiglF\A A
do, dy, dy, d, t;, t, andf, by using the Newton-Rapson - EHM(GA)) T

method. We performed the integrations given by EG$)
and(37) with the use of the contour integral along the com- -
plex energy axig®in order to reduce the computational time.

€05 |-
A. J=0 case

We first show the calculated results for the vanishing ex-
change interactionJ=0), for whichd, andd, are equiva-
lent. Figure 1 shows the sublattice magnetizationas a
function of U. The antiferromagnetic state is realized for an L
infinitesimally small interaction. The magnetic moment in- 00
creases with increasing and asymptotically approaches the "o
saturated value of 105 asU—». Because of large fluctua-
tions,m in GA is reduced by more than 50% than that in the
Hartree-Fock approximatio(HFA) at U <1. FIG. 1. The sublattice magnetizationand the energy gap as

Figure 2 shows the spin-dependent local densities 0 function ofU of the DHM with J=0 in the GA(solid curvé and
states forld=1.0. They have traces of the van Hove singu-in the HFA (dotted curvé the results of the SHM are shown by the
larity of the simple-cubic density of states and clear energylashed curvéRef. 21).
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FIG. 2. The spin-dependent local densities of states Uor
=1.0 andJ=0.0: 7-spin (solid curve and |-spin (dashed curve
components in the GA, angtspin (dot-dashed curyeand |-spin
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(dotted curveé components in the HFA.

Ayra increase with increasing becausé\ =2¢, ¢ being the
staggered exchange field. The
=Agal/Ayra= €cal énra is unity in the limits ofU—0 and
U—oe, and it has a broad minimum @af=0.12 atU~0.6,
above whicha again increasesa=0.15, 0.29, and 0.54 for

U=1.0, 1.5, and 2.0, respectively.

The band-narrowing factoq (=0, =qn, in our half-
filled mode), is shown as a function dff in Fig. 3. In the
P state,q monotonously decreases with increasidgas
shown by the dotted curve, and it vanishes U,
=12¢7=4.019, wherdJ denotes the critical interaction for
the MI transition*®” On the contrary, thé&) dependence of
g in the AF state is quite different from that in tie state.
WhenU is increased from the zero valug,of the AF state

1.0

08

06 -

04

_ DHMEAF)
------ DHM(P)
——— SHM(AF)

FIG. 3. The band-narrowing factey as a function olU of the
DHM with J=0 in the AF state(solid curve and in theP state

ratio defined ly

FIG. 4. The occupancies as a functionfwith J/U=0, the
result ofd; divided by a factor of ten being plotted by the dot-
dashed curve.

gradually departs from that of the state, and it has the

minimum value of 0.837 dt)= 1.4, above whicly increases
again. The effect of electron correlation on the band-
narrowing factor is not considerable although its effect on
the energy gapor the exchange fie)ds significant.

The U dependence of the occupancies is shown in Fig. 4.
At U=0 all the occupancies are 0.0625 {/2*). When the
U value is increased, onlg; considerably increases, ap-
proaching unity fold =co: do(=d;) andt; have small peaks
at U~ 1 but decrease for largés.

The U dependence of the ground-state enerdiess
shown in Fig. 5. The ground-state energy of the AF state
(Eap) calculated by the GA is not only lower than that of the
P state Ep) obtained by the GA but also lower than that of
the AF state calculated by the HFA. The differena&

=Ear(GA) —Ear(HFA) expresses the energy gain by in-

AE —

JJU=0

—— AF(GA)
——— AF(HFA)
------ P(GA)

0.0

-002

AE

-004

—1-006

FIG. 5. TheU dependence of the ground-state energies the
AF state withJ=0 in the GA(solid curve and in the HFA(dashed

(dotted curvg the result of the SHM in the AF state being shown curve), and their differenceAE=E,(GA)— Eac(HFA). The result
of the P state in the GA is shown by the dotted curve.

by the dashed

curveRef. 21).
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—— DHM(GA)
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0 1 2
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00

FIG. 6. The sublattice magnetizatiomas a function ofJ +J of
the DHM with variousJ/U values in the GA(solid curve and in

1201

1.0
08 [ -
T r J/U =03 7 7
r 0.2 -
06 - 0.1 N
- —— DHMAR) PR
------ DHM(P) P
[ ——— SHM(AF) v v
04 P R T VRN T SO SIS
0 1 2
u+J

FIG. 8. The band-narrowing factar as a function olU +J of
the DHM with variousJ/U values in the AF statésolid curve and

the HFA (dotted curvg the result of the SHM being shown by the in the P state(dotted curvg the result of the SHM in the AF state

dashed curvéRef. 21).

is shown by the dashed curyBef. 21).

Cluding the effect of ﬂuctuations, and its maximum value iSThe sublattice magnetization of the GA, particu'ar'y néar

—0.056 atU=0.95. The HFA for the Nel state is a good
description of the half-filed DHM in the limit ofJ =,

B. Finite J case

Next we introduce the exchange interactidninto our

=0, is much increased when tllevalue is increased, al-
though such an increase in is realized also in the HFA
result, but very small.

The interaction dependence of the band-narrowing factor
is shown in Fig. 8. It was recently pointed &dthat, when
J is finite, the first-order MI transition is realized in the

calculation. Figure 6 shows the sublattice magnetization as &ate, as shown by dotted curves: it occurdJatJ=2.21,

function of U+J for various choices of the ratiod/U

1.95, and 1.83 fod/U=0.1, 0.2, and 0.3, respectively. Our

=0.1, 0.2, and 0.3. Note that the magnetization in the HFAz3cylation shows that the situation is quite different in the

is universal when it is plotted against+J because its ex-
change field is given by¥pyra=(1/2)(U+J)mypa. As the

AF state:q decreases only slightly and never vanishes. The
minimum values ofg are 0.939, 0.965, and 0.975 farU

value of J/U is increased, the sublattice magnetization is—q 1, 0.2, and 0.3, respectively.
increased as expected. This fact is more clearly seen in Fig. Figure 9 shows the occupancies as a functio/efJ in
7, where the sublattice magnetization and the bandme typical case 08/U=0.1. ForJ>0 the degeneracy be-

narrowing factor for=1.0 are plotted as a function Jf

o
-05
e .

FIG. 7. The sublattice magnetization fdr=1.0 as a function of
J in the GA (solid curve and in the HFA(dotted curvg the result
of the band narrowing factor is also plottédbt-dashed curye

tweend, andd, is removed and we get,<d;. When the

010

.05

occupancies
o

0.0

FIG. 9. The occupancies fa¥U=0.1 as a function otJ + J;

the result ofd, divided by a factor of ten is plotted by the dot-
dashed curve.
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L / A
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L |
4-0.06 -
!
-
-1 ! 1 i L 1 | ! ! i 00 Lol
0 1 2 ' 3
U+J U+
FIG. 10. The interaction dependence of the ground-state ener- F|G. 11. The sublattice magnetization as a function ofU

gies of the AF state witld)/U=0.1 in the GA(solid curve and in
the HFA (dashed curve and their difference:AE=E,g(GA)
—Eae(HFA). The result of theP state in the GA is shown by the
dotted curve.

interaction is increased, only; has an appreciable value at
U+J>0.5, as in the case shown in Fig. 4.

Figure 10 shows the ground-state energiEgg(GA),
Exr(HFA), and Ep(GA), as a function of the interaction.
We realized thaEr(GA) is the lowest among the three for
any U investigated. The maximum difference &E is
—0.029 atU=0.7.

IV. CONCLUSION AND DISCUSSION

+J with JJU=-0.02 in the GA(solid curve and in the HFA
(dotted curvg the band narrowing factag is shown by the dot-
dashed curve.

shows the sublattice magnetization and the band-narrowing
factor as a function oU+J for J/JU=—0.02. When the
interaction is increased, the magnetization first increases at
U+J<1.2 but decreases at larger interaction. Surprisingly
the antiferromagnetic state disappeardJatJ=2.1, which

is in strong contrast with the HFA result shown by the dotted
curve. Figure 12 shows the interaction dependence of the
occupancies. The behavior of the double occupancies in the
negativeJ case is rather different from that in the positive

J case shown in Fig. 9. Whed is negative, the doubly
occupied state with the opposite spin between the different

To summarize, we have studied the antiferromagnetigupbands is less favorable than that within the same subband.
ground state in the DHM, employing our slave-boson meanfurthermore thetriplet state expressed byd, (or d|) be-
field theory: Numerical calculations have shown that the Ml comes less stable than tsinglet stateexpressed byl, or

transition does not take place in the antiferl’omagnetic SO|Udl, which works to suppress the antiferromagnetism_ We get
tion for the half-filled DHM, which arises from a perfect dp>d;>d, (=d|) in the paramagnetic state &+J

nesting characteristic of the model. This is in contrast with~ 2 1 The first-order Ml transition occurs dt+ J=2.68. A

the result in its paramagnetic solutibfput is the same as

the half-filled SHM?! as was discussed in the Introduction.
Except atU=J=0, the stable state is the antiferromagnetic
insulator, whose energy gap is much reduced by electron

correlation.

It is worth making a brief comparison between the results
of the DHM and SHM. Dashed lines in Figs. 1, 3, 6, and 8

show the interaction dependence wf A, and q of the

06T T T T T T T T T T T T
r J/U=-0.02 T

o
~

SHM 2 When we compare these results with the correspond-
ing ones of the DHM, we notice that both the results are very
similar provided the exchange interaction is not small)
>0.2. WhenJ is small, howeverm, A, andq in the DHM

are fairly smaller than those in the SHM. Figure 7 shows that
the exchange interaction effectively works to increase the
magnitude of sublattice moment in the DHM.

In order to more closely investigate the role of the ex-
change interaction on antiferromagnetism in the DHM, we
have repeated a numerical calculation for thegative J
althoughJ is conventionally taken to be positive. We notice
in Fig. 7 that when the negative exchange interaction is in-
cluded, the sublattice magnetization 1dr=1.0 is consider-
ably reduced and it disappears fdfU<<—0.05. Figure 11

occupancies

o
N

00

0 1 2 3

u+J

FIG. 12. The occupancies farU=—0.02 as a function obJ
+J.
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material with the anti-Hund-rule couplingJ€0) would

show unusual behavior if it exists.
The model Hamiltonian adopted in our studyg. (1)] is

1203

stability of the different phases in the degenerate band de-
pends not only on the values of the various interactions in-
cluded in the model Hamiltonian but also on the temperature.

relevant to systems with partially filled narrow degeneratdt would be interesting to investigate the temperature-

bands. A typical example is D5, which is an antiferromag-

interaction phase diagram of the DHM by generalizing our

netic insulatoAF1) in the ground state and which shows the approach® in which the effects of electron correlation and

MI transition between AFI, paramagnetic metal, and parathermal spin fluctuations are properly taken into account.
magnetic insulator as a function of the temperature, the pres-

sure, and/or the chemical substitution. This phase diagram
can be qualitatively understood with the SH¥%E’ The de-
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