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Inertial mass of a vortex in cuprate superconductors
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We present here a calculation of the inertial mass of a moving vortex in cuprate superconductors. This is a
poorly known basic quantity of obvious interest in vortex dynamics. The motion of a vortex causes a dipolar
density distortion and an associated electric field which is screened. The energy cost of the density distortion
as well as the related screened electric field contributes to the vortex mass, which is small because of efficient
screening. As a preliminary, we present a discussion and calculation of the vortex mass using a microscopically
derivable phase-only action functional for the far region which shows that the contribution from the far region
is negligible and that most of it arises from the~small! core region of the vortex. A calculation based on a
phenomenological Ginzburg-Landau functional is performed in the core region. Unfortunately such a calcula-
tion is unreliable; the reasons for it are discussed. A credible calculation of the vortex mass thus requires a fully
microscopic non-coarse-grained theory. This is developed, and results are presented for ans-wave BCS-like
gap, with parameters appropriate to the cuprates. The mass, about 0.5me per layer, for a magnetic field along
the c axis arises from deformation of quasiparticle states bound in the core and screening effects mentioned
above. We discuss earlier results, possible extensions tod-wave symmetry, and observability of effects de-
pendent on the inertial mass.@S0163-1829~97!05534-3#
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I. INTRODUCTION

The discovery of high-temperature superconductors
led to a renewed interest in the mixed phase. Several n
phenomena arising from their short coherence length,
ered nature, and large superconducting transition temp
tures have been theoretically and experimentally studi1

One area of interest is the existence of effects connected
vortex dynamics, e.g., quantum creep,2,3 anomalies in the
Hall effect,4–6 and ac electromagnetic response.7,8 These
phenomena are not fully understood, partly because of
lack of a well-developed first principles theory of vortex d
namics, especially in the quantum, interacting vortex regim
A number of recent contributions address parts of
problem,9–12 especially the Magnus-force-driven dynami
in the presence of dissipation.

A necessary ingredient in all considerations of the mot
of a vortex is its inertial mass. This quantity, generally b
lieved to be small, is surprisingly ill known and its origin
not well understood~see Ref. 1, for example!. Not much
attention has been paid to this question because, for s
phenomena, the dynamics is governed by large dissipati13

or the strong Magnus force9–12and the inertial mass could b
irrelevant. However, there is experimental evidence for a
dissipation regime in cuprate superconductors,5 and for a
Magnus force smaller14 than standard estimates.9–12 It is thus
quite possible that the inertial mass could affect dynam
processes involving vortices~these questions are taken up
Sec. IV!. Also, in the absence of an understanding of w
contributes to the vortex mass, and how much, it is diffic
to meaningfully discuss the question of whether or how s
a mass influences vortex dynamics. We therefore pre
here an extensive discussion and a calculation of the vo
560163-1829/97/56~18!/11951~15!/$10.00
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mass, and go into the question of mass-related phenome
Sec. IV. This work was reported in 1994.15

We first estimate the mass using a phase-only functio
~Sec. II! which is known to give a good description of th
system far from the vortex core, where the amplitude of
order parameter is nearly constant and the only relevant
gree of freedom is the phase. Recently, Duan and Legg16

and Duan17 have given a careful discussion of this approa
where the time-dependent order parameter~phase! of a mov-
ing vortex causes the electronic density to fluctuate. This
turn gives rise to an electric field which is screened. T
energy of the density distortion and electric field energy
the cause of the mass. The phase-only functional used
been derived microscopically18 and the result obtained thu
has a microscopic significance and gives an accurate esti
of the contribution to the vortex mass which accrues fro
transitions induced in the electronic scattering states o
vortex by the vortex motion. The contribution of this proce
from the far region turns out to be very small due to efficie
screening; thus most of the mass comes from the core of
vortex.

We then calculate the core contribution to the mass us
a phenomenological Ginzburg-Landau~GL! functional as
has been conventional since the early work of Suhl.19 This
functional is not derivable microscopically and is us
mainly as an interpolating formula which reduces to the c
rect phase-only functional in the far region. However, ob
ously the coarse-grained GL approach is unrealistic for
fects within the core which is of the same size (j) as the
coarse-graining scale of the theory. Further the screen
length in GL theory is proportional toucu21, wherec is the
superconducting order parameter, and thus diverges at
core. This is clearly an artifact of the GL approach, as
11 951 © 1997 The American Physical Society
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11 952 56D. M. GAITONDE AND T. V. RAMAKRISHNAN
efficiency of Coulomb screening is related to the electro
compressibility and is expected to be largely independen
the superconducting order parameter. The GL estimate o
vortex mass is clearly unreliable and is presented h
mainly to contrast the correct microscopic calculation of
mass which forms the main body of this paper. The corr
microscopically obtained vortex mass is very different fro
the GL estimate in its dependence on the basic paramete
a superconductor. In spite of this, the numerical value of
mass obtained in the GL approach is~largely by accident! in
the same range as that obtained from the microscopic th
for parameters appropriate to the cuprates.

We then present a microscopic calculation of the vor
mass~Sec. III!. We employ the self-consistent pair field a
proximation which has been used extensively for static v
tex structure, quasiparticle energy levels, etc.20–23 We make
a Galilean transformation to a frame of reference where
vortex is at rest. In this frame, the motion of the vortex a
like a perturbation of the formuW •pW op whereuW is the vortex
velocity andpW op is the momentum operator for the electron
The inertial mass is obtained by integrating out the electro
degrees of freedom to second order inuW . The coefficient of
the (u2/2) term in the effective action is the effective mass
the vortex. The mass is found to originate from a polarizat
process involving the virtual excitation of the lowest-ener
quasiparticles in the bound electronic states~quasiparticle
states! localized in the core of the vortex. The small core s
(j;15 Å! in the cuprate superconductors implies that
lowest unoccupied state is separated by a sizable gap (;100
K! from the highest occupied state below the Fermi leve23

in strong contrast to conventional superconductors. The
istence of this large gap in the core quasiparticle spect
has been recently observed24 by scanning tunnel microscop
~STM! measurements in the vortex core region
YBa2Cu3O72d . This virtual transition process gives rise
a large vortex mass (m* '25me). However, strong dielectric
screening drastically reduces the mass and leads to a v
m* .0.5me per CuO2 layer. We discuss the physical reas
for a mass of this size in terms of basic length scales and
screening process.

In the final section~Sec. IV! we discuss the calculatio
critically, compare with other results, consider the calcu
tion of a vortex mass for a non-s-wave superconductor, an
go into the question of when effects due to the small vor
mass might be observable.

II. GINZBURG-LANDAU CALCULATION
OF THE VORTEX EFFECTIVE MASS

The most natural way of discussing the motion of a s
gularity in the phaseu of the superconducting order param
eter is the time-dependent Ginzburg-Landau theory16–18

where the free energy~or action! is expressed as a function
of the phase of the superconducting order parameter.
functional provides a good description of the region far fro
the center of the vortex where the amplitude of the superc
ducting gap is nearly constant. We describe the functio
and briefly summarize known results for the mass contri
tion from the region outside the core.16,17

Outside the core, a phase-only Hamiltonian is sufficie
c
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and the action functionalS per lengthL ~at T50) is given
by

~S/L !5Su1Sem, ~1a!

where

Su5E
2`

1`

dtE drWH a1

2 S u̇2
2eA0

\ D 2

2
a2

2
F S ¹u2

2eAW

\c
D 2

1
4mu̇

\
G J ~1b!

and

Sem5E
2`

1`

dtE drWF ~¹A0!22~¹3AW !2

8p
G ~1c!

where rW is the coordinate in the plane perpendicular to t
magnetic field. In Eq.~1b!, the first two terms are the ene
gies associated with pair charge and pair current~or velocity!
fluctuations, respectively. The term linear inu̇ is a total time
derivative which has no physical consequences in the
sence of vortices. Its physical origin can be understood10 in
terms of the Berry phase associated with the adiabatic
tion of a vortex and it gives rise to the Magnus force. Noti
the absence of any term linear inA0 which is constrained to
be zero because of charge neutrality in the electron-ion
tem.

The action functional of Eq.~1a! can be obtained micro
scopically by starting with electrons interacting with a pa
potential~whose magnitude is nearly constant in the far
gion!, going to a gauge where the order parameter is real
then integrating out the fermions. The details of the deri
tion have been outlined in Ref. 18. In Fig. 1, we show t
Feynman diagrams which contribute to the action of Eq.~1a!
at T50 in the clean limit. The coefficientsa1 anda2 are the
appropriate polarizabilities. For a weakly interacting, cle
Fermi gas, they have the values

a15S \

2eD 2lTF* 22

4p
~2a!

FIG. 1. Feynman diagrams that contribute to the phase-o
action functional of Eq.~1! at T50 in the clean limit on integrating
out the electrons. The thick lines correspond to the fermions,

wavy lines indicate the density fluctuationsr5(\u̇22eA0), and
the dashed line stands for the supercurrent fluctuati

jW5(\¹u22eAW /c).
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and

a25S \c

2eD 2 lL
22

4p
, ~2b!

wherelTF* ~the Thomas-Fermi screening length! is given by
lTF* 225(6pne2/eF) andlL ~the London penetration depth!

is given bylL
225(4pne2)/(mec

2). A0 andAW are the scalar
and vector electromagnetic potentials, respectively, the
terms in Eq.~1c! being just the field energies. In case there
an external magnetic fieldHW 0, the term $(¹3AW )2/8p% is
modified to $(¹3AW 2HW 0)2/8p%. The functional is clearly
gauge invariant. In Eq.~1! the displacement current term

@(1/c)]AW /]t#2 has been omitted because of the largenes
c.

The motion of the vortex in a charged superconduc
gives rise to an electric field~or potentialA0). To find this
A0, we minimizeS with respect toA0 which yields

¹2A0

4p
5

22e

\
a1S u̇2

2eA0

\ D . ~3!

Now for a vortex moving with a~small! uniform velocityuW ,
we make the assumption that

u~rW,t !5u0~rW2uW t !, ~4!

whereu0(rW) is the phase around a static vortex at the orig
Thus we have

u̇~rW,t !52uW •¹W u0 . ~5!

Using this in combination with the knownu0, one finds the
potentialA0 from Eq. ~3! and the extra energy from Eq.~1!.
The result is

EKE5
pa1u2

4
lnS 11

j222Rc
22

lTF* 221Rc
22D , ~6a!

whereRc is a long-distance cutoff~whose magnitude will be
taken to infinity in the end!. Then it is easy to see that in th
limit e→0, which implieslTF* →`, the expression forEKE

reduces to (pa1u2/2)ln(Rc /j) which diverges logarithmi-
cally as the long-distance cutoffRc is taken tò . This is the
expected result for a neutral superfluid.16,17 For the present
case of a charged superconductor we are always in the
lTF* !j and the expression for the kinetic energy simplifies

EKE.
pa1u2

4

lTF* 2

j2
5

u2

16j2S \

2eD 2

. ~6b!

The expression in Eq.~6b! can be rewritten as

EKE5ESVS u2

vF
2 D S lTF* 2

j2 D S 3

4ln~lL /j! D , ~6c!

where ESV5(f0 /4plL)2ln(lL /j) is the London energy
~per unit length! of a static vortex which results from th
terms involving transverse fluctuations in the current a
magnetic field in the phase functional of Eq.~1!. The result is
then easily understood on physical grounds; the velocityu is
o
s

of

r

.

it

d

to be compared with the natural velocity scalevF of the
Fermi system. The second bracketed factor in Eq.~6c! is due
to the reduction of charge fluctuations by screening. T
former occur on a length scalej, while the screening length
is lTF* !j. On substituting appropriate numbers in Eq.~6b!,
i.e., j.15 Å andlTF* .1 Å, we find that the contribution of
this source tomf* .731024me per layer (me being the elec-
tron mass!, assuming an interlayer spacingd.10 Å. This is
an extremely small number; one reason for its smallnes
the screening factor (lTF* /j)2.(1/200). The result@Eq. ~6b!#
has been obtained earlier by Duan,17 where details may be
found.

The functionalSu of Eq. ~1! is not Galilean invariant and
there are additional terms involving higher-order derivativ
of u, whose inclusion is necessary to restore this symme
These arise from the fact that the Gaililean-invariant com
nation involving the time-dependent order parameter phasu
is the local electrochemical potential

dm~rW,t !52
\

2
u̇1eA02

~\¹u/22eAW /c!2

2m
.

The correct functional was recently obtained by Aitchis
et al.25 and is of the form

Su5E
2`

1`

dtE drWH a1

2
F S u̇2

2eA0

\ D1
\~¹u2 2eAW /\c!2

4m
G2

2
a2

2
F4m

\
u̇1S ¹u2

2eAW

\c
D 2G J . ~7a!

The additional diagrams contributing here are shown in F
2 The harmonic electric field terms in Eqs.~7a! and~1c! can
be integrated out to give the action functional

S̃u5E dtE dqW

~2p!2

2a1

\2 udm~qW !u2
q2

q21lTF
22

2
a2

2 E dtE drWF4m

\
u̇1S ¹u2

2eAW

\c
D 2G . ~7b!

It is clear from Eq.~7b! that additional contributions accru
ing to the vortex mass come from the coupling of char
fluctuations to the supercurrent fluctuations leading to n
adiabatic corrections in the supercurrent distribution that

FIG. 2. Additional diagrams that contribute to the Galilea
invariant action functional of Eq.~7! on integrating out the elec
trons. The thick lines correspond to the fermions, the wavy lin

indicate the density fluctuationsr5(\u̇22eA0), and the dashed

line stands for the supercurrent fluctuationsjW5(\¹u22eAW /c).
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11 954 56D. M. GAITONDE AND T. V. RAMAKRISHNAN
proportional to the vortex velocity. However, an explicit ca
culation shows that all such contributions to the vortex m
are screened at least doubly more efficiently and are th
fore smaller than that estimated above@Eq. ~6b!# by a factor
of (lTF /j)2'0.005. Since the far mass estimated before
already small, this additional contribution is smaller still, a
therefore negligible. In fact, in the perfect screening appro
mation, where the total electrochemical potentialdm is set
equal to zero locally, we get back the result of Eq.~6!, the
contribution of the additional terms being zero as expec
It is worth emphasizing that the results obtained from
phase-only functional are essentially microscopic~see the
Feynman diagrams in Fig. 1 and Fig. 2! and give an accurate
estimate of the contribution to the vortex mass from the e
tronic scattering states which are extended in nature and
mainly outside the core.

We now consider the contribution to the vortex mass a
ing from the core. The amplitude of the superconduct
order parameter changes as a function of radial distance
the center of the vortex in the core region. We use a p
nomenological Ginzburg-Landau action functional per u
length,

S5E dtE drWF 3

2mvF
2US \

i

]

]t
22eA0Dc~rW,t !U2

2
1

2mUS \

i
¹2

2e

c
AW DcU2

2V~ ucu2!G
1E dtE drWF ~¹A0!22~¹3AW !2

8p
G , ~8!

to estimate the core contribution to the vortex mass.
This functional is not derivable microscopically and h

been chosen primarily as an interpolating formula which
duces to the correct phase-only functional in the far region
the limit C→Anse

iu and gives the correct~linear in r ) de-
pendence for the amplitude of the order parameter near
center of the vortex. The parameterm which appears above
is therefore fixed by requiring this functional to reduce to t
action functional of Eq.~1! in the ‘‘phase-only’’ approxima-
tion. For the potentialV(ucu2) we assume the standard for

V~ ucu2!5
a

2
ucu21

b

4
ucu4.

Starting with the early work of Suhl19 and subsequen
work by others~see Ref. 1 and references therein! all esti-
mates of the vortex mass have proceeded from this fu
tional. The value of the mass obtained from this functiona
not expected to be very accurate for reasons that are
cussed below. However, we present a calculation of the
tex mass from this functional mainly to contrast and hig
light the microscopic calculation presented in Sec. III.

We again@see Eq.~4!# make the ansatz that for sma
velocity uW , the vortex moves rigidly, i.e.,

c~rW,t !5c0~rW2uW t !, ~9!
s
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wherec0(rW) is the order parameter configuration associa
with a static vortex. We further assume a common and fa
accurate explicit form forc0(rW), namely,

c0~rW !5Anstanh~r /j!exp~ if!, ~10!

wherens is the superfluid density far from the vortex, an
(r ,f) are the radial and angular coordinates of the tw
dimensional~2D! vector rW. Again, minimizing Eq.~7! with
respect toA0, we find

¹2A0

4p
5

3e\

imvF
2 S c

]c*

]t
2c*

]c

]t D1
3

mvF
2 ~2e!2ucu2A0 .

~11!

Using this condition in the action functional of Eq.~8! we
find that the extra energy due to vortex motion is

DE5E drWF 3\2

2mvF
2U]c

]t U
2

2
3e\A0

2mvF
2 i

S c*
]c

]t
2c

]c*

]t D G .

~12!

The first term in Eq.~12! is due to the density fluctuation
induced by vortex motion, and the second describes the
duction due to screening. The first term is readily compu
using the ansatz, Eq.~9!, for the time dependence ofc(rW,t)
and the form, Eq.~10!, for the coordinate dependence
c0(rW). We are interested here only in the core contribution
the mass, the contribution from the far region having be
previously determined@Eq. ~6!#. The radial integration in Eq
~12! is therefore performed over the range 0,r ,j ~core
region!. It gives a mass per unit length,

munscreened* core .mu*
c50.61S me

a0
D S a0

4lTF* D 2

, ~13!

where a05\2/mee
2 is the Bohr radius, and (lTF* )225

4pns(2e)2/(mvF
2/3). For the cuprate superconductors, w

find that the unscreened core vortex mass per layer is

mu*
c'0.19me . ~14!

An unexpected, and incorrect, feature of Eq.~13! is the lack
of dependence of the vortex mass on the core sizej. This is
a consequence of the fact that the core mass is proporti
to the gradient energy per unit length in the core, which
scale invariant and does not depend on the natural len
scalej in two dimensions. This is inevitable in any loca
continuum free energy theory.

We now consider the second or screening term in
~12!. One clearly needs to know the electric potentialA0
induced by vortex motion. Setting

A0~rW !5v~r !uW •f̂, ~15!

we find thatv(r ) satisfies the radial equation
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F ]2

]r 2
1

1

r

]

]r
2

1

r 2
2

1

~lTF* !2

uc~r !u2

ns
Gv~r !

5
1

4p

\

2e
lTF* 22F tanh2~r /j!

r G . ~16!

This is just the radial Poisson equation with a screening t
~last term on the left-hand side! and a source term~on the
right-hand side! appropriate for a two-dimensional system
The ‘‘effective screening length’’lTF* AnS/uc(r )u is r depen-
dent, and increases asuc(r )u decreases, i.e., withr→0. This
is yet another unrealistic feature of Ginzburg-Landau theo
since one expects screening which is related to the electr
compressibility to be relatively independent of supercondu
ing order. Equation~16! is solved numerically, with appro
priate boundary conditions atr 5` and r 50. Thev(r ) and
the A0(rW) thus obtained@see Eq.~15!# are used to calculate
the second term in the vortex core energy@Eq. ~12!#. Adding
the contributions of both the terms, the final result for t
mass per layer is

m* core5mc* 5S a0

4lTF* D 2S d

a0
D @0.6120.04#me , ~17!

whered is the interlayer separation. In Eq.~17!, the first term
in the square brackets is due to the density distortion in
core, and the second term is the negligibly small correct
due to screening. Thus the total mass per layer, for a cup
superconductor atT50 K, is

mc* .0.19me . ~18!

In the absence of a microscopic theory, the phenomenol
cal Ginzburg-Landau approach has been used, mainly
dimensional aid, to estimate the vortex inertial mass. T
values quoted~Ref. 1! are in the range~0.2 – 2!me , and turn
out to be~largely by accident! not far from our microscopic
result~see below! for parameters appropriate to the cuprat
As a preliminary to the microscopic calculation which form
the main result of this paper, we have performed a deta
calculation using this functional to bring out its inadequaci
The above detailed analysis of the different contributions
the mass shows that within the phenomenological GL the
it is due to the essentially unscreened density distortion
duced in the core. The unscreened mass estimated abov
is incorrect as the gradient expansion, implicit in a pheno
enological theory like the GL functional of Eq.~8!, breaks
down at short length scales and strongly nonlocal~in space!
effects lead to a much larger mass~see Sec. III below! in the
unscreened case than calculated here. This picture is cl
incorrect on another count as well. Electronic screening p
cesses are not expected to be affected much by the ons
superfluid order and a strong reduction of the mass is
pected because of Coulomb screening. This aspect to
explicitly seen in the microscopic theory. In short, the mic
scopic calculation shows that the phenomenological GL p
ture is wrong on all counts, as we shall see now.
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III. MICROSCOPIC CALCULATION
OF THE VORTEX MASS

We present now a microscopic calculation of the vort
inertial mass for a layered superconductor atT50. The dy-
namics of the system of paired electrons is described by
action

S5E dtE dzE drW(
l

@Ll
f~rW,t !1 L̃ l

f~rW,t !1Ll
pair~rW,t !#

3d~z2 ld !1Sem, ~19a!

where

Ll
f~rW,t !5(

s
c̄ ls~rW,t !

3F i\
]

]t
2

@~\/ i !¹2~e/c!AW #2

2m
1eFGc ls~rW,t !,

~19b!

L̃ l
f~rW,t !52eA0~rW,ld !(

s
c̄ ls~rW,t !c ls~rW,t !, ~19c!

Ll
pair~rW,t !52@D l~rW,t !c̄ l↑~rW,t !c̄ l↓~rW,t !1H.c.#2

uD l~rW,t !u2

V
,

~19d!

and

Sem5E dtE dzE drW
~¹A0!22~¹3AW !2

8p
. ~19e!

The electrons at (rW,t) on layer l , with spin s, are repre-
sented by the Grassmann field variablesc̄ ls(rW,t),c ls(rW,t).
The electronic kinetic energy is described by the te
Ll

f(rW,t), i.e., Eq. ~19b!, and the electronic coupling to th

Coulomb potential by the termL̃ l
f(rW,t) @Eq. ~19c!#. Equation

~19d! is the mean pair field decomposition of the Cooper p
attraction, appropriate for a BCSs-wave superconductor, an
V is the strength of the attractive contact interaction. The
termSem @Eq. ~19e!# is the electromagnetic field contribution

Several possible modifications and generalizations, s
as order parameter symmetries other thans wave and effects
due to quasiparticles atTÞ0, are briefly discussed in Sec
IV. We have neglected above the small interlayer~Joseph-
son! coupling, so that the~pancake! vortices in different lay-
ers are coupled only via electric and magnetic fields. T
neglect has very little effect on the vortex mass, which
overwhelmingly due to processes occurring within a lay
and, as a matter of fact, to processes within the small co

Every layer has one pancake vortex. All the pancake v
tices are assumed to lie along a straight line parallel to
magnetic field which is perpendicular to the layers and
move with a uniform velocityuW , so that the vortex~core!
coordinate is (R0

W ,ld) whereRW 05uW t is a vector in a plane
parallel to the layers and thez coordinateld specifies the
position of the layer. The pair potentialD l(rW,t) in the pres-
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11 956 56D. M. GAITONDE AND T. V. RAMAKRISHNAN
ence of such a uniformly moving vortex is a function

@rW2RW 0(t)#. It can thus be written in an adiabatic approxim
tion as

D l~rW,t !5D0„urW2RW 0~ t !u…eiu„rW2R0
W ~ t !…. ~20!

Here D0(r ) is the magnitude of the pair potential andu(rW)
the phase, for a static vortex situated atrW50. The pair po-
tential does not depend onl . The action functional relevan
for vortex dynamics is found by an expansion of the mic
scopic action in powers of the vortex velocityu after inte-
grating out the electronic degrees of freedom. The vor
mass is then determined from the term quadratic inu ~the
dissipative and Magnus forces coming from the linear ter!.
This calculation is most conveniently carried out in the r
frame of the vortex. In this frame, the pair potential seen
the electrons is

D0~r !expF i S u~rW !2
2muW •rW

\
1

mu2t

\
D G ,

i.e., the pair potential corresponding to a vortex at rest w
extra phase factors coming from the macroscopic super
rent and kinetic energy of the electrons which acquire
extra velocity2uW in this frame. The Coulomb potential see
by the electrons in this frame becomesA02(uW /c)•AW , while
the vector potential is the same as before. All physical qu
tities can be calculated in this frame and then transforme
the laboratory frame as necessary. Note that this does
assume Galilean invariance.

After a gauge transformation, the action for the system
this moving frame can be written as

S5S01S1 , ~21!

where the static vortex actionS0 is

S05E dtE drW(
l

FLl
f~rW,t !2D0~r !@eiu~rW !c̄ l↑~rW,t !

3 c̄ l↓~rW,t !1H.c.#2
D0

2~r !

V G2E dtE dzE drW
~¹3AW !2

8p

~22a!

and the perturbation due to vortex motion is contained in

S15E dtE drW(
l

@uW •pW l~rW,t !2eA0~rW,ld !r l~rW,t !#

1E dtE dzE drW
~¹A0!2

8p
. ~22b!

In Eq. ~22b!, pW l(rW,t) is the momentum density operator fo
the l th layer,

pW l~rW,t !5(
s

c̄ ls~rW,t !
\

i
¹c ls~rW,t !, ~23a!

andr l(rW,t) is the density operator,
-

-

x

t
y

h
r-
n

n-
to
ot

n

r l~rW,t !5(
s

c̄ ls~rW,t !c ls~rW,t !. ~23b!

The first term in Eq.~22b! is linear in uW , coupling to the
electron momentum. The second term is the electric poten
energy of the~nonuniform! electron density around the mov
ing vortex. The associated electric potential has to be de
mined self-consistently.

Since the London screening length (l) is much larger
than the core size (j), the magnetic field in the core is near
the same as the external magnetic field, deviations from
being of order (j/l)2. However, the vector potential assoc
ated with this field is negligible in comparison with the gr
dient of the phase of the superconducting order param
and has been ignored in the following calculations. T
former 'Hr whereas the latter'f0 /r . Thus for the core
region (r<j), we find that forH!f0 /j2 the vector poten-
tial may be ignored.20 Corrections due to the vector potenti
can be estimated to be of orderH/Hc2 whereH is the exter-
nal magnetic field andHc2 is the upper critical field and are
therefore small in the dilute vortex limit.

Now a systematic expansion in powers ofuW becomes pos-
sible by integrating out the electrons, giving rise to the L
grangian that describes vortex dynamics. Dynamics of vo
ces~classical or quantum! can be studied either by workin
directly with the vortex action or alternately by introducing
canonically conjugate momentum which permits one to
over to the Hamiltonian formalism.

The Magnus and dissipative forces come from the te
linear inuW and can be obtained by taking the gradient of t
term with respect to the vortex coordinate.26 The inertial
term in the action is quadratic in the vortex velocity. We a
thus interested in the change of action to second order iuW ,
the coefficient of (u2/2! in the change being the vortex e
fective massm* . Clearly, this is calculable by going to sec
ond order inu andA0. For ease of presentation and also
emphasize the importance of Coulomb screening in the c
we do this in two stages. First, we find the unscreened vo
mass, i.e., inS1 @Eq. ~22b!#, we turn off the Coulomb inter-
action by puttinge50, and calculate the second-order sh
We then calculate the effect of Coulomb interactions, i.e.,
effect of the electric potential due to the electron-char
density change consequent on vortex motion. We would
to emphasize that the unscreened mass calculated here
responds to the contribution of thebound stateslocalized in
the vortex core. The contribution of bound states is fin
For a~hypothetical! neutral superconductor, this term is to b
added to the contribution from the region outside the co
This can be calculated from the~microscopically derived!
phase-only functional@Eq. ~1!# by settinge50, and as men-
tioned earlier, is logarithmically divergent because longitu
nal density fluctuations associated with vortex motion are
screened. Thus, for the uncharged superconductor, the fi
core contribution can be neglected in comparision with
logarithmically diverging far contribution.

For a charged superconductor, the core contribution ha
be calculated with the inclusion of screening effects wh
we show @Eq. ~43! below# reduces the ‘‘unscreened’’ o
e50 mass by a factor of 50 or more. To this we have to a
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56 11 957INERTIAL MASS OF A VORTEX IN CUPRATE . . .
the m* due to the far region, which because of Coulom
screening is finite, and is actually negligibly small@Eq. ~6c!#.

The second-order effective Lagrangian due to just theuW •pW
term in S1 is given using standard many-body perturbati
theory by (m0* /2)u2 where

m0* 5 i E drWE dr8W E dt^T@pl
x~rW,t !pl

x~r 8W ,0!#&

52E drWE dr8Wx l
xx~rW,r 8W !. ~24!

In Eq. ~24!, the vortex velocity has been assumed to be in
x direction. Note that intralayer averages such as Eq.~24! do
not depend on the layer index. The correlation function
Eq. ~24! is calculated with respect to the unperturbed act
S0 @Eq. ~22a!# which describes a single static vortex. Th
last problem of a static vortex has been studied extensi
using the Bogoliubov–de Gennes self-consistent fi
theory.20–23 The electronic eigenstates, in the presence o
static vortex, are bound states which are localized and h
appreciable amplitude only in the core of the vortex, or e
tended states which are scattered by the superfluid velo
and are primarily in the region outside the vortex core wh
the amplitude of the order parameter is nearly constant.
latter are well described by neglecting the variation in
amplitude of the order parameter and the scattering proce
contributing to the mass involving these states are just th
considered in the Feynman diagrams~Fig. 1! contributing to
the phase-only functional in Eq.~1!. Thus the mass contri
bution from the deformation of the scattering states is ac
rately estimated by the calculation proceeding from
phase-only functional of Eq.~1! and has been shown to b
negligibly small due to efficient screening. We will therefo
concentrate in the following only on the contribution of th
localized states to the correlation function of Eq.~24! to find
the core contribution to the vortex mass.

The eigenfunctions of the Bogoliubov–de Gennes eq
tions for a single layer which are localized in the vortex co
are the amplitudesum(rW) and vm(rW), labelled by the~azi-
muthal! angular momentum quantum numberm because of
the cylindrical symmetry of the single-vortex problem. T
Bogulibov amplitudes are related to the fermion field ope
tors by the relations

c↑~rW,t !5 (
all m

um~rW !gm~ t ! ~25a!

and

c↓
†~rW,t !5 (

all m
vm~rW !gm~ t !. ~25b!

Here m runs over all half-odd integers~positive as well as
negative!. The quasiparticle annihilation operatorsgm corre-
spond to the empty~particle! states form.0 and filled~hole!
states form,0. In terms of the quasiparticle operatorsgm ,
the Hamiltonian for the static vortex system described by
actionS0 can be written in a diagonal form as

H05(
$m%

emgm
1gm1const. ~26a!
e
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Our definition of the quasiparticle operators@Eq. ~25!# differs
from the standard definition20 by a particle-hole transforma
tion. In doing this, use has been made of the fact tha
„um(rW),vm(rW)… is an eigenstate with eigenvalueem , the state
„2vm* (rW),um* (rW)… is also an eigenstate with eigenvalue2em .
Thus,

„um~rW !,vm~rW !…5„2v2m* ~rW !,u2m* ~rW !… , ~26b!

with

em52e2m ~26c!

for m,0. The ground state of the system has all states w
m,0 occupied and all states withm.0 empty.

The correlation function of Eq.~24! is easily evaluated in
this representation. The vortex mass can then be unders
as arising from a polarization process involving a virtu
~quasiparticle! transition from the highest-occupied to th
lowest-unoccupied state. This process can also be viewe
a deformation of the ground state by the perturbation wh
mixes in higher-energy states. In terms ofu and v, the
momentum-momentum correlation function can be writt
as

i E dt^T@pl
x~rW,t !pl

x~r 8W ,0!#&

52 (
m.0

unocc

(
m8,0

occ

~em2em8!
21Fum* ~rW !

\

i

]um8~rW !

]x

3S um8
* ~r 8W !

\

i

]um~r 8W !

]x8
2vm~r 8W !

\

i

]vm8
* ~r 8W !

]x8
D 1H.c.G .

~27!

The various terms here correspond to the different quasi
ticle processes that contribute to the polarization. There
simple selection rule for nonvanishing matrix elemen
namely,m52m851/2. We discuss this now. The details a
worked out in Appendix A. The operatorpx has an angular
dependence of the form cosf ~radial derivative term! and
sinf ~angular derivative term! wheref is the angle in the 2d
plane of the vectorrW with respect to thex axis. The ampli-
tudesum(rW),vm(rW) can be written20–23 as

S um~rW !

vm~rW !
D 5e2 imfS eif/2f m

2~r !

e2 if/2f m
1~r !D , ~28!

where f m
6(r ) are functions only of the radial coordinater .

The f dependence ofum(rW),vm(rW) above implies that on
integration of the matrix elements in Eq.~27! over the angle
f, the only nonvanishing terms are (m2m8)561. Wealso
need one of the statesm to be unoccupied and the otherm8 to
be occupied. The only possibility among bound states

m52m85 1
2 . To understand this, we exhibit in Fig. 3, th

spectrum of eigenstates for parameters appropriate to the
prate superconductors.23 The bound states within the ga

have quantum numbersm56 1
2,6

3
2, . . . . Theoccupied~un-

occupied! states have negative~positive! m. It is now clear
that the only virtual transitions that satisfy the selection r
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11 958 56D. M. GAITONDE AND T. V. RAMAKRISHNAN
Dm561, and are between occupied and unoccupied sta

correspond tom52m85 1
2 , i.e., the highest-occupied an

lowest-unoccupied bound states. With this simplificati
used in Eq.~27! and the latter substituted into the express
Eq. ~24! for m0* , we have

m0* 5
4ugxu2

e1/2
, ~29a!

where

gx5E drWv1/2~rW !
\

i

]u1/2~rW !

]x
. ~29b!

We thus need to know the energye1/2 and the core bound
state wave functionsf 1/2

6 (r ) in order to findm0* . These have
been determined self-consistently and numerically by Z
et al.23 We use here the variational forms

D0~r !5D0tanh~r /j!, ~30a!

f 1/2
2 ~r !5A1/2J0~kFr !e2r /2j, ~30b!

and

f 1/2
1 ~r !5A1/2J1~kFr !e2r /2j, ~30c!

where

A1/2
225E drW@J0

2~kFr !1J1
2~kFr !#e2r /j ~30d!

FIG. 3. Spectrum of bound states within the core~within the
range 2D0 to D0) and of continuum states outside it, with th
angular momentum quantum numbers. The levels are appropria
the parameters mentioned in the text for a cuprate superconduc
T50. The transition allowed by selection rules is shown by
arrow.
s,

u

is the normalization factor. Withj515 Å, kF
2153.36 Å, and

D0 5 60 meV, the expectation value of the energy^e1/2& is
69 K, close to the self-consistent numerical value of 66
obtained by Zhuet al.23 The wave functions are also ver
close. Using these, the expressionm0* can be evaluated~see
Appendix A for details!, giving a value

m0* .25me . ~31!

The vortex mass obtained above can be estimated by
following simple physical arguments. The correlation fun
tion in Eq. ~24! can be estimated as follows. Each of th
momentum operators gives a factor of\kF which is the typi-
cal electronic momentum. The energy denominator of
correlation function@see Eq.~27!# is twice the bound-state
energye1/2 which is the energy cost of the polarization pr
cess involving creation of a ‘‘particle-hole’’ pair. Finally
there is a factor of 2 corresponding to electron spin. T
bound-state energy20 e1/2 is aboutD0

2/2eF . The core contri-
bution to the unscreened vortex mass~for parameters appro
priate to the cuprates! is thus estimated to be

m0* .
\2kF

2

e1/2
.100me . ~32!

This is larger than the value calculated above for the vor
mass@Eq. ~31!# by a factor of 4. This discrepancy arise
because the matrix element in the detailed calculation
smaller~by a factor of1

2 approximately! than the dimensiona
estimate.

We now consider the effect of Coulomb interactions. T
dipolar charge distribution induced by vortex motion
screened efficiently by the electrons. This greatly reduces
vortex kinetic energy. The reduction of the vortex kine
energy is calculated using standard self-consistent linea
sponse theory. The dipolar charge distribution produces
extra electric potential, i.e., changes the electrochemical
tential of the system. Any change in the electrochemical
tential causes a change in density which therefore needs t
calculated self-consistently. In the following, we outline t
calculation of the reduction of the vortex mass because
Coulomb screening. The details are provided in Appendix
Varying the action in Eqs.~21! and ~22! with respect to the
electric potentialA0, we find, at the extremum, the Poisso
equation

¹2A0~rW,z!524pe(
l

^r l~rW !&d~z2 ld !. ~33!

We find^r l(rW)&, the electron density, to linear order inu and
A0 to be

^r l~rW !&5eE dr8Wx l
00~rW,r 8W !A0~r 8W ,ld !2uE dr8Wx l

0x~rW,r 8W !.

~34!

In Eq. ~34!, the density-density and density-current respon
functionsx00 andx0x are given by

x l
00~rW,r 8W !52 i E dtu~ t !^@r l~rW,t !,r l~r 8W ,0!#& ~35!

and
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x l
0x~rW,r 8W !52 i E dtu~ t !^@r l~rW,t !,pl

x~r 8W ,0!#&. ~36!

The second term on the right-hand side of Eq.~34! is the
source term for̂ r l&; it has to be determined by integratin
the correlation functionx l

0x(rW,r 8W ) over the coordinater 8W .
This is evaluated to be

E x l
0x~rW,r 8W !dr8W5h~rW !l, ~37!

where

h~rW !52A 2

e1/2
f 1/2

2 ~r ! f 1/2
1 ~r !sinf ~38a!

and

l52A 2

e1/2
\E drWv1/2* ~rW !

]u1/2* ~rW !

]x
. ~38b!

It is thus clear from Eq.~37! substituted into Eq.~34! that the
charge distribution generated by the vortex motion is prop
tional to sinf; i.e., it is dipolar in nature. We thus seek
self-consistent solution to the Poisson equation of the fo

A0~rW,z!5V~r ,z!sinf, ~39!

Substituting this form in Eqs.~33! and ~34!, and using Eq.
~37!, we solve forA0(rW,z) ~see Appendix B for details!, to
get

A0~qW ,ld !52
4peulh~qW !

112pe2M ~0!

1

2qS sinhqd

coshqd21D , ~40!

whereA0(qW ,ld) and h(qW ) are the two-dimensional Fourie
transforms ofA0(rW,ld) and h(rW) respectively. In Eq.~40!,
M (0) is given by

M ~0!5E dqW

~2p!2

uh~qW !u2

2q S sinhqd

coshqd21D ~41!

and has the physical significance of an irreducible pola
ability. Knowing the electric potentialA0(qW ,ld) ~which is
linear in u) we can integrate out the electrons and the h
monic electric potential fluctuations in the action@Eq. ~22!#
to second order inu. The result for the extra action per laye
is

SKE5E dt~ul!2F12
2pe2M ~0!

112pe2M ~0!
G , ~42!

where the first term in the square brackets is the large
screened contribution calculated earlier@Eq. ~31!#, and the
canceling second term gives the reduction because of scr
ing. Combining both these terms, we findm* to be

m* 5
m0*

112pe2M ~0!
. ~43!

We see from Eq.~43! that there is a ‘‘dielectric’’ screen
ing of the vortex mass; i.e., the factor in the denominator
r-

-

r-

n-

en-

a

finite large number. This is due to the discrete level spectr
in the core, in contrast to the continuum of states in a me
or the near continuum in conventional superconductors, g
ing ‘‘metallic’’ screening. The core dielectric constant (ecore)
can be evaluated using the variational wave functions of E
~28! and~30!. The screening reducesm0* by a factor of about
50. The large dielectric constant can be understood as b
due to the high polarizability of the core quasiparticle sy
tem. Approximately, the dielectric constant (ecore) is dimen-
sionally given by the ratio of the core Coulomb energy a
the excitation energy (e1252e1/2) necessary to create th
particle-hole excitation which contributes to the polarizati
process leading to screening~see Appendix B!. Thus,

ecore.~ECoulomb/Eexcitation!.$~e2/j!/e12%.75. ~44!

The detailed calculation yields a dielectric constant of 5
Thus the screened or effective inertial mass of a vortex
rather small, being equal to

m* 5~m0* /53!.0.5me . ~45!

This is our main result, for the mass per layer, atT50, when
the field is along thec axis.

We note that the mass, Eq.~45!, can be roughly estimated
qualitatively by using the physical estimates, Eqs.~32! and
~44!, i.e.,

m* .~\2kF
2/e1/2!/$~e2/j!/2e1/2%5~2kF

2a0j!me . ~46!

This gives a valuem* .1.3me close to the the result, Eq
~45!, of the detailed calculation! It is clear from the form
expressions, Eq.~29! and Eq.~43!, for the effective mass, a
well as the approximate form, Eq.~46!, that m* is, effec-
tively, the ratio of two polarizabilities: current-current an
charge-charge. Vortex motion~in the rest frame of the vor-
tex! gives rise to both supercurrent fluctuations and elec
potential fluctuations. They are connected because of ga
invariance. Since both polarizabilities involve the same
ergy denominator, this drops out ofm* @Eq. ~46!#. It is also
clear, from the occurrence ofkF , a0, andj in this equation,
that the vortex mass is related to the carrier density and c
size as well as Coulomb interactions. The small vortex m
in the cuprates is a consequence of the small core size
the low carrier density in comparision with conventional s
perconductors.

In the next, concluding section, we discuss the appro
mations involved in the result obtained by us, its generali
tion, and the question of when vortex-mass-related effe
may be observed.

IV. DISCUSSION AND CONCLUSION

A. Discussion of the vortex mass

The microscopic calculation above uses an approxim
variational order parameter D and corresponding
Bogoliubov–de Gennes amplitudes (um ,vm) @Eq. ~30!#. An
obvious improvement would be to solve exactly for the
quantities given only the parametersD0 andj and the BCS
relation j5(\vF /pD0). This has been done numerically.22

There is of course a fair amount of uncertainty in these
rameters for cuprate superconductors, quite apart from
question of whether ans-wave, BCS-like order paramete
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11 960 56D. M. GAITONDE AND T. V. RAMAKRISHNAN
with a conventional kinetic energy functional is at all appr
priate for cuprate superconductors. However, within
s-wave BCS model, the exact expression, Eqs.~29! and~43!,
for m* can be evaluated, onceum and vm and their first
spatial derivative are known form51/2. We have ignored
the contribution due to transitions from the bound states
the continuum, satisfying the selection ruleDm561. The
reasons are the smallness of the matrix elements, the la
ness of the energy denominator, and very good screenin
rough estimate shows that these change the mass estim
by about 10–20 %. We have also ignored contributions
the mass from polarization processes involving the collec
excitations of the superconducting state. In the case o
neutral Fermi superfluid it has been found by Niuet al.27 that
the inclusion of these excitations, which correspond to lo
wavelength density fluctuations, leads to a finite vortex m
in contrast to the logarithmically divergent result obtained
our approach~see Sec. I!. However, for the case of a charge
superconductor, which is the primary concern of this pap
the corresponding mode is pushed up to the plasma
quency which is much larger than the other energies in
problem and is therefore unlikely to contribute to the vort
mass in a significant way.

With increasing temperature, the gapD(T! and the in-
verse coherence lengthj(T)21 decrease. The structure of th
vortex core also changes. In principle, one can repeat
T50 calculation with temperature-dependent input para
eters. At low temperatures (kBT!e1/2) this would roughly
have the effect ofincreasingthe effective inertial mass of th
vortex as a function of temperature@Eq. ~46!#. However, at
higher temperatures~whene1/2 is of order or less thankBT)
an additional contribution to the vortex mass will accr
from transitions involving thermally excited quasiparticles
the vortex core. A qualitatively new effect which arises
this regime is that due to quasiparticles scattering off
moving vortex, there is a damping of vortex motion. Th
dissipative term is generally included phenomenologically~it
is linear in vortex velocityu and contributes an imaginar
term to the action!, though microscopic theories have be
developed.28,26 It is not clear whether the two effects, viz
thermal renormalization of the effective mass, and dissi
tion, both due to thermal quasiparticles, are completely in
pendent. Also, the regime where the bound core level sp
ing e1/2 is of order or less thankBT is clearly very different
from the low-temperature regimee1/2@kBT. We have not
considered the former dissipation-dominated ‘‘hig
temperature’’ limit.

There is the related question of adiabaticity, which is co
tained in the assumption that the order parameter of the
tem with one moving vortex is the same as that of the st
vortex, but with rW→(rW2uW t). It is expected that the vorte
motion would distort the gap function from its form in th
static case. The distortions induced have to be determ
self-consistently at every order ofuW . Simanek29 has recently
considered this question and has pointed out that the vo
velocity needs to be small enough such th
(\ukF)<ue1/2u5(D0

2/eF) or u<(uBCS)(D0 /eF) whereuBCS

is the BCS critical velocity, i.e.,\uBCSkF.D0. The violation
of this criterion means that the vortex motion can sign
cantly distort the gap function as well as the magnetic fi
-
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and supercurrent distribution. The changes induced by
vortex motion have to be self-consistently determined and
effects included in the calculation of the vortex mass. Ho
ever, at low vortex velocities (u!uBCS), these effects are
small and have therefore been ignored.

We have made a Galilean transformation to the rest fra
of the vortex to simplify the calculation of change in actio
to second order inuW . Inclusion of the effects of the periodi
lattice and impurity scattering is also possible within o
formalism. Their interaction potential with the electrons b
comes explicitly time dependent and leads to inelas
scattering30 of electrons whose effects have to be includ
while evaluating the correlation functions of Eqs.~24!, ~35!,
and ~36!.

So far our discussion has been restricted to a single
tex. However, at larger magnetic fields, in the presence o
vortex lattice, additional contributions coming from the vo
tex lattice will have to be included. The periodicity of th
pair potential broadens the localized quasiparticle levels
energy bands and new contributions to the vortex mass
well as the forces experienced by vortices are expecte
arise from collective effects arising from the vortex lattice15

A totally different approach becomes necessary in the p
ence of strong magnetic fields in the dense vortex limit n
Hc2. The strong amplitude fluctuations which allow the d
sociation of a Cooper pair make the dynamics of the or
parameter diffusive in this regime. A calculation of the vo
tex mass will proceed from the Abrikosov solution31 of the
GL equations for a triangular vortex lattice. Both the vort
effective mass as well as the nature of the forces that d
the vortex dynamics in this regime are subjects that req
further study.

The core contribution to the vortex mass was estima
earlier microscopically by Hsu.32 He obtained an answe
which is of the same order of magnitude as the core con
bution calculated by us in the abscence of Coulomb scre
ing for parameters appropriate to the cuprates. Hsu used
Bogulibov–de-Gennes formalism to obtain the vortex acc
eration in response to a transport supercurrent. The vo
mass is then deduced from this equation by a comparis
with a hypothetical force equation obtained by setting
unknown vortex mass times the acceleration of the vor
equal to a Magnus force of the size suggested by Nozie
and Vinen using arguements of fluid hydrodynamics. Wh
many aspects of the formalism are similar to ours we beli
this method is unreliable for determining the vortex ma
The Coulomb screening effects which are found to be v
for giving rise to a small mass have been ignored. Even
the case of a neutral superfluid, the uncertainty in the siz
well as sign of the Magnus force cast doubts about a pro
dure which relies on a knowledge of the Magnus force
deduce the core contribution to the vortex mass.

Recently, after completion of this work,15 a paper by
Simanek33 appeared where a calculation of the vortex ma
using discrete core states is presented. This calculatio
based on a time-dependent GL functional, in terms o
single complex superconducting order parameter, which
derived in the presence of a moving vortex and leads t
mass which is dimensionally the same as our estimate for
unscreened mass. However, the all important screening
fect, which reducesm* by a factor of 50–75, has not bee
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considered at all in Simanek’s calculation. Furth
extensions34 along the lines of Ref. 33 have appeared dur
the reviewing process. However, once again the substa
reduction in the vortex mass because of Coulomb scree
has been ignored.

The assumption of ans-wave-like order parameter is no
realistic. There is increasing direct experimental evidence
a strongly anisotropic order parameter or an order param
with vanishing amplitude at some points ink ~or r
space!.35,36Consider, for example adx22y2-like order param-
eter. The pair amplitude is nonlocal; i.e.,^ c̄ ↑(r 8W ) c̄ ↓(rW)&
vanishes forrW5r 8W , and has a dependence on the direction
(rW2r 8W ) with a square symmetry. It is thus clear that t
Bogoliubov–de Gennes equations are nonlocal mixing
ferent angular momentum eigenstates. Recent work
Volovik37 and Ren and co-workers38 ~see also Ref. 39 and
references therein! has suggested that vortices in superco
ductors withdx22y2 symmetry have a nonzeros-wave com-
ponent in the core of the vortex which vanishes at the vor
center. Thus, the gapless bound-state spectrum, which m
have been expected ford-wave superconductors with lines o
nodes in the gap function~in k space!, is absent. However
gapless excitations are available in the far region, where
s-wave component vanishes, and are likely to give rise
strong dissipative effects so that the nature of vortex dyn
ics would be qualitatively very different. This is an are
which needs much further work~see, for example, Refs. 3
and 38!.

B. Observability of effects due to inertial mass

It is clear that if there is no dissipation and no Magn
force, both of which produce a term in the action linear
velocity,10,11 the small inertial mass of a vortex would giv
rise to strong quantum effects. The vortices are bosonic
ticles whose degeneracy temperature is (eH/m* c)(\/kB).
This is of order 20 K for an external field of 10 T, if th
effective massm* is about 0.5mel . If this limit is realized,
then several novel possibilities would arise, especially
strongly layered cuprate superconductors such as 2212
these systems the vortex liquid phase extends to very
temperatures, especially in high magnetic fields.40 This liq-
uid, instead of becoming a solid, could on cooling becom
quantum Bose liquid and then a genuine vortex superflui41

Such a vortex superfluid is a new ground state with unus
properties, most likely a new kind of insulator. The vort
superfluid could persist untillT50, or freeze into a quantum
solid, whose spectrum of collective excitations~phonons!
would depend on the massm* . The dynamics of vortices in
this regime would be that of interacting bosons in a rand
potential.

It is not clear, however, that the quantum Bose regime
the many-vortex system is experimentally realizable. First
least for higher temperatures, there is strong dissipa
which dominates the dynamics in both the quantum and c
sical regimes. Second there is a large Magnus force.9–11 If
only the former were present, the mass could still be relev
for phenomena like quantum creep. If only the Magnus fo
were present, as is believed to be the case in the cup
where the onset of a dissipationless regime has b
reported,5 the system of vortices is like that of bosons in
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strong ‘‘magnetic’’ field, the Magnus force being the anal
of the Lorentz force. The Hamiltonian of the system of 2d
vortices can be written as

Hvort5(
i

~pW i2aW i !
2/2m* 1~1/2!(

i , j
V~rW i2rW j !,

where (ax ,ay)5(p\n/2)(2xi ,yi) and V(rW i2rW j ) is the in-
teraction between vortices. TheaW term is due to the Magnus
force with n being the electron density per layer andm* is
the vortex effective mass. The ‘‘magnetic’’ field associat
with this Magnus term is rather large, the cyclotron fr
quency being about 0.7 eV form* .0.5me . Thus the Landau
level separation is large, and the vortex system is in
lowest Landau level with a low filling fraction of (nv /n)
where nv is the vortex density andn the electron density.
The magnetic length of the system, i.e., the cyclotron o
size, is rather small,; 7 Å, so that the dynamics is that o
the guiding center; the inertial mass is irrelevant. Even in
strong Magnus force limit, a large vortex mass has be
shown10 to give rise to quantum effects in phenomena
volving vortex tunneling. In particular the semiclassical a
tion develops a linear-in-T dependence, which would reflec
in the observed rate of flux creep at low temperatures. In
language of our paper, a large vortex mass would result
reduction of the cyclotron frequency, mixing in higher La
dau levels and thus enhancing quantum effects. However
rather small value of the vortex mass obtained by us imp
that this scenario is actually not realized. The main unc
tainty in vortex dynamics is the actual size of the Magn
force. The contribution of the bound states, i.e., of localiz
quasiparticles, to the Magnus force and the effect of disor
on it are major unsettled issues; there are a numbe
suggestions42,43 that these could reduce, cancel, or reve
the Magnus force. The dynamics of an isolated vortex w
inertial mass, in the presence of a large Magnus force
dissipation, has been investigated recently.9–12 Another pos-
sibility is that additional Magnus-like forces could arise fro
the pair potential in the dense vortex lattice limit15 with an
opposite sign. However, there is a lack of a clear microsco
theory. There is a growing body of experimental eviden
based on quantum creep,3 Hall measurements,6 and ac elec-
tromagnetic response14 that the Magnus force is actuall
much smaller than current theoretical estimates.9–11 In that
case, there exists the intriguing possibilty of the formation
a correlated quantum Hall fluid of the bosonic vortices at l
temperatures.44 With mounting evidence in the cuprates for
superconducting order parameter which hasdx22y2 symme-
try and quasiparticles whose mean free paths could be
long for T!Tc , a realistic picture of this whole field await
a microscopic calculation of the inertial mass, the Magn
force on a moving vortex, and dissipation of its momentu
for a d-wave superconductor at low temperatures.

Note added in proof.It has recently been brought to ou
attention that the contribution to the vortex mass com
from the region far from the vortex core as calculated
Duan and Leggett~Refs. 16 and 17! was independently esti
mated earlier by Coffey and Hao;45 see also J-M. Duan and
A. J. Leggett, Phys. Rev. Lett.69, 1148~E! ~1992! ~Ref. 16!.
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APPENDIX A

In this appendix we outline the evaluation of the corre
tion function @Eq. ~24!# which determines the unscreene
core contribution to the vortex mass. Using the Bogulib
transformation@Eq. ~25!# the field operators in Eq.~24! can
be rewritten in terms of the quasiparticle operators (gm) to
give

m0* 5E dtE drWE dr8WD~rW,r 8W ;t !, ~A1!

where the correlation functionD(rW,r 8W ;t) is given by

D~rW,r 8W ;t !5 (
m,n,l,h

(
s,s8

f m
s* ~rW !

\

i

] f n
s~rW !

]x
f l

s8* ~r 8W !

3
\

i

] f h
s8~r 8W !

]x8
Pm,n

l,h~ t !, ~A2a!

where

Pm,n
l,h~ t !5 i ^T@gm

† ~ t !gn~ t !gl
†~0!gh~0!#&. ~A2b!

Here f m
↑ (rW)5um(rW) and f m

↓ (rW)5vm* (rW) and the summation
with respect tom, n, l, andh runs over both positive and
negative values. The correlation function in Eq.~A2! is eas-
ily evaluated using the diagonalized Hamiltonian@Eq. ~26!#
to yield the expression given in Eq.~27!.

We will now derive the selection rule mentioned in Se
III. To find m0* from the correlation function of Eq.~27! we

need to integrate with respect to the coordinatesrW and r 8W .
The rW integration requires the evaluation of the integral

I 15E drWum* ~rW !
\

i

]um8~rW !

]x
. ~A3!

Substituting the explicit forms ofum(rW) and um8(r
W) @Eq.

~28!# we find that

I 15
\

i E drr f m
2~r !

] f m8
2

~r !

]r E dfcosfei ~m2m8!f

1\~m821/2!E dr f m
2~r ! f m8

2
~r !E dfsinfei ~m2m8!f.

~A4!

The angular integrals in Eq.~A4! are zero unless
m2m8561. This together with the constraintm.0, m8,0
implies that the only nonzero contribution tom0* comes from
m52m851/2. Making use of this selection rule, we fin
after a little algebra, that the expression form0* reduces to
Eq. ~29!. In arriving at this relation, we have used Eqs.~26b!
and~26c!. The only remaining task is to evaluate the mat
-
l

-

v

.

elementgx occurring in Eq.~29!. Substituting the explicit
functional forms@Eq. ~30!# into Eq. ~29b! we find that

gx

5
\

2j

E
0

`

dxxe2xJ1~kFjx!@2J0~kFjx!/21kFjJ08~kFjx!#

E
0

`

dxxe2x@J0
2~kFjx!1J1

2~kFjx!#

.

~A5!

Evaluating the dimensionless integrals on the right-hand s
of Eq. ~A5! we find that for parameters appropriate to t
cuprates (kFj.4.47)

ugxu.1.12
\

j
. ~A6!

The largest contribution togx in Eq. ~A5! comes from the
term involvingkFjJ08(kFjx). However, unlike conventiona
superconductors, the relative smallness of the dimension
parameterkFj implies that the other term cannot be ignore

APPENDIX B

In the following, we present details of the calculation
the large reduction in the core contribution to the vort
mass due to Coulomb screening. To solve the Poisson e
tion @Eqs. ~33! and ~34!#, it is necessary to determine th
source term on the RHS of Eq.~34! by integrating the cor-
relation functionx l

0x(rW,r 8W ) over the coordinater 8W . Making
use of the Bogulibov transformation@Eq. ~25!# and the di-
agonalized Hamiltonian@Eq. ~26!# we find ~after some alge-
bra! that

x l
0x~rW,r 8W !52 (

m.0

unocc

(
n,0

occ um* ~rW !un~rW !

~em2en!

3Fvm~r 8W !
\

i

]vn* ~r 8W !

]x8
2un* ~r 8W !

\

i

]um~r 8W !

]x8
G

1H.c. ~B1!

The operator (\/ i )]/]x behaves like cosf (sinf), and as
before, the integration over the coordinater 8W @see Eq.~A4!
and the discussion following it# gives the selection rule
m2n561 which together with the constraintm.0 and
n,0 impliesm52n51/2. We therefore find

E x l
0x~rW,r 8W !dr8W5

22u1/2* ~rW !v1/2* ~rW !

e1/2

3E dr8Wv1/2~r 8W !
\

i

]u1/2~r 8W !

]x8
1H.c.

~B2!

In writing Eq. ~B2! we have used Eqs.~26b! and ~26c!.
Now substituting the explicit variational forms foru1/2(rW)
and v1/2(rW) @Eqs. ~28! and ~30!# we arrive at Eqs.~37! and
~38!. To proceed further, we have to solve the Poisson eq
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tion and get a self-consistent solution for the scalar poten
A0(rW,z) of the form assumed in Eq.~39!. We will now con-
sider the other term on the RHS of Eq.~34!. This term rep-
resents the screening charge induced by the Coulomb po
tial consequent to the electron density change induced by
vortex motion; it has to be determined by integrating t
product ofx l

00(rW,r 8W )andA0(r 8W ,ld) with respect to the coor

dinater 8W . Since the latter has an angular dependence of
form sinf, we once again find that the only process whi
contributes to the polarization involves a transition from t
highest-occupied state (n521/2) to the lowest-unoccupie
state (m51/2). We thus find

E dr8Wx l
00~rW,r 8W !A0~r 8W ,ld !52

h~rW !

2 E dr8WA0~r 8W ,ld !h~r 8W !.

~B3!

Combining Eqs.~37! and ~B3! with the Poisson equation
@Eqs.~33! and ~34!# we get

¹2A0~rW,z!

4p
5eh~rW !(

l
d~z2 ld !

3Ful1
e

2E dr8Wh~r 8W !A0~r 8W ,ld !G . ~B4!

Transforming to Fourier space, this can be rewritten in ter
of the corresponding Fourier components as

@2q22k2#A0~qW ,k!

4p
5eulh~qW !(

l
exp@2 ikld#

1
e2h~qW !

2d (
m

E dq8W

~2p!2
h~2q8W !

3A0S q8W ,k2
2pm

d D . ~B5!

This is an integral equation for the scalar potentialA0. To
solve forA0, we find it convenient to introduce the quanti

X~k!5
1

d(m E dqW

~2p!2
h~2qW !A0S qW ,k2

2pm

d D . ~B6!

Substituting Eq.~B6! into Eq. ~B5! and making use of the
propertyX(k)5X(k22pm/d) for any integerm, we solve
for X(k) to get

X~k!5
24peulM ~k!( le

2 ikld

112pe2M ~k!
, ~B7!

where

M ~k!5E dqW

~2p!2

uh~qW !u2

2q S sinhqd

coshqd2coskdD . ~B8!

Substituting Eqs.~B7! and~B8! into Eq.~B5! we can now
solve forA0(qW ,k) to get
al

n-
he

e

s

A0~qW ,k!5
24peul

q21k2

h~qW !

112pe2M ~k!(l
exp~2 ikld !.

~B9!

Fourier transforming the above equation with respect to
wave vectork we getA0(qW ,ld) @Eq. ~40!#.

We now consider the action Eq.~22!. We first consider
the electric field energy. Integrating by parts and making
of the Poisson equation@Eq. ~33!#, we get

E dzE drW
@¹A0~rW,z!#2

8p
5

2e

2 (
l
E drWE dr8WA0~rW,ld !

3@ux l
0x~rW,r 8W !

2ex l
00~rW,r 8W !A0~r 8W ,ld !#.

~B10!

On integrating out the electrons to second order in the vo
velocity u and the Coulomb potentialA0 we get the effective
action

S85(
l
E dtE drWdr8W F2u2

2
x l

xx~rW,r 8W !

2
e2

2
A0~rW,ld !x l

00~rW,r 8W !A0~r 8W ,ld !

1ueA0~rW,ld !x l
0x~rW,r 8W !G . ~B11!

Combining Eqs.~B10! and ~B11! we find that the effec-
tive action for the system, to second order inu, is given by

SKE5(
l
E dtE drWdr8W F2u2

2
x l

xx~rW,r 8W !

1
ue

2
A0~rW,ld !x l

0x~rW,r 8W !G . ~B12!

The first term inSKE is the unscreened core contribution
the vortex mass evaluated earlier@Eq. ~24!# while the other
term represents the reduction because of Coulomb scree
We now substitute the explicit forms forx l

xx andx l
0x . Doing

a calculation very similar to the one leading to Eqs.~37!,
~38!, and~B2! we find

E drWdr8Wx l
xx~rW,r 8W !522l2. ~B13!

Substituting Eqs.~37! and ~B13! into Eq. ~B12! we get

SKE5(
l
E dtFu2l21

eul

2 (
l
E drWh~rW !A0~rW,ld !G .

~B14!

Fourier transforming the second term in Eq.~B14! and sub-
stituting the expression forA0 @Eq. ~40!# we finally arrive at
Eq. ~42!.

The only remaining task is to evaluate the polarizabil
M (0). Using Eq.~38a!, we find that
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h~qW !52A 2

e1/2
E drW f 1/2

2 ~r ! f 1/2
1 ~r !sinfe2 iqW •rW. ~B15!

On substituting the variational forms@Eq. ~30!# for f 1/2
2 (r )

and f 1/2
1 (r ) and integrating over the angular coordinatef this

reduces to

h~qW !52A 2

e1/2

2p i

A1/2
2

qy

q E0

`

drrJ0~kFr !J1~kFr !J1~qr !e2r /j.

~B16!

Combining Eq.~B16! with the expression forM (0) @Eq.
~41!# we finally get

M ~0!5
4p

A1/2
4 e1/2

E dq
sinh~qd!

cosh~qd!21
I 2~q!, ~B17!

where

I ~q!5E
0

`

drrJ0~kFr !J1~kFr !J1~qr !e2r /j. ~B18!
,

e

,

-

ge

.

P.

y

it,

v

Using Eqs.~30d!, ~43!, ~B17! and~B18! we are now in a
position to calculate the ‘‘core dielectric constant’’ecore. We
find thatecore5112pe2M (0) is given by

ecore511
e2/j

e12

L1

L2
2 , ~B19!

where

L154E
0

`

dx
sinh~xd/j!

cosh~xd/j!21
f 2~x!, ~B20!

L25E
0

`

dxxe2x@J0
2~kFjx!1J1

2~kFjx!#, ~B21!

and

f ~x!5E
0

`

dyyJ0~kFjy!J1~kFjy!J1~xy!e2y. ~B22!

On evaluating these expressions@Eqs. ~B19!, ~B20! and
~B21!# numerically we findecore.53.
ev.
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