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We present here a calculation of the inertial mass of a moving vortex in cuprate superconductors. This is a
poorly known basic quantity of obvious interest in vortex dynamics. The motion of a vortex causes a dipolar
density distortion and an associated electric field which is screened. The energy cost of the density distortion
as well as the related screened electric field contributes to the vortex mass, which is small because of efficient
screening. As a preliminary, we present a discussion and calculation of the vortex mass using a microscopically
derivable phase-only action functional for the far region which shows that the contribution from the far region
is negligible and that most of it arises from tf@mal)) core region of the vortex. A calculation based on a
phenomenological Ginzburg-Landau functional is performed in the core region. Unfortunately such a calcula-
tion is unreliable; the reasons for it are discussed. A credible calculation of the vortex mass thus requires a fully
microscopic non-coarse-grained theory. This is developed, and results are presented-veanenBCS-like
gap, with parameters appropriate to the cuprates. The mass, aboytgeBlayer, for a magnetic field along
the c axis arises from deformation of quasiparticle states bound in the core and screening effects mentioned
above. We discuss earlier results, possible extensiomswave symmetry, and observability of effects de-
pendent on the inertial mag$50163-182607)05534-3

[. INTRODUCTION mass, and go into the question of mass-related phenomena in
Sec. IV. This work was reported in 1992,

The discovery of high-temperature superconductors has We first estimate the mass using a phase-only functional
led to a renewed interest in the mixed phase. Several novéSec. 1) which is known to give a good description of the
phenomena arising from their short coherence length, laysystem far from the vortex core, where the amplitude of the
ered nature, and large superconducting transition temperarder parameter is nearly constant and the only relevant de-
tures have been theoretically and experimentally stutlied gree of freedom is the phase. Recently, Duan and Lel§gett
One area of interest is the existence of effects connected witand Duaf’ have given a careful discussion of this approach
vortex dynamics, e.g., quantum créepanomalies in the where the time-dependent order paramép&asé of a mov-

Hall effect’® and ac electromagnetic respoddeThese ing vortex causes the electronic density to fluctuate. This in
phenomena are not fully understood, partly because of thturn gives rise to an electric field which is screened. The
lack of a well-developed first principles theory of vortex dy- energy of the density distortion and electric field energy are
namics, especially in the quantum, interacting vortex regimethe cause of the mass. The phase-only functional used has
A number of recent contributions address parts of thebeen derived microscopicalfjand the result obtained thus
problem?®~2 especially the Magnus-force-driven dynamics has a microscopic significance and gives an accurate estimate
in the presence of dissipation. of the contribution to the vortex mass which accrues from

A necessary ingredient in all considerations of the motiortransitions induced in the electronic scattering states of a
of a vortex is its inertial mass. This quantity, generally be-vortex by the vortex motion. The contribution of this process
lieved to be small, is surprisingly ill known and its origin is from the far region turns out to be very small due to efficient
not well understoodsee Ref. 1, for example Not much  screening; thus most of the mass comes from the core of the
attention has been paid to this question because, for sonwertex.
phenomena, the dynamics is governed by large dissigdtion ~We then calculate the core contribution to the mass using
or the strong Magnus forég'?and the inertial mass could be a phenomenological Ginzburg-Land&GL) functional as
irrelevant. However, there is experimental evidence for a lowhas been conventional since the early work of S8fhis
dissipation regime in cuprate superconducfoend for a  functional is not derivable microscopically and is used
Magnus force smalléf than standard estimat&si?Itis thus ~ mainly as an interpolating formula which reduces to the cor-
quite possible that the inertial mass could affect dynamicatect phase-only functional in the far region. However, obvi-
processes involving vorticgghese questions are taken up in ously the coarse-grained GL approach is unrealistic for ef-
Sec. IV). Also, in the absence of an understanding of whatfects within the core which is of the same siz& (s the
contributes to the vortex mass, and how much, it is difficultcoarse-graining scale of the theory. Further the screening
to meaningfully discuss the question of whether or how suchiength in GL theory is proportional thy| 1, wherey is the
a mass influences vortex dynamics. We therefore presemsuperconducting order parameter, and thus diverges at the
here an extensive discussion and a calculation of the vortexore. This is clearly an artifact of the GL approach, as the
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efficiency of Coulomb screening is related to the electronic

compressibility and is expected to be largely independent of Q
the superconducting order parameter. The GL estimate of the =

vortex mass is clearly unreliable and is presented here // \\
mainly to contrast the correct microscopic calculation of the A

mass which forms the main body of this paper. The correct

microscopically obtained vortex mass is very different from

the GL estimate in its dependence on the basic parameters of

a superconductor. In spite of this, the numerical value of the

mass obtained in the GL approach(largely by accidentin AMNON\W
the same range as that obtained from the microscopic theory

for parameters appropriate to the cuprates.

We then present a microscopic calculation of the vortex FIG. 1. Feynman diagrams that contribute to the phase-only
mass(Sec. Ill). We employ the self-consistent pair field ap- action functional of Eq(1) at T=0 in the clean limit on integrating
proximation which has been used extensively for static vorout the electrons. The thick lines correspond to the fermions, the
tex structure, quasiparticle energy levels, Bt¢3We make  wavy lines indicate the density fluctuatiops= (% 6—2eA,), and
a Galilean transformation to a frame of reference where théhe dashed line stands for the supercurrent fluctuations
vortex is at rest. In this frame, the motion of the vortex actsj=(4V 6—2eA/c).

like a perturbation of the fornai- p° whereu is the vortex . _ o
velocity andp® is the momentum operator for the electrons.@1d the action functiona per lengthL (at T=0) is given

The inertial mass is obtained by integrating out the electroni®Y

degrees of freedom to second ordeinThe coefficient of (S/L)=Sy+ Serm, (18
the u?/2) term in the effective action is the effective mass of

the vortex. The mass is found to originate from a polarizatiorwhere

process involving the virtual excitation of the lowest-energy

guasiparticles in the bound electronic statgsasiparticle te Jagf . 2eAg)\?
stateg localized in the core of the vortex. The small core size dtf dr{ ( Q_T)
(é~15 A) in the cuprate superconductors implies that the

lowest unoccupied state is separated by a sizable gd®( ay 2¢A\% 4mo
K) from the highest occupied state below the Fermi I&Vel, % “Fel T
in strong contrast to conventional superconductors. The ex-

istence of this large gap in the core quasiparticle spectrurand

has been recently obsenf&dy scanning tunnel microscope

(STM) measurements in the vortex core region in +oo -
YBa,Cu3;05_ 5. This virtual transition process gives rise to Sem= fﬁm dtf dr
a large vortex massif* ~25m,). However, strong dielectric

screening drastically reduces the mass and leads to a valygherer is the coordinate in the plane perpendicular to the
m* =0.5m, per CuG; layer. We discuss the physical reason magnetic field. In Eq(1b), the first two terms are the ener-
for a mass of this size in terms of basic length scales and thgies associated with pair charge and pair curtentelocity)

scrlee?r:ngf_pr?cesst._ nSec. 1) di h lculati fluctuations, respectively. The term lineardris a total time
_n the final section Sec. We discuss the calculalion e aiive which has no physical consequences in the ab-
critically, compare with other results, consider the calcula—Sence of vortices. Its physical origin can be understbod
tion Otf a;hvortex rpass ;Orﬁ noa;\:f/va;/e dsup?rc&nductolﬁ, an? terms of the Berry phase associated with the adiabatic mo-
go into t (;tqgjes ;;)n 0 Vl\JII en etiects due 1o the small Vorte€¥ion of a vortex and it gives rise to the Magnus force. Notice
mass might be observable. the absence of any term linear Ay which is constrained to
be zero because of charge neutrality in the electron-ion sys-
tem.
Il. GINZBURG-LANDAU CALCULATION The action functional of Eq(1a) can be obtained micro-
OF THE VORTEX EFFECTIVE MASS scopically by starting with electrons interacting with a pair

The most natural way of discussing the motion of a sin_p_otential'(whose magnitude is nearly constant in the far re-
gularity in the phase of the superconducting order param- 9100, going to a gauge where the order parameter is real and
eter is the time-dependent Ginzburg-Landau th%ﬂ}‘? then integrating out_the f_ermlons. The d_eta|ls of the deriva-
where the free energypr action is expressed as a functional fion have been outlined in Ref. 18. In Fig. 1, we show the
of the phase of the superconducting order parameter. Thiseynman diagrams which contribute to the action of €&q)
functional provides a good description of the region far fromat T=0 in the clean limit. The coefficients; and«, are the
the center of the vortex where the amplitude of the supercor@PpPropriate polarizabilities. For a weakly interacting, clean
ducting gap is nearly constant. We describe the functionar€'mi gas, they have the values
and briefly summarize known results for the mass contribu-
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where\T¢ (the Thomas-Fermi screening lengtk given by
A= ?=(6mne’/er) and ), (the London penetration depth

is given by\ 2= (4mne?)/(msc?). Ay andA are the scalar

and vector electromagnetic potentials, respectively, the two
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terms in Eq(1c) being just the field energies. In case there is

an external magnetic fieltho, the term{(VxA)%/8x} is

modified to {(VXA—H)?%/8x}. The functional is clearly
gauge invariant. In Eq(1) the displacement current term

[(1/c)dAl4t]? has been omitted because of the largeness o

C.

The motion of the vortex in a charged superconductor,
gives rise to an electric fiel¢or potentialAg). To find this
Ao, we minimizeS with respect toA, which yields

2eAg

fi

—2e

J2

fi

V2A,
4

)

Now for a vortex moving with dsmall) uniform veIocityJ,
we make the assumption that

6(r,t)= 6o(r —ut), (4)

where 0o(r) is the phase around a static vortex at the origin.
Thus we have

6(rt)=—u-Vé,. (5)

Using this in combination with the know#,, one finds the
potentialA, from Eq.(3) and the extra energy from E¢l).

The result is

g 2_ —2
TR

7TC¥1U2|

= | +
KE 4nl

: (6a)

whereR, is a long-distance cutoffvhose magnitude will be
taken to infinity in the end Then it is easy to see that in the
limit e—0, which implies\jr—, the expression foEyg
reduces to fra,u?/2)In(R./£) which diverges logarithmi-
cally as the long-distance cutd®; is taken to». This is the
expected result for a neutral superfldfd’ For the present

case of a charged superconductor we are always in the limit
¥=<¢ and the expression for the kinetic energy simplifies to

T u? )\-T—,:Z B uz ()2 6b
=4 2 168 2e) (60)
The expression in Eq6b) can be rewritten as
NTE 3 6
Exe= Esv 2 @m0 g (60)

where ESV=(¢0/477)\,_)2In()\,_/§) is the London energy
(per unit length of a static vortex which results from the

FIG. 2. Additional diagrams that contribute to the Galilean-
invariant action functional of Eq(7) on integrating out the elec-
trons. The thick lines correspond to the fermions, the wavy lines
Fdlcate the density fluctuations= (% 6—2eA,), and the dashed
line stands for the supercurrent fluctuathns(hvo 2eA/c)

to be compared with the natural velocity scalg of the
Fermi system. The second bracketed factor in(&g. is due

to the reduction of charge fluctuations by screening. The
former occur on a length scale while the screening length

is ANfp<£. On substituting appropriate numbers in E6b),

i.e., &=15 A and\i=1 A we find that the contribution of
this source tanf =7x 10" *m, per layer M, being the elec-
tron mas§ assuming an interlayer spacidg=10 A. This is

an extremely small number; one reason for its smallness is
the screening facton(/ £€)?=(1/200). The resultEq. (6b)]

has been obtained earlier by Dudnyhere details may be
found.

The functionalS, of Eq. (1) is not Galilean invariant and
there are additional terms involving higher-order derivatives
of #, whose inclusion is necessary to restore this symmetry.
These arise from the fact that the Gaililean-invariant combi-
nation involving the time-dependent order parameter pldase
is the local electrochemical potential

h
E +eA0_

The correct functional was recently obtained by Aitchison
12> and is of the form
|+

et al:

s—fmdtfd* e
am.
2+

. 2eA)|?
2| & 0= F¢c :

The additional diagrams contributing here are shown in Fig.
2 The harmonic electric field terms in Eda) and(1c) can
be integrated out to give the action functional

=[] S
>\ 2

—2f dtf ail My |y 284 (7b)
2 f fic '

It is clear from Eq.(7b) that additional contributions accru-

(hV 6/2—eAc)?

Sp(r,t)=— >m

h(Vo— 2eN#c)?]?
am

2ehA
fi

(7a)

dq 2a1 2
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terms involving transverse fluctuations in the current andng to the vortex mass come from the coupling of charge

magnetic field in the phase functional of Eff). The result is
then easily understood on physical grounds; the velacity

fluctuations to the supercurrent fluctuations leading to non-
adiabatic corrections in the supercurrent distribution that are
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proportional to the vortex velocity. However, an explicit cal- where y(r) is the order parameter configuration associated

culation shows that all such contributions to the vortex Mas§yith a static vortex. We further assume a common and fa|r|y
are screened at least doubly more efficiently and are ther%{ccurate explicit form fowo(F) namely

fore smaller than that estimated abd¥s. (6b)] by a factor
of (A1e/£€)?~0.005. Since the far mass estimated before is .

already small, this additional contribution is smaller still, and Po(r) = Vngtanh(r/&)exp(i $), (10
therefore negligible. In fact, in the perfect screening approxi-

mation, where the total electrochemical potenéial is set Wherens is the superfluid density far from the vortex, and
equal to zero locally, we get back the result of E6), the (r,¢) are the radial and angular coordinates of the two-
contribution of the additional terms being zero as expecteddimensional(2D) vectorr . Again, minimizing Eq.(7) with

It is worth emphasizing that the results obtained from therespect toA,, we find

phase-only functional are essentially microscofsee the
Feynman diagrams in Fig. 1 and Fig.@nd give an accurate

2 *
estimate of the contribution to the vortex mass from the elec- VAo = 3en / W _ o* 9 +i(2e)2| W] 2A,.
tronic scattering states which are extended in nature and exist 4 imvﬁ\ ot ot mvﬁ
mainly outside the core. (11)

We now consider the contribution to the vortex mass aris-
ing from the core. The amplitude of the superconductingJsing this condition in the action functional of E() we
order parameter changes as a function of radial distance frofind that the extra energy due to vortex motion is
the center of the vortex in the core region. We use a phe-

nomenological Ginzburg-Landau action functional per unit || 342 |ayl? 3BehA, Y ap*
length, AE=fdr 5= 2_( *— =y ) .
2mog| ot 2mu i ot ot
(12
sfdtfd* > (ﬁﬁ 2 )(ﬁt)2
= r ——-2e r, , . . . :
2mv§ i dt Po| ¥ The first term in Eq(12) is due to the density fluctuations

induced by vortex motion, and the second describes the re-
duction due to screening. The first term is readily computed
i c using the ansatz, Eq9), for the time dependence @f(r ,t)
and the form, Eq.(10), for the coordinate dependence of
- o(r). We are interested here only in the core contribution to
+f dtf dr ' ®) the mass, the contribution from the far region having been
previously determinefEq. (6)]. The radial integration in Eq.
to estimate the core contribution to the vortex mass. (12) is therefore performed over the range<0<§ (core
This functional is not derivable microscopically and has'egion. It gives a mass per unit length,
been chosen primarily as an interpolating formula which re-

2

1 (h 2ee)
— || =V-ZA |y

—V(It/flz)l

(VA)2—(VXA)2
8

duces to the correct phase-only functional in the far region in core . me\[ ap 2
. . i . . . * *
the limit ¥ — /n.e'? and gives the corredtinear inr) de- Minscreened My~ = 0.6 AR (13
TF

pendence for the amplitude of the order parameter near the
center of the vortex. The parametarwhich appears above " P ) >
is therefore fixed by requiring this functional to reduce to theVhere a02=h /rT;ee is the Bohr radius, and ) =
action functional of Eq(1) in the “phase-only” approxima- 47ns(2€)°/(mvg/3). For the cuprate superconductors, we
tion. For the potentiaV/(|¢/|%) we assume the standard form find that the unscreened core vortex mass per layer is

a mjcmo.lg’ne. (14
V<|w|2)=5|w|2+§|¢|“-
An unexpected, and incorrect, feature of Etf) is the lack
of dependence of the vortex mass on the core &iZghis is
Starting with the early work of Sutl and subsequent a consequence of the fact that the core mass is proportional
work by others(see Ref. 1 and references thejedi esti- o the gradient energy per unit length in the core, which is

mates of the vortex mass have proceeded from this funcscale invariant and does not depend on the natural length
tional. The value of the mass obtained from this functional |Ssca|e§ in two dimensions. This is inevitable in any local

not expected to be very accurate for reasons that are digpntinuum free energy theory.
cussed below. However, we present a calculation of the vor- we now consider the second or screening term in Eq.
tex mass from this functional mainly to contrast and high-(12). One clearly needs to know the electric potentiq
light the microscopic calculation presented in Sec. lIl. induced by vortex motion. Setting

We again[see Eq.(4)] make the ansatz that for small

velocity u, the vortex moves rigidly, i.e., AO(F)=v(r)G- >, (15)

(1 )= o(r—ut), (99  we find thatv(r) satisfies the radial equation
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lll. MICROSCOPIC CALCULATION
u(r) OF THE VORTEX MASS

a2+1(9 1 1 |p(n))?
g2 rar r2 (\x)2 N

We present now a microscopic calculation of the vortex

1 4 ,., tantf(r/ &) inertial mass for a layered superconductoifat0. The dy-
T 47 28 TF r . (16 namics of the system of paired electrons is described by the
action
This is just the radial Poisson equation with a screening term . R . R
(last term on the left-hand sil@nd a source terrfon the S=j dtf dzf dr, [Lf(r,t)+ LTI )+ LPar )]
right-hand sidg appropriate for a two-dimensional system. !
1 H H * H

The “effective screening Iength)kTF\/n—S/|¢(r)| isr depen- X 8(z—1d)+ Sem, (199

dent, and increases ag(r)| decreases, i.e., with—0. This

is yet another unrealistic feature of Ginzburg-Landau theorywhere
since one expects screening which is related to the electronic
compressibility to be relatively independent of superconduct-
ing order. Equation(16) is solved numerically, with appro-
priate boundary conditions at=~ andr=0. Thev(r) and

the Ao(r) thus obtainedsee Eq(15)] are used to calculate <linl _ [(ﬁ/i)V—(e/c),&]2+6 (P
the second term in the vortex core eneffy. (12)]. Adding at 2m FlPlot ot h
the contributions of both the terms, the final result for the

mass per layer is

2
ag d
m* core— m: —

LI =2 ¢h,(r,0)

(19b

Ll r,)=—eAy(r,Id) X ¢,(r,)da(rt), (190

[0.61-0.04m,, (17)

ANTe) Qo -
g (702

. . . X I‘| (r,t)—_[A|(r,t)l/lm(f,t)l/lu(r,t)"'H.C.]_T,
whered is the interlayer separation. In EQ.7), the first term
in the square brackets is due to the density distortion in the (190
core, and the second term is the negligibly small correctioryng
due to screening. Thus the total mass per layer, for a cuprate
superconductor af=0 K, is a(VA0)2—(V><,&)2

Sem:J' dtf dzf dr p= . (19e

m% =0.19m,. (19 )
The electrons atr(t) on layerl, with spin o, are repre-

In the absence of a microscopic theory, the phenomenologgented by the Grassmann field variablas(rt), ¢1,(rt).
cal Ginzburg-Landau approach has been used, mainly as &€ €lectronic kinetic energy is described by the term
dimensional aid, to estimate the vortex inertial mass. Th&_f(r,t), i.e., Eq.(19b), and the electronic coupling to the

values quotedRef. 1) are in the rang€0.2 — 2m,, and turn  coulomb potential by the ter/(rt) [Eq. (199]. Equation

out to be(largely by accidentnot far from our microscopic (19 is the mean pair field decomposition of the Cooper pair
result(see belowfor parameters appropriate to the cuprates.giraction, appropriate for a BGSwave superconductor, and
As a preliminary to the microscopic calculation which forms y is the strength of the attractive contact interaction. The last
the main result of this paper, we have performed a detailegyym s, [Eq.(196] is the electromagnetic field contribution.
calculation using this functlpnal to brlng out its macjeqqames. Several possible modifications and generalizations, such
The above detailed analysis of the different contributions tQ,¢ orger parameter symmetries other taavave and effects
the mass shows that within the phenomenological GL theorye to quasiparticles &+0, are briefly discussed in Sec.

it is due to the essentially unscreened density distortion inp \we have neglected above the small interlay@vseph-
duced in the core. The unscreened mass estimated above 199 ¢oupling, so that thépancakg vortices in different lay-

is incorrect as the gradient expansion, implicit in a phenoMe,s are coupled only via electric and magnetic fields. This
enological theory like the GL functional of E¢B), breaks  ogject has very little effect on the vortex mass, which is
down at short length scales and strongly nonld@alpace  ,enwhelmingly due to processes occurring within a layer

effects lead to a much larger masee Sec. Il belowinthe o a5 a matter of fact, to processes within the small core.

unscreened case than calculated here. This picture is clear?y Every layer has one pancake vortex. All the pancake vor-

incorrect on another count as well. Electronic screening profices are assumed to lie along a straight line parallel to the

cesses are not expected to be affected much by the onset ghqnetic field which is perpendicular to the layers and to
superfluid order and a strong reduction of the mass is ex- ve with niform velocitvi that the vortexcore
pected because of Coulomb screening. This aspect too fgove a unro elocitl, S0 that the vortexco

explicitly seen in the microscopic theory. In short, the micro-coordinate is Ro,Id) whereR,=ut is a vector in a plane
scopic calculation shows that the phenomenological GL picParallel to the layers and the coordinateld specifies the
ture is wrong on all counts, as we shall see now. position of the layer. The pair potentidl (r,t) in the pres-
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ence of such a uniformly moving vortex is a function of

[r—Ro(t)]. It can thus be written in an adiabatic approxima- pi(r,t)= ; D1 D P 4(r,1). (23b)
tion as

A|(r,1)=Ag(Ir = Ro(t)] )~ Ro®), (200 The first term in Eq.(22b) is linear inu, coupling to the
. ] . . . electron momentum. The second term is the electric potential

Here Aq(r) is the magnitude of the pair potential addr)  energy of thenonuniforn) electron density around the mov-
the phase, for a static vortex situatedrat0. The pair po- ing vortex. The associated electric potential has to be deter-
tential does not depend dn The action functional relevant mined self-consistently.
for vortex dynamics is found by an expansion of the micro- Since the London screening length)(is much larger
scopic action in powers of the vortex velocityafter inte-  than the core size&), the magnetic field in the core is nearly
grating out the electronic degrees of freedom. The vortexhe same as the external magnetic field, deviations from this
mass is then determined from the term quadraticiifthe  being of order £/\)?. However, the vector potential associ-
dissipative and Magnus forces coming from the linear jerm ated with this field is negligible in comparison with the gra-
This calculation is most conveniently carried out in the restdient of the phase of the superconducting order parameter
frame of the vortex. In this frame, the pair potential seen byand has been ignored in the following calculations. The
the electrons is former ~Hr whereas the latter ¢q/r. Thus for the core

region {<¢), we find that forH< ¢, /£? the vector poten-

tial may be ignored® Corrections due to the vector potential
, can be estimated to be of orddfH ., whereH is the exter-

nal magnetic field andl ., is the upper critical field and are
i.e., the pair potential corresponding to a vortex at rest wititherefore small in the dilute vortex limit.
extra phase factors coming from the macroscopic supercur- Now a systematic expansion in powersmbbecomes pos-
rent and kinetic energy of the electrons which acquire arsible by integrating out the electrons, giving rise to the La-
extra velocity— U in this frame. The Coulomb potential seen grangian that describes vortex dynamics. Dynamics of vorti-
by the electrons in this frame becomag— (Ui/c) - A, while cgs(class.ical or quantu)nc_an be studied eitherl by working
the vector potential is the same as before. All physical quandiréctly with the vortex action or alternately by introducing a
tities can be calculated in this frame and then transformed t§&nonically conjugate momentum which permits one to go
the laboratory frame as necessary. Note that this does n8V€' t0 the Hamiltonian formalism.
assume Galilean invariance. The Magnus and dissipative forces come from the term

After a gauge transformation, the action for the system irlinear inu and can be obtained by taking the gradient of this

2mu-r mu2t>

Aow)ex4i(0(ﬂ—— —t——

this moving frame can be written as term with respect to the vortex coordin&feThe inertial
term in the action is quadratic in the vortex velocity. We are
S=5+S;, (21 thus interested in the change of action to second ordar in
) S the coefficient of (?/2) in the change being the vortex ef-
where the static vortex actio, is fective massn*. Clearly, this is calculable by going to sec-

ond order inu andA,. For ease of presentation and also to
emphasize the importance of Coulomb screening in the core,
we do this in two stages. First, we find the unscreened vortex
) mass, i.e., ir5; [Eq. (22b)], we turn off the Coulomb inter-

} J dtJ dzJ da(V><A)2 action by puttinge=0, and calculate the second-order shift.

LI 1) = Ao(r)[ €Dy (¥ 1)

%=Jmfﬁ2

— . A3(r)
X (r)+H.el-— 8- We then calculate the effect of Coulomb interactions, i.e., the
effect of the electric potential due to the electron-charge-
(223 density change consequent on vortex motion. We would like
to emphasize that the unscreened mass calculated here cor-
responds to the contribution of thmund statedocalized in
the vortex core. The contribution of bound states is finite.
sl:f dtf drY, [U-p(r,t)—eAyr,Id)p(r,t)] For a(hypothetical neutral superconductor, this term is to be
! added to the contribution from the region outside the core.
(VA)? This can be calculated from th@nicroscopically derived
+f dtf dzf dr ) (22  phase-only functiondlEq. (1)] by settinge=0, and as men-
8m tioned earlier, is logarithmically divergent because longitudi-
nal density fluctuations associated with vortex motion are not
screened. Thus, for the uncharged superconductor, the finite
core contribution can be neglected in comparision with the
5 logarithmically diverging far contribution.
> 2NN T 7 > For a charged superconductor, the core contribution has to
p|(r,t)—§(:, 1ors1) i Vio(1.0), (233 be calculated with the inclusion of screening effects which
we show[Eq. (43) below] reduces the “unscreened” or
and p|(F,t) is the density operator, e=0 mass by a factor of 50 or more. To this we have to add

and the perturbation due to vortex motion is contained in

In Eq. (22b), p(r.t) is the momentum density operator for
thelth layer,
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the m* due to the far region, which because of CoulombOur definition of the quasiparticle operat¢Ey. (25)] differs

screening is finite, and is actually negligibly sni&l. (6c)].  from the standard definitidf by a particle-hole transforma-
The second-order effective Lagrangian due to jus&hé tion.aln dOing '[hiS, use has been made of the fact that if

term in S; is given using standard many-body perturbation(uM(r),v#(F)) is an eigenstate with eigenvaleg, the state

theory by (n/2)u? where (—v%(r),u%(r)) is also an eigenstate with eigenvalue,, .
Thus,
m*:idef dﬁf dt(T[pX(r,t)pX(r’,0) . . . R
° (e P b (Uy(r),o,(N)=(—v* (r),u* (r)), (26b)
_ j o j A7 (7). (24 W
€, =€, (260

In Eq. (24), the vortex velocity has been assumed to be in the ,

x direction. Note that intralayer averages such as(24.do 0" #<0. The ground state of the system has all states with
not depend on the layer index. The correlation function it <0 occupled_ and all states W'W'>Q empty. .

Eq. (24) is calculated with respect to the unperturbed action _1N€ correlation function of Eq24) is easily evaluated in

S, [Eq. (228] which describes a single static vortex. This this representation. The vortex mass can then be understood

last problem of a static vortex has been studied extensivel@S arising from a polarization process involving a virtual
using the Bogoliubov—de Gennes self-consistent fiel quasiparticlg¢ transition from the highest-occupied to the

theory?®-23 The electronic eigenstates, in the presence of Jowest-unoccupied state. This process can also be viewed as

static vortex, are bound states which are localized and hava deformation of the ground state by the perturbation which
appreciable amplitude only in the core of the vortex, or ex-MXes in higher-energy states. In terms wfand v, the
tended states which are scattered by the superfluid Vebcigwomentum-momentum correlation function can be written
and are primarily in the region outside the vortex core wheré!S

the amplitude of the order parameter is nearly constant. The

latter are well described by neglecting the variation in theiel d(TLp}'(r,H)p}(r7,0)])
amplitude of the order parameter and the scattering process

contributing to the mass involving these states are just those | ,.c occ >
considered in the Feynman diagraff$g. 1) contributing to 23 S (e—e r)‘l{u*(F)é au,(r)
the phase-only functional in E¢l). Thus the mass contri- A LR )
bution from the deformation of the scattering states is accu-

n>0 M/<0

rately estimated by the calculation proceeding from the R au#(ﬁ) _ h au;,(ﬁ)
phase-only functional of Eq1) and has been shown to be X u(r')= o) — ——| tHc..
negligibly small due to efficient screening. We will therefore 2 2

concentrate in the following only on the contribution of the (27

localized states to the correlation function of &24) to find The various terms here correspond to the different quasipar-

the core contribution to the vortex mass. ticle processes that contribute to the polarization. There is a
The eigenfunctions of the Bogoliubov—de Gennes equa- P P '

tions for a single layer which are localized in the vortex coreSlmple selectlo/n rule for nonvanlshlng matrix elements,
; - - i namely,u= — u'=1/2. We discuss this now. The details are
are the amplitudesi,(r) andv ,(r), labelled by the(azi-

worked out in Appendix A. The operatqr, has an angular
mutha) angular momentum quantum numherbecause of  yenendence of the form cgs(radial derivative term and
the cylindrical symmetry of the single-vortex problem. The sing (angular derivative terinvhered is the angle in the @
Bogulibov amplitudes are related to the fermion field opera- > . .
tors by the relations plane of the vector with respect to thex axis. The ampli-

tudesu,,(r),v,(r) can be writteA>**as

wT(r,t>=a% U, (1) y,(1) (253 WD) gl €D
- € e—|¢/2f+(r) ) (28)
and vu(r) .
wherefi(r) are functions only of the radial coordinate
lﬂf(ﬁt): > v, Ny, ). (25p  The ¢ dependence ofi,,(r),v,(r) above implies that on
arp a integration of the matrix elements in E@®7) over the angle

¢, the only nonvanishing terms arg ¢ u')=*1. Wealso
need one of the statgsto be unoccupied and the othef to
be occupied. The only possibility among bound states is

Here u runs over all half-odd integergositive as well as
negative. The quasiparticle annihilation operatoyg corre-
spond to the emptgparticle states forw>0 and filled(hole)

states foru<0. In terms of the quasiparticle operators, 4= —p'=3. To understand this, we exhibit in Fig. 3, the
the Hamiltonian for the static vortex system described by thépectrum of eigenstates for parameters appropriate to the cu-
action S, can be written in a diagonal form as prate superconductofs.The bound states within the gap
have quantum numbegs=*3,+3, ... . Theoccupied(un-
Ho= > €, y,+ const (263 occupied states have negativ@ositive u. It is now clear
wYu¥u :

{u} that the only virtual transitions that satisfy the selection rule
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is the normalization factor. Witf=15 A, k-*=3.36 A, and

Ay = 60 meV, the expectation value of the enefgy,,) is

69 K, close to the self-consistent numerical value of 66 K
obtained by Zhuet al?® The wave functions are also very
close. Using these, the expressiog can be evaluatetsee
Appendix A for detailg, giving a value

(I
(I
(I
(I
(I
(I

A |

m =25m,. (31

The vortex mass obtained above can be estimated by the
following simple physical arguments. The correlation func-
el Ep tion in Eq. (24) can be estimated as follows. Each of the

= momentum operators gives a factorid: which is the typi-
cal electronic momentum. The energy denominator of the
correlation functionsee Eq.(27)] is twice the bound-state
energye,, which is the energy cost of the polarization pro-
cess involving creation of a “particle-hole” pair. Finally
there is a factor of 2 corresponding to electron spin. The
bound-state enerdy e, is aboutA3/2e. The core contri-
bution to the unscreened vortex mdBs parameters appro-
priate to the cupratgss thus estimated to be

—Aol

e 11
11
o 11
<= I
eI

hZ

=
N

my = ~100m,. (32

o
=
g
£,
&
=
Q
3
o
B
£
=
3

I3
( €112

FIG. 3. Spectrum of bound states within the cévéthin the ~ 1hiS is larger than the value calculated above for the vortex
range —A, to Ag) and of continuum states outside it, with the Mass[Eqg. (31)] by a factor of 4. This discrepancy arises
angular momentum quantum numbers. The levels are appropriate REcause the matrix 1e|ement_ in the detailed calculation is
the parameters mentioned in the text for a cuprate superconductor inaller(by a factor of; approximately than the dimensional

T=0. The transition allowed by selection rules is shown by anestimate.
arrow. We now consider the effect of Coulomb interactions. The

dipolar charge distribution induced by vortex motion is
Au==*1, andare between occupied and unoccupied statesscreened efficiently by the electrons. This greatly reduces the
correspond tou=—u'=1, i.e., the highest-occupied and vortex kinetic energy. The reduction of the vortex kinetic
. 2y e . . . energy is calculated using standard self-consistent linear re-
Iowes_t-unoccup|ed bound states. W'th.th's 5|mpI|f|cat|_onSponse theory. The dipolar charge distribution produces an
used in Eq(27*) and the latter substituted into the EXPressioNayira electric potential, i.e., changes the electrochemical po-
Eq. (24) for mg , we have tential of the system. Any change in the electrochemical po-
4)g,/2 tential causes a change in density which therefore needs to be
mg = X , (299 calculated self-consistently. In the following, we outline the
€172 calculation of the reduction of the vortex mass because of
Coulomb screening. The details are provided in Appendix B.

where
Varying the action in Eqs(21) and(22) with respect to the
- _h aul,z(F) electric potentialAy, we find, at the extremum, the Poisson
gx:f droya(r)s — — (29D  equation
We thus need to know the energy, and the core bound- V2A,(T,2)= _47782' (py(N)8(z—1d). (33

state wave functiong;,(r) in order to findmy . These have

been determined self-consistently and numerically by Zhuy , - . . .
et al23 We use here the variational forms We find{p,(r)), the electron density, to linear orderurand

Ag to be
Ag(r)=Actanh(r/§), (309
N\ =7 007 7 T 70X T
f]T/Z(r):Al/Z‘]O(kFr)e_rlzgl (30b) <p|(r)>_eJ’ dr X (rar )AO(r vld) uj dr X (r1r )
(34)
and
In Eq. (34), the density-density and density-current response
f1(r)=Agda(ker)e "%, (300  functionsx® and x°* are given by
where

x?°(F,F>=—iJdm(t)<[m<rit>,p.<7,0>]> (35

A= f drl35(ker) +3%(ker)Je™"¢  (30d) o
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o> _ R o finite large n_umber. This is due to t_he discrete IeveI. spectrum
xp(r,r')= —lj dto(t)([pi(r,t),p(r’,0)1). (38 in the core, in contrast to the continuum of states in a metal
or the near continuum in conventional superconductors, giv-

The second term on the right-hand side of E8¢) is the  jng “metallic” screening. The core dielectric constart.{,)
source term foK(p,); it has to be determined by integrating can be evaluated using the variational wave functions of Egs.

the correlation function”(r,r '7) over the coordinate’ . (28) and(30). The screening reduces; by a factor of about
This is evaluated to be 50. The large dielectric constant can be understood as being
due to the high polarizability of the core quasiparticle sys-
J XPX(F,F)dr_7= 77(;))\’ (37) tem. Appr_oximately, the _dielectric constard {9 is dimen-
sionally given by the ratio of the core Coulomb energy and
where the excitation energye, - =2¢€,,,) hecessary to create the
particle-hole excitation which contributes to the polarization
. 2 process leading to screenifigee Appendix B Thus,
n(r)=24/ vA 1) f1(r)sing (383

€core™ (Ecoutomt/ Eexcitation :{(ez/ Ele, —}2 75. (44

and The detailed calculation yields a dielectric constant of 53.
( ) Thus the screened or effective inertial mass of a vortex is
A=—\/—— e f drUl/z( ) il (380 rather small, being equal to
12
m* = (mg/53)=0.5m,. (45)

It is thus clear from Eq(37) substituted into Eq34) that the

charge distribution generated by the vortex motion is proporThis is our main result, for the mass per layerTat0, when

tional to sing; i.e., it is dipolar in nature. We thus seek a the field is along the axis.

self-consistent solution to the Poisson equation of the form  We note that the mass, E@5), can be roughly estimated
gualitatively by using the physical estimates, E2) and

Ao(r,2)=V(r,2z)sing, (39 (44),ie.,
Substituting this form in Eqs(33) and (34), and using Eq. m*z(hzkzlel,z)/{ €2/ §)12€} = (2k2a0§) . (46
(37), we solve forAy(r,z) (see Appendix B for detailsto

This gives a valuen* =1.3m, close to the the result, Eq.
(45), of the detailed calculation! It is clear from the formal
Ameun 77(&) 1/ sinhgd expressions, Ec(29). and Eq.(43), for the effectivg mass, as
5 2—( d—1>’ (400  well as the approximate form, Eg¢46), that m* is, effec-
1+2me’M(0) 29\ costy tively, the ratio of two polarizabilities: current-current and
charge-charge. Vortex motiagfin the rest frame of the vor-
- - , tex) gives rise to both supercurrent fluctuations and electric
transforms ofAo(r,Id) and 7(r) respectively. In Eq(40),  potential fluctuations. They are connected because of gauge

get

Ao(q,ld)=—

Wherer(ﬁ,Id) and 77((3) are the two-dimensional Fourier

M(0) is given by invariance. Since both polarizabilities involve the same en-
- - o . ergy denominator, this drops out of* [Eq. (46)]. It is also
M(O)zf dg [7(q)| / sinld ) (41) clear, from the occurrence &, a,, andé in this equation,

(2m)2 2q \coshqd— 1 that the vortex mass is related to the carrier density and core

size as well as Coulomb interactions. The small vortex mass
and has the physical significance of an irreducible polarizj, ine cuprates is a consequence of the small core size and
ability. Knowing the electric potentiaho(q,Id) (which is  the low carrier density in comparision with conventional su-
linear inu) we can integrate out the electrons and the harperconductors.

monic electric potential fluctuations in the actiffq. (22)] In the next, concluding section, we discuss the approxi-
to second order im. The result for the extra action per layer mations involved in the result obtained by us, its generaliza-
is tion, and the question of when vortex-mass-related effects
may be observed.
s —Jdt v 1-_2TEMO) 42
xe= | dUUN) 1+ 27e2M(0) |’ 42 IV. DISCUSSION AND CONCLUSION
where the first term in the square brackets is the large un- A. Discussion of the vortex mass
screened contribution calculated earliéq. (31)], and the The microscopic calculation above uses an approximate
canceling second term gives the reduction because of screefgriational order parameterA and corresponding
ing. Combining both these terms, we find to be Bogoliubov—de Gennes amplitudes,(v,) [Eq. (30)]. An
. obvious improvement would be to solve exactly for these
m* = Mo 43) guantities given only the parametekg and ¢ and the BCS
1+27e?M(0) relation €= (hvg/mAp). This has been done numericaffy.

There is of course a fair amount of uncertainty in these pa-
We see from Eq(43) that there is a “dielectric” screen- rameters for cuprate superconductors, quite apart from the
ing of the vortex mass; i.e., the factor in the denominator is ajuestion of whether as-wave, BCS-like order parameter
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with a conventional kinetic energy functional is at all appro-and supercurrent distribution. The changes induced by the
priate for cuprate superconductors. However, within thevortex motion have to be self-consistently determined and its
s-wave BCS model, the exact expression, Eg9). and(43), effects included in the calculation of the vortex mass. How-
for m* can be evaluated, onae, andv, and their first ever, at low vortex velocitiesu<ugcg), these effects are
spatial derivative are known fou=1/2. We have ignored small and have therefore been ignored.

the contribution due to transitions from the bound states to We have made a Galilean transformation to the rest frame
the continuum, satisfying the selection rule.=+1. The of the vortex to simplify the calculation of change in action
reasons are the smallness of the matrix elements, the largt second order imi. Inclusion of the effects of the periodic
ness of the energy denominator, and very good screening. kttice and impurity scattering is also possible within our
rough estimate shows that these change the mass estimatedmalism. Their interaction potential with the electrons be-
by about 10—20 %. We have also ignored contributions tc¢comes explicitly time dependent and leads to inelastic
the mass from polarization processes involving the collectivécattering® of electrons whose effects have to be included
excitations of the superconducting state. In the case of ¥hile evaluating the correlation functions of E¢g4), (35),
neutral Fermi superfluid it has been found by Btal?” that ~ and(36). _ _ _ _

the inclusion of these excitations, which correspond to long- S0 far our discussion has been restricted to a single vor-
wavelength density fluctuations, leads to a finite vortex masteX- However, at larger magnetic fields, in the presence of a
in contrast to the logarithmically divergent result obtained inVortex I_atuog, additional CO!’]tl‘IbUtIOI’]S coming frc_)rr_1 the vor-
our approaclisee Sec.)| However, for the case of a charged te>§ lattice W'" have to be mcluded. The perlo_dlcny of the
superconductor, which is the primary concern of this paperpa'r potential broadens the Ioc_:allz_ed quasiparticle levels into
the corresponding mode is pushed up to the plasma frenergy bands and new contributions to the vortex mass as

guency which is much larger than the other energies in th&”‘?” as the force_s experience_d_ by vortices are expected to
problem and is therefore unlikely to contribute to the vortexarnseé from_collecnve effects arising from the vortex lattite.
mass in a significant way A totally different approach becomes necessary in the pres-

With increasing temperature, the gagT) and the in- ence of strong magnetic fields in the dense vortex limit near

verse coherence lengéT) ! decrease. The structure of the H.,. The strong amplitude fluctuations which allow the dis-

vortex core also changes. In principle, one can repeat thgociation of a Cpopgr pair me}ke the dynaml.cs of the order
T=0 calculation with temperature-dependent input paramparameter diffusive in this regime. A calculation of the vor-

eters. At low temperaturesc4T<e,,) this would roughly tex mass will proceed from the Abrikosov solutforof the

have the effect oincreasingthe effective inertial mass of the g?egg\?:tﬁgzsf(gsav\fgI’Clmagsu,ltﬁreVf?;ﬁ;(el"’g;'fﬁe' I?oor?e;hteh;?gﬁce
vortex as a function of temperatufEg. (46)]. However, at

higher temperature&vhen ey, is of order or less thakgT) the vortex dynamics in this regime are subjects that require

an additional contribution to the vortex mass will accruefurgtfer it:rdey'contribution to the vortex mass was estimated
from transitions involving thermally excited quasiparticles in

the vortex core. A qualitatively new effect which arises in ear_her_ microscopically by Hst He_obtamed an answer
) : : L . which is of the same order of magnitude as the core contri-
this regime is that due to quasiparticles scattering off th

. . . . "%ution calculated by us in the abscence of Coulomb screen-
moving vortex, there is a damping of vortex motion. This.

dissipative term is generally included phenomenologic@ly ng fof parameters appropnatg to the cuprates. Hsu used the
o : . . . X Bogulibov—de-Gennes formalism to obtain the vortex accel-
is linear in vortex velocityu and contributes an imaginary

: . : ; eration in response to a transport supercurrent. The vortex
term to the actiopy though microscopic theories have beenmaSS is then deduced from this equation by a comparision
developed®2® It is not clear whether the two effects, viz., q Y P

I . - with a hypothetical force equation obtained by setting the
thermal renormalization of the effective mass, and dissipa- ; :
. S ~*unknown vortex mass times the acceleration of the vortex
tion, both due to thermal quasipatrticles, are completely inde- . :

, equal to a Magnus force of the size suggested by Nozieres
pendent. Also, the regime where the bound core level spac-

ing €y, is of order or less thakgT is clearly very different and Vinen using arguements of fluid hydrodynamics. While

from the low-temperature regime..>k.T. We have not Mmany aspects of the formalism are similar to ours we believe
. P gime,;>Kgl. Vi «. . this method is unreliable for determining the vortex mass.
considered the former dissipation-dominated ‘“high-

e The Coulomb screening effects which are found to be vital
temperature” limit.

There is the related question of adiabaticity, which is con-for giving rise to a small mass have been ignored. Even for

vortex, but withr—(r—ut). It is expected that the vortex geduce the core contribution to the vortex mass.

motion would distort the gap function from its form in the  Recently, after completion of this woiR, a paper by
static case. The distortions induced have to be determinegimaneR® appeared where a calculation of the vortex mass
self-consistently at every order af Simanek® has recently using discrete core states is presented. This calculation is
considered this question and has pointed out that the vortexased on a time-dependent GL functional, in terms of a
velocity needs to be small enough such thatsingle complex superconducting order parameter, which is
(hukF)<|el,2|=(AS/eF) or us(ugcg)(Ag/eg) whereuges  derived in the presence of a moving vortex and leads to a
is the BCS critical velocity, i.efugckr=A,. The violation = mass which is dimensionally the same as our estimate for the
of this criterion means that the vortex motion can signifi-unscreened mass. However, the all important screening ef-
cantly distort the gap function as well as the magnetic fieldfect, which reducesn* by a factor of 50—75, has not been
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considered at all in Simanek’s calculation. Furtherstrong “magnetic” field, the Magnus force being the analog
extension¥' along the lines of Ref. 33 have appeared duringof the Lorentz force. The Hamiltonian of the system af 2
the reviewing process. However, once again the substantiabrtices can be written as
reduction in the vortex mass because of Coulomb screening
has been ignored.
The assumption of as-wave-like order parameter is not - - -
realistic. There is increasing direct experimental evidence for Hvon= 2,: (pi—ay)*/2m* +(1/2)i§’j: vri=ry,
a strongly anisotropic order parameter or an order parameter
with vanishing amplitude at some points ik (or r
space.®>3 Consider, for example @,z y2-like order param-  where @,,a,)=(7%n/2)(—x;,y;) andV(r;—r;) is the in-
eter. The pair amplitude is nonlocal; i.d\.wT(ﬁ) ¢1(F)> teraction between vortices. Tlaeterm is due to the Magnus

vanishes for =r’, and has a dependence on the direction oforce with n being the electron density per layer amd is
(F— r_7) with a square symmetry. It is thus clear that thethe vortex effective mass. The “magnetic” field associated

Bogoliubov—de Gennes equations are nonlocal mixing difWith this Magnus term is rat*her large, the cyclotron fre-
ferent angular momentum eigenstates. Recent work b{uency being about 0.7 eV far*=0.5m. Thus the Landau
Volovik®” and Ren and co-workes(see also Ref. 39 and evel separation is large, and the vortex system is in the
references therejrhas suggested that vortices in supercon/oWwest Landau level with a low filling fraction ofr( /n)
ductors withd,e_,2 symmetry have a nonzeswave com- wheren, is Fhe vortex density and t_he electron density. _
ponent in the core of the vortex which vanishes at the vortex € magnetic length of g‘e system, i.e., the cyclotron orbit
center. Thus, the gapless bound-state spectrum, which migfiZe: iS rather smalk- 7 A, so that the dynamics is that of
have been expected fdrwave superconductors with lines of the guiding center; the inertial mass is irrelevant. Even in the
nodes in the gap functiofin k spacg, is absent. However, Strong Magnus force limit, a large vortex mass has been
gapless excitations are available in the far region, where th&hoWr” to give rise to quantum effects in phenomena in-
s-wave component vanishes, and are likely to give rise tcy‘olvmg vortex tu.nnelm'g. In particular the .semlclassmal ac-
strong dissipative effects so that the nature of vortex dynamiion develops a linear-ifi- dependence, which would reflect
ics would be qualitatively very different. This is an area!” the observed rate of flux creep at low temperatures. In the

which needs much further worlsee, for example, Refs. 37 Iangugge of our paper, a large vortex mass would result in a
and 38. reduction of the cyclotron frequency, mixing in higher Lan-

dau levels and thus enhancing quantum effects. However, the
rather small value of the vortex mass obtained by us implies
that this scenario is actually not realized. The main uncer-
It is clear that if there is no dissipation and no Magnustainty in vortex dynamics is the actual size of the Magnus
force, both of which produce a term in the action linear inforce. The contribution of the bound states, i.e., of localized
velocity 1°!! the small inertial mass of a vortex would give quasiparticles, to the Magnus force and the effect of disorder
rise to strong quantum effects. The vortices are bosonic paen it are major unsettled issues; there are a number of
ticles whose degeneracy temperature édH{m* c) (% /kg). suggestiorf®* that these could reduce, cancel, or reverse
This is of order 20 K for an external field of 10 T, if the the Magnus force. The dynamics of an isolated vortex with
effective massn* is about 0.5,. If this limit is realized, inertial mass, in the presence of a large Magnus force and
then several novel possibilites would arise, especially indissipation, has been investigated recefith?.Another pos-
strongly layered cuprate superconductors such as 2212. kibility is that additional Magnus-like forces could arise from
these systems the vortex liquid phase extends to very lowhe pair potential in the dense vortex lattice Iiiwith an
temperatures, especially in high magnetic fiéfighis lig-  opposite sign. However, there is a lack of a clear microscopic
uid, instead of becoming a solid, could on cooling become dheory. There is a growing body of experimental evidence
quantum Bose liquid and then a genuine vortex superfiuid. based on quantum creépiall measuremenfsand ac elec-
Such a vortex superfluid is a new ground state with unusuatomagnetic respon&t that the Magnus force is actually
properties, most likely a new kind of insulator. The vortex much smaller than current theoretical estimdt@s.In that
superfluid could persist untilf =0, or freeze into a quantum case, there exists the intriguing possibilty of the formation of
solid, whose spectrum of collective excitatiofshonong  a correlated quantum Hall fluid of the bosonic vortices at low
would depend on the mass*. The dynamics of vortices in temperature$® With mounting evidence in the cuprates for a
this regime would be that of interacting bosons in a randorsuperconducting order parameter which dgs y2 symme-
potential. try and quasiparticles whose mean free paths could be very
It is not clear, however, that the quantum Bose regime ofong for T<T,, a realistic picture of this whole field awaits
the many-vortex system is experimentally realizable. First, ad microscopic calculation of the inertial mass, the Magnus
least for higher temperatures, there is strong dissipatioforce on a moving vortex, and dissipation of its momentum
which dominates the dynamics in both the quantum and clager a d-wave superconductor at low temperatures.
sical regimes. Second there is a large Magnus fortelf Note added in prooflt has recently been brought to our
only the former were present, the mass could still be relevarattention that the contribution to the vortex mass coming
for phenomena like quantum creep. If only the Magnus forcdrom the region far from the vortex core as calculated by
were present, as is believed to be the case in the cuprat®uan and LeggettRefs. 16 and 1j7was independently esti-
where the onset of a dissipationless regime has beemated earlier by Coffey and H46;see also J-M. Duan and
reported® the system of vortices is like that of bosons in aA. J. Leggett, Phys. Rev. Le#9, 1148E) (1992 (Ref. 16.

B. Observability of effects due to inertial mass
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APPENDIX A

In this appendix we outline the evaluation of the correla-
tion function [Eqg. (24)] which determines the unscreened
core contribution to the vortex mass. Using the Bogulibov

transformation Eq. (25)] the field operators in Eq24) can
be rewritten in terms of the quasiparticle operatoyg)(to

give
=fdtf dFJ dr'D(r,r’;t), (A1)
where the correlation functioB (r,r’;t) is given by
g _7 o* ( ) o' %
(= 2 X ) —— (1)
N g gt
ﬁ
- ( )P” (1), (A2a)
' ox’
where
PLI()=i(T[yL() y,(1)11(0)7,(0)]).  (A2b)

Here f)(r)=u,(r) and f}(r)=v%(r) and the summation

with respect tou, v, A, and » runs over both positive and

negative values. The correlation function in E42) is eas-
ily evaluated using the diagonalized HamiltonidEg. (26)]
to yield the expression given in EQ7).

We will now derive the selection rule mentioned in Sec.

l1l. To find mg from the correlation function of Eq27) we
need to integrate with respect to the coordinatesnd r.
Ther integration requires the evaluation of the integral

i
Il—fdru (r) My (r)'

Substituting the explicit forms OﬂM(F) and u#,(F) [Eq.
(28)] we find that

Jdrrf r)

+h(M,_1/2)J drf;(l’)f;,(r)f d¢sin¢ei(,u—p/)¢
(Ad)

The angular integrals in Eqg.A4) are zero unless
u—u'==1. This together with the constraipt>0, u’'<0
implies that the only nonzero contributionn; comes from
m=—p'
after a little algebra, that the expression fof reduces to
Eqg. (29). In arriving at this relation, we have used E¢6h)

(A3)

.f d(ﬁccnibe“ﬂ w')e

=1/2. Making use of this selection rule, we find,

5 f:dxxefx\ll(k,:gx)[ —Jo(Keéx)12+ ke €dg(keéx) ]
T2

f " dxxe IB(ke )+ (ke )]
0

(A5)

Evaluating the dimensionless integrals on the right-hand side
of Eq. (A5) we find that for parameters appropriate to the
cuprates Kgé=4.47)

lgu|=1 12fi
04 =1. e
The largest contribution tg, in Eqg. (A5) comes from the
term involving kg £J (kg éx). However, unlike conventional
superconductors, the relative smallness of the dimensionless
parametekg ¢ implies that the other term cannot be ignored.

(AB)

APPENDIX B

In the following, we present details of the calculation of
the large reduction in the core contribution to the vortex
mass due to Coulomb screening. To solve the Poisson equa-
tion [Egs. (33) and (34)], it is necessary to determine the
source term on the RHS of E(34) by integrating the cor-

relation functronX (r r ) over the coordinate’. Making
use of the Bogulibov transformatidieq. (25)] and the di-
agonalized HamiltoniahEg. (26)] we find (after some alge-
bra) that

unocc occ

PSS S ASLTSH u (r)uy(r)

(e
(r,r
Xi u>0 v<0 (6 €,)

*
’ 14

X|v,(r')+

_ & oovr(r) . foau,(r)
i ' )i_ ax’'

+H.c. (B1)

The operator £/i)d/dx behaves like cas (sing), and as

before, the integration over the coordinate[see Eq.(A4)
and the discussion following Jitgives the selection rule
pm—v==*1 which together with the constraini>0 and
v<<0 implies u= —v=1/2. We therefore find

j XD rT)dr =

—2u}(NviAr)
€172
i duq(r
jdr 01/2(r ) A)
ox’
(B2)

In writing Eq. (B2) we have used Eq$26b) and (26¢).
Now substituting the explicit variational forms fmrl,z(F)
andv,5(r) [Egs.(28) and (30)] we arrive at Eqs(37) and

and(26¢). The only remaining task is to evaluate the matrix (38). To proceed further, we have to solve the Poisson equa-



56 INERTIAL MASS OF A VORTEX IN CUPRATE ... 11 963

tion and get a self-consistent solution for the scalar potential _ -

K - 4euN 7n(q) .
Ao(r,2) of the form assumed in E439). We will now con- Ao(g,k) = RN 1+27762M(k)§|: exp(—ikld).
sider the other term on the RHS of E®4). This term rep- (BY)
resents the screening charge induced by the Coulomb poten-
tial consequent to the electron density change induced by theourier transforming the above equation with respect to the
vortex motion; it has to be determined by integrating thewave vectork we getAq(q,ld) [Eq. (40)].
product ofX (r r’)andAo(r’ Id) with respect to the coor- We now consider the action E¢R2). We first consider
dinater’. Since the latter has an angular dependence of thihe electric field energy. Integrating by parts and making use
form sing, we once again find that the only process whichof the Poisson equatidiEq. (33)], we get
contributes to the polarization involves a transition from the )
highest-occupied statev& —1/2) to the lowest-unoccupied e[VAo(f 2" —e
state = 1/2). We thus find S 2 | dr | drAyrId)

x[ux (r r )

deXPO(F,F)AO( Id)——(—r)f dr’Ag(r,Id) 5(r7). o
—exX(r,r")Aq(r’,1d)].

(B3)
. . . . (B10)
Combining Egs.(37) and (B3) with the Poisson equation
[Egs.(33) and (34)] we get On integrating out the electrons to second order in the vortex
velocity u and the Coulomb potenti&l, we get the effective
V2A(T,2) R action
T—er;(r)El 8(z—1d)
Efdtfdrdr[ 2X|( )
U\ + fdr n(r )Ao(r Id)|. (B4
- —A Id)x° A
Transforming to Fourier space, this can be rewritten in terms O(r ) (rr ) O(r 'd)
of the corresponding Fourier components as
+ueAy(r,Id)x(r,r7)|. (B11)
[-a*—K*1Ag(a.k) _

eun7(q) 2 exy —ikld]
Am Combining Eqs(B10) and (B11) we find that the effec-

> = — tive action for the system, to second ordetinis given by
n € n(q)z f dqg (_67)
2d (2m)?2 7

" Ske= 2 fdtf drdr’

_Xl (rr)

2mm
q k———].

X Ag §

(B5)

+ gAO(F,Id)X?X(F,F)}. (B12)
This is an integral equation for the scalar potenfigl To
solve forA,, we find it convenient to introduce the quantity The first term inSyg is the unscreened core contribution to
the vortex mass evaluated earl[&q. (24)] while the other
da R R 2am term represents the reduction because of Coulomb screening.
X(k)= az f o2 ﬂ(_Q)Ao( q.k— T) (B6)  we now substitute the explicit forms fa£™ and x** . Doing
" (2m) a calculation very similar to the one leading to E¢37),

Substituting Eq(B6) into Eq. (B5) and making use of the (38), and(B2) we find
property X(k) =X(k—27mm/d) for any integem, we solve

for X(k) to get f drdr/ XX(F —7): _2)\2 (813)
X(k) = —4meuM (k)3 e B7) Substituting Eqs(37) and (B13) into Eq. (B12) we get
1+27e®M(k) \
eu . .
where Sce= 2 fdt{uzx%TZ fdrn(r)AO(r,ld) :
(B14)

(B8) Fourier transforming the second term in EB14) and sub-
stituting the expression fok, [Eq. (40)] we finally arrive at
o _ Eg. (42).
Substituting Eqs(B7) and(B8) into Eq.(B5) we can now The only remaining task is to evaluate the polarizability
solve forAy(q,k) to get M(0). Using Eq.(38a, we find that

[ dg [} sinmd
M(k)_f(zw)Z 2q |coshyd—cokd)/
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- 2 N -
n(q)szle—J’ drf,(r)f],(r)singe 4", (B15)
1/2

On substituting the variational form{&q. (30)] for f,,(r)
andf;,,(r) and integrating over the angular coordingtehis
reduces to

(ci)=2\/iz—ﬁi &fwdrra (ker)Ji(ker)Jd (qrye™ "¢
g €12A2, d Jo OLRF TR '
(B16)

Combining Eqg.(B16) with the expression foM(0) [Eg.
(41)] we finally get

41

f sinh(gqd)
Aéll/zf 1/2

qcost(qd)—l

M(0)= 12(q),

(B17)

where

I(q)= jowdrrJO(kFr)Jl(kFr)‘Jl(qr)e_”g- (B19)
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Using Eqgs.(30d), (43), (B17) and(B18) we are now in a
position to calculate the “core dielectric constard,,.. We
find that e.oe= 1+ 27€*M(0) is given by

eleL,
€core= 1+ : Lz’ (B19)
where
(™ sinh(xd/§)
L1—4fo dXWf (X), (BZO)
L,= J dxxe [ I5(keéx) +I5(keéx)],  (B2D)
0
and

f(X)=f:dyy\b(kF§Y)Jl(kF§Y)Jl(XY)e_y- (B22)

On evaluating these expressiofi&gs. (B19), (B20) and
(B21)] numerically we findey~53.
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