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Anisotropic superconductivity in the two-dimensional Hubbard model
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We address the problem of superconductivity in a system where the only many-body interactions are
repulsive. The Eliashberg equations have been generalized to account for possible pairing correlations in the
two-dimensional Hubbard model. Details of the two-dimensional band structure have been explicitly taken into
account when considering the symmetry of the superconducting state. The pairing kernels have been discussed
at low doping and at temperatures close to the superconducting transition temperature. We have proved that
local Coulomb repulsion leads to attractive pairing correlations indiveave channel. Extendestwave
superconductivity is less likely to occur within this purely electronic model, at least in the physically interest-
ing region of doping[S0163-18207)04042-3

[. INTRODUCTION T. and at low doping rigorous results concerning pairing
kernels can be obtained. We find that the isotropic kernel is
The proximity of antiferromagnetic and superconductingalways repulsive, whereas the anisotropic kernel leads to at-
phases indicates that Coulomb correlations can be considerd@ctive interaction. This result remains in agreement with
as possible nonphononic mechanism of high-temperature stahan’s theorem® One can see from the structure of result-
perconductivity. A purely electronic pairing originates from ing equations that thd-wave contribution plays a dominat-
exchange of antiferromagnetic spin fluctuatioisand leads  ing role in the formation of the superconducting state.
to d-wave superconductivity. This remains in agreement

with increasing experimental evidence for tHewvave gap Il. ELIASHBERG EQUATIONS

parameter in systems under considerafioht. The two- FOR THE TWO-DIMENSIONAL HUBBARD MODEL
dimensional Hubbard model has been explored within ad-

vanced approximation schenfss1213A dy2_,2 state origi- We consider the two-dimensional Hubbard model with

nates from pairing between fermions on near-neighbor sitethe Hamiltonian

whereas on-site pairing is expected to be suppressed due to

local repulsion. Here, Monte Carlo calculations only indicate . +

that the effective interaction is attractive in thg_ 2> chan- H= _t<i%0 CioCio '“%’ Nig + UZ Mini, (D)
nel because the temperatures at which this method works are

too high to be related to superconducting instabfliySelf- Wherec;‘(r (¢i,) createqannihilates an electron with spimr
consistent decoupling in equations of motion for the Green'sn sitei. n;,=c/ c;,, t is the nearest-neighbor hopping am-
function is free from this drawbadl?.However, even SOphiS- p|itude, U is the on-site Coulomb repu|sion, amd denotes
ticated decoupling can be only partially controlled, in par-the chemical potential. To formulate Eliashberg equations
ticular when compared to results of the perturbation theorywe transform Eq(1) to the momentum representation mak-
Therefore, the approach based on the framework of Eliashing use of the Nambu notatidﬁerz(cT(T c_ ki)514

berg equationé seems to be more reliable. This method has

already been developed in Ref. 15 where strong local corre-

lations (U — e limit of the Hubbard modelhave been incor- H = Z € k\Pﬁ@‘P K

porated in terms of auxiliary boson fiellThe cooperation K

of electron-phonon and electron-phonon-boson interactions U

in the stabilization of superconductivity indawave state has + N 2 VT,V k,\I'f K qr_\lf k- q

been demonstratéd. However, the method developed in k. k', q

Ref. 15 may lead to the overestimation of correlation effects = Hy+Hy, )
at low doping and vertex corrections in the electron-boson

channel should be taken into account. where &, =—ty(k)—u with y(k)=2(coska+coska).

Our aim is to reconsider the problem of superconductivityr,. . . r, stand for the Pauli matrices. In our notation
in the two-dimensional Hubbard model within self-consistent
second-order perturbation theory with respect to the Cou- Te=3(T+iTy). 3
lomb correlationU. A similar approach has recently been
applied to discussing spectral properties in the normalhe matrix Dyson equation is of the fotfh
state'’ Here, we generalize Eliashberg equations to account
for on-site and intersite pairing. Details of the two- S (iw)=Gyiin)—G  iw), (4)
dimensional band structure are explicitly taken into account.
In the vicinity of the superconducting transition temperaturewhereG (i w) stands for the Matsubara Green’s function
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G (i) =W | PL)) @
((c leC;T» ({cwle— k) 5) = + SiA + ng;LL%
= ) G G G G G, X G
(el lei)y (elyle—k) ‘ ° °
and Gy (i ;) denotes unperturbedJ=0) propagator 9
. . + +
Gokliw)=iojmg— & 73. (6) G, I* G G, I G
w; is the Matsubara frequencys=(w/g)(21+1); B FIG. 1. The skeleton diagrammatic representation of the matrix

=(kT) L. Note that possible superconducting correlationspyson equations. See Eq4.5)—(21) for the notation.
will show up in the nondiagonal elements G&f.(iw|). As

the local repulsion acts destructively on the formations of 1

local Cooper pairs one should distinguish between on-site > [1+ y(k— PG p(io)lazb

and off-site pairing. Here we restrict ourselves to local and N5

first-nearest-neighbor pairing. Then, the nondiagonal ele-

ments of the Green’s function read 2%2 [1+y(k— p)HI[1+v(p' = p)]
p.p
1 . .
(W W) asn=y2 € MR BT W ))as, X[Gpliw)Jazp (12)
1]
indicates that one deals with a projectionlike procedure that
1 i k(Ri— R)) + selects given types of symmetry of the order parameter.
== @ MR RIS (W W ) asp : :
N5 In the present notation the usual ansatz Yoy is of the
form14'15'2°'22

1 . o N
PR I e s e —[1-Z el + ¢ o +xidionTs,

(12
(7
_ . with the momentum-dependent order parametgli ),
Here, we have omitted the summation over second and

higher-order nearest neighbors. Then, the momentum depen- Fo )= (i i i
dence of the nondiagonal elements®i(i w|) is determined llon)=dollw)+ 5, 1w+ n(k) ().
b
Y where ¢,¢,,¢, correspond to thes-wave, extended
1 s-wave, andd-wave components of the singlet pairing state,
[G k(iwl)]aqﬁb:ﬁz [1+y(k= PG p(iw)]azrp- respectively.
P A system of self-consistent equations for the matrix self-
8) energy, , can be found either from the equations of motion
A simple identity for G (iw) or from the diagrammatic analysi$l* The
equations of motion lead to the formally exact expression

y(k=p)=3[¥(K)¥(p) + 7(K) 7(p) = £(K)€(p)
+L(K) ()], 9

G y(iw)=7Gok(iw) +Goyliw) [V, Hyl- ¥ ils)
—({([¥  Hyl- [ Hul - Goxliwy), (14

where[ A,B].. denotes an anticommutatot{ or a commu-
tator (—). Then, the first-order contribution t& , comes
from the thermal average) and the second-order contribu-
tion from the propagator in angular brackets, provided that

where

n(k)=2(cosk,a—cosk,a),

é(k)=2(sinka+tsink,a), (200 only connected diagrams are taken into account. The skel-
eton diagrammatic representation of the self-consistent ma-
{(k)=2(sink,a—sink,a), trix equation forG , is shown in Fig. 1. One can see that

even to write down an explicit form of all second-order con-
allow one to distinguish between extendsd[y(k)] and  tributions to3 , is a very tedious task. However, when con-
d-wave[z(Kk)] contributions to the singlet superconductivity. sidering temperatures close T only terms linear in the
Triplet superconductivityrepresented by and (), unlikely  superconducting order parameter, are of importance.

to occur in high-temperature superconductSreill be left  Therefore, products of nondiagonal elementsGqf can be
out of consideration in the present paper. The procedure dgreglected. In our notation

scribed by Eqs(7) and(8) can be easily generalized to near-

est neighbors of arbitrary order and leads to serious modifi- S1=31A; 31B (15)
cation of kernels in Eliashberg equations for the electron-

phonon problent®?°~22The identity where
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a1 UZ 1 i n2 A
Y =52 N4 2L(70F m3)Gk(iwn) (70— 73) S=U( A% —np2l. (18)
(70~ 73) G liwn) (70F 73)], (16 Here, A denotes usual isotropic BCS order parameter,
and =(1N)Z ({c_ i, Ck). One can note that !B can be incor-
porated into inversion of the unperturbed Green’s function
5 Un Gg&(iaq) and leads to the renormalization of the chemical
Y T T3 17 potentiale (— ¢ =& -+ Un/2. The second-order contribution
at temperatures close I, reads
wheren is the average number of electrons per lattice site: 2\ <2A 2B, -
n=n;+n;, n,=1NS (cl,cr,)=n_,. To make things 2lio)=Zilio) + X (o), (19
more transparent, in the conventional notation where
2A 1 ; ; ; ; ;
3% m.)_ﬁ—}% 2 2 mGpliortionion T uCpi oionT-uCus gliom e, (20)
and

1 u\2
Mdlo)== 52 (N) 2, {IG p(iwntion=i)]227: G ps o(i0n) T-[C k- gli o]t [G pliwntiwn—iw)]u

X7.G p+ q(iwn)7'+[G k— q(iwm)]ZZ}- (21)

The system of Eliashberg equations can be obtained from _ 1 ol )
qﬁk(l(y'):Ez [-U+UXK'(io+io,)]
S (o) =3"+38(w)+2(iw), (22

whereX | is defined by Eq(12) and one has to substitute for —2 ¢ p(iw)D (i wp)
G(io)

1 1
— 2= A N
G i) =—{Z(iw)ioro+ [k xilion]rs HUP 52 KAirtionrg 2, vkt p)

+(iw) D Hiw), (23 X ¢ p(iwy)D (i wy). (27)
with Here, we distinguish between two types of kernels:

D(iw)=[Z(iw)w]*+[e txk(io)]?, (29 . _ 1 _ . _ .
K'(io+io,)==> [ds(io+io,—iog)ds(ion)
in Egs.(18), (20), and(21). In what follows we neglect the Bm
momentum dependence of the wave-function renormaliza- +d (io+io,—iond,(io,)], (28
tion factor,Z ,—Z, and band energy shif§ — x. This ap-
proximation, commonly used when considering isotropic su-
perconductivity(“the local approximation’),** works well

in the present case. Here, the momentum dependence of the
order parameter is given by form factopgék) and n(k). At

KAlw +io,) = 2 [dz(io+iw,—iwn)dz,(ioy)

T—T, it does not restore the momentum dependencg of tdoyfotiog—ion)d,,(ioy)], (29
and y and the local approximation remains consistent when
discussing properties of the pairing kernels. We get where
. 1 U2 . . . : : 1 1,
Z(io)=1+ ZFZ K'(io+iw,)dz(iw,), (25 dZ(lwn):Z(lwn)wnNEk Dy (iwp), (30
| n

u? 1 1
X(iwl):F; K'(lw+io,)d(iw,), (26) dZy(iwn):Zz(iwn)wnNEk y(k)DEl(iwn), (31
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. 1 — . 1, 0.025 . . .
de(ion) =52 [e ctx(io) Dy iwy), (32 O KT=0.001t
K - n=1 A KT=0.01t T
0 kT=0.11
1 1 0.02 T
d,(ion) =5 N2 Y(KLe ot x(ion) 1D (o).
(33 0.015
Equations(25)—(27) constitute Eliashberg equations for <.;

the two-dimensional Hubbard model. We have generalized
the Eliashberg scheme to the case of many-body electron- .
electron interaction represented by local Coulomb repulsion. L R
K' is the kernel that determines normal-state properties and R
gives rise to the isotropic pairing” describes correlations 0.005
that lead to anisotropic pairing. It is useful to rewrite E2j7) L ¢ .

0.01

in terms of amplitudes defined in E€L3): sa
0.0 L
1 1 -500 0w, 500
oliw) =22 [~U+UK! (ioy+iwn) 152 [doliwn) 27k T
n k
+y(k) ¢ y(lwn)]D (lwp), (39 FIG. 2. The anisotropic pairing kern&l® as a function of re-

duced Matsubara frequency for different temperature values.

Ve o, . 1 _

bylio) =52 KAiortio)g2 1K) ¢olion) L

N2 YD H(iwy) =0, (37
+72(K) ¢ (iwn)ID (i @p), (35
. u? 1 : .

¢77(|w|)=4—2 KA(|w|+|wn)NE 772(k)¢>,](|wn) Therefore, one gets the separationsefvave and extended

B K s-wave channels af—T,. This (due toK'<0) in turn im-
-1 plies that one can eliminate the isotropic pairing from the

scenario of superconductivity in the Hubbard model, as ob-
served by Maha® It is also clear thad-wave symmetry
will always dominate over the extendedwave symmetry
due to the fact that in the vicinity of the Fermi energy

Therefore, alf — T, thes- and extended-wave channel
separates from thé-wave channel. Equatior(84)—(36) de-

termine superconducting properties of the model and will be(nﬂl)
discussed in Sec. lll.
lll. PAIRING KERNELS AND SYMMETRY 0.1 - R
OF THE ORDER PARAMETER n=l % preoot
[J kT=0.1t

The resulting Eliashberg equations for the Hubbard model
impose a tremendous numerical problem. This needs the
thorough analysis and is beyond the scope of the present -
paper. Nevertheless, to some extent, the rigorous discussion N N )
of the pairing correlations is possible. %%%% o

For n—1 the effective chemical potentialu(~Un/2) “;;Z 0.1 x sms T

goes to zero and it is obvioyfrom Eqgs.(26) and(32)] that

x(iw))=0 fulfills the Eliashberg equations. Therefore, for
n—1,d;,=0,d,=0, andd,,<0. This can be inferred from
Egs. (30—(33). One can note that the anisotropic pairing -0.2 E
kernel is attractiveK”>0, for any value of Matsubara fre-
guency. An important observation is that this is not the case
when consideringK', the isotropic pairing kernel. These

o
og, %0q,
o,

vl DS{BJB BERRE

functions have been plotted in Figs. 2 and 3 for different %500 0 500
. Wit w,
temperatures. As we are not able to solve the Eliashberg .
equations for the wave function renormalization factor 27k T
Z(iw,), we have assumed=1 when evaluating*("). This
corresponds to the standdrebn-self-consistenperturbative FIG. 3. The same as in Fig. 2 but for the isotropic pairing kernel

expansion and does not influence the sign of pairing kernelx'. Note the negative sign, which means that one deals with repul-
One can also see that far—1 sive channel.
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Ek n2<k>D;1zEk <n2<k>>FsD;1>2k (Y2(K))eD
zEk Y2(k)D . (39)

What one can conclude from the analysisiat 1 is that

certain admixture of extendestwave symmetry is possible

when considering purely electronic pairing within the Hub-
bard model. To prove that this type of solution always exist
for finite transition temperature let us make a quite genera
and physically justified assumption that the wave-function

S
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IV. CONCLUDING REMARKS

The model that has been used most frequently to discuss
the possibility for superconductivity in strongly correlated
systems is the Hubbard model. There have been proposals
that strong local correlations, usually thought to lead to mag-
netic order and metal-insulator transitithmay also be re-
sponsible for the superconductivity. The Monte Carlo calcu-
lations give strong support for this point of viéw and
suggest that the channel aFwave symmetry plays the
ominant role in the formation of the superconducting state.
It is believed that the isotropis-wave superconductivity is

renormalization factor remains finite for any value of the ey unlikely to occur in the standard Hubbard model. There

Matsubara frequency. We introduZe= maxZ (i w;) <. The
equation forT; corresponding tal-wave symmetry reads

defM,,—1]=0, (39
where
M, =UHKA>iw+iw,) + KA o —iw,)]d, (i w,)
(40)
and
o1 12 5 1.
dy(ion)=75 a2 70D (e (4D

are rigorous results concerning that probfrn the present
paper the Eliashberg-type approach to superconductivity in
the two-dimensional Hubbard model has been developed.
This is the most rigorous scheme when considering pertur-
bative treatment of superconductivity, independently of the
underlying pairing mechanism. The challenge is that, besides
U and n, there are no free parameters when considering
purely electronic superconductivity in the Hubbard model.
On one hand, this clearly restricts the ambiguity of results.
On the other hand, to make the results conclusive an ad-
vanced many-body technique is needed. We have proved in a
general way thatl-wave symmetry dominates in supercon-
ductivity originating from purely repulsive local correlations.

In Eq. (40) w,>0, w,>0. Itis clear that if there is a solution HOwever, also for this type of pairing some admixture of
of Eq. (39) calculated with reduced pairing kernel €xtendeds-wave symmetry is possible. We have not taken

M,—M/.<M,, then one can expect a finite superconduct-iNto account the electron-phonon channel. Nevertheless, our
ing transition temperature. After rather straightforwardPrevious results obtained fdy—o (Refs. 15, 20, and 21

analysis forT—0 andl,n=<n,,, One gets

Mi,=M/,=a(2n+1)"1, (42
wherea is finite, positive, quantity and
N | P 43
R Pl e oA M
Here, § denotes some non-negative number. Then,
a a
a-1 = ... —
3 2Nt 1
a a . a
defM/,—1]=det 3 2Npaxt 1
a a —a 1
3 7 2npactd
Nmax 1
= — - _ N, X+l
1 a|:O T+ 1 (—21)"maxt (44

For T—0 ng5— %, which implies that the determinant

def M, —1] diverges to 1)"macc, On the other hand, for

T—oo, the determinant of the same matrix equals

indicate that also in this case one ends up with almost
d-wave symmetry at low doping. Both and d-wave solu-
tions have been found when considering electron-phonon in-
teraction in a strong coupling scenario where the Coulomb
pseudopotential provided the repulsion needed to favor
d-wave symmetn?>

One should bear in mind that our formulation is valid for
moderate values of). For the case of genuinely strongly
correlated systemsU/t>1) one should consider higher-
order contributions to the pairing kernels and discuss conver-
gence of the self-consistent perturbation series. The open
problem(strongly correlated cagés the stability of the su-
perconducting phase with respect to the Mott-Hubbard tran-
sition (antiferromagnetic phagén the n=1 limit. The anti-
ferromagnetic superexchange correlations contained in the
Hubbard model will stabilize the antiferromagnetic order at
half filling. Therefore, one should reformulate the strong
coupling description including the antiferromagnetic order
parameter. This is a highly nontrivial problem that needs a
separate study. Nevertheless, itdisvave superconductivity
(with possible admixture of wave that will be replaced by
antiferromagnetism at half filling.

Complete numerical treatment of resulting equations is a
separate problem, in particular if effects corresponding to the
Mott-Hubbard transition and antiferromagnetic ordernat
=1 are taken into account. One faces a difficult task im-

(—1)"ma"1 and is of the opposite sign. This proves that oneposed by the coupled system of many integral equations. In

gets finite transition temperature in the anisotrogiavave
channel. Nevertheless, the admixture of extendedave
symmetry is possible.

particular, to get the satisfactory convergence the summation
over a few hundred Matsubara frequencies probably will be
necessary. Note that the generalized Eliashberg equations, as
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given by Eqs(25—(27), have been derived at—T,. Itis
clear that to go belowl; and evaluate thermodynamical

guantities of physical interest is a very difficult problem due
to the fact that many more diagrams containing nondiagonal

M. MIERZEJEWSKI AND J. ZIELINSKI

dominantlyd-wave symmetryin the system where the only
many-body interactions are repulsive.
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