
PHYSICAL REVIEW B 1 NOVEMBER 1997-IIVOLUME 56, NUMBER 18
Anisotropic superconductivity in the two-dimensional Hubbard model

M. Mierzejewski and J. Zielin´ski
Institute of Physics, University of Silesia, 40-007 Katowice, Poland

~Received 23 April 1997!

We address the problem of superconductivity in a system where the only many-body interactions are
repulsive. The Eliashberg equations have been generalized to account for possible pairing correlations in the
two-dimensional Hubbard model. Details of the two-dimensional band structure have been explicitly taken into
account when considering the symmetry of the superconducting state. The pairing kernels have been discussed
at low doping and at temperatures close to the superconducting transition temperature. We have proved that
local Coulomb repulsion leads to attractive pairing correlations in thed-wave channel. Extendeds-wave
superconductivity is less likely to occur within this purely electronic model, at least in the physically interest-
ing region of doping.@S0163-1829~97!04042-3#
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I. INTRODUCTION

The proximity of antiferromagnetic and superconducti
phases indicates that Coulomb correlations can be consid
as possible nonphononic mechanism of high-temperature
perconductivity. A purely electronic pairing originates fro
exchange of antiferromagnetic spin fluctuations1–7 and leads
to d-wave superconductivity. This remains in agreem
with increasing experimental evidence for thed-wave gap
parameter in systems under consideration.8–11 The two-
dimensional Hubbard model has been explored within
vanced approximation schemes.4,5,12,13A dx22y2 state origi-
nates from pairing between fermions on near-neighbor s
whereas on-site pairing is expected to be suppressed d
local repulsion. Here, Monte Carlo calculations only indica
that the effective interaction is attractive in thedx22y2 chan-
nel because the temperatures at which this method works
too high to be related to superconducting instability.4,5 Self-
consistent decoupling in equations of motion for the Gree
function is free from this drawback.13 However, even sophis
ticated decoupling can be only partially controlled, in pa
ticular when compared to results of the perturbation theo
Therefore, the approach based on the framework of Elia
berg equations14 seems to be more reliable. This method h
already been developed in Ref. 15 where strong local co
lations (U→` limit of the Hubbard model! have been incor-
porated in terms of auxiliary boson fields.16 The cooperation
of electron-phonon and electron-phonon-boson interact
in the stabilization of superconductivity in ad-wave state has
been demonstrated.15 However, the method developed
Ref. 15 may lead to the overestimation of correlation effe
at low doping and vertex corrections in the electron-bos
channel should be taken into account.

Our aim is to reconsider the problem of superconductiv
in the two-dimensional Hubbard model within self-consiste
second-order perturbation theory with respect to the C
lomb correlationU. A similar approach has recently bee
applied to discussing spectral properties in the norm
state.17 Here, we generalize Eliashberg equations to acco
for on-site and intersite pairing. Details of the tw
dimensional band structure are explicitly taken into accou
In the vicinity of the superconducting transition temperatu
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Tc and at low doping rigorous results concerning pairi
kernels can be obtained. We find that the isotropic kerne
always repulsive, whereas the anisotropic kernel leads to
tractive interaction. This result remains in agreement w
Mahan’s theorem.18 One can see from the structure of resu
ing equations that thed-wave contribution plays a dominat
ing role in the formation of the superconducting state.

II. ELIASHBERG EQUATIONS
FOR THE TWO-DIMENSIONAL HUBBARD MODEL

We consider the two-dimensional Hubbard model w
the Hamiltonian

H52t (
^ i , j &s

cis
† cj s 2 m(

is
nis 1 U(

i
ni↑ni↓ , ~1!

wherecis
† (cis) creates~annihilates! an electron with spins

on sitei . nis5cis
† cis , t is the nearest-neighbor hopping am

plitude, U is the on-site Coulomb repulsion, andm denotes
the chemical potential. To formulate Eliashberg equatio
we transform Eq.~1! to the momentum representation ma
ing use of the Nambu notationC k

† 5(c k↑
1 c2 k↓):

14

H 5 (
k

« kC k
1t3C k

1
U

N (
k, k8, q

C k
1t1C2 k8C2 k82 q

1 t2C k2 q

[ H01HU , ~2!

where « k52tg(k)2m with g(k)52(coskxa1coskya).
t0•••t3 stand for the Pauli matrices. In our notation

t65 1
2 ~t16 i t2!. ~3!

The matrix Dyson equation is of the form14

S k~ iv l !5G0 k
21~ iv l !2G k

21~ iv l !, ~4!

whereG k( iv l) stands for the Matsubara Green’s function
11 925 © 1997 The American Physical Society
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G k~ iv l !5^^C kuC k
1&&

5S ^^c k↑uc k↑
1 && ^^c k↑uc2 k↓&&

^^c2 k↓
1 uc k↑

1 && ^^c2 k↓
1 uc2 k↓&&

D , ~5!

andG0 k( iv l) denotes unperturbed (U50) propagator

G0 k
21~ iv l !5 iv lt02« kt3 . ~6!

v l is the Matsubara frequencyv l5(p/b)(2l 11); b
5(kT)21. Note that possible superconducting correlatio
will show up in the nondiagonal elements ofG k( iv l). As
the local repulsion acts destructively on the formations
local Cooper pairs one should distinguish between on-
and off-site pairing. Here we restrict ourselves to local a
first-nearest-neighbor pairing. Then, the nondiagonal
ments of the Green’s function read

^^C kuC k
† &&aÞb5

1

N(
i , j

ei k~ Ri2 R j !^^C i uC j
1&&aÞb

.
1

N(
i , j

ei k~ Ri2 R j !d i j ^^C i uC j
1&&aÞb

1
1

N(
^ i , j &

ei k~ Ri2 R j !^^C i uC j
1&&aÞb .

~7!

Here, we have omitted the summation over second
higher-order nearest neighbors. Then, the momentum de
dence of the nondiagonal elements ofG k( iv l) is determined
by

@G k~ iv l !#aÞb.
1

N(
p

@11g~ k2 p!#@G p~ iv l !#aÞb .

~8!

A simple identity

g~k6p!5 1
4 @g~k!g~p!1h~k!h~p!7j~k!j~p!

7z~k!z~p!#, ~9!

where

h~k!52~coskxa2coskya!,

j~k!52~sin kxa1sin kya!, ~10!

z~k!52~sin kxa2sin kya!,

allow one to distinguish between extendeds- @g(k)# and
d-wave@h(k)# contributions to the singlet superconductivit
Triplet superconductivity~represented byj andz), unlikely
to occur in high-temperature superconductors,19 will be left
out of consideration in the present paper. The procedure
scribed by Eqs.~7! and~8! can be easily generalized to nea
est neighbors of arbitrary order and leads to serious mo
cation of kernels in Eliashberg equations for the electr
phonon problem.15,20–22The identity
s

f
te
d
-

d
n-

e-

fi-
-

1

N(
p

@11g~k2 p!#@G p~ iv l !#aÞb

5
1

N2 (
p, p8

@11g~k2 p8!#@11g~p82 p!#

3@G p~ iv l !#aÞb ~11!

indicates that one deals with a projectionlike procedure t
selects given types of symmetry of the order parameter.

In the present notation the usual ansatz forS k is of the
form14,15,20,22

S k~ iv l !5@12Z k~ iv l !# iv lt0 1f k~ iv l !t1 1x k~ iv l !t3 ,
~12!

with the momentum-dependent order parameterf k( iv l),

f k~ iv l !5f0~ iv l !1g~k!fg~ iv l !1h~k!fh~ iv l !,
~13!

where f0,fg ,fh correspond to thes-wave, extended
s-wave, andd-wave components of the singlet pairing sta
respectively.

A system of self-consistent equations for the matrix se
energyS k can be found either from the equations of moti
for G k( iv l) or from the diagrammatic analysis.23,14 The
equations of motion lead to the formally exact expression

G k~ iv l !5t0G0 k~ iv l !1G0 k~ iv l !~^†@C k ,HU#2 ,C k
1

‡1&

2^^@C k ,HU#2u@C k
1 ,HU#2&&!G0 k~ iv l !, ~14!

where@A,B#6 denotes an anticommutator (1) or a commu-
tator (2). Then, the first-order contribution toS k comes
from the thermal averagê& and the second-order contribu
tion from the propagator in angular brackets, provided t
only connected diagrams are taken into account. The s
eton diagrammatic representation of the self-consistent
trix equation forG k is shown in Fig. 1. One can see th
even to write down an explicit form of all second-order co
tributions toS k is a very tedious task. However, when co
sidering temperatures close toTc only terms linear in the
superconducting order parameterf k are of importance.
Therefore, products of nondiagonal elements ofG k can be
neglected. In our notation

S15S1A1S1B, ~15!

where

FIG. 1. The skeleton diagrammatic representation of the ma
Dyson equations. See Eqs.~15!–~21! for the notation.
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1

b(
n

U

N(
k

1

4
@~t01t3!G k~ ivn!~t02t3!

1~t02t3!G k~ ivn!~t01t3!#, ~16!

and

S1B5
Un

2
t3 , ~17!

wheren is the average number of electrons per lattice s
n5n↑1n↓ , ns51/N( k^c ks

† c ks&5n2s . To make things
more transparent, in the conventional notation
ro

r

iz

su

f

f
e

:

S15US n/2 D

D* 2n/2D . ~18!

Here, D denotes usual isotropic BCS order parameter,D
5(1/N)( k^c2 k↓c k↑&. One can note thatS1B can be incor-
porated into inversion of the unperturbed Green’s funct
G0 k

21( iv l) and leads to the renormalization of the chemic

potential« k→ «̄ 5« k1Un/2. The second-order contributio
at temperatures close toTc reads

S k
2 ~ iv l !5S k

2A~ iv l ! 1 S k
2B~ iv l !, ~19!

where
S k
2A~ iv l !5

1

b2(n,m
S U

ND 2

(
p, q

(
a56

taG p~ iv l1 ivn2 ivm!t2aG p1 q~ ivn!t2aG k1 q~ ivm!ta , ~20!

and

S k
2B~ iv l !52

1

b2(n,m
S U

ND 2

(
p, q

$@G p~ ivn1 ivm2 iv l !#22t1G p1 q~ ivn!t2@G k2 q~ ivm!#111@G p~ ivn1 ivm2 iv l !#11

3t2G p1 q~ ivn!t1@G k2 q~ ivm!#22%. ~21!
The system of Eliashberg equations can be obtained f

S k~ iv l !5S1A1S k
2A~ iv l !1S k

2B~ iv l !, ~22!

whereS k is defined by Eq.~12! and one has to substitute fo
G k( iv l)

G k~ iv l !52$Z k~ iv l !iv lt01@ «̄ k1x k~ iv l !#t3

1f k~ iv l !t1%D k
21~ iv l !, ~23!

with

D k~ iv l !5@Z k~ iv l !v l #
21@ «̄ k1x k~ iv l !#

2, ~24!

in Eqs.~18!, ~20!, and~21!. In what follows we neglect the
momentum dependence of the wave-function renormal
tion factor,Z k→Z, and band energy shift,x k→x. This ap-
proximation, commonly used when considering isotropic
perconductivity~‘‘the local approximation’’!,14 works well
in the present case. Here, the momentum dependence o
order parameter is given by form factorsg(k) andh(k). At
T→Tc it does not restore the momentum dependence oZ
andx and the local approximation remains consistent wh
discussing properties of the pairing kernels. We get

Z~ iv l !511
1

v l

U2

b (
n

KI~ iv l1 ivn!dZ~ ivn!, ~25!

x~ iv l !5
U2

b (
n

KI~ iv l1 ivn!d«~ ivn!, ~26!
m

a-

-

the

n

f k~ iv l !5
1

b(
n

@2U1U2KI~ iv l1 ivn!#

3
1

N(
p

f p~ ivn!D p
21~ ivn!

1U2
1

b(
n

KA~ iv l1 ivn!
1

N(
p

g~ k1 p!

3f p~ ivn!D p
21~ ivn!. ~27!

Here, we distinguish between two types of kernels:

KI~ iv l1 ivn!5
1

b(
m

@dZ~ iv l1 ivn2 ivm!dZ~ ivm!

1d«~ iv l1 ivn2 ivm!d«~ ivm!#, ~28!

KA~ iv l1 ivn!5
1

b(
m

@dZg~ iv l1 ivn2 ivm!dZg~ ivm!

1d«g~ iv l1 ivn2 ivm!d«g~ ivm!#, ~29!

where

dZ~ ivn!5Z~ ivn!vn

1

N(
k

D k
21~ ivn!, ~30!

dZg~ ivn!5
1

4
Z~ ivn!vn

1

N(
k

g~k!D k
21~ ivn!, ~31!
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d«~ ivn!5
1

N(
k

@ «̄ k1x~ ivn!#D k
21~ ivn!, ~32!

d«g~ ivn!5
1

4

1

N(
k

g~k!@ «̄ k1x~ ivn!#D k
21~ ivn!.

~33!

Equations~25!–~27! constitute Eliashberg equations fo
the two-dimensional Hubbard model. We have generali
the Eliashberg scheme to the case of many-body elect
electron interaction represented by local Coulomb repuls
KI is the kernel that determines normal-state properties
gives rise to the isotropic pairing.KA describes correlation
that lead to anisotropic pairing. It is useful to rewrite Eq.~27!
in terms of amplitudes defined in Eq.~13!:

f0~ iv l !5
1

b(
n

@2U1U2KI~ iv l1 ivn!#
1

N(
k

@f0~ ivn!

1g~k!fg~ ivn!#D k
21~ ivn!, ~34!

fg~ iv l !5
U2

4 b(
n

KA~ iv l1 ivn!
1

N(
k

@g~k!f0~ ivn!

1g2~k!fg~ ivn!#D k
21~ ivn!, ~35!

fh~ iv l !5
U2

4 b(
n

KA~ iv l1 ivn!
1

N(
k

h2~k!fh~ ivn!

3D k
21~ ivn!. ~36!

Therefore, atT→Tc , thes- and extendeds-wave channel
separates from thed-wave channel. Equations~34!–~36! de-
termine superconducting properties of the model and will
discussed in Sec. III.

III. PAIRING KERNELS AND SYMMETRY
OF THE ORDER PARAMETER

The resulting Eliashberg equations for the Hubbard mo
impose a tremendous numerical problem. This needs
thorough analysis and is beyond the scope of the pre
paper. Nevertheless, to some extent, the rigorous discus
of the pairing correlations is possible.

For n→1 the effective chemical potential (m2Un/2)
goes to zero and it is obvious@from Eqs.~26! and~32!# that
x( iv l)50 fulfills the Eliashberg equations. Therefore, f
n→1, dZg50, d«50, andd«g,0. This can be inferred from
Eqs. ~30!–~33!. One can note that the anisotropic pairin
kernel is attractive,KA.0, for any value of Matsubara fre
quency. An important observation is that this is not the c
when consideringKI , the isotropic pairing kernel. Thes
functions have been plotted in Figs. 2 and 3 for differe
temperatures. As we are not able to solve the Eliashb
equations for the wave function renormalization fac
Z( iv l), we have assumedZ51 when evaluatingKA(I ). This
corresponds to the standard~non-self-consistent! perturbative
expansion and does not influence the sign of pairing kern
One can also see that forn→1
d
n-
n.
d

e

el
he
nt

ion

e

t
rg
r

ls.

1

N(
k

g~k!D k
21~ ivn!50. ~37!

Therefore, one gets the separation ofs-wave and extended
s-wave channels atT→Tc . This ~due toKI,0) in turn im-
plies that one can eliminate the isotropic pairing from t
scenario of superconductivity in the Hubbard model, as
served by Mahan.18 It is also clear thatd-wave symmetry
will always dominate over the extendeds-wave symmetry
due to the fact that in the vicinity of the Fermi energ
(n→1)

FIG. 2. The anisotropic pairing kernelKA as a function of re-
duced Matsubara frequency for different temperature values.

FIG. 3. The same as in Fig. 2 but for the isotropic pairing ker
KI . Note the negative sign, which means that one deals with re
sive channel.
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(
k

h2~k!D k
21.(

k
^h2~k!&FSD k

21.(
k

^g2~k!&FSD k
21

.(
k

g2~k!D k
21 . ~38!

What one can conclude from the analysis atn→1 is that
certain admixture of extendeds-wave symmetry is possible
when considering purely electronic pairing within the Hu
bard model. To prove that this type of solution always exi
for finite transition temperature let us make a quite gene
and physically justified assumption that the wave-funct
renormalization factor remains finite for any value of t
Matsubara frequency. We introduceZ5maxZ( iv l),`. The
equation forTc corresponding tod-wave symmetry reads

det@Mln21#50, ~39!

where

Mln5U2@KA~ iv l1 ivn!1KA~ iv l2 ivn!#dh~ ivn!
~40!

and

dh~ ivn!5
1

b

1

4N(
k

h2~k!D k
21~ ivn!. ~41!

In Eq. ~40! v l.0, vn.0. It is clear that if there is a solution
of Eq. ~39! calculated with reduced pairing kern
Mln→Mln8 <Mln , then one can expect a finite supercondu
ing transition temperature. After rather straightforwa
analysis forT→0 andl ,n<nmax one gets

Mln>Mln8 5a~2n11!21, ~42!

wherea is finite, positive, quantity and

nmax5IntF db

4pZ
2

1

2G< d

4pkTZ
2

1

2
. ~43!

Here,d denotes some non-negative number. Then,

det@Mln8 21#5detS a21
a

3
. . .

a

2nmax11

a
a

3
21 . . .

a

2nmax11

A A A A

a
a

3
. . .

a

2nmax11
21

D
5S 12a(

l 50

nmax 1

2l 11D ~21!nmax11. ~44!

For T→0 nmax→`, which implies that the determinan
det@Mln21# diverges to (21)nmax̀ . On the other hand, fo
T→`, the determinant of the same matrix equals
(21)nmax11 and is of the opposite sign. This proves that o
gets finite transition temperature in the anisotropicd-wave
channel. Nevertheless, the admixture of extendeds-wave
symmetry is possible.
s
al
n

-

e

IV. CONCLUDING REMARKS

The model that has been used most frequently to disc
the possibility for superconductivity in strongly correlate
systems is the Hubbard model. There have been propo
that strong local correlations, usually thought to lead to m
netic order and metal-insulator transition,24 may also be re-
sponsible for the superconductivity. The Monte Carlo calc
lations give strong support for this point of view4,5 and
suggest that the channel ofd-wave symmetry plays the
dominant role in the formation of the superconducting sta
It is believed that the isotropic,s-wave superconductivity is
very unlikely to occur in the standard Hubbard model. The
are rigorous results concerning that problem.18 In the present
paper the Eliashberg-type approach to superconductivit
the two-dimensional Hubbard model has been develop
This is the most rigorous scheme when considering per
bative treatment of superconductivity, independently of
underlying pairing mechanism. The challenge is that, bes
U and n, there are no free parameters when consider
purely electronic superconductivity in the Hubbard mod
On one hand, this clearly restricts the ambiguity of resu
On the other hand, to make the results conclusive an
vanced many-body technique is needed. We have proved
general way thatd-wave symmetry dominates in superco
ductivity originating from purely repulsive local correlation
However, also for this type of pairing some admixture
extendeds-wave symmetry is possible. We have not tak
into account the electron-phonon channel. Nevertheless,
previous results obtained forU→` ~Refs. 15, 20, and 21!
indicate that also in this case one ends up with alm
d-wave symmetry at low doping. Boths- andd-wave solu-
tions have been found when considering electron-phonon
teraction in a strong coupling scenario where the Coulo
pseudopotential provided the repulsion needed to fa
d-wave symmetry.25

One should bear in mind that our formulation is valid f
moderate values ofU. For the case of genuinely strongl
correlated systems (U/t@1) one should consider higher
order contributions to the pairing kernels and discuss con
gence of the self-consistent perturbation series. The o
problem~strongly correlated case! is the stability of the su-
perconducting phase with respect to the Mott-Hubbard tr
sition ~antiferromagnetic phase! in the n51 limit. The anti-
ferromagnetic superexchange correlations contained in
Hubbard model will stabilize the antiferromagnetic order
half filling. Therefore, one should reformulate the stro
coupling description including the antiferromagnetic ord
parameter. This is a highly nontrivial problem that need
separate study. Nevertheless, it isd-wave superconductivity
~with possible admixture ofs wave! that will be replaced by
antiferromagnetism at half filling.

Complete numerical treatment of resulting equations i
separate problem, in particular if effects corresponding to
Mott-Hubbard transition and antiferromagnetic order atn
51 are taken into account. One faces a difficult task i
posed by the coupled system of many integral equations
particular, to get the satisfactory convergence the summa
over a few hundred Matsubara frequencies probably will
necessary. Note that the generalized Eliashberg equation
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given by Eqs.~25!–~27!, have been derived atT→Tc . It is
clear that to go belowTc and evaluate thermodynamic
quantities of physical interest is a very difficult problem d
to the fact that many more diagrams containing nondiago
elements of the Green’s function should be taken into
count. Nevertheless, our results demonstrate the possib
for phonon-free anisotropic superconductivity~being of pre-
.

-

ull
al
c-
ity

dominantlyd-wave symmetry! in the system where the onl
many-body interactions are repulsive.
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