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Momentum distributions in 3He-*He liquid mixtures
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We present variational calculations of the one-body density matrices and momentum distributions for
®He-*He mixtures in the zero-temperature limit, in the framework of the correlated basis functions theory. The
ground-state wave function contains two- and three-body correlations and the matrix elements are computed by
(Fermi) hypernetted chain techniques. The dependence oriHkeconcentrationxs) of the “He condensate
fraction (ng‘”) and of the®He pole strengthZ) is studied along th®=0 isobar. At low®He concentrations,
the computed*He condensate fraction is not significantly affected by fhie statistics. Despite the lows
values Z is found to be quite smaller than that of the corresponding pHebecause of the strontiie-*He
correlations and of the overall, large total dengityA small increase omg“) alongxs is found, which is mainly
due to the decrease pfwith respect to the puréHe phase[S0163-182807)03242-§

l. INTRODUCTION high momentum transféetd give additional motivation to un-

dertake a microscopic, theoretical study of their momentum

The momentum distribution®1D’s) of atoms in quantum  distributions and one-body density matrices. Special empha-
liquids is a challenging problem of fundamental interfést. sis will be devoted to the dependence on thee concentra-

They provide essential information on the correlationstion x, of the single-particle kinetic energies of the isotopes
present in the system, which do not show up explicitly iNgng ofZ- and n84)_

other quantities. In the past years, accurate inelastic neutron- investigation is carried on in the framework of the

scattering experiments have allo_wec_i for_studyl_ng se\_/eral 8ariational approach. The trial wave function for the mixture
pects of the momentum distribution in helium liquids,

4He 34 3He5 and *HeHe mixtures” However, a clean ;:ontalr;s two;bf)%y(Jastro;& a?_d tr;]pletbcorrelatlc;nls._ Th;fs
extraction of information on the helium MD’s is somehow YP€ O! cOrrelaled wave function has been usetul in efiec-

tempered by the need of a sound theoretical understanding gyely St“‘?'y'”g the pure phas€3:***Two qf us® (A.P. and .
the final-state effects in the analysis of the dynamic structuré“F-) derived the hypemetted and Fermi hypernetted chain
function, even at high momentum transfers. (HNC{FHNC) equathns for the m(_)mentu_m dlstr|bu_t|ons of

The theoretical methods to evaluate momentum distriputh€ mixtures using trial wave functions with only pair corre-
tions of many-body interacting, dense systems at zero tenjations. Numerical applications were carried out in the HNC/
perature have also made a significant progress in recefitiNC/O approximation, i.e., neglecting the elementary dia-
years' At present, there are results for the pure heliumgrams. A preliminary study of the elementary diagrams for a
phases obtained within different many-body techniques, i.eJastrow trial wave function was perfornfédy generalizing
variational theoryusing either integral equatich3or Monte  the scaling approximation proposed for pure ph&Sealso
Carlo method¥) and almost exact stochastic methods asavailable are variational Monte Carly MC) calculationd®
Green's-function Monte Cartd'? (GFMC) or path-integral ~ with similar correlations of the analytical McMillan type.
Monte Carlo(PIMC).13 The studies of the mixture have been recently complemented

The MD's of liquid “He (*He) are influenced by the Bose with variational calculations concerning the energy and sta-
(Fermj statistics of the atoms. The macroscopic occupatiomnility of the ground staté?*°with path-integral Monte Carlo
of the zero momentum state, as given by the condensaig|MC) analysié* and with microscopic correlated basis
fraction n§", characterizes the momentum distribution of functions estimates of the inelastic neutron-scattering cross
bosonic, liquid*He and it is strictly linked to its superfluid sections both at intermedidfeand higt® momentum trans-
behavior. On the other hand, the discontinuty at the fers.

Fermi momentunke is a characteristic of théHe system The paper is organized as follows: in Sec. Il, we will
when it is studied as a normal Fermi liquid. present the HNC/FHNC theory to calculat¢k) for mix-

In this paper we consider the interesting case of isotopi¢ures described by correlated wave functions containing two-
3HeHe mixtures where, due to its fermion-boson natureand three-body correlations. The treatment of the elementary
both quantitiesZr and ng"') are simultaneously present. Re- diagrams in the so-called scaling approximation is discussed
cent neutron-scattering experiments on helium mixtures an some detail in the second part of the section. Results for
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n®(k),n®(k), and for the one-body density matrices are  Il. HNC/FHNC EQUATIONS FOR THE MOMENTUM
presented in Sec. lIl, together with a critical discussion of the DISTRIBUTION OF °He-*He MIXTURES
discrepancies with the available analysis of the deep inelastic The one-body density matrice$® (r, 1) (a=3,4) fora
neutron-scattering measurements on mixtures, wiicbon- homogeneous, isotopic mixture ofz °He atoms and

trast with our resultspoint to a large enhancement of the N, “He atoms, described by a ground-state wave function
“He condensate fraction. ¥ (1,...Ns+N3) are defined as

Na f’qf*(la,...,N“"_ N3)\I,(1;,,N4+ Ng)drz‘ * 'drN4+N3

@y rh)y=—= 1
EREY Pa f|q,(1v---vN4+N3)|2dr1"'drN4+N3 @

In homogeneous mixtures, with constant particle densitiesvhere massive resummations of the diagrams, as defined in
pa=NyIN,  p@(ry r)=p@(r), with r=|r,—r}|. Refs. 8,9, 16, 25, may be performed in practice by using
p®)(r)’s satisfy the normalization conditions,p(®(0)  HNC/FHNC techniques>??®

=1, v, being the spin degenerady,=1, v;=2). Notice The strength facton{® is given by

that in the definition ofp®)(r) the spin variables have not

been explicitly written. We will henceforth omi_t the subin- ng“)=exr[21“<w“)—l“g“)] (5)
dex in the degeneracy factor and assume that it always refers

to 3He. and

The momentum distribution of the component, or rather
the occupation probability for single-particle states with mo-

mentumk and given spin projection, can be obtained as the N 1 3) 3)
Fourier transform of the corresponding density matrix, N(r)=| Saa+ daa| 7 1(ker) =Ny, (N =By, (1)
N@O(K) = 8,4panH(2m)38(K) X exg NLO(r) +EL(r)] ®)

+PaJ dr exp(ik-r)[p@(r)— 5a4ng4)], 2) sums up all the irreduciblg diagra_lms with external_poin;s 1
and 1. In Eq.(6), | (x) =3j,(x)/x is the Slater function and
ke= (672p/v)Y? is the *He Fermi momentum.
The functionsN{(r) and E{))(r) are the sums of the
nodal and elementarydiagrams contributions, respectively.
haeThe evaluation of the nodal functiod§)(r), in the context

wheren{"=p(*)(=) is the “He condensate fraction, i.e., the

fraction of “*He particles in the zero momentum state.
The ground state of the mixture is well described by

generalization of the correlated wave function used in t

pure phases: of the HNC/FHNC approach, is discussed in Appendix A,
which also contains the explicit expressions of ﬂté?, fac-
¥(1,...Ns+N3) tors. - . .
The momentum distributions are computed via the density
i Eq(2). We th
_ H H f(“'ﬁ)(ia,jlg) matrices by Eq(2). We thus get

aspsy=34i,<ig

= (4) (4) i
x I £@BNi,,j5k)b(1,...Ng). 3 n@(k)=(2m)%p4ng" 8(k) + pany fdr exdik-r]

io=<ig=<k,
x{exd N (r)+E® (r)]-1}, @)
¢(1,... N3) is the Slater determinant of plane waves corre-
sponding to the Fermi component of the mixture, and nd
f@B(i, g (F@PN(i,,jz.k,)) are the two(three-body
correlation functions involving twdthree particles of types
a,B (a,B,y), respectively. Similar trial wave functions have n®(k)=nE[ne(k) + O (ke —k)ng(k)1, 8
been used in previous works to study the structure and ener-
getic ground-state properties dfle-*He mixturest®192° where
A cluster analysis op{?(r) in powers ofw(®A) = f(*:F)
-1, h(a,B)E[f(a,B)]Z_ 1, (@B VN=f(aBY) _1 gndh(«B:7) =5
=[f(£"]2-1, as that carried out in the pure pha&t® Xoge
gives the following structural decomposition fof*)(r): <1 X

Ng(K)=1—Xoo+2X,, o+ —— 9

P @(r)=n{®N@(r), 4  and
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X2 bonds betweeriHe and*“He particles. Actually, for the un-

= _psf dr ex;{ik-r]{(exp[foj,(r) derlying boson-boson mixturg.e., ®(1,...N3)=1 in Eq.
- (3)] and taking the same correlation functions between all
types of isotopes|[average correlation approximation

nc(k) =

(3) _ _ (3) ~
+Eo(N]= DI Hker) v+ N, (1) (ACA)], §(r) provides the exadEj}(r). This property and
@) 3) the small*He concentration in the physical region of interest
+ES w (DI+HES, (N} (100 (x,<0.10) justify the use of(r). The scaling parametes;

Eq. (14), is determined by imposing the consistency between

Xye=Gyc— Nyc /v fory=w, ¢ andX,y(k) stands for the e pandharipande-Bethe and the Jackson-Feenberg forms of

Fourier transform the kinetic energy for the boson-boson mixture without trip-
let correlationss is calculated for each total density and it is

ixy(k):paf dr eik'fxxy(r)_ (1)  kept fixed whenx; changes. This assumption is plausible

because, at lowHe concentrations, the statistical effects in

g(r) are negligible.
The additional elementary diagrams needed for the one-
body density matrices are similarly evaluated:

The strength factom(“) is the asymptotic value of thtHe
one-body density matrlm(“)(r—m):ng‘) and corresponds
to the *He condensate fraction. The decomposition of

n®)(k) in a continuoug n,(k)] and a discontinuouggy(k)] EE,)DHB)(V)Z E,q(r), E<y§'ﬁ):o (yz=we,w.c) (16)
piece explicitly links the discontinuity ai®)(k) atkg, Z, _
to ny(kg) by with
Ze=n®ngy(ke). (12) Eoa(r) = (145, Ebd o(n)+ELd (1), (17)
and

Scaling approximation for the elementary diagrams
_ . ELo(r)=(1+se)EL] +EL (), (18)
The HNC/FHNC equations can be solved once a given

prescription for the contributions of the elementary diagrams E® (r)=(1+s El4 gl 19
has been given. However, as no exact method to compute w1 = weoe) Eogug ot Eagog (1) (19
them is presently known, at least in the frame of the integrairhe average distribution function

equations, one has to resort to some approximation. Among

the available schem&?° we have chosen the scaling ap- 9,(N)=x3g49(r) + 2x5x,[ g4 (r) + 943 ()]
proximation (SA), developed for both the energy and the 3 3
one-body density matrix of pure phadesi*®and satisfac- +x3952 (N + 952 (n)] (20

torily reproducing VMC calculations. Although the number
of elementary diagrams in the mixture is much larger, it is
straightforward to generalize the pure phases scaling a|
proximation to our case.

The SA is based on the evaluation of the four-points el-
ementary diagrams constructed with the combinations of th

has been used to compute the above four-point elementary
diagrams.

p- Finally, the set of single external point elementary dia-
grams, appearing in the strength factngg) expressions, are
gpproximated, as in the pure pha&édy

distribution functionsg “'B)(r) allowed by diagrammatic 3

rules, and it has already been used in the calculation of the Ex=(1+ ESX"> E[4]+E£(4t], X=w,d. (22
energy and of the static structure functions of the mixtdre.

The elementary diagrams are approximated by As far as the factors related to the momentum distribu-

tions are concerned, we have chosgg by imposingTyp
=T,:, whereTyp is the total kinetic energy obtained by
integrating the momentum distribution,

Egq”(N=E(r), EgP(r)=0,

a,Be{3,4, xy=[deeegecc], (13
hZ

where T
MO 2m, (2w>3p4

fdk k2n® (k)
E(r)=(1+s)ELH(r) +E{*(r). (14) .2
X3V
ELY(r) and E}*)(r) are the four-point elementary diagrams *ome 270,
without and with explicit three-body correlations into their _ 3 3 _ o
basic structure, respectively. These diagrams are constructédd T, is the ground-state expectation value of the I_<|net|_c
by using as internal links aaverageddressed correlation €energy operator computed by the Jackson-Feenberg identity.
g(r)—1, Moreover, the fulfillment of the normalization conditions of

the momentum distributions, i.e.,

f dk k?n®(k), (22)

g(r)=x3g*9(r)+2xgx,g*d(r)+x3g3(r), (15

V(I
with x,= p,/p. The introduction ofj(r) makes feasible the 2. f dk n,(k)=1, 23
calculation ofE(r) because it reduces drastically the high “
number of elementary diagrams originated by all the possiblequivalent tov,,p(®)(0)=1, requires
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ng‘” exd NEU‘Z))(O)-}- Egﬂ(o)]: 1, (24) The three—body correlation functidifr;; ,r; ,r;) has the
parametrized forni:>1415
N® (0)+E® (0)=0. 2
v 0) T B (0)=0 @9 f(rij ik i)
These conditions are used to determine the remaining scaling 1 o
parametersﬁaz,swcwc). =ex _Elzzo’l)\lczyc gl(rij)fl(rik)Pl(rij'rik) ) (28)
As a matter of fact, the use for the triplet correlated wave
function of the sames!*) and Su,w, PArameters, as deter- where
mined in the Jastrow case, produces significant deviations of Fera)2
the above normalizations from their exact values. For this (r)=(r— 5|0rt,)exp{—< t } (29
reason and to ensure the correct normalizations of the density Wy
. : 4
matrices, we have recalculated the scaling facsgs so.  The values of the triplet functions parameters have been
s), ands,_,_ when the wave function contains three-body taken from Ref. 14 omitting the smdl=2 component.
correlations, as in Ref. 9. The calculations presented here are performed at the ex-
perimental values of the density along tRe=0 isobar. In
IIl. RESULTS this regime, the density decreases frpm pgy (X3=0) to p

=0.358% 2 atx3=0.066, corresponding to théHe maxi-

In this section we report results for the momentum distri-mum solubility. The partiaPHe density increases from zero
butions of*He-*He liquid mixtures using the Aziz potentfdl  up to p;=0.0236r"2 in the samex; range. So, we have
(HFDHE?2) for the variational determination of the ground- neglected the density dependence of the variational param-
state correlations. This interaction effectively describes theters of the correlations because of the small variations both
equation of state of the pure phaséé' The interatomic po- of the total and partial densities in the region of physical
tential in isotopic mixtures is the same between any pair ofnterest.
particles. Based on this fact, we have used the average cor- Before presenting the results for the helium mixtures, it is
relation approximationACA). The ACA approach, which worthwhile to study the accuracy of the scaling approxima-
has been carefully analyzed for the impurity probfrhas  tion in the case of puréHe. We have considered a corre-
also been used in the past to study finite concentration hdated wave function containing McMillan two-body correla-
lium mixtures?®*3* The potential is strongly repulsive at tions[A=1, B=0, andb=1.20r in Eq. (26)] and a three-
short distances, so the correlation functions are expected Body factor given by Eq(28). At p, we obtain ng‘)(JTl)
show the same short-range behaviors. Small differences cang g7g anch{?(JT,y) =0.081, where the JT(JT,y) results
arise however at intermediate and large distances, where theede triplet correlations contributions withouith) the
interaction is weaker, because of the different masses aqd__o component. The corresponding energies are
statistics of the isotopes. Nevertheless, ACA may well SeIVE/N(JT,)=—6.55 K, and E/N(JTy)=-6.58K. A VMC
the purpose of studying the; dependence of the momentum ¢,qy by one of the authofd.B), with the same trial wave

distributions in the mixture. In fact, for Jastrow correlated : : (4) _ (4)
; , -~ functions, givesny”(JT)(VMC)=0.078, ny"’(JTo)(VMC)
wave functions we have released the ACA, allowing for dif- —0.082, E/N(JIT,)(VMC)=—6.617 K, and  E/

ferent correlations in different isotopic pairs, and these extrff\l(JT )(VMC)=—6.625 K. These results have been con-
vzrlatlogal degreles of freedom have not Slgnlflcantlyfirme(:j by an inde.pender;t VMC calculation of Mordhni
changed our results. . 4)_ _ '
The two-body correlation functiofi(r) has been taken to who obtainedy™=0.077 andE/N= —6.604 K for the (JT)
have an gnal_yrt]ical forn;], f?f t-T)e-l-MCMi"%n type athshort _dis-l a§|'eh.e agreement between HNC and VMC results gives con-
tance and with enough flexibility to adjust to the optimal .. . ; e X
pure “He correlation behavior in the intermediate anz Iongfldence in the s_calm_g approximation to _the eIemer_ltgry dia-
ranges grams as described in the previous section, prescribing a re-
' calculation of the scaling parameters directly associated with
1/p\5 the momentum distribution after the inclusion of the three-
f(r)=ex;{— 5 (F)

” (26) body correlations. Actually, if the scaling parameters in the
JT cases are the ones determined at the Jastrow (@veh

The long-ranger ~? behavior ensures the proper linear de-

pendence of théHe structure function at—0.

Refs. 8, 36, we getn{")(JT,)=0.064 with a violation of the
The f(r) parameters at théHe energy variational mini-

normalization conditions of-15%. In addition, the =0
component of the triplet correlation has been found to have a
mum, at equilibrium densitp,=0.365"2 (0=2.556 A),
are b=1.18, A=0.85 B=1-A, D=38A, and

very small effect on both the energy and condensate fraction.
=0.043 A"2. B and 7 are related to the experimental pure

This finding also has been confirmed by the Moroni
calculationd® and is in contrast with that of Refs. 8, 36,

“He sound velocityc and to the lowk behavior of its static

structure function by

(r—D)?

A+B exp( -

where the relative change m, was about 25%. Due to the
small effect of the =0 triplet correlation, we have omitted
its contribution in all the results presented for the mixture.
The use of the semioptimized two-body correlation factor
27) of Eq. (26) and of thel=1 triplet correlation lowers the
energy to—6.62 K and providesn{"=0.082. The Euler

B my
T 2whpy
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FIG. 2. One-body density matrix of thtHe atoms in the mix-
FIG. 1. Momentum distribution of théHe atoms in the mixture. ture. The notation is the same as in Fig. 1.
The continuous line correspondsxg=0.066 (p=0.3582r"%) and
the dashed line to puréHe at saturation densitypE 0.365 ). ACA is assumed, the boson-boson approximation yields a
Both results are at zero pressure. n{" which is exactly the one of puréHe at the total density
of the mixture.

Monte Carlo(EMC) resuilt of Ref. 35, using fully optimized  The Fermi statistics makes thg dependence af (k)
two- and three-body correlations in a VMC scheme, ismore sizeable. The®He momentum distributions axg

n{(EMC)=0.087. On the other hand, the DMC results of =0-066 andxs=0.020 are compared in Fig._?. The corre-
Refs. 37, 12 are ng“)(DMC):0.0?Z and ng“)(DMC) sponding Fermi momenta ar&-=0.235 A" and kg

— —1 H — -1
=0.084, respectively. The difference between the two DMC;, 0.347 A™*, to be compared witlke=0.79 A"* for pure

results is due to the use of an extrapolated estimator which ioHe at equilibrium density. The Fermi momentum and the
- polat . 3iscontinuityZF increase alons, whereas the depletion
sensitive to the overlap between the importance samplin

. Becrease¢see Table )l This behavior is qualitatively ex-
wave function and the exa(it ground state. The PIMC appaineq by considering the change of both the total and par-
proach of Ref. 13 provides{"(PIMC)=0.069 at tempera- tia] 3He densities.

ture T=1.8 K, with large statistical errors. As a final com-  ,3)(r) at x,=0.066 is compared in Fig. 4 with the free

ment, we stress that all the above theoretical values of thRsrmionic casé vp(r)/p=1(ker)] and with that of pureHe

“*He condensate fraction are slightly lower than the latesht the sames. In this density region it is necessary to reach

experimental estimates of Snoet al,*® n{"(expt)~0.10. larger values before®)(r) begins to oscillate around zero.

However, as the condensate fraction, as well as the kinetiDespite the small partiaiHe density,p®)(r) is very differ-

energy, is extracted by fitting the Compton scattering profileent from those obtained both in the pushort-dashed line

in neutron-scattering experiments at large momentum transand the free(long-dashed linecases. While the puréHe

fers, the resulting{" can be strongly model dependent. ~ shows a density matrix very similar to the free case, the
We start the analysis of the mixture by studying the  mixture p®)(r) has a strong depletion due to the correlations

dependence of théHe momentum distribution. Figure 1 with the “He atoms. This behavior translates into a corre-

shows kn)(k)/((27)3p,) in mixture atx3=0.066 (peypy

:0.3537—3) compared with that of pure4He (04 TABLE I. *He condensate fractiorfHe Z factor and partial

=O.3650-’3), both atP=0. The differences are small and Kinetic energies in the mixtures as a function of thée concentra-

can be explained by the slight change in density. In fact, thdion at zero pressure. The first lines are the Jastr_ow values. The

smaller mass ofHe results in a larger zero-point motion of second lines include the effect of the triplet correlations.

3He compared with*He, and therefore the total density of

the mixture decreases wheg increases. %3 pe®) N z Ta/Ng (K)  T5/Ns3 (K)
Figure 2 illustrates the same comparison but for thee g 0.3648 0.091 15.06 19.99
one-body density matrix. The asymptotic value @f)(r), 0.082 14.52 19.27
identified with the condensate fraction, is reachedrat g2 0.3629 0.092 0.093 14.92 20.04
~7A. The value ohg“) in the mixture is slightly larger than 0.085 0.085 14.39 19.33
in the pure phasésee also Table) Idue mainly to the smaller g g4 03609 0094 0.094 14.79 19.99
total density of the mixture. The fermionic nature of thde 0.086 0.086 14.27 19.30
does not affecng"'). In fact, one gets the sann%“) inthe  (0.066 03582 0096 0.096 14.61 19.88
boson-boson approximation, which consists of treating the 0.088 0.088 14.10 19.21

3He component as a bosonic mass-3 one. Furthermore, if
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FIG. 4. One-body density matrix of thHe atoms in ax,
FIG. 3. 3He momentum distributions in the mixture at =0.066 mixture(solid line) compared with the free Fermi system
=0.066 (solid line) and x3=0.02 (dashed ling The values okg (dash-dotted lineand pure®He (dashed ling both at the same
are 0.347 and 0.235 &, respectively. partial densityps.

spondingly large depletion ofn®)(k) at the origin,
n®)(k=0, x3=0.066)=0.1, while for pure*He at the same
partial density as in the mixtum®)(k=0)=0.9. Notice that @) e
in pure 3He at its equilibrium densityn(k=0)=0.5° The modelZg and.no .commde_.

three density matrices have the nodes approximately at the More detailed information on the; dependence of the
same points, the location of the zeros being governed by thePndensate fraction, the dlscontan|tyrt$13)(k) atthe Fermi
zeros ofl (ker). In fact, by taking the lowest-order term of surface and the kinetic energies of the two components is
the expansion op)(r) in powers of the statistical correla- Shown in Table 1, the explicit values of)(k) being re-
tion I (kgr), as done in the Wu-Feenberg expansion for the?orted in Appendix BT3(x3=0) is the kinetic energy of one

the total density of the mixture. As a consequence, the cor-
responding condensate fractions are also equal and in this

distribution function, one obtains ®*He impurity in “He. Recent DMC(Ref. 39 and PIMC
(Ref. 21 calculations predict a smalldr;(x;=0) value of
3 (@), (Kel) about 17.5 K. The effect of the three-body correlations is
Pur(n)=pe (1) — =, B0 imilar to that in the*He pure phase, i.e., they slightly de-

@) N _ . _ crease the condensate fraction and simultaneously decrease
where pg“(r) is the “He density matrix in the underlying py apout half a Kelvin the total kinetic energy. The conden-
boson-boson mixture. Due to the small valuesxgfin the  _o. o tion® shows a small increment withs. As we

. . . . . . O .
m(g;ture, pluk(r) is almost indistinguishable from the exact 3¢ mentioned before, this is mainly a consequence of the
p(r). - » fact that the total density of the mixture slightly decreases
Equation(30) explicitly decouples tr;e statistical and dy- \henx, increases. The effect of the Fermi statisticsnf
namical correlations contributions ©)(r) and has also is almost negligible, the results o in the boson-boson
recently proved to describe quite accurately even the pur pproximation being equal to the ones reported in Table I.

He density matriX’ In this approximationn®)(k) is given ng“) is shown in Fig. 5 as a function of the pressufe,

by for pure *He (diamond$ and for a x3=0.066 mixture
1 ke (circles. The condensate fraction, in both cases, decreases
nioL(k) = 2% f dk'n&(lk—k’]). (1)  with pressure as a consequence of the corresponding increase
370 of density. The density of puréHe is larger than the one of
Therefore, the discontinuitZe coincides with the value of the mixture at the same pressure and therefore the conden-

the condensate fraction associated wif’(k). The kinetic satg fraction in tne g?]!;(ture is Iaé)rger thanr‘]fhig. quvevgr,
energy associated with{(k) can be expressed as asP increases, the differences between the densities become

smaller and the condensate fractions of both systems get
T, 3h2k,2: Tas closer. '

— = —, (32 The low values ofZ; imply a large value of the energy-

N3 10m3 = Nj dependent effective mass at the Fermi surface,

where Tg3z/N3; is the kinetic energy associated with

n&)(k). In the ACA, the density matrices of the two com- ;

ponents of the underlying boson-boson mixture are the same Me=1— — g E —7-1 33
and are equal to the density matrix of puiide considered at E JE =(p, )lE:eF PP TR (33
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FIG. 5. Condensate fraction as a function of pressure. The dia- EF|G. 7. 3He kinetic energy as a function gf; at P=0. The
monds and circles correspond to pdige and to a;=0.066 mix-  golid line is the fit provided by Eq35).
ture, respectively. The lines are guides to the eye.

) ) by the short-range dynamical correlations. As in the pure
where 3 (p,E) is the self-energy of théHe atoms in the phases, the tails of the momentum distributionk (

mixture. At x3=0.04, Mg=12m3, which is around three >3 5 A~1) are taken to have an exponential behavior
times larger than for puréHe at the saturation density, for

which Zz=0.275 and consequentlil=3.6m;.%%" This
large value of the energy-dependent effective mass can be n(k>3.5=n(k=3.5exp(a(k—3.5)), (34
attributed to the correlations with tH#e atoms, and implies
a small value of thé-dependent effective mass in order 10 {he value ofa being obtained by fitting a straight line to the
reproduce the total effective mass that, at those small conp n(k) in the range 3.&k<3.5. Their contribution a
centrations, can be taken3/my=2.3/0% .., the value in  —g 69 to the total kinetic energy is8%. On the other
the impurity case. hand, the kinetic energy of the free Fermi gézat would

Figure 6 shows(k)/p, andvn(®/p; for a 6% mixture  give an upper-bound to the contributionTg/N; belowke)
(solid and long-dashed lines, respectiyelpgether with s 0.58 K. That means that more than 97% of fire kinetic
n®(k)/p, for pure “He at the equilibrium densityshort-  energy comes from momenta abdue, clearly showing the
dashegl The three momentum distributions are very closejmportance of the correlations betwedHe and“He atoms.
above k|: , as the |al’gé(- behavior is essentia”y dominated It iS aISO Of interest to Consider the dependencé’é}‘ﬂ\l3

on the concentration. Figure 7 givég/N; in function of the

- T T T T T I - 3He partial density in the mixture along tHe=0 isobar.
Obviously, the kinetic energy ends up with the kinetic en-
ergy of pure®He (~12 K) which corresponds to a density
value that lies out of the plot. Therefore the kinetic energy of
the He should be in average a decreasing function of the
concentration except for the behavior at the origin where the
term associated with the free Fermi kinetic energy dominates
the overall decreasing behavior driven by the decrease of the
total density. Actually, the kinetic energy in the interval con-

1x102

l,l LILEALL |

1x10"

[0

T T TTTIT

v ') p (A

1x10%% E sidered here is well parametrized as the sum of the free-
3 F ] Fermi-gas energy plus a linear term describing the decrease
- ] of the kinetic energy with the density
1x10"5— E
F 1 T; T, 3 #? (6w .
1x10°2 I | i | I 1 N3— N3(p3_0) Ap3+ 10 ms ( 14 ) Ps (35)
0.0 1.0 2.0 3.0

3 -1
k(A
&5 The numerical value of the paramefemay be estimated
FIG. 6. Momentum distributions per particle of puféele at Dy calculating thex; dependence of the kinetic energy in the
equilibrium density(short-dashexl and of “He (long-dashepland ~ underlying boson-boson mixture and it results to Ae
3He (solid) of ax;=0.066 mixture. =27.2 Ko®.
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IV. DISCUSSION AND CONCLUSIONS part by DGICYT (Spain Grant No. PB95-0761, CICYT
(Spain Grant No. TIC95-0429, the agreement DGICYT

fraction and thex; dependence of théHe kinetic energy are (Spain-INFN (ltaly), and the Accion Integrada Hispano-

. - . . lian A-1994.
in contrast with recent experimental estimates. In fact, Sokollta ana 99A-199
et al®7 analyzing deep inelastic neutron-scattering measure-

ments carried out for a 9.5% mixture at 1.4 K, and for a

momentum transfer as high as 23'A estimated a conden- | this appendix we present the HNC/FHNC equations for
sate fractiom{"=18% and a®He kinetic energy of approxi- the mixture one-body density matrices. The sums of the
mately 10 K, basically independent of the concentrationnodal diagrams contributionsl®. andN{® , are obtained
. . ; ®c
These (rgsults are to be compared Wlth. the theoretlcal predlcb-y solving the integral equations
tions ny’~10% andT3/N3~19 K obtained in ACA for a
similar mixture.
. . (a) = (a,N) _ (M) Na)
It has been arguédhat the main source of discrepancy Nww—)\;4px22y (9uz" = Nuz" = 82dl Oy = 8ya),
with a preliminary presentation of the present restlisdue ' ' (A1)
to the use of ACA, implying the same type of local environ-
ment for the different types of atoms in the mixture. Sokol'sand
observation is physically founded on the large zero-point (3 _ 3)
motion of the 3He atoms which should decrease the local g, = P3(Guet 1 (Ker 1/ v =Ny [y, +1/7)
density around them to a value similar to the ptitde.
Obviously, the use of optimal correlations should clarify this
point. However, it must be stressed that e 0 DMC cal- _ e
culations of Ref. 39 give for théHe impurity kinetic energy (Gect1/v=Nec)). (A2)
T3=17.5K, i.e., 1.5 K lower value than the ACA prediction The notation (A(rij)|B(r]-k)) stands for the convolution
estimated by using the purtHe DMC kinetic energy T,  product
=14.3 K) 22 On the other hand, the predictef) by DMC
i 0 0
(R_ef. 42 points to an extrapolated value of _11/o for a 6.6% (A(fij)|B(f1k))=f drjA(rB(r ). (A3)
mixture at the same temperature. A dramatic change of both

n(()“) and T3 at higher concentrations would be required inThe summations over andy (wherez,y=d,e,c) always

order to reproduce the experimental estimates. ~extend to all possible connections allowed by the diagram-
In conclusion, we believe that although the use of optimalyatic rules of the HNC/FHNC theory:!

%orrelatlons will certainly decrease _the kinetic energy of the Besides the distribution functionggzﬁ)(r) (gffgﬁ),
He component and enhance a little thele condensate (3,3)

(a.3) (3.3) i ;
. ; ; Oue”y Oee’, and g¢”), which have been defined
fraction, the resulting values will be far from the present o o @026 it i necessary to introduce the auxiliary dis-
experimental analysis. A full theoretical calculation of the

scattering process including final-state interactions and thterIbUtlon functions:

experimental broadening, similar to the ones performed in g(ca,ﬁ)(r):f(a,ﬁ)(r)quB(cgﬁ)(r)]’ (A4)
pure “He,*® is necessary in order to fully understand the @ @

The results obtained in this paper for thide condensate

APPENDIX A

+pa(—1/1|2(geo +11v—NE))

experimental measurements and reliably extract kinetic ener- @3y =@ B(@3(r A5
gies and condensate fractions. Gue™ (M) =0ud” (NBLe™(1), (AS)
Summarizing, we have calculated the momentum distri- L(r)
butions of *He-*He mixtures in the framework of the HNC/ 933(r)=g33(r) ———, (AB)
c 14

FHNC equations using variational wave functions with two-

and three-body correlations. These momentum distributionghere
can be used as input for the analysis of the recently per-
formed inelastic neutron-scattering experiments. It has been BB (=N (r)+E 2P (r)+CleP(r), (A7)
found that, at the low concentration where the mixture is
stable, the Fermi statistics do not significantly modify the@nd
value of the*He condensate fraction. On the other hand, it is _ (3.3
crucial to take into account the Fermi statistics for the stabil- Lo(r)=—1(ker)+ VB (1) (AB)
ity of the mp@ure. Thg cqncentrauon dependenpe of the _d'f'The functionsz‘Qﬁ)(r), E
ferent quantities studied in the paper can be mainly explained

by the decrease in the total density of the mixture when th&ontributions of the elementary diagrams.
3He concentration increases. The nodal function®{%#)(r) are solutions of the follow-

ing integral equations:

<(r), and EG(r) give the

(
we
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Finally, the functionsC!{®#)(r) give the contribution of

the dressedriplet correlations,

ﬁ)(r12):}\234p)\f draw @A) (r 15,113, %)

XE gSuC;)\)(rlS g(" A (rso),

and

(A1)
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33 -
C(wcc)(rIZ)_p3f drae®*3(ryp,ris,r29)

X g (119962 (1 ao). (A12)
The functionsN{#)(r) and C{$#)(r) have been defined in
Ref. 20.

The quantitiesl“(“) and F&“) , entering the expressions of
the strength factora{®” , are given by

r¥=2 J dr(gig™ () —1-NgM(r)—E <“)<r>)+psj dr(gie (= NN —E&(r)
A=3/4

—(1/2)2 P f dr(gla™(r)— 1+ 8,59 &M (N)NGM (1) +2EM(r)— (1/2)ps J dr(g\&(r)— DN (r)

+2E@3(r))— (1/2>2 P J dr(@ig™(r)+ 8y5gie™ (r)CE™M(r) = (1/2) ps J drgl&d(r)cle®(r)+E,

(A13)

whereE(® is the sum of the one-point elementary diagrdms’ By settingp;=0 (p,=0), expressiori2.15 reduces to the

pure phase§¥', .%°

APPENDIX B

In this appendix, results for the momentum distributions of the different components of the mixture at Stieral

concentrations are reported in the following table:

X3=0.02 =0.04 X3=0.066
n(“)(k) n(3)(k) n(‘”(k) n(3)(k) n(‘”(k) n(S)(k)

k (A1 (1073 (1073) (1073 (1073) (1073 (1072

0.00 53.9037 89.7342 52.9961 96.7339 51.8615 10.5508
0.05 53.7869 89.5174 52.8810 96.6067 51.7480 10.5416
0.10 53.4385 89.4813 52.5376 96.4602 51.4095 10.5170
0.15 52.8645 89.3475 51.9718 96.3355 50.8519 10.4846
0.20 52.0749 89.2132 51.1935 96.2190 50.0848 10.4533
0.25 51.0825 4.9579 50.2154 96.0861 49.1211 10.4297
0.30 49.9035 5.1966 49.0532 9.7540 47.9763 10.4151
0.35 48.5558 5.1927 47.7248 9.7000 46.6680 1.5302
0.40 47.0590 4.9945 46.2494 9.4897 45.2153 1.5077
0.45 45.4335 4.6889 44.6470 9.1555 43.6381 1.4750
0.50 43.6997 4.3663 42.9379 8.7442 41.9563 1.4284
0.55 41.8776 4.0904 41.1417 8.3027 40.1894 1.3680
0.60 39.9864 3.8836 39.2774 7.8661 38.3560 1.2977
0.65 38.0439 3.7306 37.3623 7.4521 36.4734 1.2233
0.70 36.0664 3.5954 35.4127 7.0620 34.5574 1.1503
0.75 34.0687 3.4424 33.4431 6.6862 32.6224 1.0822
0.80 32.0639 3.2531 31.4664 6.3124 30.6811 1.0198
0.85 30.0637 3.0307 29.4943 5.9321 28.7448 0.9611
0.90 28.0787 2.7946 27.5372 5.5437 26.8239 0.9033
0.95 26.1185 2.5685 25.6046 5.1526 24.9277 0.8442
1.00 24.1919 2.3685 23.7054 4.7676 23.0649 0.7830
1.05 22.3073 2.1973 21.8480 4.3968 21.2437 0.7209
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X3=0.02 X3=0.04 X3=0.066
n(4)(k) n(3)(k) n(4)(k) n(s)(k) n(4)(k) n(3)(k)

k(A™Y (1073 (1073 (1073 (1073 (1073 (1073

1.10 20.4731 2.0454 20.0406 4.0451 19.4722 0.6601
1.15 18.6973 1.8983 18.2913 3.7125 17.7585 0.6026
1.20 16.9880 1.7447 16.6081 3.3960 16.1104 0.5495
1.25 15.3531 1.5815 14.990 3.0915 14.5358 0.5006
1.30 13.8004 1.4145 13.4717 2.7964 13.0423 0.4547
1.35 12.3371 1.2541 12.0332 2.5110 11.6368 0.4106
1.40 10.9699 1.1095 10.6902 2.2381 10.3258 0.3675
1.45 9.7043 0.9846 9.4480 1.9821 9.1146 0.3258
1.50 8.5445 0.8770 8.3109 1.7470 8.0071 0.2864
1.55 7.4932 0.7805 7.2812 1.5352 7.0057 0.2506
1.60 6.5514 0.6892 6.3599 1.3469 6.1110 0.2194
1.65 5.7181 0.6007 5.5457 1.1809 5.3217 0.1929
1.70 4.9900 0.5173 4.8354 1.0351 4.6345 0.1704
1.75 4.3625 0.4436 4.2241 0.9081 4.0443 0.1510
1.80 3.8286 0.3842 3.7050 0.7987 3.5442 0.1338
1.85 3.3803 0.3405 3.2697 0.7063 3.1260 0.1184
1.90 3.0080 0.3101 2.9090 0.6302 2.7802 0.1049
1.95 2.7015 0.2877 2.6125 0.5688 2.4967 0.0936
2.00 2.4503 0.2678 2.3698 0.5194 2.2652 0.0846
2.05 2.2439 0.2469 2.1706 0.4789 2.0753 0.0777
2.10 2.0721 0.2247 2.0049 0.4440 1.9175 0.0724
2.15 1.9257 0.2032 1.8637 0.4119 1.7830 0.0677
2.20 1.7969 0.1849 1.7391 0.3812 1.6640 0.0630
2.25 1.6788 0.1711 1.6246 0.3513 1.5543 0.0581
2.30 1.5662 0.1610 1.5153 0.3224 1.4492 0.0528
2.35 1.4556 0.1521 1.4076 0.2951 1.3453 0.0477
2.40 1.3447 0.1418 1.2995 0.2694 1.2408 0.0432
2.45 1.2325 0.1287 1.1901 0.2452 1.1349 0.0393
2.50 1.1194 0.1133 1.0797 0.2221 1.0280 0.0360
2.55 1.0063 0.0977 0.9694 0.1997 0.9213 0.032
2.60 0.8949 0.0842 0.8608 0.1780 0.8165 0.0297
2.65 0.7871 0.0743 0.7559 0.1574 0.7155 0.0264
2.70 0.6849 0.0676 0.6567 0.1384 0.6201 0.0230
2.75 0.5901 0.0627 0.5648 0.1215 0.5321 0.0198
2.80 0.5043 0.0575 0.4818 0.1068 0.4528 0.0171
2.85 0.4283 0.0508 0.4085 0.0942 0.3830 0.0150
2.90 0.3627 0.0428 0.3454 0.0832 0.3232 0.0135
2.95 0.3074 0.0346 0.2923 0.0732 0.2731 0.0122
3.00 0.2618 0.0280 0.2487 0.0638 0.2321 0.0110
3.05 0.2250 0.0238 0.2136 0.0550 0.1992 0.0096
3.10 0.1957 0.0219 0.1858 0.0471 0.1733 0.0081
3.15 0.1726 0.0212 0.1638 0.0403 0.1528 0.0066
3.20 0.1541 0.0201 0.1463 0.0347 0.1365 0.0055
3.25 0.1389 0.0178 0.1318 0.0303 0.1230 0.0047
3.30 0.1257 0.0141 0.1193 0.0266 0.1112 0.0043
3.35 0.1137 0.0102 0.1078 0.0234 0.1003 0.0041
3.40 0.1020 0.0071 0.0966 0.0203 0.0897 0.0038
3.45 0.0904 0.0057 0.0854 0.0174 0.0790 0.0033

3.50 0.0786 0.0060 0.0740 0.0147 0.0682 0.0027
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