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Stability of free planar films of liquid 4He at T50 K
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The stability of planar films of liquid4He atT50 K without a supporting potential is investigated. For this
purpose, the third-sound velocity,c3 , is examined within the framework of two different theoretical descrip-
tions:~i! the correlated-basis functions theory in conjunction with the hypernetted-chain approximation and~ii !
the nonlocal density functional theory. All the calculations yield negative values ofc3

2. In particular, the
behavior of the chemical potential as a function of the coverage provides convincing evidence in favor of the
instability of all the analyzed free films. Furthermore, the analysis of the trend of thick films leads to the
plausible conjecture that free planar films with finite coverage would be always unstable. The conclusion of the
present work matches well with the nonwetting phenomenon of Rb and Cs substrates by a liquid4He film at
T50 K and with the hydrodynamic prediction that a free semi-infinite system with a flat surface is unstable.
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I. INTRODUCTION

In recent years much work has been devoted in orde
study planar helium films by performing both experimen
and theoretical developments. In this geometry the liquid
translationally invariant in thex-y plane and exhibits a den
sity profile in thez direction. To get an insight into the dif
ferent theoretical approaches for tackling this problem
reader is referred to the review article of Chenget al.1

The investigation of the stability of Bose helium films
T50 K is perhaps one of the most interesting issues in
field. The condition for having a stable geometry is related
the third-sound velocity. Third sound is a long-waveleng
surface perturbation which is propagated parallel to
liquid-vacuum interface of the helium film like a tidal wav
on the ocean. The speed of propagation of this disturbanc
denoted asc3 . The stability condition for a film of finite
surface coveragenc requires thatc3 be positive. The surface
coverage is the number of particles per unit area

nc5
N

A
5E

2`

`

dzr~z!, ~1.1!

wherer(z) is the density profile as a function of the coord
natez perpendicular to the surface. The third-sound veloc
may be calculated either from the long-wavelength limit
the ripplon excitation energy at a fixednc or from the behav-
ior of the chemical potential as a function ofnc . Explicit
formulas to evaluatec3 are given in a next section.

Within the general problem of the stability of inhomog
neous Bose quantum systems, the behavior of free film
liquid 4He at zero absolute temperature deserves partic
attention. Although a self-supporting fluid with translatio
ally invariantx-y planar symmetry does not exist in natur
it is still relevant to know properties of such rather academ
systems. The interest is mainly due to two reasons. On
560163-1829/97/56~18!/11845~9!/$10.00
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one hand, this special kind of system may be considere
the limiting case of very weak external potentials and, on
other hand, very thick free films should tend to exhibit fe
tures of the bulk liquid.

Let us now put the case of free planar films in the cont
of the current state of the art concerning the study of
stability of inhomogeneous liquid4He. In a pioneering
work, Widom has shown within the hydrodynamic theory
surface tension that a semi-infinite4He system with a free
planar surface is unstable.2 Subsequently, Cole has demo
strated that this instability can be removed by including
gravitational term.3 In both these papers the microscop
structure of the liquid was ignored. After the dramatic im
provement of computational facilities microscopic theor
have been applied to carry out self-consistent calculations
inhomogeneous liquid4He. In the present work we shall t
refer to two of these approaches. One of them is anab initio
variational method based on the theory of correlated-b
functions ~CBF’s! proposed by Feenberg4–6 which is em-
ployed in conjunction with the hypernetted-chain~HNC! ex-
pansion. Within this framework the structure and excitati
spectra of liquid4He films atT50 K could be satisfactorily
interpreted.7–23 The CBF-HNC approach has also been su
cessfully applied to analyze semi-infinite systems of liqu
4He at zero absolute as well as at finite temperature.24–30The
other procedure which we shall introduce is the nonlo
density functional~NLDF! theory developed on the basis o
the density functional model proposed by Saam a
Ebner.31,32 The NLDF method reported by Dupont-Ro
et al.33 has been used to calculate several properties of4He
films.34–38In the following lines we shall focus our attentio
on results of the studies of helium systems adsorbed to
faces. For instance, Clementset al.16–19,23 investigated the
growth of 4He films adsorbed to attractive substrates by
ing the CBF-HNC expansion. This microscopic theory ha
‘‘built in’’ consistency test in the sense that the correspon
ing Euler-Lagrange~EL! equations cease to have solutions
11 845 © 1997 The American Physical Society
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11 846 56LESZEK SZYBISZ
the assumed geometry of the system under consideratio
unstable against infinitesimal density fluctuations. To this
spect, it is well known that for a uniform4He liquid the EL
equation does not give~unphysical! solutions if one attempts
to solve the system at a density lower than thespinodal
density where the compressibility becomes negative.5,6,39

The authors of Refs. 16–19 and 23 found that EL equati
do not have solutions for all surface coveragesnc . Figure 2
of Ref. 16 clearly shows that only in some well-defined
gimes of coverage the third-sound velocity is positive. Qu
tity c3 becomes imaginary between stable domains indi
ing regions of instability, the first of which occurs for
,nc,nc

min when the film just begins to grow. The latte
result is in agreement with a previous remark of Che
et al.,35 who pointed out that a remarkable feature of4He
films is that for any substrate there is a minimum sta
coveragenc

min below which the adsorbed systems are u
stable. In the literature it is frequent to say that4He wets a
certain substrate when the adsorbed helium forms a st
film.

For our purpose, it becomes illuminating to look carefu
at the feature that films supported by substrate poten
Usub(z) can be unstable at certain regimes of surface co
age. In order to explore the sensitivity of this behavior to
actual shape of the external field, Clements a
collaborators16–18 have carried out calculations varying bo
thewell depthand therangeof the substrate potential, whic
frequently obeys the formUsub(z)5B/z92C/z3. A compari-
son among interaction potentials for a4He atom above dif-
ferent substrates is shown in Fig. 4 of Ref. 18. They c
cluded that less attractive potentials lead to larger domain
instability ~see, e.g., Fig. 12 in Ref. 17! and, in addition,
found that stability depends significantly on therange of
Usub(z) determining that shorter-ranged potentials also te
to yield more extended regions of instability.17,18From these
results one can infer that for very short-ranged potent
with smaller and smaller strength the unstable domains
dominate the whole pattern. Furthermore, by extrapola
this tendency to the extreme limit corresponding to the
sence of any external potential,Usub(z)[0, one could con-
jecture that in such a case the stable regions would fin
disappear completely. In fact, this trend has already b
observed in calculations carried out for alkali-metal surfa
by using the NLDF theory. In particular, it was predicted35,36

that 4He should not wet substrates of heavy alkali metals l
K, Rb, and Cs which generate attractive adsorbate-subs
potentials weaker than that corresponding to a4He ‘‘sub-
strate’’ ~see, e.g., Fig. 1 in Ref. 1!. This prediction has been
supported by subsequent variational Monte Ca
calculations40 and the nonwetting of4He on rubidium and
cesium atT50 K has already been confirmed by a few e
perimental groups.41–45

In fact, free planar films of helium have been alrea
investigated7,8,11 by applying the CBF-HNC expansion an
the question related to their stability has been also analy
in this approach.11,13 However, from the discussions of th
latter papers emerges a discrepancy. While our study of
plon excitation energies provided some evidence for the
stability of finite free films,11 Krotscheck and Tymczak13

criticized the meaning of our finding. They stated that o
results might be influenced by numerical uncertainties
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claimed that such systems are stable since there is no
indication for the contrary. Of course, an argument ba
exclusively on the rejection of calculated values is not stro
enough to ensure unambiguously stability. On the ot
hand, if non-very-thick planar free films were stable, wh
the same systems adsorbed to Rb and Cs surfaces are no
would be faced with ana priori striking feature.

From the scenario described above, it becomes releva
know whether films without a supporting substrate are sta
or not. In view of the importance of this question and t
rather confused situation arisen from Refs. 11 and 13, it tu
out to be worthwhile to devote some effort in order to clar
the posed controversy establishing definitively the actual
havior of such systems. Therefore, the aim of the pres
work is just to review the issue concerning the stability
self-supported planar films of liquid4He at zero absolute
temperature. In this doing, we shall first summarize and co
plete the analysis within the CBF-HNC expansion. Next,
shall solve the problem using the NLDF theory to allow
comparison of results provided by different approaches. T
paper is organized as follows. In Sec. II the stability con
tions are outlined. The discussion of the numerical result
presented in Sec. III. Section IV provides our conclusion

II. STABILITY CONDITIONS

Before summarizing the stability conditions, we sh
mention that in the case of a planar geometry any one-b
function satisfiesf (r )5 f (z) and any two-body quantity
f (r1 ,r2) depends only on three variables:~i! thez coordinate
of each of the two particles, i.e.,z1 andz2 and ~ii ! the dis-
tance between both particlesr 125ur22r1u projected onto the
x-y plane, i.e.,

h5h125uh12u5uh22h1u5A~x22x1!21~y22y1!2,
~2.1!

so that any two-body function may be expressed
f (h,z1 ,z2). Due to the planar symmetry sometimes it b
comes useful to write formulas in terms of two-body qua
tities f̃ (q,z1 ,z2) which are Hankel transforms of the corre
spondingf (h,z1 ,z2) evaluated according to

f̃ ~q,z1 ,z2!5Ar~z1!r~z2!E f ~h,z1 ,z2!

3exp@ i ~qxx1qyy!#dx dy

52pAr~z1!r~z2!E
0

`

h dh J0~hq! f ~h,z1 ,z2!,

~2.2!

wherein J0 is the zeroth-order Bessel function of the fir
kind. Hereq is the momentum parallel to the surface. T
distance between two particles is

r 125ur22r1u5Ah12
2 1~z22z1!25Ah21~z22z1!2.

~2.3!

In order to check the stability of a film one must calcula
the third-sound velocity, which is conveniently expressed
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an energymc3
2, where m is the atomic mass of4He. As

already mentioned in the Introduction, there are two ways
evaluatingmc3

2. We shall first refer to that based on th
calculation of the ripplon energy at very small momentaq
e-

-
th
f

for a film with fixed nc . The stability condition derived in
Ref. 11 has been written in terms of solutions of the exc
tion spectrum determined by the eigenvalue equation of
Bogoliubov-type derived in Ref. 7:
H2~q,z1!ck~q,z1!12E
2`

`

dz2Ṽp2h~q,z1 ,z2!H~q,z2!ck~q,z2!5\2vk
2~q!ck~q,z1!, ~2.4!

and by the adjoint eigenvalue equation to Eq.~2.4! introduced in11

H2~q,z1!ck
†~q,z1!12E

2`

`

dz2@H~q,z1!Ṽp2h~q,z1 ,z2!#ck
†~q,z2!5\2vk

2~q!ck
†~q,z1!, ~2.5!

where

H~q,z!5
\2

2m S q22
1

Ar~z!

d

dz
r~z!

d

dz

1

Ar~z!
D , ~2.6!

and Ṽp-h(q,z1 ,z2) is the Hankel transform~2.2! of the ‘‘particle-hole’’ potentialVp-h(h,z1 ,z2) defined by Eq.~A4! in the
Appendix of Ref. 21. The quantity\vk(q) is the energy of the excitation modesck(q,z) andck

†(q,z) labeled by quantum
numberk. A stable system requires a positive ripplon energy~mode withk50! for q→0

\2v0
2~q→0!5

\2q2

2m

h0
†~q→0!

N0
2~q→0!

5c3
2\2q2.0, ~2.7!

whereh0
†(q) is the matrix element

h0
†~q!5e0

†~q!12V0
†~q!5E

2`

`

dz1c0
†~q,z1!H~q,z1!c0

†~q,z1!12E
2`

` E
2`

`

dz1dz2c0
†~q,z1!Ṽp-h~q,z1 ,z2!c0

†~q,z2!,

~2.8!
x-
eng

DF

e
ch
andN0(q) is the generalized orthonormalization integral

N0~q!5E
2`

`

dz1c0~q,z1!c0
†~q,z1!. ~2.9!

From Eq.~2.7! one gets the requirement

mc3
25

1

2

h0
†~q→0!

N0
2~q→0!

.0. ~2.10!

SinceN0
2(q→0) is positive, to have a real third-sound v

locity the inequalityh0
†(q→0).0 must be satisfied.

The other procedure to determinemc3
2 relies on the analy-

sis of the variation of the chemical potentialm as a function
of the coverage. The quantitym is obtained from the Hartree
like equation which also determines the square root of
density profile
e

F2
\2

2m

d2

dz2 1Usub~z!1VH~z!GAr~z!5mAr~z!.

~2.11!

HereVH(z) is a Hartree mean-field potential; its explicit e
pression depends on the adopted theoretical model. Ch
and collaborators have demonstrated within the NL
theory thatc3 is related to the derivative ofm with respect to
nc . These authors derived the stability condition~see the
Appendix of Ref. 36!

mc3
25ncS dm

dnc
D.0. ~2.12!

Subsequently, Krotscheck and Tymczak13 have shown that
condition~2.12! is also sufficient to guarantee stability in th
CBF-HNC framework. However, within the latter approa
the speed of the third sound calculated with Eqs.~2.10! and
~2.12! will normally agree only for an exact expansion.18
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III. ANALYSIS OF THE STABILITY

A. Evidence from the ripplon excitation energy

We shall first focus our attention on the numerical resu
concerning the stability test based on the evaluation of
third-sound velocity from the ripplon excitation energy in t
limit of very small momentumq. Equations~2.8! and~2.10!
indicate that, in order to have a stable system the ma
element h0

†(01)5^H(01)12Ṽp-h(01)&0 ~here 01 stands
for q→0! must be positive defined. In a previous work w
have calculatedh0

†(01) for free symmetric films of liquid
4He at T50 K assuming that atoms interact via a stand
6-12 Lennard-Jones potential. The obtained values are li
in Table II of Ref. 11 and all of them are negative. Unfort
nately, those results cannot be compared to others sinc
Refs. 7 and 8 there are no numerical data ofmc3

2 ~from Figs.
1 and 3 of the latter paper it is impossible to get any prec
information forq→0!. Although our data have not be con
trasted with other evaluations, they were criticized in t
literature13 and their implication was disregarded. In order
make clear the grounds for such a criticism, we shall
scribe the context in which it is formulated. As is we
known, the matrix element̂H(01)12Ṽp-h(01)&0 goes to
zero in the limit of large coverage due to a cancellat
effect.25 In particular, the evaluation ofṼp-h(q,z1 ,z2) at
small momentaq becomes numerically very delicate. Such
cancellation is still operative to an important extent at fin
coverages affecting the calculation of the long-wavelen
limit of required matrix elements. In view of these fac
Krotscheck and Tymczak13 suggested that our values o
h0

†(01) calculated from ripplon excitations in Ref. 11 mig
be negative due to possible computational uncertain
caused by the above-mentioned cancellation effect ra
than to real physical reasons. The authors of Ref. 13 c
cluded stating that our results cannot be utilized to draw
conclusion about the stability question. So one has to
course to an alternative way to settle this controversial s
ation.

B. Evidence from the chemical potential

If one disregards the indication for instability appeari
intrinsically in the CBF-HNC calculational scheme, then t
unique way to gain insight into the stability of a finite syste
of liquid 4He at T50 K is to analyze the behavior o
dm/dnc . In practice, Krotscheck and co-workers10,13,16–18as
well as Cheng and collaborators1,35–38have explored the be
havior of the derivativedm/dnc in order to get information
aboutmc3

2 in confined systems. Following such a procedu
we shall now examine the variation of the chemical poten
as a function ofnc in the case of free planar films. Thi
investigation is done in two steps: first we complete a
analyze data provided by the CBF-HNC expansion; seco
we calculatem applying the NLDF theory and examine i
behavior.

1. Chemical potential in the CBF-HNC expansion

This section is devoted to analyze the data ofm listed in
Table I of Ref. 7 and in Table II of Ref. 11. Both these se
of m were obtained in the CBF-HNC/0 approximation@i.e.,
s
e

ix

d
ed

in

e

e

-

h
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y

e-
-

e
l

d
d,

s

neglecting the contribution of all elementary diagrams
pointed out when discussing Eqs.~2.6!–~2.8! in Ref. 11#.
The difference is due to the fact that the calculations w
carried out by assuming different potentials to account
the interaction between helium atoms. As mentioned bef
the standard 6-12 Lennard-Jones potential was used in
11, while in Ref. 7 the Aziz46 potential was utilized. The
values of Ref. 7 are plotted in Fig. 1. In a discussion of the
results Krotscheck and Tymczak13 suggested that free plana
films are stable because even though the calculatedm(nc)
yield a small negative slope they suspect that such a nega
value is not large enough to indicate a real instability of t
equations. However, no evaluation of the slope illustra
their statement. Since in order to establish unambiguou
that a numerical result is negligibly small one should p
form an appropriate comparison, a claim like the one tr
scribed above cannot be taken as a final asseveration. Th
fore, we have undertaken a search for the physical conten
these optimized values ofm by adopting a more comprehen
sive perspective, which includes an estimation of the
pected slope.

According to the idea outlined in the previous paragra
the first step was to evaluate a set of values ofm for the
planned comparison. Our experience in the study of this k
of film indicates that results obtained by solving the syst
assuming short-ranged correlations provide a good refere
for meaningful comparisons~see, e.g., trends of short-range
and optimized solutions in Table II and Figs. 5, 9, and 10

FIG. 1. Chemical potential and energy per particle as a func
of the coverage. Results obtained with the CBF-HNC/0 expans
are indicated by circles~chemical potential! and squares~energy per
particle!. In this case open symbols stand for the short-ranged
ues calculated in the present work, while full symbols are the o
mized results taken from Table I of Ref. 7. Full triangles and st
are, respectively, the chemical potential and the energy per par
evaluated using the NLDF theory. The vertical lines indicate
two-dimensional spinodal densityr2D

sp and the equivalent surfac
density (r3D

sp )2/3 of the three-dimensional spinodal valuer3D
sp

.0.0158 Å23.
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Ref. 11!. So we solved free films of liquid4He atT50 K by
using short-ranged correlation factors of the generali
McMillan-Schiff-Verlet type introduced in Ref. 11:

u~h,z1 ,z2!52S b01b1Ar~z1!r~z2!

Ah21~z12z2!2 D 5

~3.1!

with b052.8 Å andb159.98 Å4. It is worthwhile to men-
tion that Carraro and Cole have also utilized a sort
McMillan-Schiff-Verlet correlation factor in a variationa
a

e
ro
I
n

s
n
o
or

rt

ng
n

d

f

Monte Carlo evaluation of the binding energy of4He films
on several alkali-metal substrates.40 The CBF-HNC/0 calcu-
lations were performed by adopting forVH(z) the formula
derived by Saarelaet al.24

VH~z1!5E
2`

`

dz2r~z2!@2Ec~z1 ,z2!1ENX~z1 ,z2!#,

~3.2!

where
d
h

ty profiles
he film
and
Ec~z1 ,z2!5pE
0

`

h dhS g~h,z1 ,z2!v~r 12!1
\2

2m
@ u“1Ag~h,z1 ,z2!u21u“2Ag~h,z1 ,z2!u2#

2
\2

8m
@“1g~h,z1 ,z2!•“1N~h,z1 ,z2!1“2g~h,z1 ,z2!•“2N~h,z1 ,z2!# D , ~3.3!

and

ENX~z1 ,z2!52
p\2

8m E
0

`

h dh@“2N~h,z1 ,z2!•“2X~h,z1 ,z2!#. ~3.4!

Quantity v(r 12) is the 4He-4He interaction potential~Lennard-Jones or Aziz!. The two-body functionsg(h,z1 ,z2),
N(h,z1 ,z2), andX(h,z1 ,z2) are determined by the hypernetted and Ornstein-Zernike chain equations given by Eqs.~2.6!–
~2.8! in Ref. 21.

In fact, two series of results were evaluated for coverages ranging fromnc50.04 to 0.32 Å22, one by using the standar
6-12 Lennard-Jones potential and the other by utilizing the Aziz4He-4He interaction.46 Since in the short-ranged approac
there is no infrared divergence one gets very precise numerical results. Both sets of evaluated short-ranged densi
exhibit similar features to the optimized ones plotted in Fig. 2 of Ref. 7, i.e., a maximum density at the center of t
rc5r(z50) and a smoothly decreasingr(z) which falls out at the surfaces. A typical difference between short-ranged
optimized films is displayed in Fig. 5 of Ref. 11. The energy per particle was computed according to

E

N
5

1

nc
F \2

2m E
2`

`

dz1S dAr~z1!

dz1
D 2

1E
2`

` E
2`

`

dz1dz2r~z1!r~z2!Ec~z1 ,z2!G , ~3.5!
d-
r-
ch
is
ly
by

ide
hat
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ion
se

o-
yed
he

,

with the correlation energy densityEc(z1 ,z2) given by Eq.
~3.3!. Figure 1 shows a rather complete pattern of the beh
ior of the short-ranged valuesm andE/N calculated with the
Aziz potential. It clearly indicates that both the energy p
particle and the chemical potential vanish in the limit of ze
coverage, which is a usually required physical feature.
addition, this figure shows that both quantities are monoto
cally decreasing functions ofnc . After including in Fig. 1
the values ofE/N quoted in Table I of Ref. 7 one realize
that the results obtained with improved two-body functio
are, as expected, somewhat lower than the short-ranged
but the trend of both sets is similar. The fact that the sh
ranged and optimized values ofm lie on almost parallel
curves and that an alike behavior is exhibited byE/N be-
comes the relevant feature, which gives a strong suppo
the method of analysis employed in this section.

In order to facilitate a better visual insight when explori
the variation ofm, the main sector of Fig. 1 is amplified i
v-

r

n
i-

s
nes
t-

to

Fig. 2. Furthermore, the latter picture is completed by inclu
ing the values ofm obtained with the Lennard-Jones inte
atomic potential to allow a direct comparison, since su
data are only partially listed in Table II of Ref. 11. From th
plot it becomes clear thatm always decreases monotonical
for increasing coverage and that calculations carried out
adopting the Lennard-Jones and Aziz interactions prov
equivalent results. Of course, the latter values are somew
lower than the former ones as expected for a more real
potential.47

Going ahead with the analysis we shall focus our attent
on nc(dm/dnc). These scaled derivatives evaluated in ca
of the Aziz potential are shown in Fig. 3~a!. Since the slopes
calculated by usingm obtained with the Lennard-Jones p
tential yielded alike negative results to that already displa
in Fig. 3~a!, such values are not included therein avoiding t
overload of the graph. Figure 3~a! shows that all CBF-
HNC/0 values ofnc(dm/dnc) are negative and, in addition
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11 850 56LESZEK SZYBISZ
it indicates that the short-ranged and optimized results ar
the same order of magnitude. A noticeable feature is
pronounced drop of the optimized scaled slopes for cov
ages belownc50.18 Å22. We think that this behavior o
nc(dm/dnc) is indeed not fortuitous and may be correlat
with the low one-body densities obtained for such films. T
values ofrc taken from Table I of Ref. 7 are plotted in Fig
3~b!. Looking at this figure one realizes that films withnc
,0.18 Å22 haverc smaller than the three-dimensional spi
odal densityr3D

sp .0.0158 Å23, below of which a bulk sys-
tem does not have a physical solution. Making a connec
to results for adsorbed systems it can be noticed that Figs
and 15 of Ref. 17 and Fig. 1 of Ref. 23 show that all sta
films with a monolayer, bilayer, or multilayer structure a
ways have an average density larger thanr3D

sp . Therefore, the
definitive breakdown of the stability condition for free film
with nc,0.18 Å22 is to some extent an expected behavi
Figure 3~b! shows that for larger coverages,nc.0.18 Å22,
the optimized systems haverc.r3D

sp indicating the existence
of a region withr(z).r3D

sp . However, this feature is no
sufficient to guarantee stability, it only makes these thic
films less unstable. In summary, it appears that the requ
nc

min for a stable geometry is still not reached in the analyz
coverage regime,nc<0.30 Å22.

2. Chemical potential in the NLDF theory

In order to have an alternative way for evaluating t
slope of m as a function ofnc we have also studied fre

FIG. 2. Chemical potential as a function of the coverage. Circ
and triangles represent CBF-HNC/0 evaluations carried out with
Aziz and Lennard-Jones potentials, respectively. Open circles
the short-ranged values calculated in the present work, while
circles stand for the optimized values listed in Table I of Ref.
Open and full triangles are, respectively, the short-ranged and
mized values determined in the investigation reported in Ref.
The vertical lines indicate the two-dimensional spinodal densityr2D

sp

and the equivalent surface density (r3D
sp )2/3 of the three-dimensiona

spinodal value.
of
e
r-

e

n
10
e

.

r
d

d

planar films by applying the NLDF theory. In this approa
the density of correlation energy may be written as

Ec~z1 ,z2!5pE
0

`

dh hv l~r 12!1
c

2
@r~z2!#21@ r̄~z2!#11g

3d~z22z1!, ~3.6!

which is in agreement with Eqs.~11a! and~11b! of Ref. 33.
Here v l(r 12) is the ‘‘screened’’ 4He-4He Lennard-Jones in
teraction potential~with the standard de Boer–Michels pa
rameterse510.22 K ands52.556 Å!

v l~r 12!5H 4eF S s

r 12
D 12

2S s

r 12
D 6G for r 12>h,

v l~h!S r 12

h D 4

for r 12,h,

~3.7!

whereh is the screening distance. Ther̄(z2) is the ‘‘coarse-
grained density’’ defined by the average ofr(z) over a
sphere of radiush centered atz5z2 , see Eq.~10b! of Ref. 33

r̄~z2!5
3

4ph3 E dr3r~z3!u~h2r 23!

5
3

4h E
z22h

z21h

dz3r~z3!F12S z32z2

h D 2G . ~3.8!

The density correlation energyEc(z1 ,z2) adopted in the
NLDF theory contains much more information about the b

s
e
re
ll
.
ti-
1.

FIG. 3. ~a! Scaled derivative of the chemical potential as a fun
tion of the coverage. The vertical line indicates the equivalent s
face density (r3D

sp )2/3 of the three-dimensional spinodal value.~b!
Central density of the symmetric film for each coverage. The h
zontal lines indicate the values ofr3D

sp and the experimental equilib
rium densityr3D

expt50.021 85 Å23. In both parts of the figure open
and full circles stand, respectively, for short-ranged and optimi
CBF-HNC/0 results, while stars are NLDF values.
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havior of real liquid 4He than that utilized in the CBF
HNC/0 expansion. It has three free parametersh, c, andg,
which are determined by fitting the equation of state, surf
tension, and static density-density response function of b
4He. In our numerical task we used the valuesh
re
t

to

e
e

or

o
a
de
t

/0
il

i-
em

r
n

th
is
w

ro

a

s

e
lk

52.377 Å, c51.045 543107 K Å 3(11g), andg52.8 given
in Ref. 36.

The integrodifferential problem~2.11! was solved for a
large domain of coverages by using the NLDF mean-fi
potentialVH(z) given by expression~2.16! in Ref. 36:
VH~z1!54pes2S E
2`

z12h

1E
z11h

` D dz2r~z2!F1

5 S s

z12z2
D 10

2
1

2 S s

z12z2
D 4G14pes2E

z12h

z11h

dz2

3r~z2!H F 8

15S s

h D 6

2
5

6G2
1

3 F S s

h D 6

21G S z12z2

h D 6J S s

h D 4

1
c

2
@ r̄~z1!#11g

1
3c

8h
~11g!E

z12h

z11h

dz2r~z2!@ r̄~z2!#gF12S z12z2

h D 2G . ~3.9!
ce

e of
r of

ten-
per

ten-
the

bulk
ce
le,
The energy per particle was evaluated using Eq.~3.5! with
Eq. ~3.6!. Results of m and E/N for films with nc

<0.32 Å22 are displayed in Fig. 1. A glance at this figu
indicates that both these quantities tend towards zero in
limit nc→0. For the purpose of this work, it is important
notice that the new values ofm as well as ofE/N decrease
monotonically for increasingnc . The NLDF values are
lower than the CBF-HNC/0 ones. This feature can be w
understood if one reminds the reader that the correlation
ergy in the NLDF approach contains a large piece of inf
mation about properties of bulk4He, while the CBF-HNC/0
calculations only include the lowest-order contributions
the correlation factors. This difference increases for incre
ing coverage due to the fact that larger films present wi
central regions with larger densities and for such systems
higher-order contributions not included in the CBF-HNC
expansion are more important. Furthermore, it is worthwh
to point out that fornc50.30 Å22 the NLDF chemical po-
tential, m(0.30)526.94 K, is already close to the exper
mental value of the energy per particle of a uniform syst
EB /N527.14 K, the difference only amounts to about 3%
On the other hand, the central densitiesrc obtained in NLDF
calculations are plotted in Fig. 3~b!, where one sees that fo
increasing coverage the results go towards the experime
equilibrium density of the bulk liquidr3D

expt50.021 85 Å23.
It already becomes clear from Fig. 1 that the slope of

chemical potential determined with the NLDF theory
negative. Nevertheless, in order to quantify the effect
evaluated the corresponding values ofnc(dm/dnc). The
NLDF scaled slopes displayed in Fig. 3~a! indicate in a very
clean way that free planar films withnc<0.30 Å22 are un-
stable. These results support the conclusion obtained f
CBF-HNC/0 calculations.

C. The limit of very thick films

Let us now refer to the stability of self-supported plan
systems withnc.0.30 Å22. This part of the investigation is
based on NLDF evaluations. The largest solved film ha
coveragenc50.5 Å22 and a width of 25 Å, i.e., it is more
he

ll
n-
-

f
s-
r

he

e

.

tal

e

e

m

r

a

than 10 times wider than a typical interatomic distan
.2 Å. Measured in nominal ‘‘layers’’

l 5
nc

rc
2/35

1

rc
2/3 E

2`

`

dzr~z!, ~3.10!

the thickness of this film withnc50.5 Å22 and rc
50.021 48 Å23 is l .6.5. When looking at thick films it is
convenient to examine the data as a function of the invers
the coverage. Figure 4 shows the corresponding behavio
the chemical potential, energy per particle and surface
sion. The latter quantity is equal to half of the free energy
unit area

ss5
1

2

E2mN

A
5

1

2 FE

A
2mncG , ~3.11!

FIG. 4. Chemical potential, energy per particle, and surface
sion evaluated according to the NLDF theory as a function of
inverse of the coverage. In the limit 1/nc→0 data ofm and E/N
approach the experimental value of the energy per particle of a
4He liquid EB /N, while ss tends towards the experimental surfa
tensionss

expt. The asymptotic behavior of the energy per partic
i.e., EB /N12ss

expt/nc is also indicated.
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because a planar film has two equivalent surfaces. In ord
study the stability analyzing data of a plotm vs 1/nc one
must consider that condition~2.12! takes the form

mc3
25nc

dm

dnc
52

1

nc

dm

d~1/nc!
.0. ~3.12!

This means that stable films require negative values of
slope dm/d(1/nc). However, Fig. 4~a! shows that such a
slope is always positive, hence, one concludes that all
calculated films are unstable.

Although we have not carried out calculations for larg
coverages, it seems possible to infer the behavior of big
films with an important degree of confidence. Figure 4 in
cates that the results exhibit the following features as 1nc
decreases:~i! the value ofm tends towards the energy pe
particle of bulk liquid 4He and~ii ! the surface tension ap
proaches the experimental surface tensionss

expt

50.274 K Å22. In addition, from Eq.~3.11! one may derive
the following relation:

m`5 lim
nc→`

m5 lim
1/nc→0

FE

N
2

2ss

nc
G5 lim

nc→`

E

N
5

EB

N
,

~3.13!

which implies that the chemical potential and energy
particle must coincide in the limit 1/nc→0 and be equal to
EB /N. As far as one can see in Fig. 4~a!, the data follow
fairly well the trend required by this property. It is also n
ticeable that the calculatedE/N are not far away from the
asymptotic behavior given by

S E

ND
asymp

5
EB

N
12ss

exptS 1

nc
D , ~3.14!

as shown in Fig. 4~a!. Perhaps, it is still interesting to discus
a little bit more the way in which the chemical potential m
reach its asymptotic value. As is known, the third-sound
locity goes asymptotically to zero in the limitnc→`.25

Sincenc(dm/dnc) is negative for all the films investigated i
the present work, to have a domain of stable coverages
a derivative must cross to positive values. This crossing
gether with the asymptotic zero value would mean a sor
oscillation of mc3

2 as a function ofnc . However, as men-
tioned before, any oscillatory behavior ofmc3

2 is related to a
layer formation caused by a compression due to subs
potentials.1 Since free films are not supported by any ext
nal potential, there is no source to produce a belated osc
tion of mc3

2. Hence, the asymptotic resultmc3
2

5nc(dm/dnc)52(1/nc)@dm/d(1/nc)#50 would be
reached from negative values. In other words, it seems
there is no physical reason to expect a change of the m
tonic trend of all the quantities displayed in Fig. 4.

IV. CONCLUSION AND FINAL DISCUSSION

In summary, we conclude that in light of the facts d
scribed in this paper there is strong evidence in favor of
instability of the free films of liquid4He atT50 K. Prior to
the discovery of the instability effect in confined films, mo
theoretical physicists were skeptical of the possibility th
to
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ch
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-
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at
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free films might be unstable, but in this work we demonstr
that it is possible to join sufficient arguments for changi
that viewpoint.

The stability was examined by looking at the third-sou
velocity expressed as an energymc3

2. This quantity was
evaluated by using the procedures described in Sec. II.
calculations were carried out within the framework of tw
different approaches, namely the CBF-HNC/0 and NLD
theories. All the evaluations for self-supported systems w
coveragenc<0.30 Å22 yielded negative values ofmc3

2 in-
dicating that the investigated films are unstable. The num
cal task in the case of the CBF-HNC/0 expansion is v
delicate, since the evaluatednc(dm/dnc) are small. The val-
ues of the latter quantity estimated with optimized data
ported in Refs. 7 and 11 and plotted in Fig. 3~a! exhibit an
important fall of the stability indicator only for coverage
nc,0.18 Å22. On the other hand, the NLDF calculation
show in a much more clear way that such systems are
from the conditions required by the minimum stable cov
age. This finding fits very well in the current knowledg
about this matter.1 It is quite reasonable to expect that, if n
very thick films like those studied in Figs. 1–3 are unsta
when adsorbed to rubidium and cesium substrates, then
films without a supporting potential should be also unstab

Although the cohesion increases for larger systems, all
free helium films withnc.0.30 Å22 analyzed by using the
NLDF theory are still unstable as is shown in Fig. 4. Fu
thermore, on the grounds of the discussion provided in
text, it is plausible to conjecture that instability would pers
for all free films of finite thickness as suggested in Ref. 1
Such a pattern of instability cannot bea priori considered
unphysical since it is supported by~i! the finding of Refs. 2
and 3 that a free semi-infinite system is unstable and~ii ! the
nonwetting behavior of liquid4He on rubidium and cesium
surfaces,1,45 where besides the steep barrierB/z9 located
near the alkali-metal surface there is an attractive lo
ranged van der Waals tail2C/z3 which confines at leas
weakly the film at the liquid-vacuum interface. Moreove
this phenomenon of instability may be interpreted on
basis of pure physical considerations. Due to the rotatio
symmetry of the interaction potential between the individu
particles, one expects that the ground state of stable
systems of strongly correlated helium atoms, which do
occupy the whole three-dimensional space, will evolve to
rather spherical shapes like those studied in Refs. 48 and
This means that such systems will favor the formation
droplets of liquid 4He coexisting with the vacuum. There
fore, in the case of planar films with finite coverage o
should apply an external potential with a strong attract
term enough to generate the sufficient compression wh
could preclude the natural tendency of helium to fo
spherical clusters.
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