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Seebeck coefficient for the Anderson model
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The single-site Anderson model with degenerdgyis solved for the case in which the lowest eigenstate
containsL electrons in thef orbital, where B<L<N;. The noncrossing approximation is used to find the
density of states including the Kondo resonance. The Seebeck coefficient is calculated as a function of tem-
perature for every value df. We find that the Seebeck coefficient is largestlfer1 and declines in value as
L increases. This suggests that large Seebeck coefficients are not possible in mixed-valent systems besides
those of cerium or ytterbiunjS0163-18207)02742-2

I. INTRODUCTION This corresponds to the case of Ce or Yb, and our values of
S~100 uV/K are in agreement with other workét<? for
There is great interest in finding materials suitable forthe case that the orbital degeneracyNis=6. When we in-
thermoelectric application's® Present materials are good at crease the value df then the maximum value & declines,
room temperature and above, but there is a lack of goods does the Kondo temperature. This is a calculation of these
materials at low temperatures. Generally the material mugproperties for general values bf
have high values of the electrical conductivity and Seebeck A realistic calculation of the Seebeck for the configuration
coefficient, while having a small value of the thermal con-(4f)" requires that one include the various splittings of the
ductivity. levels due to spin orbit and other interactions. This has only
Metals are generally unsuitable for thermoelectric appli-been done for C&1+?4-2%which hasL=1. We are in the
cations because they have a small Seebeck coeffftignt. process of doing this calculation far=2 which corresponds
exception are mixed-valent materials where the Seebeck cae Pr. However, we expect the Anderson model results to be
efficient can obtain high valué€ An alloy of copper and a guide to what will be found when we split the levels. We
nickel called constantan is a well-known thermocouple. Theexpect that splitting the levels and lowering the degeneracy
highest values of Seebeck coefficient are obtained in rarewill only make the Seebeck smaller. Thus it is unlikely that
earth metallic compound§ such as YbA} or CePd where  splitting the levels will increase the Seebeck, nor change our
|S|~100 xV/K. Many other compounds containing Ce or qualitative conclusions.
Yb have been found to have values of the Seebeck coeffi-
cient which are slightly lowef.
A few mixed-valent materials have been found which Il. SINGLE-SITE ANDERSON MODEL
contain other rare-earth compounds. None have a Seebeck t,o siangarq theoretical model for discussing rare-earth
coeff|p|ent as high as 10QV/K. This raises the theoretical compounds was introduced by Anderdon
guestion of whether these other rare-earth elements can have
a high Seebeck coefficient.
Numerous theoretical calculations of the Seebeck coeffi- H=Hy+V, (2.1
cient for Ce or Yb predict the value of 1Q0V/K, in agree-
ment with the observed maximutn?? These values are ob-
tained by four different methods: Gunnarsson and
Schanhammer*® the noncrossing approximatitin3-1523 HO:% skclvckﬁsf% nM+U,§V My, (2.2
slave-boson  techniqué$, and renormalization-group
technique$?? Here we have used the noncrossing approxi-

mation to extend these calculations to other values of the nﬂ:foM, 2.3
f-orbital occupancy. We solve the single-site Anderson

modef’ for the case of a level with degenerady. We find

the Kondo resonance and Seebeck coefficient for the case 1

that the ground state haselectrons in thef orbital, where V=—=2 Vi,[fIC(+CLf,], (2.4
0<L<N;. N

Generally we find that the Kondo resonance becomes
smaller wherL is increased. We present a series of calculawhereV is the hybridization interaction between the band
tions where we keep fixed the important values Xf electrons k) and the localized electronk,. The on-site
=E_.,—E_, while varying ¢; to changeL. Since the Coulomb repulsion i&J ande; is the eigenvalue for a single
Kondo resonance becomes smaller, the Seebeck coefficiehelectron. The eigenvalue and degeneracy fagidor the f
also becomes smaller. The largest value we getid fed.  electrons, in the absence of hybridization are
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n(n—1) Next we discuss the properties of the Hamiltonidg
Ey=nei+ ——U, (2.9 without the hybridizationV. This interaction is included in
the following section. The Green’s function for thiestates
N, in the absense of the hybridization term is
Z,= 0 ) (2.6

B )
o Giom=-3 [ areom(Tr o] @10
The ground-state degeneracy of a rare-earth ion is given ac- w JO
cording to Hund's rules. The Anderson model ignores therpis can be written exactly for the nonintracting states. We

splittings of thef orbital due to spin orbit and other factors, employ the notatiomN; =14 to denote the number of states

and gives the wrong degeneracy. In a future paper we Wil 5 singlef electron. The degeneracy of the havimglec-
include these realistic splittings of tifelevels. The present i.ons in thef state isZ. as defined above:
n :

calculation is intended to be a solution of the Anderson

model as given in Eqg1)—(4). 1 N Ni—n
The eigenvalue expressid@.5) is parabolic in the level Gi(lwy) = ZE Zne‘BEn{m
occupancyn. Sincee <0 then the minimum energy is found n=0 mt=n =n+l

the lowest value oE,,. We can increask by increasing the (211

value ofe; towards larger negative values, while keeplhg

fixed. . Ar(w)=—23[G(w)], (2.12
A mixed valence is when the number bfelectrons can

near ton~1/2—¢;/U. Denote a4 the value ofh which has n ]

=
Iwm+ En—l_En

vary betweenn and nxt1. The hybridization interaction 27 Ni
causes mixing wheneveE, —E, .,| is a small energy. The Af(w)= 72 Z.e PEl(Ny—n)8(w+E,—Eni1)
standard nomenclatiffis to define the two excitation ener- n=0
gies out of the ground state as +né(w+E,_1—Ep)}, (2.13
A,:ELfl_EL:_[Sf‘}'(L_l)U], (27) Nf
Z=D, Ze FEn, 2.1
A,=E ,,—E =&;+LU, (2.9 ; A 219

U=A. +A 2.9 The spectral functior\;(w) is obtained by the analytic con-
e ' tinuationi w,,— w+in and then taking twice the imaginary

Values ofA . have been calculated for the rare-earth metalpart.

in Ref. 28. Generally they find one value which is small Let E_ be the lowest eigenvaluen&L) and assume that

(A~1.0 eV), while the other is larger so that~6—8 eV. L is neither 0 noiN;. The most important terms in the sum-

We assume that similar values apply to the rare earths whemation is whenn=L—1,L,L+1 which gives the approxi-

they are in metallic compounds. mation
|
2=7 Ze PR, (2.15
L N¢—
=14+ — o BA_ -pA

S VP T I T (2.18

2 L(L-1

Ai(w)=— L5(w+A,)(1+e’ﬁA-)+(Nf—L)5(w—A+)(1+e’BA+)+e’BA—(—)5(w+ EL_,—E__y)
Z Ne+1-L
Ni—L)(N;—L—-1

Jopn, ML )5(w+EL+1—EL+2). (2.17)

L+1

The spectra has four peaks. Two are below the chemicahe f shell of the local atom. This process leads to several
potential and two above. We follow custom and ignore theéimportant effects. The first is an energy parameter defined as
last two terms inA;(w) and include only the peaks at=

—A_,A,. For the case that =1 then the third term is T

missing anyway since there is no stéte 2. I'(E)= Nzk Vﬁ&(E—sk). (3.1

Ill. SELF-ENERGY OF ELECTRONS . . . .
This function is assumed to be a constant, independent of

The hybridization interactiotV in Eq. (4) describes the energy. Its value for the rare earths is about 0.1 eV. The
processes whereby a conduction electron can hop on or offecond effect is that the resonance lineswat —A_ A,
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become broadened by an amount proportional.tdhe third de

effect is that a resonance peak appear&sifw) near to zero Sh(w)=— f—nF(S)Gn(w+ ). (3.1)
energy. This is the Kondo resonance, and it is the important 1+(e/D)?

feature for the calculation of the Seebeck coefficient.

In the prior section we showed that there were energySome authors*®argue that when one includes finltethen
levels associated with having electrons in the state. We  one should also include vertex corrections. Of course, it al-
introduce a Green’s function for this state ways better to include as many terms as possible in the self-

energy and correlation functions. However, the inclusion of
3.2 vertex terms increases significantly the numerical effort. We
' have examined these terms carefully and concluded that they

1
w—E,— 2n(w) .
T . are all smaller tha®(I'/U) than the important terms that we
The hybridization interaction causes the self-eneXgyw). keep in the calculation. Furthermore, the important feature,

We c_zlculﬁte this lfonCtI?]n u5||?g the m?th%d of Ref. dll' dF'rsgﬂe Kondo resonance, is unaffected by vertex corrections. In
consider the result for the self-energy in the second order g,o and we followed othe?326 and left them out.

perturbation theory

Gn(w)=

Sn(@)=n8, %) () +(N;=n)S (), 3.3 IV. f-ELECTRON GREEN'S FUNCTION
o Vﬁnk The final step is to calculate the spectral function of the
S ()= 2 (3.4 electron in the NCA. We must also include in the thermal

Enr1i—e)+in’ . ) ) .
~(Envametin averages the feature that the interactions give a spread in

energy. Our result is

1 V2(1—n,)
1(0) _ k k
Sn-1(@) N§k: wo—(E,_1+e)+in’ 35 Nf
There are two terms. The first terni'C,) in V adds an Af(w): f—e PEANE){NA,_1(E- )
electron to thef levels, which changes to n+1, while
destroying a band electron in the stdte This process is +(Nt—n)A, 1(E+ o)}, 4.9

proportional to the occupation numbeg of the band elec-
trons. The second ternC(‘:f) in V takes an electron away N
from thef level, which changes to n—1, while adding an 7_ E 7 f d—Ee’BEA (E)
electron to the band. This process is proportional to the prob- n m=
ability (1—n,) that the band state is unoccupied.

Arguments ofS(?) are Green’s function§, without the
self-energies:

4.2

A detailed derivation of this result is provided in the Appen-
dix. These results are similar in spirit to those of Ref. 11.
They took the limit thatU—c which eliminated all states
SO(w)= _2 VinG' P (w+sy). (3.6)  with n>1. They only had the two states of=0,1 in their
system andL=1. Here we include all of the states with
The noncrossing approximatibr?>28 (NCA) is to evaluate different values oh. We fix the valueU =6 eV. We choose

these Green’s functions while including these self-energiestr= —0.5-U(L—1) (in units of electron Voltsto have a
Setting the self-energies in the denominators variety of values so that we have different occupanties
thef state, while keeping fixed the valuesdf = —0.5 eV,
S (w)=nS,_(0)+(Ns—n)S,, 1(w), (3.7 A,.=5.5 eV. We make an approximation in our numerical

solution of retaining only the states with=L—1,L,L+1 in
our self-consistent solution. We also choosg=6 and
Shii(w)= E VEnGn1(w+zy), (3.8 T'=0.1 eV in order to compare with previous calculations.
It is convenient to introduce the notation

Si-1(w)= EV(]- NWGh-1(w—ey). (3.9 B (w)=e P EUA (w). 4.3

The above equations comprise a self-consistent definition f
the self-energies. They are solved by iteration on the com
puter. We assume a density of states

Ofhis factor will account for the exponential factor of exp
(—BE) in Eg. (4.1). We added the factor of exgE,) to
provide convenient normalization, since the interesting struc-
ture in these functions is in the vicinity ab~E, . This
Z_D, (3.10 factor cancels between numerator and denominator. So we
g2+ D? actually evaluate

9(e)=

and place the chemical potentialsat 0. The parameteD is
an effective bandwidth ani = 7g(0)V(0)?=27V(0)?/D. _(dE Ny

In S/(w) we can change variables— —e which now makes <~ | 27 BL(E)+ Ne+1-L BLa(B)+ 7 Bua(B),
S,=S,. In effect, we evaluate the integral (4.4)
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FIG. 1. The Kondo resonance Bt 50 K for different values of
L while Ny=6U=6A_=-0.5A+=5.5 remained fixed. The
largest peak is folL=1 and the smallest is fot=5. Peak de-

FIG. 2. Seebeck coefficient as a function of temperature be-
tween 50 and 300 K. The maximum value of the Seebeck coeffi-
cient occurs near to the Kondo temperatdie. The maximum

creases steadily for increasihg

11 dE
Ai(w)= Z’f E{L[BL(E)AL—l(E_w)“‘AL(E)BL—l
X(E—w)]+(Nt—L)[BL(E)A_+1(E+ w)

+AL(E)BL+1(E+w)]}. (4.5

As discussed in Ref. 11, th#&,(E) functions cannot be ob-

tained with numerical accuracy by just multiplyidg(E) by

value of the Seebeck coefficient, afid, both decline with increas-
ing values ofL. Other parameters are the same as in Fig. 1.

consistently defineB,(E) and are solved by iteration. Thus
there are two iterations: one fok,(E) and another for
B.(E).

V. RESULTS AND SUMMARY

Figure 1 shows the Kondo resonanceTat50 K as a
function of energy in electron volts. We fixdd,A_, and
A, , as described above, and varied the valud oherelL

the exponential factor. Instead, one must obtain them by itdenotes the value of at whichE,, has the minimum value.

eration along with théA,(E) functions. The latter functions
have a widtH",(E) =3[ X ,(E)] and we introduce the similar

function y,(E) for the numerator of th&,(E) function:

Ya(w)=e PO EUT (o), (4.6)
27n(w)

B = 4.
() (0= En—R[Zn(0))?+T (0)?’ .7
Ya(@) =Ty 1(@)+(N;=MTpiy(0) (4.9

Tw=ero-eo L[ D50 A (wte)
n(w o D2+82F8 nwte
(4.9
r D2de
:EJDZT&JHF(—S)B”((U'FS). (4.10

The latter equation provides a definitionf( w) in terms of

integrals over the functioB,(E). This set of equations self-

The size of the Kondo resonance decreases in value as
increases. The largest Kondo resonance is thelcask and
the smallest is the case with=5. In these calculations, the
only factors which is changing aren(N;—n) or (L,N;
—L) in Egs.(3.7,4.5. These factors relate to the degeneracy
of the various levels as given by the factorAyf. If we do a
more realistic calculation fof electrons, with the factors
which split the levels into sublevels, then we will reduce
these factoré>2® This reduction can only make the Seebeck
coefficient smaller.

The Seebeck coefficient for these cases is shown in Fig. 2
as a function of temperature. The largest Seebeck value is for
L=1, and the values decrease in size whencreases. This
is in accord with the observation that the Kondo resonance is
getting smaller. The Kondo resonance causes the large val-
ues of the Seebeck:® The Seebeck coefficient peaks at a
temperature near to the Kondo temperature. The peak in our
calculated Seebeck coefficients declines with increasing val-
ues ofL. ForL=3 it is below 50 K and the peak is off the
figure to the left. However, one can see that even at the peak
value the Seebeck will be small for these cases. Note that we
choose to plot the result as a linear function of temperature,
rather than as IA{Tk) as is customary. That is because we
are primarily interested in applications where materials are
needed over the range of temperatures in Fig. 2.

The Seebeck coefficient has a large value when the
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Kondo resonance is large and asymmetric. The largest asynmak. All have contributed to my education in this field. | also
metry is whenL,N;—L differ by as much as possible. This acknowledge research support from a DOD-ARPA Grant,
happens whe.=1, or whenL=5 in the case oN;=6.  from the University of Tennessee, and from Oak Ridge Na-
However, because of our choice that is smaller tham\ , , tional Laboratory, managed by Lockheed Martin Energy Re-
the large Kondo resonance happenslferl. If we reverse search Corporation for the U.S. Department of Energy under
the magnitudes oA_ and A, then the largest result is for Contract No. DE-AC05-960R22464.

L=5. In fact, the mapping oA _—A, , A, —-A_L—N;

—L leaves the results unchanged. The case for Yb corre- APPENDIX
sponds ta\N;=8,A ; small andA _ large. That will give val- . . : I
ues similar to those fol;=6,L=1 shown in the figures. Here we discuss in more detail the derivation of Egs.

Our main conclusion is that the Seebeck and Kondo tem(4-1—4.2. Define|n) as the exact eigenstateld}, while |a)
perature decline in value as one considers valuesf-level IS the exact eigenstate bf=Ho + V. In terms of these states,
occupancy larger than one. The same conclusion applies to'Ve define the spectral and Green’s functions as
holes. Of course, in mixed-valence systems, the ground-state
configuration (4)" will change has the occupancy fluctu-
ates. Here we denote as the principle valence. These re- _
sults suggest that Ce and Yb \F/)vill hgve the largest values of An(@)=2m(n[5(0=H)n) (A2)
the Seebeck coefficient among all of the rare-earth com-
pounds. This theoretical conclusion is in accord with the ex- =27, Sw—E,)|(aln)|?, (A3)
perimental observatiorfs. @

Hla)=¢&,|a), (A1)

ACKNOWLEDGMENTS [(aln)|?
Gn(w)=2, (A4)

z w—E,tin’
| wish to acknowledge many helpful conversations with 7
Dr. Brian Sales, Dr. Frank DiSalvo, and Dr. Mirek Bartkow- In terms of these quantities, we can define the self-energy as

|(H[V[m)|?
En(w)_El Tw-f (A5)
1 nd (e fTIN) 12 (1—ny)|(a|f|n)|?
_Lg o mdtaltIm  (@-nolaltin) ”6)
N4a w_(“:a_gk) w_(ga+8k)
ZEE V2 N (@/n+13n+1|fTn)|2  (1—nY|(a|n—1)(n—1|f|n)|? A7)
Ntz '« w—(E,—€y) w—(E, ey
1 2
:Nzk: VId(Ns=m)n Gy 1(@+e) +n(1—n) Gy 1(@— i)} (A8)
|
The summation over intermediate statésifcludes the ex- g 5
act states ¢| and the eigenstates of the band electrons. They :2 Zn% e P (an)] (A10)
are summed explicitly in the second line. The two terms
correspond to the processes\Mnof adding or removing an
electron fro_m the localf Igvel. The last equation, in the :E an d_se—,BsAn(s)_ (A11)
above set, is the expression for the self-energy in the non- n 21
crossing approximation. In terms of these functions, expres-
sion (4.2) for Z can be derived in a few lines A similar technique can be used to derive the spectral func-

tion A¢(w).

1 B
Z=2, Z(nle""|n) (A9) gf(ikn)z—zz an dre*n(nje” (A~ MHfe~™Mfl|n),
n n 0
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The expression in brackets can be written exactly as This approximation simplifies the expression. After perform-
ing the integral over we find .

BB g 1
2 (nlaye™# o(an’) (0’| fln"+1) Gilik) = 5 Zo(Ni=mS (@l (AIn+ 1)

axn’
x(n"+1|N)e " (\|n+1)n+1|fTIn).  (A12) o Blurt o~ BEN
X (A13)
We adopt the approximation of Refs. 25,26 and restrict the iknt+ &= &y

summation to the terms witm’=n. Gunnarsson and The summations ovex and\ can be expressed in terms of
Schahammet'? consider the terms with’ =n+1 and find  the spectral functions,, andA,,. ; which immediately pro-
they make a small contribution. These are vertex correctionsiuces the resuld.1) for the spectral functioi:(w).
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