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Seebeck coefficient for the Anderson model
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The single-site Anderson model with degeneracyNf is solved for the case in which the lowest eigenstate
containsL electrons in thef orbital, where 0,L,Nf . The noncrossing approximation is used to find the
density of states including the Kondo resonance. The Seebeck coefficient is calculated as a function of tem-
perature for every value ofL. We find that the Seebeck coefficient is largest forL51 and declines in value as
L increases. This suggests that large Seebeck coefficients are not possible in mixed-valent systems besides
those of cerium or ytterbium.@S0163-1829~97!02742-2#
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I. INTRODUCTION

There is great interest in finding materials suitable
thermoelectric applications.1–5 Present materials are good
room temperature and above, but there is a lack of g
materials at low temperatures. Generally the material m
have high values of the electrical conductivity and Seeb
coefficient, while having a small value of the thermal co
ductivity.

Metals are generally unsuitable for thermoelectric ap
cations because they have a small Seebeck coefficient.6 An
exception are mixed-valent materials where the Seebeck
efficient can obtain high values.7,8 An alloy of copper and
nickel called constantan is a well-known thermocouple. T
highest values of Seebeck coefficient are obtained in r
earth metallic compounds5,8 such as YbAl3 or CePd3 where
uSu;100 mV/K. Many other compounds containing Ce o
Yb have been found to have values of the Seebeck co
cient which are slightly lower.8

A few mixed-valent materials have been found whi
contain other rare-earth compounds. None have a See
coefficient as high as 100mV/K. This raises the theoretica
question of whether these other rare-earth elements can
a high Seebeck coefficient.

Numerous theoretical calculations of the Seebeck coe
cient for Ce or Yb predict the value of 100mV/K, in agree-
ment with the observed maximum.9–22 These values are ob
tained by four different methods: Gunnarsson a
Schönhammer,9,10 the noncrossing approximation11,13–15,23

slave-boson techniques,12 and renormalization-group
techniques.21,22 Here we have used the noncrossing appro
mation to extend these calculations to other values of
f -orbital occupancy. We solve the single-site Anders
model27 for the case of a level with degeneracyNf . We find
the Kondo resonance and Seebeck coefficient for the
that the ground state hasL electrons in thef orbital, where
0,L,Nf .

Generally we find that the Kondo resonance becom
smaller whenL is increased. We present a series of calcu
tions where we keep fixed the important values ofD6

5EL612EL , while varying « f to changeL. Since the
Kondo resonance becomes smaller, the Seebeck coeffi
also becomes smaller. The largest value we get is forL51.
560163-1829/97/56~18!/11833~6!/$10.00
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This corresponds to the case of Ce or Yb, and our value
S;100 mV/K are in agreement with other workers11,22 for
the case that the orbital degeneracy isNf56. When we in-
crease the value ofL then the maximum value ofS declines,
as does the Kondo temperature. This is a calculation of th
properties for general values ofL.

A realistic calculation of the Seebeck for the configurati
(4 f )n requires that one include the various splittings of thef
levels due to spin orbit and other interactions. This has o
been done for Ce,10,11,24–26which hasL51. We are in the
process of doing this calculation forL52 which corresponds
to Pr. However, we expect the Anderson model results to
a guide to what will be found when we split the levels. W
expect that splitting the levels and lowering the degener
will only make the Seebeck smaller. Thus it is unlikely th
splitting the levels will increase the Seebeck, nor change
qualitative conclusions.

II. SINGLE-SITE ANDERSON MODEL

The standard theoretical model for discussing rare-e
compounds was introduced by Anderson27

H5H01V, ~2.1!

H05(
kn

«kCkn
† Ckn1« f(

m
nm1U (

m.n
nmnn , ~2.2!

nm5 f m
† f m , ~2.3!

V5
1

AN
(
kn

Vkn@ f n
†Ckn1Ckn

† f n#, ~2.4!

where V is the hybridization interaction between the ba
electrons (k) and the localized electronsf m . The on-site
Coulomb repulsion isU and« f is the eigenvalue for a single
f electron. The eigenvalue and degeneracy factorZn for the f
electrons, in the absence of hybridization are
11 833 © 1997 The American Physical Society
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En5n« f1
n~n21!

2
U, ~2.5!

Zn5S Nf

n D . ~2.6!

The ground-state degeneracy of a rare-earth ion is given
cording to Hund’s rules. The Anderson model ignores
splittings of thef orbital due to spin orbit and other factor
and gives the wrong degeneracy. In a future paper we
include these realistic splittings of thef levels. The presen
calculation is intended to be a solution of the Anders
model as given in Eqs.~1!–~4!.

The eigenvalue expression~2.5! is parabolic in the level
occupancyn. Since« f,0 then the minimum energy is foun
near ton;1/22« f /U. Denote asL the value ofn which has
the lowest value ofEn . We can increaseL by increasing the
value of« f towards larger negative values, while keepingU
fixed.

A mixed valence is when the number off electrons can
vary betweenn and n61. The hybridization interaction
causes mixing wheneveruEL2EL61u is a small energy. The
standard nomenclature28 is to define the two excitation ene
gies out of the ground state as

D25EL212EL52@« f1~L21!U#, ~2.7!

D15EL112EL5« f1LU, ~2.8!

U5D11D2 . ~2.9!

Values ofD6 have been calculated for the rare-earth me
in Ref. 28. Generally they find one value which is sm
(D;1.0 eV!, while the other is larger so thatU;628 eV.
We assume that similar values apply to the rare earths w
they are in metallic compounds.
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Next we discuss the properties of the HamiltonianH0
without the hybridizationV. This interaction is included in
the following section. The Green’s function for thef states
in the absense of the hybridization term is

Gf~ ivm!52(
m

E
0

b

dteivmt^Tt f m~t! f m
† &. ~2.10!

This can be written exactly for the nonintracting states. W
employ the notationNf514 to denote the number of state
for a singlef electron. The degeneracy of the havingn elec-
trons in thef state isZn as defined above:

Gf~ ivm!5
1

Z(
n50

Nf

Zne2bEnH Nf2n

ivm1En2En11

1
n

ivm1En212En
J , ~2.11!

Af~v!522I@Gf~v!#, ~2.12!

Af~v!5
2p

Z (
n50

Nf

Zne2bEn$~Nf2n!d~v1En2En11!

1nd~v1En212En!%, ~2.13!

Z5(
0

Nf

Zne2bEn. ~2.14!

The spectral functionAf(v) is obtained by the analytic con
tinuation ivm→v1 ih and then taking twice the imaginar
part.

Let EL be the lowest eigenvalue (n5L) and assume tha
L is neither 0 norNf . The most important terms in the sum
mation is whenn5L21,L,L11 which gives the approxi-
mation
Z5ZLZe2bEL, ~2.15!

Z511
L

Nf112L
e2bD21

Nf2L

L11
e2bD1, ~2.16!

Af~v!5
2p

Z FLd~v1D2!~11e2bD2!1~Nf2L !d~v2D1!~11e2bD1!1e2bD2
L~L21!

Nf112L
d~v1EL222EL21!

1e2bD1
~Nf2L !~Nf2L21!

L11
d~v1EL112EL12!G . ~2.17!
ral
d as

t of
he
The spectra has four peaks. Two are below the chem
potential and two above. We follow custom and ignore
last two terms inAf(v) and include only the peaks atv5
2D2 ,D1 . For the case thatL51 then the third term is
missing anyway since there is no stateL22.

III. SELF-ENERGY OF ELECTRONS

The hybridization interactionV in Eq. ~4! describes the
processes whereby a conduction electron can hop on o
al
e

ff

the f shell of the local atom. This process leads to seve
important effects. The first is an energy parameter define

G~E!5
p

N(
k

Vk
2d~E2«k!. ~3.1!

This function is assumed to be a constant, independen
energy. Its value for the rare earths is about 0.1 eV. T
second effect is that the resonance lines atv52D2 ,D1
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56 11 835SEEBECK COEFFICIENT FOR THE ANDERSON MODEL
become broadened by an amount proportional toG. The third
effect is that a resonance peak appears inAf(v) near to zero
energy. This is the Kondo resonance, and it is the impor
feature for the calculation of the Seebeck coefficient.

In the prior section we showed that there were ene
levels associated with havingn electrons in thef state. We
introduce a Green’s function for this state

Gn~v!5
1

v2En2Sn~v!
. ~3.2!

The hybridization interaction causes the self-energySn(v).
We calculate this function using the method of Ref. 11. F
consider the result for the self-energy in the second orde
perturbation theory

Sn~v!5nSn218~0!~v!1~Nf2n!Sn11
~0! ~v!, ~3.3!

Sn11
~0! ~v!5

1

N(
k

Vk
2nk

v2~En112«k!1 ih
, ~3.4!

Sn218~0!~v!5
1

N(
k

Vk
2~12nk!

v2~En211«k!1 ih
. ~3.5!

There are two terms. The first term (f †Ck) in V adds an
electron to thef levels, which changesn to n11, while
destroying a band electron in the statek. This process is
proportional to the occupation numbernk of the band elec-
trons. The second term (Ck

†f ) in V takes an electron awa
from the f level, which changesn to n21, while adding an
electron to the band. This process is proportional to the pr
ability (12nk) that the band state is unoccupied.

Arguments ofS(0) are Green’s functionsGn without the
self-energies:

Sn
~0!~v!5

1

N(
k

Vk
2nkGn

~0!~v1«k!. ~3.6!

The noncrossing approximation11,25,26 ~NCA! is to evaluate
these Green’s functions while including these self-energ
Setting the self-energies in the denominators

Sn~v!5nSn218 ~v!1~Nf2n!Sn11~v!, ~3.7!

Sn11~v!5
1

N(
k

Vk
2nkGn11~v1«k!, ~3.8!

Sn218 ~v!5
1

N(
k

Vk
2~12nk!Gn21~v2«k!. ~3.9!

The above equations comprise a self-consistent definition
the self-energies. They are solved by iteration on the co
puter. We assume a density of states

g~«!5
2D

«21D2
, ~3.10!

and place the chemical potential at«50. The parameterD is
an effective bandwidth andG5pg(0)V(0)252pV(0)2/D.
In Sn8(v) we can change variables«→2« which now makes
Sn85Sn . In effect, we evaluate the integral
nt

y

t
of

b-

s.

or
-

Sn~v!5
G

pE d«

11~«/D !2
nF~«!Gn~v1«!. ~3.11!

Some authors15,16argue that when one includes finiteU then
one should also include vertex corrections. Of course, it
ways better to include as many terms as possible in the s
energy and correlation functions. However, the inclusion
vertex terms increases significantly the numerical effort. W
have examined these terms carefully and concluded that
are all smaller thanO(G/U) than the important terms that w
keep in the calculation. Furthermore, the important featu
the Kondo resonance, is unaffected by vertex corrections
the end we followed others25,26 and left them out.

IV. f -ELECTRON GREEN’S FUNCTION

The final step is to calculate the spectral function of thf
electron in the NCA. We must also include in the therm
averages the feature that the interactions give a sprea
energy. Our result is

Af~v!5
1

Z(
n50

Nf

ZnE dE

2p
e2bEAn~E!$nAn21~E2v!

1~Nf2n!An11~E1v!%, ~4.1!

Z5 (
n50

Nf

ZnE dE

2p
e2bEAn~E!. ~4.2!

A detailed derivation of this result is provided in the Appe
dix. These results are similar in spirit to those of Ref. 1
They took the limit thatU→` which eliminated all states
with n.1. They only had the two states ofn50,1 in their
system andL51. Here we include all of the states wit
different values ofn. We fix the valueU56 eV. We choose
« f520.52U(L21) ~in units of electron Volts! to have a
variety of values so that we have different occupanciesL in
the f state, while keeping fixed the values ofD2520.5 eV,
D155.5 eV. We make an approximation in our numeric
solution of retaining only the states withn5L21,L,L11 in
our self-consistent solution. We also chooseNf56 and
G50.1 eV in order to compare with previous calculation

It is convenient to introduce the notation

Bn~v!5e2b~v2EL!An~v!. ~4.3!

This factor will account for the exponential factor of ex
(2bE) in Eq. ~4.1!. We added the factor of exp(bEL) to
provide convenient normalization, since the interesting str
ture in these functions is in the vicinity ofv;EL . This
factor cancels between numerator and denominator. So
actually evaluate

Z5E dE

2pFBL~E!1
L

Nf112L
BL21~E!1

Nf2L

L11
BL11~E!G ,

~4.4!



-

i

r

-

s

.
s

e

cy

ce
ck

g. 2
s for

e is
val-
a
our

val-
e
eak
t we
re,
e

are

the

be-
ffi-

11 836 56G. D. MAHAN
Af~v!5
1

ZE dE

2p
$L@BL~E!AL21~E2v!1AL~E!BL21

3~E2v!#1~Nf2L !@BL~E!AL11~E1v!

1AL~E!BL11~E1v!#%. ~4.5!

As discussed in Ref. 11, theBn(E) functions cannot be ob
tained with numerical accuracy by just multiplyingAn(E) by
the exponential factor. Instead, one must obtain them by
eration along with theAn(E) functions. The latter functions
have a widthGn(E)5I@Sn(E)# and we introduce the simila
function gn(E) for the numerator of theBn(E) function:

gn~v!5e2b~v2EL!Gn~v!, ~4.6!

Bn~v!5
2gn~v!

~v2En2R@Sn~v!#!21Gn~v!2
, ~4.7!

gn~v!5nTn21~v!1~Nf2n!Tn11~v! ~4.8!

Tn~v!5e2b~v2EL!
G

2pE D2d«

D21«2
nF~«!An~v1«!

~4.9!

5
G

2pE D2d«

D21«2
nF~2«!Bn~v1«!. ~4.10!

The latter equation provides a definition ofTn(v) in terms of
integrals over the functionBn(E). This set of equations self

FIG. 1. The Kondo resonance atT550 K for different values of
L while Nf56,U56,D2520.5,D155.5 remained fixed. The
largest peak is forL51 and the smallest is forL55. Peak de-
creases steadily for increasingL.
t-

consistently definesBn(E) and are solved by iteration. Thu
there are two iterations: one forAn(E) and another for
Bn(E).

V. RESULTS AND SUMMARY

Figure 1 shows the Kondo resonance atT550 K as a
function of energy in electron volts. We fixedU,D2 , and
D1 , as described above, and varied the value ofL: hereL
denotes the value ofn at whichEn has the minimum value
The size of the Kondo resonance decreases in value aL
increases. The largest Kondo resonance is the caseL51 and
the smallest is the case withL55. In these calculations, th
only factors which is changing are (n,Nf2n) or (L,Nf
2L) in Eqs.~3.7,4.5!. These factors relate to the degenera
of the various levels as given by the factor ofZn . If we do a
more realistic calculation forf electrons, with the factors
which split the levels into sublevels, then we will redu
these factors.25,26 This reduction can only make the Seebe
coefficient smaller.

The Seebeck coefficient for these cases is shown in Fi
as a function of temperature. The largest Seebeck value i
L51, and the values decrease in size whenL increases. This
is in accord with the observation that the Kondo resonanc
getting smaller. The Kondo resonance causes the large
ues of the Seebeck.11,5 The Seebeck coefficient peaks at
temperature near to the Kondo temperature. The peak in
calculated Seebeck coefficients declines with increasing
ues ofL. For L>3 it is below 50 K and the peak is off th
figure to the left. However, one can see that even at the p
value the Seebeck will be small for these cases. Note tha
choose to plot the result as a linear function of temperatu
rather than as ln(T/TK) as is customary. That is because w
are primarily interested in applications where materials
needed over the range of temperatures in Fig. 2.

The Seebeck coefficient has a large value when

FIG. 2. Seebeck coefficient as a function of temperature
tween 50 and 300 K. The maximum value of the Seebeck coe
cient occurs near to the Kondo temperatureTK . The maximum
value of the Seebeck coefficient, andTK , both decline with increas-
ing values ofL. Other parameters are the same as in Fig. 1.
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56 11 837SEEBECK COEFFICIENT FOR THE ANDERSON MODEL
Kondo resonance is large and asymmetric. The largest as
metry is whenL,Nf2L differ by as much as possible. Th
happens whenL51, or whenL55 in the case ofNf56.
However, because of our choice thatD2 is smaller thanD1 ,
the large Kondo resonance happens forL51. If we reverse
the magnitudes ofD2 and D1 then the largest result is fo
L55. In fact, the mapping ofD2→D1 ,D1→D2 ,L→Nf
2L leaves the results unchanged. The case for Yb co
sponds toNf58,D1 small andD2 large. That will give val-
ues similar to those forNf56,L51 shown in the figures.

Our main conclusion is that the Seebeck and Kondo te
perature decline in value as one considers valuesL of f -level
occupancy larger than one. The same conclusion appliesf
holes. Of course, in mixed-valence systems, the ground-s
configuration (4f )L will change has the occupancy fluctu
ates. Here we denoteL as the principle valence. These r
sults suggest that Ce and Yb will have the largest value
the Seebeck coefficient among all of the rare-earth co
pounds. This theoretical conclusion is in accord with the
perimental observations.8
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APPENDIX

Here we discuss in more detail the derivation of Eq
~4.1–4.2!. Defineun& as the exact eigenstate ofH0, while ua)
is the exact eigenstate ofH5H01V. In terms of these states
we define the spectral and Green’s functions as

Hua)5Eaua), ~A1!

An~v!52p^nud~v2H !un& ~A2!

52p(
a

d~v2Ea!u~aun&u2, ~A3!

Gn~v!5(
a

u~aun&u2

v2Ea1 ih
. ~A4!

In terms of these quantities, we can define the self-energ
Sn~v!5(
I

u~ I uVun&u2

v2EI
~A5!

5
1

N(
ka

Vk
2H nku~au f †un&u2

v2~Ea2«k!
1

~12nk!u~au f un&u2

v2~Ea1«k!
J ~A6!

5
1

N(
ka

Vk
2H nku~aun11&^n11u f †un&u2

v2~Ea2«k!
1

~12nk!u~aun21&^n21u f un&u2

v2~Ea1«k!
J ~A7!

5
1

N(
k

Vk
2$~Nf2n!nkGn11~v1«k!1n~12nk!Gn21~v2«k!%. ~A8!
nc-
The summation over intermediate states (I u includes the ex-
act states (au and the eigenstates of the band electrons. T
are summed explicitly in the second line. The two ter
correspond to the processes inV of adding or removing an
electron from the localf level. The last equation, in th
above set, is the expression for the self-energy in the n
crossing approximation. In terms of these functions, exp
sion ~4.2! for Z can be derived in a few lines

Z5(
n

Zn^nue2bHun& ~A9!
y
s

n-
s-

5(
n

Zn(
a

e2bEau~aun&u2 ~A10!

5(
n

ZnE d«

2p
e2b«An~«!. ~A11!

A similar technique can be used to derive the spectral fu
tion Af(v).

Gf~ ikn!52
1

Z(
n

ZnE
0

b

dteiknt^nue2~b2t!Hf e2tHf †un&.
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The expression in brackets can be written exactly as

(
aln8

^nua!e2~b2t!Ea~aun8&^n8u f un811&

3^n811ul!e2tEl~lun11&^n11u f †un&. ~A12!

We adopt the approximation of Refs. 25,26 and restrict
summation to the terms withn85n. Gunnarsson and
Schönhammer9,10 consider the terms withn85n61 and find
they make a small contribution. These are vertex correctio
n

s

-

e

s.

This approximation simplifies the expression. After perfor
ing the integral overt we find .

Gf~ ikn!5
1

Z(
n

Zn~Nf2n!(
al

u~aun&u2u~lun11&u2

3
e2bEa1e2bEl

ikn1Ea2El
. ~A13!

The summations overa andl can be expressed in terms o
the spectral functionsAn andAn11 which immediately pro-
duces the result~4.1! for the spectral functionAf(v).
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