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Tight-binding theory of tunneling giant magnetoresistance
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A unified theory of the tunneling magnetoresistaft®R) and of the ballistic-current perpendicular-to-
plane giant magnetoresistan@@PP GMR is developed. It is based on the Kubo-Landauer formula and fully
realistic tight-binding bands fitted to ab initio band structure. The theory is first applied to a single-orbital
tight-binding model to investigate analytically a continuous transition from the CPP GMR of a metallic system
to the TMR of a tunneling junction. The transition takes place when either hopping of electrons between the
ferromagnetic electrodes is gradually turned off or the on-site potentials in the nonmagnetic spacer are varied
so that the Fermi level in the spacer moves into the band gap. It is shown that the TMR approaches rapidly the
same saturation value when either the interelectrode hopping decreases or the height of the insulating barrier
increases. When the insulating barrier is higland gap is large the TMR depends only weakly on the
thickness of the insulating layer. However, when the band gap is small compared to the conduction band width,
the TMR decreases rapidly with increasing thickness of the insulator. The numerical results f¢®0d)Co
junction, based on a fully realistic band structure of the Co electrodes, show a very similar behavior. As the
tight-binding hopping matrix between the Co electrodes is gradually turned off, the TMR ratio drops initially
very rapidly from its value of 280% in the metallic regime to about 40% but then stabilizes in the range
40-65%. This is in a very good agreement with the observed value of 40%. The polarization of the current
flowing across the Co junction in the metallic regime is negatamtiparallel to the magnetizatiprbut
becomes positive in the tunneling regime. The sign of the calculated polarization is, therefore, in agreement
with the sign observed in all the experiments on tunneling from transition-metal ferromagnets.
[S0163-18207)01141-7

[. INTRODUCTION To establish a theoretical link between the TMR and CPP
GMR, it is necessary to develop a nonperturbative theory of
Two ferromagnetic metals separated by an insulating oxtunneling that treats the two electrodes together with the tun-
ide layer exhibit a giant magnetoresistahceof up to 40% neling barrier as a single quantum-mechanical system. This
due to tunneling across the insulating layer. The tunnelings, indeed, the method one uses to solve the textbook prob-
magnetoresistancéTMR) effect was observed by Julliére lem of tunneling through a rectangular barrier. The rectangu-
(see also Maekawa and f8art®) but the magnitude of the lar barrier model was already applied by SlonczeWski
TMR in these early experiments was very small. calculate the TMR. However, Slonczewski's approach is
Theoretical interpretation of the TMR effect has beenbased on a direct calculation of the wave function and this
based on the conventional theory of tunnelisge, for ex- method is not easily generalizable beyond a simple parabolic
ample, Refs. 6, )7 The main conclusion of the conventional band.
theory of tunneling is that the tunneling current is propor- The extension of Slonczewski's model to a realistic band
tional to the product of the densities of states in the left andstructure | propose is motivated by a tight-binding descrip-
right electrodes. This conclusion is arrived at by treating tuntion of the conventional model of tunneling due to
neling as a quantum transition from one electrode to thédarrison® He argues that one should start with two elec-
other. The two electrodes between which the transitions takeodes separated by an insulator so thick that no tunneling
place are regarded as two separate systems described by ditcurs. The two electrodes are thus regarded as completely
ferent Hamiltonian§.Such a separation is clearly impossible independent systems. When they are brought closer together
in the closely related problem of the current perpendicularso that their wave functions begin to overlap, tunneling oc-
to-plane giant magnetoresistan@PP GMR since the two curs. The overlap matrix elements correspond directly to the
ferromagnets are strongly coupled in the metallic regime vidhopping integrals of the tight-binding method and are used to
a nonmagnetic metallic spacer. Given that the CPP GMR andalculate by perturbation theory the probabilities of transi-
TMR seem to require different theoretical treatment, ondion. Note that it is again assumed in this method that the
might conclude that they are qualitatively different effects. Itstates between which tunneling takes place are those of the
is, therefore, rather remarkable that the observed magnitudegectrodes unperturbed by the tunneling prodessctrodes
of the CPP GMR and TMR are comparable despite the facteparated by an infinitely thick insulajor
that the individual resistances of a tunneling junction in its To develop a unified theory of the TMR and CPP GMR, it
ferromagnetic and antiferromagnetic configurations are sevis necessary to reverse the process adopted by Harrison, i.e.,
eral orders of magnitude higher than those of a metallicstart with strongly interacting electrodésetallic CPP GMR
trilayer. Experimentally, the two effects seem to be closelyregime and obtain the tunneling regime as a limit in which
related. the influence of one electrode on the other is weak. It is
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useful to explain first the physical picture on which thefrom their bulk values to zero as the thickness of the gap
present method is based. One starts with two identical ferrancreases. However, in contrast to the conventional theory of
magnetic electrodes in direct contacto barriej and as- tunneling, the two ferromagnets are, in the present approach,
sumes that there is a bias applied to them. At this stagedlways connected by a weak hopping and form, therefore, a
having two electrodes simply means that we have drawn &ingle quantum-mechanical system described by a common
fictitious cleavage plane separating a single ferromagnet intBght-binding Hamiltonian.

two halves. The electronic structure of the ferromagnet is Viewed in this way, there is no fundamental difference
described by a tight-binding Hamiltonian. Since the twoP€tween tunneling magnetoresistance and CPP GMR of a
electrodes are in direct contact, the tight-binding hoppindmta”'c system. In both'cases, one first palcula’ges the exact
integrals across the fictitious interface are, of course, th@"€-eléctron wave functions of an insulatifigetallic) layer
same as in the bulk of the ferromagnets and the interfac andwiched _between tWO. electrod_es |n_the|r ferromagnetic
offers no resistance to electrons moving between the elec- M) and antiferromagnetitAF) configurations and then de-

trodes. Let us now assume that the magnetization of the rig Frmines the current flowing between the electrodes from the

ferromagnet is rotated to become antiparallel to that of th ransmission coeff|C|ent. of the structure. This is, indeed, in
left ferromagnet. We have thus created in this thought ex-he Spirit of the scattering theory of transport proposed by

periment an abrupfinfinitely narrow) domain wall. Elec- !_andautejrl Whl'd; 'S" at?]pllc?ble to b(l)tr;hmeLtaIIg: and |n51:tlat_-
trons of a given spin orientation impinging on the interface!nd SYStéms. 1 shaf, tneretore, apply the Landauer scattering

will see the potential of electrons of the opposite spin on th heory cast in a Green_s function formalism to the tight-
other side of the interface and thus experience a spin—md;]ng rlnode][ Orf tunneling forr?ulllated above. h |
dependent scattering. It follows that the resistance due tP .T € ?‘1” of the Paper 1S asff'o'ows'. In Sec. ”f’ It N Ica cu-
such interfacial scattering in the antiferromagnetic configu-atlon of the tra}nsm|ss_|on coefficient in terms of local one-
ration of the two electrodes is higher than in the ferromag—ele(.:tron. Green’s functions is described for a general multi-
netic configuration, i.e., magnetoresistance effect occursc?rbltal tlght—plnd|ng b.and. structure. The _general form.allsm
This is completely analogous to the CPP GMR in a metalli of Sec. Il is first applied in Sec. Ill to a single-orbital tight-

trilayer. The abrupt domain wall mechanism of the GMR is inding mode] of tnneling across a vacuum gaplsince this
also the origin of the TMR. The role of an insulating barrier model allows one to follow analytically the transition from

is merely to decouple magnetically the left and right ferro-the strongly coupledCPP GMR regime fo the tunneling

magnets so that an abrupt rotation of the magnetization jEegime. In Sec. IV, the single-orbital tlght—blndmg model Is
possible, used to demonstrate that the TMR due to tunneling across a

| shall mparing fr ntlv the metallic and tunnelin yvide vacuum gap and TMR due to tunngling throu_ghahigh
shall be comparing frequently the metallic and tunne g[1sulat|ng barrier are equivalent. Having established the

regimes of the magnetoresistance refering to the metallic rd™>Y .
gir?‘le as CPP GMgR To avoid misunders%anding | wish toequwalence between the two models of tunneling, the TMR

stress that CPP GMR in this context means CPP GMR in th§4€ © tunneling bgt\{veen tt.WOt%mD SEIGCt{?de.S sefpﬂratedl
ballistic regime in which the effect of impurities is negli- y a vacuum gap IS investigated in sec. v using fully real-

gible. While it is legitimate to neglect the effect of impurities istic tight-binding bands fitted to a first-principles band struc-

in the tunneling limit(for reasons discussed in Seo, lthe ture of ferromagnetic fcc Co.

situation in the metallic limit is different in that the CPP

GMR observed in conventional samples is not in the ballistic  Il. GENERAL EXPRESSION FOR THE TUNNELING
but in the diffusive(ohmic) regime. One would expect to be CURRENT IN TERMS OF ONE-ELECTRON

in the ballistic regime only for mesoscopic samples. Never- GREEN'’'S FUNCTIONS

theless, since the origin of the CPP GMR in the diffusive and Following Landauet: ite th q .
ballistic regimes is the same, i.e., scattering from spin- ollowing Landauer, we can write the conductance in a

dependent potentials at the interfaces, comparison of the turgPn channebr of any sample(met_alllc or msu_latmg sanql- .

neling limit with the ballistic metallic limit is relevant. wiched between two electrodes in terms of its transmission
To relate quantitatively the TMR to the metallic CPP coefficient

GMR, it is necessary to have a realistic model of tunneling )

which allows us to pass continuously from strongly coupled o & 2 o

¢ A r T7(ky), 1)

erromagnet§CPP GMR to the tunneling limit of weakly h 4

coupled ferromagnetésTMR). The method | propose is to

introduce a real cleavage plane between the ferromagnewghereT?(k)) is the transmission coefficient in the channel

and move them apart thus creating a vacuum gap betwedlk, o), K, is the wave vector parallel to the layer structure,

them. Tunneling of electrons across the vacuum gap resul@and the sum in Eq1) is over allk; in the two-dimensional

in tunneling magnetoresistance and the effect is qualitativelrillouin zone. As in all the theories of tunneling, it is as-

the same as for tunneling through an insulating barrier sinceumed in Eq(1) that the electron spin arld, are conserved

in both cases electron wave functions decay exponentially iin the tunneling process. The conservation of spin is not a

the region between the two electrod@dn fact, it will be  serious issue since inelastic spin-flip scattering at the

demonstrated in Sec. IV that the two models are equivalerfierromagnet/insulator interface is unlikely at low tempera-

but tunneling across a vacuum gap is physically more trangures. However, interfacial roughness could destroy conser-

parent. Following Harriso) | shall model the effect of a vation of k; in samples with poor interfaces. Finally, it is

vacuum/insulator gap by tight-binding hopping integralsassumed implicitly in Eq(1) that the resistance of the elec-

across the cleavage plane that are made to decrease gradudatlydes is negligible compared with the resistance of the
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sample. This is obviously satisfied in the case of tunnelingvhere script letters have been used to label one-electron
and, therefore, the ferromagnetic electrodes can be regardsthtes of the typéi,a,k;) and e is a small positive number.
as perfect conductors. In the strong-coupling limit of CPPTaking the limitw— 0", it is now easy to show that the total
GMR when the spacer is metallic, the electrodes have to beonductance in a spin channelis given by
included in the calculation of the transmission coefficient, in
which case, the whole structufine electrodes and spate
assumed to be placed between two ideal le@i®, e.g.,
Mathonet al!?). Experimentally, this is achieved in the CPP
geometry with superconducting contatis. 5
The Landauer formula is valid rigorously in the limit of a _ 4i E Re T(agtg'ég P _tgagtgag) 5)
weak bias (linear-response theoryand is known to be h % 0070111710 *01=10701=107
equivalent* to the Kubo formula. The Kubo/Landauer fro-
mula is, of course, applicable both to insulating and metallic i o i
spacers and is exact within the linear-response theory. Tblerg,.the. trace is over a!l orbital indices that are contam’ed
calculate the transmission coefficient for a realistic multior-MPliCitly in the layer indices 0 and 1 and all the Green's
bital band structure, it is most convenient to start from thelunctions are evaluated at the Fermi enekgy.

Kubo formuld?®for the frequency-dependent conductance FOr Simplicity, we derived Eq(5) assuming hopping to
at zero temperature nearest neighbors only. However, E§) holds also in the

case of hopping to more distant neighbors provided atomic

eZ
7= T(k)
Ky

- planes are replaced by principal layé&tdzor a fully realistic
No)=—32 j dE X [(nlj,|m)|?s(E+eV—Ey) tight-binding parametrization of a first-principles band struc-
@ ronm ture of transition metals, p,d bands with hopping to second
X S(E—Ep) lim f(E)[1-f(E+fw)], (2)  neighbors are required, in which case each principal layer
T—0 contains typically two atomic planes and all the Green's

functions and hopping matrices in are, therefore, 18
where the spin index has been suppressed. The quaritity >l<118 Imatrices. PpRINg ! in EG)

in Eq. (2) is the operator of current flowing from an atomic
planer parallel to the electrodes to the neighboring plane
the sum over is over allN atomic planes in the sample, the

No assumptions about the nature of the sample have been
'made in the derivation of E(q5) and it is, therefore, valid
) . generally for any model of tunneling. In particular, it can be
sum ovem,m is over the complete set of energy eigenstateg;qeq to discuss tunneling through an insulating barrier. Al-
[n),|m) of the system with energieB,, En,, andf is the ternatively, it can be applied to the tight-binding model of
Fermi function. Since the current is conserved and, hencynneling across a vacuum gap discussed in the Introduction.
independent of,, the sum over in Eq. (2) is trivially per- | that case, it is convenient to choose the plane labeled by 0
formed and the matrix elements of the current opergtoBn iy £q. (5) as the surface plane of the left electrode and the
be calculated anywhere in the structure. In particular, they,ane 1 as the surface plane of the right electrode. The matrix
will be evaluated between any two neighboring atomicyt it hinding hopping integraltl, connecting the left and

planes labeled 0 and. L ASS“”?'”Q that.both th? el?Ctrqd%ght electrodes then plays the role of the tunneling matrix

andl sample are descr!beq by atlght-plnd|ng Hamiltonian in %lements. It is determined by the overlap of electron wave

basis which is Bloch-like in the direction parallel to the lay- functions in the vacuum gap

ers anhd atomiclike in the_per:pefndlcular direction, we can  goh for calculational purposes and physical interpreta-

write the current operator in the form tion, it is useful to express all the one-electron Green’s func-
tions in Eq.(5) in terms of the surface Green'’s function,

ie
jO:% 2 2 [toa,m(ku)Cga(ku)Cm(kn) andg?, of completely disconnected left and right electrodes
kj B (no electron hopping between the planes 0 ahdlhe ma-
_tlﬁ,Oa(kH)CIIB(kII)COa(kH)]! 3) trix elementsGg,, G7;, andG7, of the Green’s function for

the connected system are then obtained from the Dyson
Wherec;ra(ku) [Cio(k))] is the creation(annihilation opera-  equation
tor of a one-particle statg,a,k,) in an atomic plang, a is
an orbital index, andy, 15(K;) is the matrix of tight-binding v o o]0
hopping integrals between the planes 0 and 1. Using#q. Goo= (I ~9ooto1911t10) “Yoo:
for the current operator and inserting complete sets of one-
electron statesi,a,k;) in the current matrix elements, we - o oo 10
can rewrite Eq.(2) in terms of the advanced and retarded G1=(—91itidodtor) 911
one-electron Green’s 1‘unction§5ijj»ﬁ(E,k”)=<i,kII ,a|(E

—H=ie) Yj,k;,B). This is achieved by noting that T~
ik B) G10=911t10G 0. ©)

_ 1
o =G~ .-Gt
Gia,jp(EKi) 2i [Giajp™Giajsl wherel is a unit matrix.

Equations(5) and(6) provide a rigorous basis for a real-
— 772 (AInX(n|B)S(E—E,) (4) istic calculation of the tunneling magnetoresistance and will
n n be now applied to specific systems.
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Ill. EVOLUTION OF THE CURRENT
PERPENDICULAR-TO-PLANE MAGNETORESISTANCE
INTO TUNNELING MAGNETORESISTANCE

240.00

The general formulation of Sec. Il is first applied to a

single-orbital tight-binding model of tunneling across a °?0-00
vacuum gap. The model allows us to investigate a continu- ‘2\./
ous transition from the magnetoresistance of two electrodes
separated by an abrupt domain wall to the magnetoresistanc: &

2= X . 200.00
of a tunneling junction. The transition takes place as the <¢
tight-binding hopping integral connecting the two electrodes A
is gradually turned off. 2

Consider two ferromagnetic electrodes described by a EIB0.00

simple cubic tight-binding Hamiltonian with nearest-
neighbor hopping®/. They are parallel to at001) plane
and connected by a nearest-neighbor hopping integsal
The one-electron Green’s functions that are required in Egs. 16009 Lottt b b
(5) and(6) are calculated assuming that electrons experience 00 200 400 600  8.00  10.00
exchange-split potentials in the ferromagnets. The positions (t(,l/’(,"“u‘)'1

of the centers of the ferromagnet majority-spify and

Tinority'Spin M bands are, therefore, given by, | =eqy FIG. 1. Dependence of the tunneling magnetoresistance on the
FA/2, whereepy is thg spln-lndependent_OD-Slte potential in reciprocal of the electron hopping between the ferromagnetic elec-
the ferromagnet and is the exchange splitting of the bands. rodes. Single-orbital tight-binding model.

All the band energies are measured from the Fermi energy

(EF:_O) in units of the b_”'_k hopping™" The individual conductancds” and the TMR ratio itself
Using Egs(5) and(6), it is easy to show that the conduc- ., he easily determined from Eg) and(8) for any value
tance in a spin channet for the single-orbital tight-binding of to, since the surface Green's functions are known

model is given by analytically*® The dependence of the TMR ratRyg on

the reciprocal of the hoppindd;/t°“) = across the vacuum
7 9ap is shown in Fig. 1. The reciprocal of the hopping is used

as a measure of the width of the gap sintg /t*") ~* in-

creases with increasing separation between the electrodes.
where g/(Eg k) and gg(Er k) are the surface Green's The values of the ferromagnet parametegg=5.1 andA
functions of the completely disconnected left and right elec— 1.0 (in units of t®%) used in Fig. 1 were chosen to mimic
trodes. To determine the magnetoresistance Rfigr, itis 3 junction with cobalt electrodes which is discussed in Sec.
necessary to evaluate from E@) the conductanceE” of v, However, the qualitative behavior of the TMR ratio is
the junction in the ferromagneti&M) and antiferromagnetic  quite insensitive to the choice of the electrode parameters.
(AF) configurations of the magnetic electrodes. The usual It can be seen from Fig. 1 that the TMR ratio depends

LIS B B I B B B B

4e? Im g7 (Eg k) Im g%(Eg ,k
FU:TEIZ 9y (Ee k) Im gr(Er k)

o 01— t5,97(Er k) OR(Er k)|

magnetoresistance ratRryr is then defined by only very weakly on the hoppinty, across the vacuum gap
and a saturation value of the tunneling magnetoresistance
R Thyt Ty Tae—Tar @® RS2l ~180% is reached very rapidly for valuestgf of the
TMR™ The+The : order of 5-10% of the bulk hoppind®*. This is in sharp

contrast to the behavior of the individual conductaricgg,
The qualitative behavior of the TMR ratio can already berl, = andI'}, shown in Fig. 2, which decrease very rapidly
deduced from the structure of E(). The principal factor \yith decreasing,,;. A very useful consequence of the rapid
that determines the dependence of the conductance on tBgproach of TMR to saturation is that one does not require
hopping integrat; across the vacuum gap is the multiplica- the knowledge of the hopping integrals across the interface
tive factortg, in the numerator. Since we expeigh to de-  tg calculate the TMR in the tunneling regime. In fact, there
crease exponentially with increasing separation between thgre two points on the cuniyyr(to,) that can be determined
electrodes, the conductant® for any given configuration accurately without any model assumptions akgyti.e., the
of the magnetic layer$FM or AF) decreases rapidly with perfect metallic limit of GMRtq;=t?" (abrupt domain wall
decreasingo;. On the other hand, since the tetf) enters  and the strict tunneling limito;— 0. It is interesting that the
the numerator of Eq.7) as a multiplicative factor, it cancels values of the GMR ratio for an abrupt domain watietallic
out in the GMR ratio. The transition from a metallic regime limit) and for a tunneling junction predicted by a single-
tor~t""* to the tunneling regimey;— 0 is, therefore, deter- orbital tight-binding model of tunneling are very close to one
mined entirely by the behavior of the denominator in &).  another. It will be shown in Sec. V that the difference be-
As electron hoppingty; between the two electrodes de- tween the two values of the GMR ratio is much larger for a
creases, the denominator in K@) reaches a constant value realistic multiorbital band structure.
in the limit ty;— 0. It follows that the GMR ratidRyyr ap- Although Egq. (7) is a rigorous result of the scattering
proaches a saturation vallR§3;,, which can be identified theory of transport, its formulation in terms of one-electron
with the tunneling magnetoresistance. Green’s functions is not very illuminating. However, K@)
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exactly to the expression for the conductance obtained in the
conventional theory of tunneliryNote, however, that we
are referring here to tunneling in a singdtg channel. The
correspondence appears to be complete sipcglays the
role of the usual tunneling matrix eleméngincety, is very
small in the tunneling regime, it is tempting to conclude that
the denominator in Eq(7) can always be approximated by
unity, which would then lead to the conventional theory of
tunneling. However, this simple argument breaks down when
there are surface states in the electrodes since the one-
dimensional surface DOS contaiddunction peaks and the
factor t3,07g% in the denominator cannot be neglected no
matter how small is the hopping integrg),. There is, of
course, no problem in reaching the tunneling limit numeri-
cally, as has been done in Fig. 1, provided due care is taken
L to achieve convergence of the sum. However, to use in-
0.00 2.00 4.00 6.00 8.00 10.00 discriminately the approximation in which the denominator
(tm/tbulk)-l in Eq. (7) is simply replaced by unity is dangerous.

0.1

0.01

0.001

CONDUCTANCE (e*/h)

IV. TUNNELING MAGNETORESISTANCE DUE TO

FIG. 2. Dependences of the conductances of the majority
TUNNELING THROUGH AN INSULATING BARRIER

(squares and minority (triangles electrons in the ferromagnetic

cor!figuration ar!d of th_e elec_:trons of either spin Qrientation in the The general formulation of Sec. Il will be now applied to
antiferromagnetic configuratiottircles on the reciprocal of the g 1 netion with an insulating barrier to demonstrate that tun-
ele(_:troq hopplng between the ferromagnetic electrodes. S'ngleﬁeling across a vacuum gap and through an insulating layer
orbital tight-binding model. lead to the same saturation value of the TMR. As in Sec. lll,
a single-orbital tight-binding model is used to describe a tun-
can be given a very simple physical interpretation. First ofneling junction. The junction consists of two ferromagnetic
all, we note that the total conductance of the junction is theelectrodes separated biyatomic planes of an insulator with
sum of partial conductances in one-dimensidgathannels. an on-site potentiaV/;,; chosen so that the Fermi levEk

This is, of course, a direct consequence of the assumediks outside its band of allowed energies. The same nearest-
conservation of the parallel momentum. Moreover,neighbor hopping parametet’¥ is used in the ferromagnetic
—(1/m)Im g/ (Er k) and —(1/7)Im g&(Er k) are the one- electrodes and in the insulating layer, and all the band ener-
dimensional surface densities of statB¥DS'’s) in a channel gies are again measured in unitstBf*.

k, for the isolated left and right electrodes. It follows that the ~ Formally, the calculation of the TMR from Eqéb) and
current in every channd, is proportional to the product of (8) for such a system is identical to the calculation of the
the one-dimensional surface DOS's of the two electrodes bihallistic CPP GMR of a metallic trilayeéf'° One can, there-

the product is scaled by the denominator in Ef). A close  fore, use directly the results derived for the metallic trilayer.
link between the present linear-response theory and the coti-was shown by Mathoet al° that the conductance of two
ventional theory of the tunneling GMR is now obvious. If the semi-infinite ferromagnetic layers separated Kyatomic
scaling denominator is set equal to unity, E@) reduces planes of a metallic spacer is given by

4¢? sif(k, a)lm g Im g

Pr= 2

i [sin(N+1)k, a—(g7+gR)sin(Nk, a)+g;gg sinN—1)k, al?’

9

As in Eq. (7), 9{(Er.k;) and g&(Er.k;) are the surface be replaced by hyperbolic sine functions. Sirigelies out-
Green’s functions of the completely disconnected left andside the insulator band, the imaginary perpendicular wave
right electrodesk, (Eg ,k;) is the perpendicular wave vector vector is now determined fromEg=V,s+ 2 cosh¢a)

in the spacer, and is the lattice constant. In the case of a +w(k;).

metallic spacerk, is real and determined from the bulk  The qualitative behavior of the TMR for a junction con-
dispersion Ep=Vg,+2 cosk a)+w(k,), where w(k;) taining an insulator with a large band gap can be easily de-
=2[ cosksa) +coska)] is the in-plane dispersion and,,is  termined from Eq(9). When the Fermi level lies well below
the on-site potential in the spacer. In the case of an insulatinthe insulator conduction bar{the barrieV,.s is high), xa is
spacer considered herk, (Er k) is pure imaginaryk, large and the decaying exponentials in all the hyperbolic sine
=ik, and all the sine functions in E) should, therefore, functions in Eq.(9) can be neglected, which yields
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2 —2kaN o o
. 4e 2 e “““%Im g/ Im gg 200.00
~ h

K |1—(g/+gRe 2+ gfgge_zKa| 2
(10

Moreover, when the distance between the Fermi level and 150.00
the bottom of the insulator conduction band is much larger
than the in-plane dispersiom(k;), the dependence of on

k, can be neglected. This condition is satisfied whgp
>W, whereW is the width of the insulator conduction band.
In that case, the factor ekp2«(k;)aN] can be taken outside
thek; sum in Eq.(10) and replaced by eXp-2«y,aN], where

kg is the value ofx(k;) averaged over the two-dimensional
Brillouin zone. The conductance of a junction with an insu-
lator having a large band gap is, therefore, well approxi-
mated by

Lo 4¢?
“\'h

100.00

TMR RATIO (%)

o
o
=3
S

NI AN I A I AT S AN AT AT AN ST AT ST AT AT AL AN I SE AL S S A
0'08.50 1.00 1.50 2.00 2.50

Vins/ W

e—2K0aN

< Im g/’ Im gg
& 1= (g7 +gR)e " +glgge 2 o%?’

(11 FIG. 3. Dependence of the tunneling magnetoresistance on the
height of an insulating barrier between the ferromagnetic electrodes
for a barrier whose thickness is oftéangles, three(squarey and

The structure of Eq(11) is virtually identical to that of Eq. _ ! ) e o\
five (circles atomic planes. Single-orbital tight-binding model.

(7) for tunneling across a vacuum gap. The multiplicative
factor e 208N which determines the strong dependence of
the conductance on the height and width of the insulatin
barrier, again cancels out from the TMR ratio. Moreover, in
the absence of surface states, the denominator in(EL.
tends to unity in the limit of a large insulator gap exp
(—kp@)<1. It follows that the TMR ratio approaches a satu-
ration value which is determined entirely by the convolution
of the one-dimensional densities of states
—(U/m)Im gZ(Er k;) and =(1/m)Im gr(Er k) of the left st outside the bandlt should be noted that the TMR ratio
and right ferromagnetic electrodes. The saturation value olrf;

the TMR ratio is, therefore, exactly the same as the satura- rthe spacer th|ckne§sl—.0 IS that of a.ferromagnet with
. . an abrupt domain wallno insulating barrier

tion value of the TMR due to tunneling across a vacuum gap
obtained from Eq(7) in the limit to,/t?k<1.

The TMR ratioRyyg can be easily determined numeri- 250.00
cally from Eq. (9) for any height of an insulating barrier
Vins- The dependence dRtyr on Vi,s/W (W is the band
width) is shown in Fig. 3 for three thicknesses of the insu- 200.00
lating barrierN=1, 3, and 5 atomic planes. The values of the
ferromagnet parameters-,=5.1 andA=1.0 (in units of
t°“%) are the same as in Sec. Ill. We recall that they were
chosen to mimic a junction with Co electrodes.

It can be seen from Fig. 3 that a saturation value of the
TMR is reached for barrier heightg,,; of the order of the
band width(saturation is reached most rapidly for the narrow
barrierN=1). It follows that for such values of the insulat-
ing barrier height, Eq(11) provides a good estimate of the 50.00
TMR. Moreover, the same estimate of the TMR ratio is ob-
tained from EqJ(7) for tunneling across a vacuum gap. One
can, therefore, conclude that tunneling across a vacuum ga 0.0 4
and through an insulating barrier lead to the same saturatior %8.00 2.00 4.00 6.00 8.00 10.0
value of the TMR provided the insulator gap is of the order N
of or larger than the conduction band width. This argument
will be used in Sec. IV to estimate the TMR of a (001) FIG. 4. Dependence of the tunneling magnetoresistance on the
junction. number of atomic planes in an insulating barrier for three heights of

However, there is one important feature of the TMR duethe barrierV;,s measured in units of the band widW: V;,s/W

to tunneling through an insulating barrier that cannot be re=2.0 (squarel Vi,s/W=1.0 (circles; Vi,s/W=0.58 (triangles.
produced by the vacuum gap model. This is the dependenc&ingle-orbital tight-binding model.

f the TMR on the barrier width. The width of a vacuum gap

s equivalent to the height of a barrier but there is no equiva-
lent of the barrier width in the tight-binding model of tun-
neling across a vacuum gap. The dependence of the TMR on
the width of an insulating barrier can, of course, be deter-
mined numerically from Eq(9). The results are shown in
Fig. 4 for three heights of the tunneling barrief;,s/W
=1.0, 2.0, and also for a very low barri€,s/W=0.58(Eg

150.00

100.00

TMR RATIO (%)
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As expected from Eq(11), the dependence of the TMR possible to discriminate accurately between propagating and
ratio on N is weak for a high potential barrierV(,(/W  localized states | have, therefore, used a new noniterative
=2.0). In fact, the TMR is quite independent Nfin the  technique for generating the surface Green's funéfion
limit V;,s— 0. However, it is most interesting that the TMR which the convergence problem does not arise. A value
ratio depends strongly on the width of the barrier and, in fact=10"8 Ry, which was used in all the calculations, is so
decreases rapidly withl when the insulating barrier is very small that it has no effect on the conductance.
low (Vis/W=0.58). The reason for this behavior is easy to As in Sec. lll, the aim is to reach the tunneling limit by
understand. The weak dependence of the TMR on the barrig¢arning off gradually the hopping integrat§;(k,) connect-
width predicted by Eq(11) relies on the validity of the ap- ing the left and right Co electrodes. Compared with the
proximation exp—2«(k;)aN]~exd—2«saN] which has single-orbital model of Sec. lll, there is, however, a number
been used to derive E@L1) from Eq.(10). This approxima- of complications for a multiorbital band structure. First of
tion is always valid for smalN as long a€¢ lies outside the  all, the hopping integraltg,(k,) depend on the parallel mo-
insulator conduction band. However, it breaks down formentumk,, which means that they cannot be simply fac-
large N. In fact, exp(Na)~[(Er—Vind/2]*[1-w(k)/  tored out of thek, sum in Eq.(5). It is, therefore, not imme-
(Er—Vind]1?N, wherew(k)/(E—V,, is a small param- diately obvious that TMR saturates. The second problem is
eter. It follows that exp(R.N.a)%[(EF_Vins)lz]ZN[1 that the matrix elements], ,5(k;) connecting different or-
—2Nw(k))/(Ef—Vind + ... ] and it is, therefore, clear that bitals a, B across the vacuum gap scale differently with the
the dependence of the factor xiZ«(k;)aN] onk; cannot  separatiom between the electrodes. To investigate the tran-
be neglected for larghl. sition from the metallic to the tunneling regime, one needs,

In the light of the above results, the conclusion that tun-therefore, to know explicitly the dependences of all the ma-
neling across a vacuum gap and through an insulating barrigfix elementst§, 15(k;) onr.

two theoretical models of tunnelingacuum gap and an in-  3nd hopping to first and second nearest neighbors, the tight-
sulating barriey lead to the same TMR provided the barrier pinding parameters for fcc ferromagnetic Co were obtained
is at least as high as the conduction band width and thgom the parameters for paramagnetic ®ef. 17 by ad-

barrier is narrow, not wider than a few atomic planes. justing self-consistently the on-site energies to achieve the
best agreement with the first principles band struétueé
V. TUNNELING MAGNETORESISTANCE DUE TO fcc ferromagnetic Co. The matrix elements of the interplanar

TUNNELING BETWEEN Co (001) ELECTRODES hopping matrixtg,(k,) are, therefore, independent of the

) o o ] spin. They are all generated from the Slater-Koster two-
The single-orbital tight-binding model of tunneling used center integralsl 'm whose values for paramagnetic cobalt

in Secs. llI-IV is too simple to provide quantitative esti- yere obtained by Papaconstantopodiosiere,|,I’=s,p,d
mates of the magnitude of the TMR ratio. However, the prin-gre the usual orbital indices amo= o,m,8 denotes the pro-

cipal result of the model that the TMR ratio reaches a Satuj‘ection of the angular momentum.

ration value in the tunneling limito;—0 implies that the To calculate the dependence of the GMR on the width of
TMR can be determined without knowing the precise valughe gap between the Co electrodes, we require the depen-
of the tunneling matrix elemeng,. It is, therefore, worth-  gence of the Slater-Koster parameters on the interatomic dis-
while to investigate whether this result carries through to ggncer. It is possible to include such a dependence without
fully realistic multiorbital tight-binding description of TMR. performing new first principles calculations. Ander&apro-

Consider two thick(semi-infinitg cobalt electrodes with hoseq that the distance dependence of the tight-binding ma-
(00)) orientation of the surface. To determine the tunnelingyyiy elementsV,., is given by

magnetoresistance across a vacuum gap, we start again with

the well-defined case of an abrupt domain wall. The magne- Vijrm=Cy g ~0F1"+ D) (12)
toresistance can be determined exactly in this limit from Egs. m m ’

(5), (6), and(8) since the values of the tight-binding param- where C,,,, are distance-independent material constants.
eters for ferromagnetic fcc Co are readily available from a fitThis expression suggests that the matrix elementssfer

to a first-principles band structuf®and the matrixg;(k,) of  interactions vary as !, s-p interactions as 2, s-d and
hopping integrals across the interface is, of course, the sanfe p interactions as 3, p-d interactions as ~*, andd-d

as in bulk Co. The only input required in the calculation areinteractions as ~°. The scaling law(12) was confirmed by
the matrix elementg$, andg?; of the one-electron Green’s Papaconstantopulbisfor deviations ofr from their equilib-
function at the surface of the semi-infinite left and right Corium values as large as 5%.

electrodes. They are usually generated by an iterative deci- For small deviations from the bulk interplanar distance
mation techniqu& in which the surface Green’s function is rpux between the two Co electrodes, the GMR due to elec-
approximated by that at the surface of a thick stack of atomi¢ron hopping across a gap>r,, can be determined from
planes. However, to obtain a truly surface Green’s functionfEgs. (5), (6), and(8) quite rigorously using the scaling law

it is necessary to add in the decimation method a smal(12). For large values of, the power-law scalingl?) is not
imaginary parte to the energy to disrupt quantum interfer- expected to be valid. However, the key feature of the scaling
ence between the two surfaces of the slab. Whensmall, law (12) that only thes-s interaction survives for large is

the convergence of the decimation method becomes pooelearly valid generally in the tunneling limit>ry,,. Since
This might lead to complications sineemust be small in a we are interested here only in the metallic and tunneling
transport calculationif e were not small, it would not be regimes, | propose to use the scaling I&M&) for all values



56 TIGHT-BINDING THEORY OF TUNNELING GIANT . .. 11817

800.00 -
o
L iF
- —~ L
- e C
X N -
3 - “o i
e00.00 F ~ 1
[ =
g | -
0.1
: : 1] g :
[a r 8 -
[a < L L
S100.00 - d ;%
a N ]
C o0.01:—
oo _|||||||||l|||||||||I|||||||||I|||||||||I|||||||||I||||||||| -'""""I""""'I""""'I'""""I"""" ’
000 200 400 6.00 800 10.00 12.00 0.00 2.00 4.00 6.00 8.00 10.00
-1 -1
(tsscr) (tssa)

FIG. 5. Dependence of the tunneling magnetoresistance of a F'G. 6. Dependences of the conductances of the majority

Co(001) junction on the reciprocal of the reducees hopping be-  (Squares and minority (triangles electrons in the ferromagnetic
tween the Co electrodes. configuration and of the electrons of either spin orientation in the

antiferromagnetic configuratiofcircles on the reciprocal of the

of r treating it as amd hocinterpolation scheme between the "6dUceds-s hopping between the Co electrodes.

metallic limitr ~r,, and the tunneling limit >r . Given
that only thes-s interactionV.,, survives in the tunneling clearly seen in Fig. 6. In the metallic regimg{,=1), the
regime, it is appropriate to use it as a measure of the width ofonductancd™! of the minority-spin electrongétriangles is
the vacuum gap between the Co electrodes. It is, therefordigher than the conductandg' of the majority-spin elec-
convenient to introduce a dimensionless redueachopping  trons (squares However, a crossover takes place at about
parameter &t., <1 by teo, = Ve, /V2IK, where VP is  t,,,=0.5 and the conductance of the majority-spin electrons
the bulks-s interaction in Co. in the tunneling regime becomes higher than that of the
The dependence of the TMR ratio on the reduced recipminority-spin electrongl’'/T"! ~1.75 fort,,,=0.1). The po-
rocal s-s hopping (ss,) " between two C@M01) electrodes larization of the tunneling electrons has, therefore, the same
is shown in Fig. 5. The corresponding dependences of theign as the magnetization, i.e., opposite to that one would
conductance¥ [y, 'y, andl' 4 on (tss,) ~* are shown in  expect from the conventional density-of-states argument.
Fig. 6. It can be seen from a comparison of Figs. 1 and 5This is in complete agreement with the results of all the
that the qualitative behavior of the GMR ratio for the experiments on tunneling from transition metal
Co(001) junction is very similar to that of the single-orbital ferromagnets.
model of tunneling discussed in Sec. Ill. While the indi- | now return to the question of saturation of TMR in the
vidual conductancek” decrease by more than two orders of ynneling regime. The slow variation of TMR after the initial
magnitude when the-s hoppingtss, is reduced to 10% of  44iq drop can be traced to the structure of E5).for the
its bulk value, the TMR ratio drops initially rather rapidly ¢onqyctance. We first note that it is a good approximation to

from its metallic CPP GMR value of 280%i.(,=1) to : ; ; S
about 40% but then increases only slowly to reach abou?et n the tunneling regimg,(k;) 0 all the tlght blnd_mg
matrix elements equal to zero except for #is interaction

65% for tsg,=0.1. The rapid initial decrease of the GMR Vv It foll h Il th L o ele-
ratio for a Co junction did not occur in the single-orbital Yss- It follows that all the remaining nonzero matrix ele
model of Sec. III. It occurs for the Co junction because, inMeNts of the tunneling matritg;(k;) in Eq. (5) are propor-
the metallic limittss,~ 1, a significant proportion of the cur- fional toVss,, and this is the only parameter in the problem
rent in Co is carried byl electrons that are highly spin po- Which depends on the gap width The conductances)
larized. This explains a large GMR ratio in the metallic re-contains, therefore, a scalar multiplicative factéf (r)
gime (abrupt domain wall In the tunneling regime, the which is independent of the parallel momentuq, and
current is carried only by-p electrons which are weakly hence, cancels out in the GMR rafi8). As for the single-
spin polarized and, hence, the TMR ratio is much smallerorbital model, the entire variation of the TMR ratio in the
This switching fromd electrons tos-p electrons, as one tunneling regime is, therefore, determined by a weak depen-
moves from the metallic to tunneling regime, cannot be redence of the denominators in E§) on the gap width. We
produced by a single-orbital model. recall that the denominators describe a mutual influence of
Another very interesting feature related to the aforementhe Co electrodes on one another, which is very weak in the
tioned switching frond electrons tcs-p electrons is that the tunneling regime. In fact, in the absence of surface states,
polarization of the tunneling electrons changes sign as onkm,_..Gg;=0 and lim_.Gj=g;], whereg;] are the sur-
moves from the metallic to the tunneling regime. This can bdace Green’s function of completely disconnected laft (
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=0) and right {(=1) Co electrodes. It follows from this sical theory of tunneliny®!° with two important modifica-
argument that saturation of the TMR in the tunneling limit tions. First, contrary to popular belief, the tunneling current
tou(k;)—0 is inevitable. is not proportional to the product of the densities of states of
The only question that remains is whether the TMR ratiothe ferromagnetic electrodes. It is determined instead by the
in Fig. 5 has reached its saturation value figg,~0.1. Un-  convolution over the parallel momentum of the spectral den-
fortunately, the numerical evaluation of the conductardt®s sities of the left and right electrodes. Moreover, all the sur-
requires a very large number kf points (~10°) to achieve  face states are excluded from the convolution and, therefore,
convergence in the Brillouin zone sum in E®) and the make no contribution to tunneling.
number ofk; points needed increases with decreasing hop- The TMR due to tunneling through an insulating barrier
ping tss,. Convergence could, therefore, be achieved onlywas investigated in Sec. IV using the same single-orbital
for ts,=0.1. Since the TMR ratio still increases foy,, tight-binding model as in Sec. lll. Starting with a metallic
~0.1, the value for TMR of about 65% obtained from Fig. 5 spacer, the on-site potential in the spacer was gradually in-
should, therefore, be regarded as a theoretical lower bouncteased until the Fermi level moved out of the spacer con-
on the TMR of a C¢001) junction. The calculated saturation duction band, and thus the tunneling regime was reached. It
value of the TMR of 40—65% for a @001) junction isin a  was again found, both analytically and numerically, that the
remarkably good agreement with the TMR ratio of aboutTMR ratio depends only weakly on the on-site potential in
40% observetifor a Co junction with an AlO; barrier. the spacer and reaches a saturation value when the insulating
Finally, | wish to emphasize that the dependence of thebarrier height is of the order of the conduction band width.
TMR ratio on the vacuum gap width shown in Fig. 5 shouldThe saturation values of the TMR due to tunneling across a
not be confused with the dependence of the TMR on thezacuum gap and due to tunneling through an insulating bar-
width of an insulating barrier. As discussed in Sec. IV, therier are exactly the same. One can, therefore, conclude that
width of the vacuum gap is related instead to the height of ahe two models of the TMR are physically equivalent. How-
narrow insulating barrier. The calculated values of the TMRever, this conclusion holds only for thin insulating barriers.
for a Cq001) junction should, therefore, be relevant only to  The dependence of the TMR on the width of an insulating
experiments with narrow insulating barriers. barrier was also investigated in Sec. IV. The results are
rather interesting in that the dependence on the thickness of
the insulating layer, predicted by the single-orbital model, is
weak when the barrier is high but becomes very strong when
The tunneling magnetoresistance was investigated usingtae barrier is lowthe Fermi level lies close to the conduction
unified theory of the TMR and CPP GMR based on theband edgg In fact, the TMR for a low insulating barrier
Kubo-Landauer formula and a multiorbital tight-binding decreases very rapidly with increasing thickness of the insu-
band structure of the ferromagnetic electrodes. The only adating spacer. This may have implications for the experiment
sumptions of the theory are that the spin and parallel mosince the height of the barrier in a very thin oxide may be
mentum are conserved in tunneling and the applied bias i@wer than in the bulk material, particularly if oxidation is
low (linear-response theoryUnder these assumptions, the imperfect.
nonperturbative Kubo-Landauer theory allows one to inves- Having established an equivalence between the two mod-
tigate a continuous transition from the CPP GMR of a me-els of tunneling(vacuum gap and insulating barnieithe
tallic system to the TMR of a tunneling junction, which takes TMR due to tunneling between two Gi01) electrodes sepa-
place as the band structure parameters of the nonmagnetiated by a vacuum gap was investigated in Sec. V using fully
spacer are varied. Within a tight-binding scheme, there areealistic tight-binding bands fitted to a first-principles band
two alternative ways of describing the transition from thestructure of ferromagnetic fcc Co. It is found that, when the
CPP GMR to TMR. In the first approach, used in Secs. llltight-binding hopping integrals between the two Co elec-
and V, the overlap matrix elements between the ferromagtrodes are gradually turned off, the TMR ratio drops initially
netic electrodes are gradually turned off to reach the tunnekather rapidly from its metallic CPP GMR value of 280% to
ing regime (tunneling across a vacuum gaprhe second about 40% but then increases only slowly to reach about
method, explored in Sec. IV, is to vary the on-site potential$5% when the dominars-s hopping is of the order of 10%
in the spacer so that the Fermi level in the spacer layeof the s-s hopping in Co. The rapid initial decrease of the
moves into the band gaftunneling through an insulating GMR ratio for a Co junction occurs because, near the metal-

VI. CONCLUSIONS

barriep. lic limit, a significant proportion of the current in Co is car-
The TMR due to tunneling across a vacuum gap was firstied by d electrons that are highly spin polarized. This ex-
investigated in Sec. lll for a single-orbital tight-binding plains a large GMR ratio in the metallic regim@brupt

model of the ferromagnetic electrodes. It was demonstratedomain wal). In the tunneling regime, the current is carried
in Sec. Il both analytically and numerically that the TMR only by s-p electrons which are weakly spin polarized and,
ratio depends only weakly on the overlap matrix elementence, the TMR ratio is much smaller.

across the vacuum gap and approaches very rapidly a satu- Another very interesting feature related to the aforemen-
ration value when the tight-binding hopping integirglcon-  tioned switching frond electrons tcs-p electrons is that the
necting the ferromagnetic electrodes is decreased to 5—10 g®larization of the tunneling electrons changes sign as one
of its valuet® in the ferromagnet. The saturation value of moves from the metallic to the tunneling regime. In the me-
the TMR is very close to the value of the CPP GMR in thetallic regime, the conductandeé' of the minority-spin elec-
metallic regimety;~t°" . The present theory of tunneling trons is higher than the conductaricé of the majority-spin
across a vacuum gap reduces in the litgjt=0 to the clas- electrons. However, a crossover takes place whenstke



56 TIGHT-BINDING THEORY OF TUNNELING GIANT . .. 11819

hopping drops to about half of its bulk value and the con-lated in Sec. V, should not be confused with a dependence of
ductance of the majority-spin electrons in the tunneling rethe TMR on the width of an insulating barrier. As shown in
gime becomes higher than that of the minority-spin electronsec. 1V, the width of the vacuum gap is related instead to the
(I'1/Tt~1.75). The polarization of the tunneling electrons height of a narrow insulating barrier. The calculated values
has, therefore, the same sign as the magnetization, i.e., 0pf the TMR for a C6001) junction are, therefore, relevant
posite to what one would expect from the conventionalpnly to experiments with narrow insulating barriers.
density-of-states argument. This is in complete agreement
with the results of all the (Eexperiments on tunneling from
transition metal ferromagnets.
The calculated saturation value of the TMR for a(@ai) ACKNOWLEDGMENTS
junction in the tunneling regime ranges from 40 to 65%. |am gratefulto S. S. P. Parkin for helpful discussions and
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of the TMR ratio on the vacuum gap width, that was calcu-edged.

13. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Schroeder, and J. Bass, Phys. Rev. L&#t.3060(1991.

Phys. Rev. Lett74, 3273(1995. 14A. D. Stone and A. Szafer, IBM J. Res. D32, 384 (1988.
2T. Miyazaki and N. Tezuka, J. Magn. Magn. MatdB9 L231  °P. A. Lee and D. S. Fisher, Phys. Rev. Lé, 882 (1981).
(1995. 18D, H. Lee and J. D. Joannopoulos, Phys. Re2334988(1981).
33, S. P. Parkirfunpublishedl 1D, A. Papaconstantopouloslandbook of The Band Structure of
4M. Julliere, Phys. Lett54A, 225 (1975. Elemental Solid¢Plenum, New York, 1986
5S. Maekawa and U. Geert, IEEE Trans. MagnMAG-18, 707  8D. Kalkstein and P. Soven, Surf. S&6, 85 (1971).
(1982. 193, Mathon, M. Villeret, and H. Itoh, Phys. Rev. B, R6983
®R. Meservey and P. M. Tedrow, Phys. R&88 173(1994. (1995.
3. Inoue and S. Maekawa, Phys. Rev5B R11 927(1996. 20y, L. Moruzzi, J. F. Janak, and A. R. Williamg&alculated Elec-
83. Bardeen, Phys. Rev. Le€, 57 (1961. tronic Properties of Metal§Pergamon, Oxford, 1978
%J. C. Slonczewski, Phys. Rev. 39, 6995(1989. 2IM. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio, J. Phys.
0w, A. Harrison,Solid State TheoryDover, New York, 1978 F 15, 851(1985.
IR, Landauer, IBM J. Res. De®2, 306 (1988. 22N, Umerski, Phys. Rev. B5, 5266(1997).
123, Mathon, A. Umerski, and M. A. Villeret, Phys. Rev. &5, 230. K. Andersen and O. Jepsen, Physic@B 317 (1977; O. K.
14 378(1997. Andersen, W. Klose, and H. Nohl, Phys. Rev. 18, 1209

Bw. P. Pratt, Jr., S.-F. Lee, J. M. Slaughter, R. Loloee, P. A. (1978.



