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Two parallel calculations of the exchange coupling in a Co/Cu/Co~001! trilayer, both using the same realistic
s, p, andd tight-binding bands with parameters determined from theab initio band structures of bulk Cu and
Co, are reported. The coupling is first calculated within the framework of the quantum-well~QW! formalism
in which the periodic behavior of the spectral density is exploited to derive an analytic formula for the coupling
valid for large spacer thicknesses. On the other hand, an alternative expression for the coupling, referred to as
cleavage formula, is derived that allows accurate and efficient numerical evaluation of the coupling. An
analytic approximation to this expression, valid in the asymptotic region of large spacer thickness, is also
obtained. These two approaches are discussed in relation to other existing theoretical formulations of the
coupling. The numerical results for the coupling obtained from the cleavage formula are first compared with
the analytical QW calculation. The agreement between the two calculations is impressive and entirely justifies
the analytical QW approach. The numerical calculation fully confirms the result of the QW formalism that, for
trilayers with thick Co layers, the short-period oscillation due to the minority electrons from the vicinity of the
Cu Fermi-surface~FS! necks is dominant, the contribution of the long-period oscillation being negligible. This
is shown, in the analytical QW formalism, to be due to the existence of bound states for the minority-spin
electrons at the Cu FS necks in the ferromagnetic configuration. The dominant short-period oscillation has been
confirmed by spin-polarized scanning electron microscopy and observed directly in the most recent photoemis-
sion experiments. The full confinement of the minority electrons at the neck of the Cu FS also leads to a strong
temperature dependence of the short-period oscillation and an initial decay of the coupling with spacer thick-
nessN that is much slower than predicted by the usual 1/N2 law. For the electrons at the belly of the Cu FS,
the confinement is weak in both spin channels and the long-period oscillation hardly changes between zero and
room temperatures. In addition, the belly contribution to the coupling decreases atT50 K following the usual
1/N2 dependence. The amplitude of the calculated coupling'1.2 mJ/m2 at the first antiferromagnetic peak of
Cu is only a factor of 3 larger than the observed coupling strength. Finally, the coupling for 2 ML of Co
embedded in Cu has also been evaluated from the cleavage formula. A large initial coupling strength~3.4 mJ/
m2) and comparable contributions from the short- and long-oscillation periods are obtained. This is in com-
plete agreement with theoretical results reported by other groups.@S0163-1829~97!04138-6#
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I. INTRODUCTION

Since the discovery of oscillatory exchange coupling1 and
the related giant magnetoresistance effect,2 metallic magnetic
multilayers have been studied extensively~for a review, see
Ref. 3!. In particular, a large number of theoretical a
proaches have been developed to calculate the oscilla
exchange coupling. They can be broadly divided into t
categories: numerical total-energy calculations and calc
tions based on analytical asymptotic expansions. In the p
these two types of theory have coexisted but no meanin
quantitative comparison between them was possible bec
the analytical theories were originally developed only
simplified model band structures. This situation is highly u
satisfactory since our physical understanding of the osc
tory exchange coupling is based entirely on the theories
the latter type, in particular, on the quantum-well theory p
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posed by Edwards and Mathon4 ~see also Refs. 5–7!. An
alternative interpretation of the quantum-well theory in ter
of reflection coefficients at the interfaces8,9 is also widely
used. There is now no doubt about the validity of t
quantum-well picture since the quantum-well states p
dicted in Ref. 4 have been observed in photoemiss
experiments.10–12However, to achieve a unification betwee
the analytical and numerical approaches, the quantum-
theory needs to be implemented for a fully realistic ba
structure and shown to be as accurate~in the asymptotic limit
of a thick spacer! as fully numerical calculations.

In this paper, we report the results of two parallel calc
lations of the exchange coupling in a Co/Cu/Co~001! trilayer.
One is based on the analytical quantum-well theory,4–7 and
the other is fully numerical. Both calculations were ma
using the same realistics,p,d tight-binding bands fitted toab
initio band structures of bulk Cu and ferromagnetic fcc C
11 797 © 1997 The American Physical Society
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11 798 56J. MATHON et al.
which means that they are directly comparable. The res
of such a comparison were briefly reported in Ref. 13. T
main motivation for writing a long paper is to provide
comprehensive description of both our calculations and to
clearly the analytical quantum-well theory in the context
the ab initio calculations. We shall also present addition
numerical results for a Co/Cu/Co~001! trilayer based on a
method for calculating the local one-electron Gree
functions15 that enables us to determine the coupling for co
tinuous spacer layer thicknesses.

Since the precise relationship between the quantum-
theory based on the stationary-phase approximation~SPA!
method and theab initio calculations has been matter
some controversy, we first address this issue. In the fi
principles spin-density-functional calculations, the se
consistency in each atomic plane is achieved separate
the ferromagnetic~FM! and antiferromagnetic~AF! configu-
rations of the magnetic layers~see, e.g., Refs. 16 and 17 an
some of the calculations in Ref. 18!. However, such calcula
tions are only feasible for relatively thin spacer layers
some 20–30 atomic planes and this is often not enough
the periods, amplitudes and phases of the coupling to
determined reliably. The Co/Cu/Co~001! trilayer is a prime
example. It is apparent already from the numerical result
Drchalet al.19 that one needs to go to a very large number
atomic planes of Cu to obtain reliable fits for this system. W
show that this problem arises because the expe
asymptotic decay of the coupling, assumed in all numer
fits, is not obeyed in Co/Cu at zero temperature even for
thicknesses as large as 50 atomic planes. We also show
at room temperature~relevant to experiment!, there is no
range of Cu thicknesses in which the coupling amplitude
be approximated by a dependence}1/N2.

Because of these problems, the approach almost un
sally adopted now19–22 is to use atomic potentials that a
independent of the magnetic configuration and to calcu
the total-energy difference by comparing sums of o
electron energies, thus making the approximation known
the ‘‘force theorem.’’ Once this approximation is made, t
SPA method is applicable and must reproduce correctly
results of all such calculations in the limit of a thick spac
This is because the SPA method provides merely a pres
tion for evaluating the energy andk-space sums of the one
electron energies analytically. It will be shown in Sec. II th
the implementation of the SPA theory relies only on the f
that the one-electron Green’s function is a periodic or qu
periodic function of the spacer thickness.14,15,23This feature
is common to the tight-binding method we use, line
muffin-tin-orbital ~LMTO! tight binding,22 and layer
Korringa-Kohn-Rostoker methods,20 since they are all for-
mulated in terms of local one-electron Green’s functions
is, therefore, immaterial which one of these methods
chooses as long as the one-electron energies of the multi
are correctly reproduced.

The only remaining issue is the question of a correct tre
ment of interfaces. Far from the interface, one can, of cou
use the potentials for bulk metals. Near the interface,
potentials may deviate from their bulk values. However, i
clear from the above discussion that this effect can be
cluded in the SPA method based on our empirical tig
binding approach but a preliminaryab initio calculation in
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the interfacial region would be required to determine the c
rect local tight-binding on-site potentials and hopping para
eters. Alternatively~and preferably!, the SPA could be ap-
plied directly to, say, the LMTO tight-binding method wit
self-consistent treatment of the interface included. Howev
in the case of Co/Cu considered here, the LMTO calculati
for a Co/Cu interface24 show that it is an excellent approx
mation to use bulk Co and Cu potentials right up to t
interface and this is, indeed, the approximation that is m
in the calculations of the coupling for Co/Cu based on t
method.19,22 We have, therefore, adopted the same appro
mation here.

The plan of the paper is as follows. In Sec. II we sho
how the quantum-well SPA calculation is implemented fo
Co/Cu/Co~001! trilayer using realistics, p, and d tight-
binding bands fitted to anab initio band structure of bulk Cu
and ferromagnetic fcc Co. In this calculation, the SP
method is applied directly to the spectral density that de
mines the thermodynamic potential of the trilayer.

For the numerical calculation, we use an expression
the coupling referred to as a cleavage formula. Its derivat
is presented in Sec. III. The cleavage formula is obtained
introducing the Green’s-function cleavage plane formalism25

of the spin-current~torque! approach26 in the formulation of
d’Albuquerque e Castro, Ferreira, and Muniz.27 The resultant
cleavage formula for the coupling is equivalent to that dev
oped independently by Drchalet al.19 in their LMTO ap-
proach and has already been used without derivation in R
13,14, and 28.

The cleavage formula is evaluated using a new anal
expression for slab one-electron Green’s functions deri
recently by Umerski.15 The results of this fully numerica
calculations are described in Sec. IV and compared with
results of the SPA of Sec. II and also with the results of
SPA performed on the cleavage formula for the couplin
Finally, in Sec. V we present our conclusions.

II. STATIONARY PHASE APPROXIMATION FORMULA
FOR THE EXCHANGE COUPLING

IN A Co/Cu/Co„001… TRILAYER

We considerN ~001! planes of Cu with the bulk lattice
constant sandwiched between two semi-infinite slabs of
romagnetic fcc Co. A small lattice mismatch between Co a
Cu is neglected. Following our original approach,5,6 we as-
sume that the local potentials in the Cu and Co layers
frozen, i.e., they do not change in going from the AF to t
FM configuration of the trilayer. As discussed in the Intr
duction, this is equivalent to the force theorem. It follow
that the exchange coupling per surface atom is given in te
of the thermodynamic potentialsVs for electrons of spins
by

J~N!5@V↑~N!1V↓~N!#FM2@V↑~N!1V↓~N!#AF . ~1!

The thermodynamic potential per surface atom for a giv
magnetic configuration at temperatureT is given by
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Vs52
kBT

Ni
(
ki

E
2`

1`

ln$11exp@~m2E!/kBT#%

3Ds~E,kW i ,N!dE, ~2!

whereNi is the number of atoms in any atomic plane para
to the layer structure,m is the chemical potential, andDs is
the spectral density for particles of spins in the trilayer
having that configuration. Because of the in-plane tran
tional invariance, we label all the trilayer states by the pla
index i and by the wave vectorkW i parallel to the layers. The
spectral densityDs is given by

Ds~E,kW i ,N!52
1

p
Im Tr (

i
Gii

s~E,kW i ,N!, ~3!

whereGii
s is the diagonal matrix element of the tight-bindin

one-electron Green’s function, the trace is over all atom
orbitals, and the sum overi is over all atomic planes in the
trilayer. In this section, we restrict the sum overi to the
atomic planes in the Cu spacer layer. The advantage of u
the spectral density in the Cu spacer only is that it allow
transparent physical interpretation of the coupling in terms
the band structures of bulk Cu and Co. Moreover, the c
pling can also be easily linked to photoemissi
experiments.10–12 The numerical calculation of Sec. IV wil
allow us to assess the accuracy of this approximation.

The problem now reduces to the calculation of the sp
tral density and evaluation of the difficultkW i and energy
sums. We showed for a single-orbital model with compl
confinement that both thekW i and energy sums can be eval
ated analytically using the stationary-phase approximatio5

We need to generalize the method to a Co/Cu~001! trilayer.
The generalization is based on the hypothesis6 that, for large
N, the normalized spectral density (1/N)DD(E,kW i ,N)
5(1/N)$@D↑1D↓#FM2@D↑1D↓#AF% is a periodic function
of N. For periods incommensurate with the lattice, which
generally the case, the concept of a periodic function ne
to be clarified. Although the physical spectral density is d
fined and can be computed only for integral numbersN of
Cu atomic planes, we can consider formally its continuat
to all real values ofN. The continuation is a function tha
coincides with the physical spectral density when restric
to integersN. We shall say that the physical normalize
spectral density is periodic inN provided its continuation is
a periodic function. We show explicitly how to construct th
continuation of the normalized spectral density for C
Cu~001! and demonstrate that it is a periodic function.

Assuming that the normalized spectral density is perio
in N ~for large N), we can expand it in a Fourier series.
rigorous proof of the periodicity inN is provided in Ref. 15.
The exchange coupling then takes the form

J~N!52
kBTN

Ni
Re(

s51

`

(
ki

E
2`

1`

ln$11exp@~m2E!/kBT#%

3uDcs~E,kW i!ue2i ~sNk'd1cs!dE, ~4!

where d is the interplanar distance,uDcs(E,kW i)u and
2cs(E,kW i) are the modulus and phase of the Fourier coe
l
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cients of the normalized spectral density (1/N)DD(E,kW i ,N),
and p/k'(E,kW i) is its period. It is shown in Ref. 15 tha
k'(E,kW i) is the wave vector perpendicular to the~001! plane
obtained by solving the bulk Cu dispersionE5E(kW i ,k').

Expression~4! for the coupling is now in a form to which
the SPA method can be readily applied.5,6 For largeN and
any fixed energyE, the imaginary exponential in Eq.~4!

oscillates rapidly as a function ofkW i and nonzero contribu-
tions to thekW i integral come only from the neighborhood o
points kW i

0 in kW i space at whichk'(E,kW i) is stationary. The
perpendicular wave vectork'(E,kW i) in the argument of the
exponential is expanded in a Taylor series aboutkW i

0 up to
second order inkW i and all the other factors depending onkW i

are approximated by their values at the extremal pointkW i
0 .

The remaining integrals inkW i space can be reduced to Gaus
ian integrals and evaluated analytically. The procedure
standard,5 the only new feature is the presence of the ph
cs in the argument of the exponential function in Eq.~4!. In
general,cs is nonzero. We can either treatcs along with
uDcs(E,kW i)u as a slowly varying function ofkW i and approxi-
matecs by its value at the stationary point or we can expa
cs in a Taylor series and include its dependence onkW i in the
Gaussian integrals. In the latter case, we would obtain a
rection to the phase of the exchange coupling}1/N that is
negligible in the asymptotic limit of largeN. We shall, there-
fore, approximatecs in the evaluation of thekW i integral by
its value at the stationary point.

The energy integral in Eq.~4! can also be evaluated ana
lytically for large N. We recall5 that, having made the
stationary-phase approximation in thekW i integral, we are left

with an imaginary exponentiale2i [sNk'd(E,kW i
0)1cs(E,kW i

0)] in the
energy integral. For largeN the exponential oscillates rapidl
as a function ofE. This results in cancellations and the on
contribution to the energy integral thus comes from energ
in the vicinity of the chemical potentialm at which the inte-
gral terminates abruptly.5 Formally, one expands the argu
ment of the exponential up to first order inE and the result-
ant integral is evaluated in the complex plane.5 Again we
have two options in dealing with the energy dependence
the phase. Either we approximatecs(E,kW i

0) by its value at

E5m or expand it aboutm together withk'(E,kW i
0). It is now

prudent to adopt the second option because an energy de
dence ofcs leads no longer to a mere phase shift but m
alter the decay of the coupling withN as well as its tempera
ture dependence.28 Treating the energy dependence of t
phasecs on the same footing as the energy dependence
k' ,5 it is straightforward to derive the following asymptot
formula for the exchange couplingJ(N):

J5Re(
ki

0
(
s51

`
t

2s

uDcsue2i ~sNk'd1cs!

2S sNd
]k'

]E
1

]cs

]E D

3

kBTdU]2k'

]kx
2

]2k'

]ky
2 U21/2

sinhF2pkBTS sNd
]k'

]E
1

]cs

]E D G , ~5!
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wherekx ,ky are the components ofkW i in an orthogonal sys-
tem of axes chosen to diagonalize the Taylor expansion

the argument of the exponential in Eq.~4!. The sum overkW i
0

covers all the stationary points ofk' , t5 i when both sec-
ond derivatives in Eq.~4! are positive,t52 i when they are
negative, andt51 when the derivatives have opposite sign
The perpendicular wave vectork' , Fourier coefficientsDcs ,
and all the derivatives in Eq.~5! are evaluated atE5m and
at the stationary pointkW i5kW i

0 . It should be noted that, fo
]cs /]E50, Eq. ~5! reduces exactly to the asymptotic fo
mula for the coupling derived in Ref. 7.

We begin the evaluation of Eq.~5! for Co/Cu~001! with
the factors that depend only on the bulk Cu Fermi surf
~FS! ~the difference betweenm and EF is negligible in the
relevant range of temperatures!. They are the oscillation pe
riods, curvatures of the Cu FS, and ‘‘inverse FS velocitie
]k' /]E. The oscillation periodsp/k'

0 were obtained from
the Cu FS extremal radii in the@001# direction. There are
two extremal radiik'

0 and they occur forkW i
b5(0,0) ~belly!

andkW i
na5(62.53,62.53) ~necks! wherea53.6 Å is the lat-

tice constant of Cu. The corresponding periods arepb55.7
atomic planes (;10.3 Å! andpn52.6 atomic planes (;4.7
Å!, respectively. The factort5 i for the belly andt51 for
the necks. The Cu FS curvaturesu(]2k' /]kx

2)(]2k' /
]ky

2)u21/2 and inverse FS velocities]k' /]E at the belly and
neck extrema were determined using a tight-bind
parametrization29 of the first-principles band structure o
bulk Cu. Their values for the belly areu(]2k' /
]kx

2)(]2k' /]ky
2)u21/250.393 (Å)21, ]k' /]E521.583

(Ry Å)21. The corresponding values for the necks a
u(]2k' /]kx

2)(]2k' /]ky
2)u21/250.298 (Å)21, ]k' /]E

52.057 (Ry Å)21.
The last ingredient in Eq.~5! is the Fourier analysis of the

normalized spectral density (1/N)DD(E,kW i ,N). We first
computed the spectral densities for both spin orientation
the FM and AF configurations for discrete~physical! values
of the Cu thicknessL5Nd. The required Green’s function
were calculated within the tight-binding model withs,p, and
d orbitals, and hopping to first- and second-nearest ne
bors. The tight-binding parameters for all Cu planes w
determined from the best fit to the first-principles ba
structure29 of bulk Cu. The parameters for fcc ferromagne
Co were obtained starting from paramagnetic29 Co and ad-
justing self-consistently the on-site energies to get the b
agreement with the first-principles band structure30 of fcc
ferromagnetic Co. At the Co/Cu interface, the Cu hopp
parameters were used and the reason for this choice is
cussed in Sec. IV. Using these values of the tight-bind
parameters, we constructed the 18318 Hamiltonian matrix
H(kW i) of a principal layer31 consisting of two~001! atomic
planes of Cu~Co!. The Cu and Co principal layers are intro
duced because the Hamiltonian of a Co/Cu trilayer with
bitrary numbers of Cu and Co planes can be obtained
stacking the appropriate sequence of principal layers w
hopping only between the neighboring principal layers. U
ing the method of adlayers,32 we first determined recursivel
the local Green’s function in the surface layer of a stack
Cu principal layers deposited on a semi-infinite stack of
principal layers. Principal layers of Cu were deposited o
of

.
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by one from left to right and the surface Green function w
updated from the Dyson equation after each deposition
gold

s and gnew
s denote, respectively, the 18318 surface

Green’s function matrices before and after deposition o
single principal layer, then the basic recursion step is

@gnew
s #215@gisol

s #212t†~kW i!gold
s t~kW i!, ~6!

wheregisol
s is the Green’s function for an isolated princip

layer of Cu,t(kW i) is the hopping matrix between two neigh
boring principal layers, and we suppress for brevityE andkW i
in the arguments of the Green’s functions. The method
adlayers yields with machine accuracy the Green’s funct
matrix gl

s( j ) in the surface principal layer of the left ove
layer of j principal layers of Cu on semi-infinite Co. Sim
larly, we obtained the surface Green’s functiongr

s(N/22 j )
for the right overlayer ofN/22 j principal layers of Cu on
semi-infinite Co~if the numberN of Cu atomic planes is
odd, we first deposit a single atomic plane of Cu and th
proceed with principal layers!. Finally, we completed the
trilayer by switching on the hoppingt(kW i) between the left
and right overlayers. The exact Green’s function in the pr
cipal layer j next to the joint obtained from Dyson’
equation32 is given by

@Gs~ j !#215@gr
s~N/22 j !#212t†~kW i!gl

s~ j !t~kW i!, ~7!

where we use the convention that capital letters den
Green’s functions of the connected system and lower-c
letters those of the cleaved system. The matrix element
the Green’s function in every atomic plane of Cu were d
termined by this method and the spectral density was ca
lated from Eq.~3!. The only input in the adlayer procedure
the surface Green’s function for semi-infinite Co that w
determined by the decimation method of Ref. 33.

With the normalized spectral densities computed for in
gerN we can address the question of their continuation fr
discrete Cu thicknessL5Nd to all real values ofL. We
require for the Fourier analysis the knowledge of the spec
density for all values of the ‘‘continuous Cu thickness’’L in
the interval (2p/2k' ,p/2k'), wherek' is either the belly
or neck FS radius. We first generated the spectral dens
for trilayers with the number of Cu atomic planesN ranging
up to 600. The spectral densities normalized toN were then
shifted to the first period (2p/2k' ,p/2k') by subtracting
from N the appropriate integral number of periodsp/k' . If
all the shifted points condense, as we anticipate, on a c
tinuous curve then this test demonstrates that the normal
spectral density is asymptotically a periodic function of t
continuous Cu thicknessL with a periodp/k' . At the same
time, the shifting algorithm provides us with a dense set
points in the interval (2p/2k' ,p/2k'), which can be Fou-
rier analyzed with any required accuracy. An alternat
method of calculating the spectral density as a continu
function of the layer thickness, which has been developed
Umerski,15 is discussed briefly in Sec. III.

One of the main advantages of the stationary-ph
method discussed here is that it permits an explicit separa
of the contributions to the exchange coupling arising fro
different extrema of the Cu Fermi surface. This is the on
method available up to now in which the contributions fro
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the neck and belly extrema can be separated rigorously.
start with the long-period component that originates from
belly extremum. The raw spectral densiti
(1/N)Ds(EF ,kW i50,N) computed for the FM and AF con
figurations are shown in Figs. 1~a!, 2~a!, and 3~a! together
with the data shifted to the first period@Figs. 1~b!, 2~b!, and
3~b!#. As anticipated, all three normalized spectral densi
are strictly periodic with the same periodpb55.7 atomic
planes and their oscillations as a function of the Cu thickn
reflect the passage across the Fermi surface of resonant
tron states partially confined in the Cu slab by the sp
dependent Co potentials. By comparing the shifted spec
densities for different values of the energy, we checked
the energy dependence of the phasecs is negligibly weak
(]c1 /]E.0.3 Ry21 for the fundamental oscillations51).

The amplitude of each component of the normalized sp
tral density is determined by the degree of confinemen
electron states in Cu, which can be judged from the offset
the bulk Cu and Co bands along theG-X line (kW i50) shown
in Fig. 4. The relevantsp-like band intersecting the Cu
Fermi level matches quite well the corresponding majo
and minority bands in Co, which results in a weak magne
contrast. The corresponding coupling amplitude is, theref
very small. This is illustrated in Fig. 5, which shows th
long-period belly contribution to the coupling obtained fro
Eq. ~5! at room ~solid circles! and zero~squares! tempera-
tures. The left-hand scale in Fig. 5 gives the coupling in m
per atom in the~001! surface. The right-hand scale gives t
conversion to the units~mJ/m2) commonly used by experi
mentalists. The contribution to the coupling from the Cu

FIG. 1. ~a! Computed normalized spectral density at the Fe

energy andkW i50 ~belly! for the majority electrons in the FM con
figuration. ~b! Normalized spectral density for the majority-sp
electrons in the FM configuration shifted to the first peri
(2p/2k' ,p/2k').

FIG. 2. ~a! Computed normalized spectral density at the Fe

energy andkW i50 ~belly! for the minority electrons in the FM con
figuration. ~b! Normalized spectral density for the minority-sp
electrons in the FM configuration shifted to the first peri
(2p/2k' ,p/2k').
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belly is clearly far too weak to account for the tot
observed34 coupling strength of about 0.4 mJ/m2. It is also
clear from Fig. 5 that the belly contribution to the couplin
hardly changes from zero to room temperature. This is
cause the temperature dependence in this case is determ
entirely by the inverse Fermi surface velocity]k' /]E. The
contribution of the term]cs /]E is negligible.

We now turn to the short-period neck contribution, whi
is much more interesting. Examination of all three comp
nents of the shifted spectral density shown in Fig. 6 reve
that carriers of both spin orientations in the AF configurati
@Fig. 6~a!#, and also the majority spin carriers in the F
configuration@Fig. 6~b!#, are only weakly confined~broad
resonances!. However, the minority spin carriers becom
completely confined in a quantum well in the FM configur
tion. As far as we can determine numerically, their spec
density is a periodic sequence ofd functions which, when
shifted to the first period, has the form shown in Fig. 6~c!.
@The peak in Fig. 6~c! has nonzero width because a sm
imaginary part is added to the energy in the decimat
method.# To explain the physical origin of the complete co
finement we reproduce in Fig. 7 the band structures of b
Cu and Co in the relevant@001# direction for one of the neck
wave vectors,kW i

na5(2.53,2.53). Thesp-like Cu band that
intersects the Fermi level in Cu, and hence determines
coupling, has no counterpart for the minority spin in C
since it falls into a hybridization gap. The minority-spin ca
riers must, therefore, be fully confined in Cu in the FM co
figuration. On the other hand, there is ansp-like Co
majority-spin band intersecting the Fermi level into whi

i

i

FIG. 3. ~a! Computed normalized spectral density at the Fer

energy andkW i50 ~belly! for electrons of either spin orientation i
the AF configuration.~b! Normalized spectral density for th
majority/minority electrons in the AF configuration shifted to th
first period (2p/2k' ,p/2k').

FIG. 4. Band structures of Cu and ferromagnetic fcc Co alo

the G-X line (kW i50).
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the corresponding Cu band can evolve. The confinemen
the majority-spin carriers is, therefore, only partial. Becau
of this asymmetry in the confinement of the majority a
minority carriers, the magnetic contrast is very large and
expect strong coupling.

However, there is another interesting feature of the
confinement at the neck which influences the coupl
strength. We refer here to a very strong energy depende
of the phasecs for minority carriers in the FM configuration
and for carriers of either spin orientation in the AF config
ration. First of all, we note that, in both these cases,
Fourier analysis of the spectral density at the neck shows
cs'sc, wherec is universal. It follows that only the energ
dependence ofc is required. We determined it numerical
from the shifted spectral density. We now discuss separa
the behavior ofc for the minority and majority carriers in
the FM and AF configurations. The results for the minor
carriers, which are confined in the FM configuration, a
shown in Fig. 8. The energy dependence of the phasecFM

↓ is
almost linear which means that the derivative](c↓)FM /]E
required in Eq.~5! can be determined very accurately. W
find ](c↓)FM /]E5259 Ry21 for the minority carriers in
the FM configuration. Similarly,](c↓,↑)AF /]E5229 Ry21

in the AF configuration when carriers of either spin orien
tion are confined at only one of the interfaces.~The energy
dependence of the phase for the majority carriers wea
confined in the FM configuration is again negligible.! To

FIG. 5. Long-period~belly! contribution to the coupling ob-
tained from Eq.~5! at room ~full circles! and zero~squares! tem-
peratures. The left-hand scale gives the coupling in mRy per a
in the ~001! surface, the right-hand scale in mJ/m2.
of
e

e

ll
g
ce

-
e
at

ly

-

ly

visualize the effect of these large values of]c/]E on the
coupling strength, it is useful to note from Eq.~5! that it is
formally equivalent to adding a fixed numbe
(sd]k' /]E)21]cs /]E of about 20 atomic planes of Cu t
the nominal thickness of the Cu slab. The coupling stren
is, therefore, greatly reduced for small Cu thickness and
viates strongly from the 1/N2 law that usually holds atT50.
Full discussion of this anomalous behavior of the coupl
strength is deferred to Sec. IV.

The temperature dependence of the coupling is a
strongly influenced by the rapid variation of the phasec with
energy.28 The contribution to the coupling from the fou
necks of the Cu FS obtained from Eq.~5! at room ~solid
curve! and zero~dashed curve! temperatures is shown in Fig
9. Virtually all of the change of the coupling strength b
tween zero and room temperature shown in Fig. 9 is due
the strong energy dependence of the phasec. This is in
contrast to the belly contribution for which this effect is ne
ligible.

Finally, comparison of the belly~Fig. 5! and neck~Fig. 9!
contributions to the total coupling shows that the exchan
coupling in a Co/Cu~001! trilayer with thick Co layers is
totally dominated by the short-period~neck! oscillation.

III. CLEAVAGE FORMULA FOR THE EXCHANGE
COUPLING IN MAGNETIC MULTILAYERS

The numerical effort needed to evaluate the coupling i
Co/Cu trilayer from the stationary-phase formula~5! is mini-
mal. This is because the sum of the spectral densities in
the Cu atomic planes is required only for two values ofkW i
~belly and neck! and one value of the energy (E5EF). How-
ever, if one were to evaluate the coupling numerically fro
Eq. ~2! as it stands, the numerical effort would be prohib
tive. Moreover, the accuracy of the approximation of Sec.
which includes only the spectral density in the Cu spa
layer, needs to be tested. We have, therefore, derived a
cleavage formula for the coupling which not only can
evaluated numerically much more efficiently but also
cludes explicitly the contribution to the coupling from all th
atomic planes in an infinite layer structure. Historically, t
cleavage formula was obtained by introducing the cleava
plane formalism25 of the spin-current~torque! approach26 in
the formulation of d’Albuquerque Castro, Ferreira, a
Muniz.27 We first present this original derivation and the
describe an alternative method in which the cleavage
mula is obtained by summing directly the spectral density

m

F
FIG. 6. Shifted normalized spectral densities atEF and kW ia5(2.53,2.53) ~neck!. ~a! Carriers of either spin orientation in the A
configuration; partial confinement.~b! Majority-spin carriers in the FM configuration; partial confinement.~c! Minority-spin carriers in the
FM configuration; full confinement.
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56 11 803QUANTUM-WELL THEORY OF THE EXCHANGE . . .
all the atomic planes. For simplicity, we restrict our deriv
tion to the case of nearest-neighbor hopping only. Hopp
to more distant neighbors is trivially dealt with by using t
technique of principal layers31 described in Sec. II.

We begin by considering a more general system cons
ing of two ferromagnetic layers, withM atomic planes each
embedded in a nonmagnetic material. The two magnetic
ers are separated byN atomic planes of the nonmagnet
material, and are labeledA andB. The atomic planes in eac
magnetic layer are labeledm and m8, respectively
(1<m<M ; M1N11<m8<2M1N). According to Eq.
~1!, the couplingJ is defined as the change in the thermod
namic potentialV of the system when the magnetization
one of the layers is rotated byp relative to that in the othe
layer,

J5DV~p!5V~0!2V~p!. ~8!

For an arbitrary angle of rotationu in the plane of the layers
the change inV can be written as27

DV~u!52
1

Nip
(
kW i

E dE f~E!Im Tr ln$122~cosu21!

3VexGB,A
↑ ~E,kW i!VexGA,B

↓ ~E,kW i!%, ~9!

where f (E) is the Fermi-Dirac distribution function and th
trace ~Tr! is over all the atomic orbitals. The matri

FIG. 7. Band structures of Cu and fcc Co in the relevant@001#

direction for one of the necks@kW ia5(2.53,2.53)#.

FIG. 8. Energy dependence of the phasec of the Fourier coef-
ficients for the minority carriers in the FM configuration at the ne
extremum.
-
g

t-

y-

-

GBm8,Am
↑ (GAm,Bm8

↓ ) is the propagator for an up-spin~down-
spin! electron between every atomic planem8 (m) in block
B (A) and every atomic planem (m8) in block A (B). We
stress thatA andB are just labels for the left and right fer
romagnets,not indices. Here,Vex is a block-diagonal matrix.
Each block ofVex is a n3n matrix (n is the number of
atomic orbitals in the tight-binding basis! whose elements
are given by the on-site Hartree-Fock exchange energie
each magnetic layer. Note that the dimension of the matr
GB,A
↑ , GA,B

↓ , and Vex is equal to (Mn)3(Mn). The large
size of these matrices for thick ferromagnetic layers make
impractical to use Eq.~9! as it stands. However, it is possib
to reformulate Eq.~9! in terms of matrices whose sizes d
pend just on n. Following Edwards, Robinson, an
Mathon,25 we separate the multilayer system into two ind
pendent parts, referred to as left (l ) and right (r ) overlayers,
by introducing a cleavage plane between spacer planesj and
j 11. The left overlayer consists ofj atomic planes of Cu
deposited on a substrate consisting of semi-infinite Cu andM
atomic planes of Co. The right overlayer consists ofN2 j
atomic planes of Cu deposited on a similar substrate. F
mally, if the planesj and j 11 are coupled by a hopping
matrix t, then the HamiltonianH for the whole system can
be split into two terms,H5h1Dh. Here, h is a block-
diagonal matrix that describes the two semi-infinite cleav
systems obtained fromH by setting the hoppingt between
planesj and j 11 equal to zero andDh is defined by

Dhp,q[H t, p5 j , q5 j 11

t†, p5 j 11, q5 j

0, otherwise.

~10!

As in Sec. II, we use the convention that capital letters
scribe the whole connected system, while lower case let
are reserved for the semi-infinite cleaved system. In addit
we use boldface letters to denote matrices whose dimen
depends on the ferromagnet thicknessM .

Using Dyson’s equation, we can relate the Green’s fu
tions of the connected system to the surface Green’s fu
tions of the cleaved system

GBm8,Am
↑

5gBm8, j 11
↑ t†~ I 2gj , j

↑ tgj 11,j 11
↑ t†!21gj ,Am

↑ ~11!

FIG. 9. Contribution to the exchange coupling of the four ne
extrema of the Cu Fermi surface at room~solid curve! and zero
~dashed curve! temperatures.
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11 804 56J. MATHON et al.
and

GAm,Bm8
↓

5gAm, j
↓ t~ I 2gj 11,j 11

↓ t†gj , j
↓ t !21gj 11,Bm8

↓ , ~12!

where the unit matrixI and the matricest,gj , j
s ,gj 11,j 11

s are
all n3n matrices. The matricesgAm, j

↓ andgBm8, j 11
↑ have di-

mension (Mn)3n, while gj ,Am
↑ and gj 11,Bm8

↓ are n3(Mn).
The matricesgj , j

s and gj 11,j 11
s are, respectively, equal t

gl
s( j ) and gr

s(N2 j ) defined in Sec. II. We now introduc

the n3n matrices S↑5t†(kW i)@ I 2gl
↑ t(kW i)gr

↑t†(kW i)#21 and

S↓5t(kW i)@ I 2gr
↓t†(kW i)gl

↓ t(kW i)#21, and write the argument o
the logarithmic function in Eq.~9! as

Tr ln $I 22~cosu21!VexgB, j 11
↑ S↑gj ,A

↑ Vex gA, j
↓ S↓gj 11,B

↓ %

5Tr ln $I 22~cosu21!S↑gj ,A
↑ VexgA, j

↓ S↓gj 11,B
↓

3VexgB, j 11
↑ %. ~13!

We make use of Dyson’s equation again to write

2gj ,A
↑ VexgA, j

↓ 5gl
↓2gl

↑ ~14!

and

2gj 11,B
↓ VexgB, j 11

↑ 5gr
↑2gr

↓ . ~15!

By substituting these results into Eqs.~13!, ~9!, and ~8! we
end up with the following expression forJ:

J5
1

Ni
(
kW i

E dE f~E!F~kW i ,E,N!, ~16!

where
d

n
he
F52
1

p
Im Tr ln@ I 1S↑„gl

↑ ~ j !2gl
↓ ~ j !…

3S↓„gr
↑~N2 j !2gr

↓~N2 j !…#. ~17!

It is worth stressing that the dimension of all matrices in E
~17! is determined by the number of atomic orbitals in t
tight-binding basis anddoes notdepend on the number o
planes in the magnetic layers. The dependence ofJ on the
magnetic layer thicknessM is implicit and contained entirely
in the surface Green’s functions of the two cleaved syste
This makes it possible to calculate the coupling for large
even infinite values ofM , which is prohibitive within other
formalisms such as that of Langet al.20 The extension of the
above expression to systems with magnetic layers of dif
ent thicknesses is straightforward. In addition, it can be e
ily shown that, for the single-band model, Eq.~17! reduces to
the torque formula of Edwards, Robinson, and Mathon.25 As
in that case, it is easily shown thatF is independent of the
cleavage-plane position. In the torque formulation, this is
immediate consequence of the spin current conservat
Equation~17! has already been used in Refs. 14,13, and
and derived independently by Drchalet al.19

We now present an alternative derivation that sho
much more directly how the cleavage formula for the co
pling is related to the spectral density approach of Sec. II
fact, we are going to derive the cleavage formula from E
~3! of Sec. II by summing explicitly over all the atomi
planes of the system. As before, we use the notationgp,q

s for
the matrix elements of the one-electron Green’s function
the cleaved system andGp,q

s for those of the connected
multilayer.

To evaluate the spectral density from Eq.~3!, we require
the diagonal elements of the connected Green’s func
Gp,p

s in all the atomic planes of the system. We once ag
cleave our system between thej th and j 11th layers. Using
Dyson’s equation, we can express them in terms of
Green’s-function elements of the cleaved systemgp,q ,
Gp,p
s 5H gp,p

s 1gp, j
s t~ I 2gj 11,j 11

s t†gj , j
s t !21gj 11,j 11

s t†gj ,p
s for 2`,p< j

gp,p
s 1gp, j 11

s t†gj , j
s t~ I 2gj 11,j 11

s t†gj , j
s t !21gj 11,p

s for j 11<p,`,
~18!
whereI is again an3n unit matrix and we have suppresse
the dependence of all the Green’s functions onE, kW i , and
orbital indices. Substituting from Eq.~18! in Eq. ~3!, we can
write the total spectral density of the connected system i
given configuration of the magnetic layers in terms of t
Green’s functions of the cleaved system,

Ds~N!52
1

p
Im TrH (

p52`

j

@gp,p
s 1gp, j

s t

3~ I 2gj 11,j 11
s t†gj , j

s t !21gj 11,j 11
s t†gj ,p

s #

1 (
p5 j 11

`

@gp,p
s 1gp, j 11

s t†gj , j
s t

3~ I 2gj 11,j 11
s t†gj , j

s t !21gj 11,p
s #J . ~19!
a

Now we use the identitiesdgj , j
s /dE52(p52`

` gj ,p
s gp, j

s 5
2(p52`

j gj ,p
s gp, j

s and dgj 11,j 11
s /dE52(p52`

` gj 11,p
s gp, j 11

s

52(p5 j 11
` gj ,p

s gp, j
s to write the spectral density in the form

Ds~N!5Dl
s~ j !1Dr

s~N2 j !

2
1

p
Im TrS d

dE
ln~ I 2gj 11,j 11

s t†gj , j
s t ! D , ~20!

where

Dl
s~ j !52

1

p
Im Tr (

p52`

j

gp,p
s ,

Dr
s~N2 j !52

1

p
Im Tr (

p5 j 11

`

gp,p
s



ac
a

nd
Eq
th
It

lin
n

e
ca
ar
n-
e
le
th
o

th
it

an

th

y
s

he

la
in
ity
i
e

e
th

ic

c
e

de

er
uo
at

r

om-
for
tri-
n
me
th-
ly,

here

ing

e
-
aken

rgy
. For
the
ub-
ob-
ver
nal
re

e-
for

ri-
ion
ith

fy
our
to
nd

nd

for

56 11 805QUANTUM-WELL THEORY OF THE EXCHANGE . . .
are simply the spectral densities for the left and right surf
systems. Since they refer to the cleaved system, they
clearly independent of the magnetic configuration, a
hence, do not contribute to the coupling. The last term in
~20!, on the other hand, gives the difference between
spectral densities of the connected and cleaved systems.
therefore, this term that determines the exchange coup
We note that it depends only on the surface Green’s fu
tions of the cleaved system.

We can now apply Eq.~20! to determine the coupling. An
inspection of Eqs.~1!–~3! of Sec. II shows that we requir
the sum of the spectral densities for up- and down-spin
riers in the FM configuration and the spectral density of c
riers of either spin in the AF configuration. In the FM co
figuration, an electron of spins moving across the cleavag
plane obviously experiences the same potential in the
and right ferromagnets. To obtain the spectral density in
AF configuration, we note that, when the magnetizations
the Co layers are antiparallel, an electron with spin up in
left overlayer can be formally regarded as an electron w
spin down in the right overlayer, and vice versa. This me

that gr
s in Eq. ~20! becomesgr

s8 , wheres8 is of opposite
spin orientation tos. We stress that this formal ‘‘trick’’ can
only be used because our formulation is in terms of
Green’s functions of a cleaved system;no physical spin flip
actually takes place at the cleavage plane. It is now eas
obtain the differenceDD(N) between the spectral densitie
in the FM and AF configurations, bearing in mind that t
surface terms cancel. It is given by

DD~N!52
1

p
ImS d

dE
ln@det~R↑↑R↓↓R↑↓

21R↓↑
21!# D ,

where

Rs,s85~ I 2gr
s8t†gl

st !. ~21!

When the spectral density difference~21! is substituted in
Eqs.~1! and~2!, it is easy to check that the cleavage formu
~17! for the coupling is recovered. For the purpose of trac
the contributions to the coupling of the majority and minor
carriers in the FM and AF configurations separately, it
preferable to use Eq.~21! where these contributions can b
clearly linked to the factorsR↑↑ ,R↓↓ , andR↑↓ .

In addition to the computational efficiency~particularly
for thick magnetic layers! already referred to, the cleavag
formula has an additional very important advantage that
two surface Green’s functionsgl

s and gr
s , required in this

formula, can be determined by a new essentially analyt
method proposed recently by Umerski.15 In his method, the
adlaying procedure defined by Eq.~6! is reformulated using
a matrix generalization of the bilinear mapping of the fun
tions of a complex variable so that the thickness of an ov
layer on a substrate appears explicitly as an indepen
variable in the overlayer Green’s functionsgl

s and gr
s . It

follows that one can treat formally the thickness of the ov
layer and, hence the thickness of the spacer, as a contin
variable. The exchange coupling can, therefore, be calcul
from Eqs. ~16! and ~17! entirely numerically for fractional
values of the interplanar distanced. This method thus pro-
vides a dense set of points for the coupling that can be
e
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stricted to a relatively thin spacer. Such a dense set of c
puted data points can be reliably analyzed numerically
periods, amplitudes, and phases of all the oscillatory con
butions to the coupling. This is, in particular, difficult whe
there are several oscillation periods. To achieve the sa
degree of accuracy with the conventional numerical me
ods, which give the coupling on discrete atomic planes on
one would have to go to very large spacer thicknesses w
the convergence in thekW i space becomes poor.

IV. STATIONARY-PHASE APPROXIMATION TO THE
CLEAVAGE FORMULA AND NUMERICAL EVALUATION

OF THE EXCHANGE COUPLING IN Co/Cu/Co „001…

We first present in this section our results for the coupl
in Co/Cu~001! obtained numerically from Eqs.~16! and~17!.
The Green’s functionsgl

s andgr
s have been calculated by th

method of adlayers@see Eq.~6!# using the same set of tight
binding parameters as in Sec. II. Special care has been t
to ensure convergence of the sum overkW i and of the energy
integral. The latter was carried out in the complex ene
plane and replaced by a sum over Matsubara frequencies
temperatures close to room temperature, we found that
energy summation converges if one includes 10–15 Mats
ara frequencies. All the results shown subsequently were
tained using 15 Matsubara frequencies. The summation o
kW i was performed using a dense mesh in the two-dimensio
Brillouin zone. The numerical calculations reported he
have all been performed forT5316 K.

We first discuss the results for the interlayer coupling b
tween semi-infinite Co layers. They are shown in Fig. 10
different numbers of points in thekW i sum~231, 435, 2775!. It
is clear that convergence for large Cu thicknessN can be
achieved only with a very large number of points~2775! in
the irreducible two-dimensional Brillouin zone. The nume
cal results clearly indicate that the short-period contribut
coming from the Cu FS neck is dominant, in agreement w
the quantum-well calculation of Sec. II. To further clari
this point, we apply the stationary-phase method to
cleavage formula for the coupling, which allows us again
separate analytically the contributions from the belly a
necks of the Cu FS.

Similarly to the normalized spectral density, the integra

FIG. 10. Numerical evaluation of the exchange coupling

different numbers of points in thekW i sum ~squares,Ni5231; tri-
angles,Ni5435; full circles,Ni52775).
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11 806 56J. MATHON et al.
F(kW i ,E,N) in Eq. ~17! is a periodic function ofN and can be
expanded in a Fourier series with the same wave ve
k'(E,kW i). The corresponding Fourier coefficientscs(E,kW i)
can be calculated by shifting the points for discrete spa
thicknesses, as described in Sec. II. The shifted points fa
a sectionally continuous function defined in the interv
(0,p/k'), and can be immediately Fourier analyzed. Figu
11~a! and 11~b! show the shifted curves for the belly and th
neck, respectively. The discontinuity that appears in
curve for the neck arises because of the formation of a bo
state due to full confinement in the minority-spin chann
Such a bound state leads to a jump ofp in the imaginary part
of the logarithm in Eq.~17!. Once the Fourier coefficient
are determined, both integrations overkW i and energy can be
carried out analytically, following the same steps describ
in Sec. II. The expression for the coupling per surface at
then reads

J5Im(
ki

0
(
s51

`
tucsue2i ~sNk'd1cs!

2sNd

3

kBTU]2k'

]kx
2

]2k'

]ky
2 U21/2

sinhF2pkBTS sNd
]k'

]E
1

]cs

]E D G , ~22!

where 2cs is the phase of the Fourier coefficientcs . The
sum overkW i

0 covers all the stationary points ofk' . It should
be noted that Eqs.~22! and ~5! are not identical because th
functions that are Fourier analyzed are different. This is
flected in the Fourier coefficients and, hence, in the struc
of Eqs.~22! and ~5!.

We compare in Fig. 12 our numerical results based
Eqs. ~16! and ~17! ~dashed line! with the SPA calculation
~solid line! based on Eq.~22!, for T5316 K. The dashed line
in Fig. 12 was obtained by Umerski’s method for continuo
N discussed in Sec. III; squares indicate the positions
atomic planes, i.e., the physical Cu thickness. The agreem
between the two calculations is impressive and entirely
tifies the stationary-phase approach. Comparing the cont
ous curve in Fig. 12 for the SPA based on the cleav
formula ~17! with that of Fig. 9, which is based on the spe
tral density in the Cu spacer@Eq. ~5!#, we find only a small
difference in amplitude and phase. It is clear from the res

FIG. 11. ~a! IntegrandF(kW i ,E,N) of Eq. ~16!, at the Fermi

energy and forkW i50 ~belly! shifted to the first period (0,p/k'); ~b!
same for the neck.
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that the SPA formula based on the spectral density in
spacer leads to a slight underestimate of the coup
strength.

Given the high accuracy of the SPA calculation, we ha
used Eq.~22! to calculate the coupling for large Cu thick
nesses~up to 100 atomic planes! both at zero and room tem
peratures to assess the approach of the coupling to the u
asymptotic form}1/N2. The results are shown in Fig. 13.
is clear that Cu thicknesses as large as 50 atomic plane
needed to reach the conventional asymptotic regime at
temperature, and it is never reached at room tempera
relevant to experiment. This shows that fits to the results
numerical calculations or to the experimental values of
coupling in Co/Cu~001! based on the conventiona
asymptotic dependence 1/N2 are unreliable.

FIG. 12. Comparison between the numerical results~squares!
and the stationary-phase calculation~full line! based on Eq.~22! for
T5316 K. The dashed line is the result of a calculation using
closed-form solution to the Green’s functions.

FIG. 13. Dependences ofJ3N2 on the numberN of atomic
planes of Cu obtained from the stationary-phase formula~22! at
room and zero temperatures (J is measured in mRy per surfac
atom!.
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56 11 807QUANTUM-WELL THEORY OF THE EXCHANGE . . .
Finally, we return to the discussion of the relative weigh
of the contributions from the neck and belly extrema of t
Cu FS. This is an interesting and fundamentally import
problem since a simple Ruderman-Kittel-Kasuya-Yos
~RKKY ! -type theory35 predicts that the relative weights o
these two contributions to the coupling are determined
tirely by the curvatures of the Cu FS at the extremal poin
Based on this argument, the RKKY theory predicts35 compa-
rable amplitudes of the belly and neck contributions to
coupling. Rather interestingly, the early calculations of La
et al.20 for Co monolayers embedded in Cu also show t
long- and short-period oscillations have comparable am
tudes.

Our SPA calculation of the coupling for semi-infinite C
layers, described in Sec. II and in this section~see also Ref.
13!, is in sharp contrast with all these results. It shows t
the belly ~long-period! contribution to the coupling is negli
gible. This is clear from a comparison of the belly contrib
tion shown in Fig. 5 with the neck contribution to the co
pling shown in Fig. 9. The same conclusion was reac
independently by Kudrnovsky and co-workers22,19on the ba-
sis of a Fourier analysis of the coupling for semi-infinite C
layers. This is also confirmed by the calculations of No
ström et al.21 and Langet al.36 for Co layers up to 11 ML
thick that show that the neck~short-period! contribution be-
comes dominant. The advantage of the SPA method is th
allows rigorous separation of the coupling into its differe
oscillatory components, yielding their amplitudes, perio
and phases at any temperature.

Given the discrepancy between our results for se
infinite Co layers and the early results of Langet al.20 for Co
monolayers, we have also determined the coupling for
Co monolayers embedded in Cu. We have used in this f
numerical calculation based on Eq.~17! the same set of tight
binding parameters as in our calculation for the trilayer w
semi-infinite Co. The results obtained with 231 and 2775kW i
points in the irreducible two-dimensional Brillouin zone a
shown in Fig. 14. It is clear from Fig. 14 that convergence
this case is achieved with a relatively small number~231! of
kW i . We recall that at least 2775 points are necessary
infinitely thick Co layers. It can also be seen that the init
coupling strength is much larger~0.1 mRy/atom
;3.4 mJ/m2) than for semi-infinite Co. Our results for C

FIG. 14. Exchange coupling between two Co monolayers e

bedded in Cu for two different numbers ofkW i points in the irreduc-
ible Brillouin zone:Ni5231 ~squares!, Ni52775 ~full circles!.
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monolayers are in excellent agreement with those repo
by Lang et al.20 On the other hand, the amplitude of th
dominant short-period oscillation obtained by Nordstro¨m
et al.21 and Langet al.36 for thicker Co layers~five atomic
planes! remains a factor of almost 3 larger than our resu
for semi-infinite Co. This is almost certainly due to the fa
that five atomic planes of Co is not enough to reach
asymptotic regime of thick~semi-infinite! Co layers consid-
ered in our calculations. It is worth noting that our results
semi-infinite Co layers are in excellent agreement with
LMTO calculations of Ref. 19 for the same system. It
interesting that such a very good agreement~the discrepancy
between the two calculations is smaller than 5%) is obtai
when we use the Cu hopping parameters at the Co/Cu in
face. When the geometric mean of the Co and Cu hopp
parameters is used instead, the overall coupling amplit
increases by about 35%.

V. CONCLUSIONS

We have described two complementary approaches
calculating the exchange coupling in magnetic multilaye
The first one is based on an asymptotic expansion of
thermodynamic potential valid for relatively large spac
thicknesses~SPA!. This method provides a clear physic
picture of the coupling, relating the oscillation periods
extremal dimensions of the spacer FS, and the coup
strength and phase to the degree of confinement of carrie
the spacer layer. The latter is determined by matching of
bulk ferromagnet and spacer bands in the direction perp
dicular to the layers at the extremal points of the spacer
In addition, the SPA permits an analytic separation of
contributions to the coupling from each extremal point of t
spacer FS. It also allows us to separate the contribution
up- and down-spin electrons in the ferromagnetic and a
ferromagnetic configurations of the trilayer. Finally, becau
the coupling is linked in this approach directly to the spa
spectral density, it demonstrates explicitly that oscillations
the photoemission intensity10–12 and oscillations of the ex-
change coupling have the same origin, i.e., the passag
quantum-well states across the FS as the thickness of
spacer is varied. The only limitation of this approach as p
sented here is that the spacer Fermi surface can only ha
single sheet for eachkW i . This is of course satisfied for Co
Cu~001!. The generalization of the SPA asymptotic formu
to a multisheet FS was described in Refs. 14 and 23 fo
single-orbital tight-binding band. The application of the SP
method to the most general case of multiorbital band str
ture and multisheet FS will be described elsewhere.

The second approach is fully numerical and has no s
restriction. It is based on a new cleavage formula for
coupling that has an exact correspondence with our orig
quantum-well theory of the coupling.5,6 Moreover, the deri-
vation of the cleavage formula presented in Sec. III sho
explicitly that, for a single-orbital tight-binding band, th
cleavage formula is equivalent to the torque~spin-current!
formula for the coupling.25

The cleavage formula is very convenient from the co
putational point of view since local one-electron Green
functions in only two neighboring atomic planes of th
spacer are required to calculate the coupling. It follows t

-
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the calculation of the coupling for magnetic layers of ar
trary thicknesses requires no more computational effort t
the calculation for magnetic layers containing just o
atomic plane. The stationary phase method can also be
plied to the cleavage formula, which leads to an alterna
asymptotic expression for the coupling.

Finally, using the method of Umerski,15 which yields
closed-form expressions for the local Green’s functions
any layer structure, the coupling can be computed enti
numerically from the cleavage formula for fractional valu
of the interplanar distanced. This method provides a dens
set of points for the coupling restricted to a relatively th
spacer that can be reliably analyzed numerically for perio
amplitudes, and phases of all the oscillatory contributions
the coupling. To achieve the same degree of accuracy
the conventional numerical methods, which give the c
pling on discrete atomic planes only, one would have to
to very large spacer thicknesses where the convergenc
the kW i space becomes poor.

As an illustration, we investigated comprehensively t
oscillatory exchange coupling in Co/Cu~001! using the two
approaches described above. In both calculations, the s
tight-binding parametrization of anab initio band structure
of Cu and Co was used. The results of the fully numeri
calculation for a Co/Cu~001! trilayer with semi-infinite Co,
based on our new cleavage formula for the coupling, are
excellent agreement with the results obtained from
asymptotic expansion of the spectral density~the original
quantum-well theory with SPA!, as well as with the results
of the SPA applied to the cleavage formula. The use of
stationary-phase approximation for systems such as Co
is, therefore, fully justified and brings all the advantag
listed above. In particular, the numerical calculation confir
the result of the SPA that the short-period~neck! oscillation
dominates the coupling in Co/Cu~001! with thick Co layers,
the long-period~belly! oscillation being negligible. The SPA
approach allows us to interpret this result as being due
complete confinement in the FM configuration of the min
ity electrons at the Cu FS necks. The quantum-well state
the Cu FS neck were recently observed by photoemissio12

The SPA asymptotic formula also shows that the init
decay of the coupling with Cu thickness is much slower th
the 1/N2 law that usually holds atT50 K. In fact, the regime
in which the 1/N2 law holds is reached only forN'50 at
zero temperature and is never reached at room tempera
This occurs because of the strong energy dependence o
phase of the coupling, which is due to complete confinem
of the minority carriers at the Cu FS necks. On the ot
hand, the asymptotic decay of the belly contribution to
coupling obeys the usual 1/N2 law. We stress that the SPA
method provides for each component of the oscillatory c
pling the correct dependence@Eq. ~22!# on the Cu thickness
N at an arbitrary temperature. The dependences on Cu th
ness obtained from Eq.~22! are very accurate beginnin
from some 10 atomic planes of Cu and these are
asymptotic laws that should be used to analyze experime
data and the results of numerical calculations.

The strong energy dependence of the phase at the C
necks leads also to a strong temperature dependence o
total coupling which is dominated by the neck contributio
The belly contribution, on the other hand, hardly change
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all between zero and room temperatures.
There is now a theoretical consensus~Refs. 22,13,21, and

37! that the short-period~neck! contribution to the coupling
in Co/Cu~001! with thick Co layers dominates the total cou
pling. However, the magnitude of the coupling at the fi
antiferromagnetic peak'1.2 mJ/m2 we have determined
numerically from the cleavage formula is a factor of almos
smaller than the result of Nordstro¨m et al.and Langet al. for
Co layers containing five atomic planes of Co.21,36 This is
most likely due to the fact that the asymptotic limit of thic
~semi-infinite! Co layers we consider was not reached
their calculations. Rather interestingly, the coupling we o
tain for 2 ML of Co embedded in Cu is virtually identical t
the coupling curve obtained by Langet al.20 for the same
system. There is, therefore, complete agreement betwee
two sets of calculations for Co monolayers. They show
much larger total coupling strength'3.4 mJ/m2 and com-
parable amplitudes of the short- and long-period oscillatio

Finally, we comment on the SPA calculation of Lee a
Chang,37 which is based on the reflection coefficient meth
of Bruno and Stiles.8,9 The coupling strength reported by Le
and Chang is a factor of 8 larger than the value'1.2 mJ/m2

we obtain. This is almost certainly due to the fact that th
have neglected in the SPA the energy dependence of
phase, which is a crucial factor at the neck extrema of the
FS.

As far as the experimental situation is concerned, the
perimental results of Johnsonet al.34 for thick Co layers
seem to indicate that the amplitudes of the short- and lo
period oscillations of the coupling are comparable. This c
tradicts all the theoretical results referred to above, but it
to be borne in mind that all the calculations were made
suming perfect Co/Cu interfaces. It is reasonable to exp
that interfacial roughness would tend to suppress the sh
period oscillations. In fact, most recent experiments of W
ber, Allenspach, and Bischof38 using a scanning electro
miscroscope with polarization analysis~SEMPA!, which
were performed on a series of Co/Cu samples, show t
while the long-period oscillation is seen in samples with re
tively ‘‘poor’’ interfaces, the short-period oscillation be
comes totally dominant for the ‘‘best’’ samples. Weber, A
lenspach, and Bischof38 estimate that, for their best sample
the amplitude of the short-period oscillation is a factor of
larger than that of the long-period oscillation. Unfortunate
SEMPA does not yield the absolute values of the coupling
would, therefore, be very desirable to perform MOKE me
surements on the best samples of Weber, Allenspach,
Bischof. Such measurements might well yield a greater c
pling strength, i.e., closer to the calculated values than
coupling strength obtained by Johnsonet al.34
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