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Mean-field theory of the transverse-field Ising spin glass in the classical limit
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An infinite-range transverse-field Ising spin glass is studied in the classical limit. At theT50 phase tran-
sition the nonlinear susceptibility diverges as a function of the field with an exponent of 1/2 which is equal to
the quantum estimates but without a multiplicative logarithmic correction. The replica-symmetric solution fails
at T50 below the critical value of the transverse field. Equations that break the replica symmetry are con-
structed and are shown to be harder to solve than in the absence of the transverse field. In the absence of the
transverse field their solution agrees with that of Sommers and Dupont@J. Phys. C17, 5785 ~1984!#.
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I. INTRODUCTION

The transverse-field Ising model, uniform or exchan
disordered, undergoes two different phase transitions: t
mal and at zero temperature (T50).1 The latter takes place
at G5Gc , whereG is the transverse field andGc is its critical
value. The thermal transition is driven by thermal fluctu
tions and is best understood forG50. A mean-field accoun
of these fluctuations becomes exact above an upper cri
dimensionalityDc . The T50 transition is driven by the
ground-state reconstruction and it is affected by quan
zero-point fluctuations. The renewed interest in quant
spin glasses was stimulated by recent experiments2 on the
dipolar Ising magnet LixHo12xYF4, where Tc was varied
down to zero by the application of a transverse magn
field G. Therefore it became possible to study the quant
transition by simply tuning the external field.

The T50 transition in quantum spin glasses has be
studied in the mean-field approximation.3 In particular,
Miller and Huse4 have found that the nonlinear susceptib
ity, xnl , diverges with an exponentg̃51/2 at Gc which is
equal to twice the characteristic value of the exchange c
plings ~their dispersion!. In a related study of the quantum
XY spin glass in transverse field, Pazmandi and Doman5

have also foundg̃51/2 at theT50 transition.
In this paper, we consider the classical limit of the tran

verse Ising spin-glass model and study it within the me
field approximation which should be appropriate for a su
ciently large dimensionalityD. By comparing our results to
those obtained for the quantum models we demonstrate
the T50 transition is classical in the mean-field limit. No
only g̃ is equal to 1/2 but alsoGc takes on the classical value
In finite dimensionalities, the quantum fluctuations beco
relevant. The three-dimensional~3D! Monte Carlo simula-
tions of the quantum spin glasses by Guo, Bhatt, and Hu6

yield g̃'2.8 which is close to theg̃ of 2.9 for the thermal
transition.7 On the other hand, forD52, Rieger and Young8
560163-1829/97/56~18!/11715~6!/$10.00
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get g̃'4.5. Both of these values are significantly larger th
1/2. Read, Sachdev and Ye9 have demonstrated that abov
D58 both of the quantum transverse Ising model and
quantum rotor model are governed by the Gaussian fi
point of the replica theory.

The quantum mean-field result4 has logarithmic correc-
tions to the power-law behavior ofxnl . Such corrections can
be traced as being due to an extra approximation regar
integration over the Matsubara frequency—a feature wh
will be shown here to disappear in the purely classical tre
ment.

In the next section of this paper, we discuss the repli
symmetric solution of the mean-field equations for the cl
sical transverse field Ising model. We extend the work
Pirc, Prelovsˇek, and Tadic´10 to the calculation of the nonlin-
ear susceptibility and demonstrate that the replica-symme
treatment is inappropriate forG,Gc : the nonlinear suscep
tibility is diverging with twice as big an exponent than abo
Gc . It should be noted that the question about the nature
the spin-glass phase atT50 is very subtle. The authors o
Ref. 3 and 11 claimed that the replica symmetry is broken
the whole spin-glass phase. Note that no direct result for
T50 case has been presented in Ref. 3. Recently Read
chdev, and Ye9 have demonstrated that the replica symme
is broken anywhere except atT50. We show in this paper
that the replica symmetry is in fact broken atT50 for G
,Gc . The difference between our results and theirs may
due to the fact that we consider the infinite range interact
whereas the interaction in Ref. 9 is short range.

In Sec. III, we construct a mean-field theory that brea
the symmetry of the replicas and attempt to calculate
susceptibility numerically. Unfortunately, the integration s
bility requires a lot of discretization steps which are beyo
our facilities. We demonstrate, however, that our appro
agrees with that of Sommers and Dupont12 in the limit of
zero transverse field.
11 715 © 1997 The American Physical Society
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II. REPLICA-SYMMETRIC APPROACH

The transverse-field Ising model is described by
Hamiltonian given by

H52(
iÞ j

Ji j Si
zSj

z2G(
i

Si
x1H(

i
Si

z . ~1!

In the classical limit,Si
z and Si

x become components of
classical unit vector such that (Si

z)21(Si
x)251.

We will study model~1! in the mean-field approximation
Standard methods yield7,13 the replica-symmetric equation
for magnetizationm, Edwards-Anderson parameterq, and
quadrupolar parameter in the following form:

m5
1

A2p
E

2`

`

dy exp~2y2/2!
C1~q,p!

C0~q,p!
, ~2!

q5
1

A2p
E

2`

`

dy exp~2y2/2!FC1~q,p!

C0~q,p!G
2

, ~3!

and

p5
1

A2p
E

2`

`

dy exp~2y2/2!
C2~q,p!

C0~q,p!
, ~4!

where

Cn~q,p!5
1

2p E
0

2p

dw cosnw expFb~H1Jq1/2y!cosw

1bG sinw1b2J2
~p2q!

2
cos2wG . ~5!

Here H denotes an external field,J25S j@Ji j
2 #av, b

51/kBT, and @•••#av denotes an average over random co
plings Ji j . For simplicity we consider units in whichJ51.
According to Pirc, Prelovsˇek, and Tadic´10 the susceptibilityx
is given byx5b(p2q) and we expect that it is finite at zer
temperature. The integral expression forCn(q,p), Eq. ~5!,
can be reduced to the following form:

Cn~q,p!5
~21!n

p E
21

1 dS

A12S2
Snexp@bg~S!#, ~6!

where

g~S!5bFxS1
x

2
S21

1

b
ln cosh~bGA12S2!G ~7!

with x5H1q1/2y.
For largeb(T→0) the integral~6! can be calculated by

the steepest descent method. Thus one obtains

Cn~q,p!'
~21!n

p

1

A12S0
2

S0
nexp@bg~S0!#, ~8!

whereS0 is the value ofS at which g(S) has a maximum.
The necessary condition for the maximumg(S) is

g8~S!52x1Sx2
GS

A12S2
50. ~9!
e

-

For x50 Eq. ~9! has two solutions:S050 andA12G2/x2

whenG.x andG,x, respectively. We are interested in th
caseG.x, which is true near the transition point.

In order to investigate critical properties of the system
T50 we assume that the transverse fieldG is very close to
its critical valueGc and thatH!1. Under these conditions,x
is a small parameter and we can solve Eq.~9! perturbatively
with respect tox. Up to third order we have

S0~x!5
2x

G2x
1

x3G

2~G2x!4 1••• . ~10!

On substituting this form ofS0(x) into Eq. ~9! and then to
Eqs.~2!–~4! one obtains

m5
H

G2x
2

3

2

GqH

~G2x!42
GH3

2~G2x!4 ~11!

and

q5p5
~H21q!

~G2x!22
G

~G2x!5 ~H416H2q13q2!. ~12!

For a smallH we introduce the following definitions:

m5xH1xnlH
31O~H5!, ~13!

wherex andxnl are the linear and nonlinear susceptibilitie
respectively, and

q5q01q2H21O~H4!. ~14!

By expanding the right-hand sides of Eqs.~11! and ~12! up
to the third- and second-order terms inH, respectively, we
get the following equations:

x5
1

G2x
2

3Gq0

2~G2x!4 , ~15a!

q05
q0

~G2x!22
3Gq0

2

~G2x!5 , ~15b!

q25
1

~G2x!22
6Gq0

~G2x!5 1
q2

~G2x!2 F12
6Gq0

~G2x!3G
~15c!

and

xnl52
3Gq2

2~G2x!4 . ~15d!

Now we will solve Eqs.~15a!–~15d! for the paramagnetic
phase withq050 asG→Gc . For the linear susceptibility, in
agreement with Ref. 10, we get

x5
G2AG224

2
'12~G2Gc!

1/21O~G2Gc! ~16!

with Gc52 ~a self-consistent derivation ofGc is given in
Appendix A!. The critical behavior of parametersq2 andxnl

asG→Gc
1 is given by

q25
1

2
~G2Gc!

21/2 ~17!
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and

xnl52
3

2
~G2Gc!

21/2. ~18!

So g̃51/2. This result forxnl is different and the critical
exponent coincides with the quantum result except for
lack of any logarithmic correction, as discussed in the Int
duction. Note that the nonlinear susceptibility has the ne
tive divergence as in the quantum case.6,8

We now apply the replica-symmetric theory to the sp
glass phase, i.e., whenG,Gc . In the spin-glass phase th
nonzero solution of Eq.~15b! is

q05
1

3G
~G2x!3@12~G2x!2#. ~19!

On substituting Eq.~19! into Eq. ~15a! we get

x5
2G2AG223

3
'12

1

6
~Gc2G!2 ~20!

asG→Gc
2 . With the help of Eqs.~19! and ~20! we get

q0'
Gc2G

3
~21!

whenG→Gc
2 . This result coincides with the one obtained

Ref. 10. From Eq.~15c! we get, forG→Gc
2 ,

q25
1

2~Gc2G!
. ~22!

By taking into account Eqs.~22! and ~15d! we obtain

xnl'2
3

2

1

Gc2G
. ~23!

From Eq. ~23! it is seen thatg̃51 asG→Gc
2 which is

different fromg̃51/2 from aboveGc . The fact thatg̃ below
Gc becomes larger than aboveGc itself signifies that the
replica-symmetry solution is not adequate and one ha
apply the replica-symmetry-breaking theory. Before do
this, we study the stability of the replica-symmetry~RS! so-
lution in more detail using the de Almeida–Thoule
approach.14

Following Ref. 13 we consider the following quantity:

l5P22Q1R. ~24!

The definitions ofP, Q, andR are given in Appendix B. If
l.0 then the RS solution is stable. Otherwise it is unsta
The case ofl50 corresponds to the de Almeida–Thoule
line. After tedious calculations~see Appendix B! we have

l512b2E
2`

` dy

A2p
exp~2y2/2!@C2 /C02~C1 /C0!2#2.

~25!

If we setl50 then we have the de Almeida–Thouless lin
Using the definition ofCn from Eq.~5!, l has the follow-

ing simple form~see Appendix B!:

l512~G2x!22. ~26!
e
-
a-

-

to
g

.

.

Now we considerl close toGc . For G→Gc
1 we have

G2x'11~G2Gc!
1/2,

l'2~G2Gc!
1/2.0 ~27!

and the replica-symmetry solution is, as expected, sta
aboveGc .

For G→Gc
2 simple calculations give

G2x'12~Gc2G!,

l'22~Gc2G!,0. ~28!

Therefore the replica-symmetry solution is unstable bel
Gc . In agreement with the result of Ref. 11, this conclusi
is also valid for the corresponding quantum model. T
proof in the quantum case is, however, much more involv

III. REPLICA-SYMMETRY-BREAKING SOLUTION

Below the de Almeida–Thouless line the replic
symmetry solution is no longer valid. Then the nonergo
phase should be characterized by the Parisi order-param
function q(x). Using the Parisi ansatz,7,13,15 the Duplantier
method,16 and the Sommers-Dupont variational procedur12

one can obtain the following equations forq(x) and magne-
tization m:

m5E
2`

`

P~0,y!m~0,y!dy, ~29!

q~x!5E
2`

`

P~x,y!„m~x,y!…2dy. ~30!

The distribution functionP(x,y) and m(x,y) obey the fol-
lowing equations:

Ṗ~x,y!5
q̇~x,y!

2
P9~x,y!1Ḋ~x!„m~x,y!P~x,y!…8

~31!

with the boundary

P~0,y!5„2pq~0!…21/2exp@2~y2H !2/2q~0!# ~32!

and

ṁ~x,y!5q̇~x!m9~x,y!1Ḋ~x!m~x,y!m8~x,y! ~33!

with the initial condition

m~1,y!5
D1~y!

D0~y!
. ~34!

Here a dot and a prime denotes differentiation with respec
x andy, respectively. FunctionDn(y) is as follows:

Dn~y!5
1

2p E
0

2p

dw cosnw expF y

T
cosw1

@p2q~1!#

2T2

3cos2w1
G

T
sinw G . ~35!

We have also obtained the equations for gauge func
D(x) and quadrupolar parameterp
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p2q~1!

T
1D~x!5E dy P~x,y!m8~x,y!, ~36!

p5E dy P~1,y!
D2~y!

D0~y!
. ~37!

To solve the diffusionlike equations~31! and~33! numeri-
cally we transform them into the following integra
equations:17,18

m~x,y!5E
2`

`

G~x,y;1,y8!m~1,y8!dy8

2E
x

1

dx8Ḋ~x8!E
2`

`

dy8G~x,y;x8,y8!

3m~x8,y8!m8~x8,y8!, ~38!

P~x,y!5„2pq~x!…21/2exp@2~y2H !2/2q~x!#

1E
0

x

Ḋ~x8!E
2`

`

dy8G~x8,y8;x,y!

3„m~x8,y8!P~x8,y8!…8, ~39!

where the Green function is given by

G~x,y;x8,y8!5@2p„q~x8!2q~x!…#21/2

3exp@2~y2y8!2/2„q~x8!2q~x!…#.

~40!

We now can solve Eqs.~38!, ~39!, ~36!, and~30! iteratively.
Note that becauseD(x51)50 we can use Eq.~36! to find x
~at x51! andD(x) ~at xÞ0!. At T50 we have to use

x5
p2q~1!

T
~41!

and the boundary valuem(1,y) in the following way. The
form of Eq. ~34! suggests thatm(1,y) may be obtained by
the steepest descent method andm(1,y)5S0 , where atS0
the function

A~S!5yS1xS21G~12S2!1/2 ~42!

has a maximum.
WhenP(x,y) andm(x,y) are found we can use Eq.~29!

to obtain the magnetization and therefore the nonlinear
ceptibility

xnl5@m~2DH !22m~DH !12m~2DH !

2m~22DH !#/~2DH !3. ~43!

The iterative procedure is to take place in the order:
~38! → Eq. ~39! → Eq. ~29! → Eq. ~30! → Eq. ~36! → Eq.
~38!. In order to perform the iterations numerically, we d
cretized the variablesx andy, dividing the interval@0,1# into
Nx pieces and the interval@25,5# into Ny pieces@y is chosen
in this interval becauseP(x,y) should be very small for
larger uyu#, respectively. The convergence of the numeri
iteration is monitored by the maximum variance of all of t
variablesm, q, P, andD. In order to check the numerica
s-

.

l

algorithm we have checked the results obtained by Somm
and Dupont12 for the standard Ising spin glass forT50 and
H50 ~here the replica-symmetry-breaking equations
similar to ours but with different boundary conditions!. If we
use the same model gaugeD(x)512x as in Ref. 12, then
we can reproduce their results as shown in the inset of Fig
We can show that even in the Ising spin-glass case~without
the transverse field! it is much harder to solve the replica
symmetry equations atT50 without assuming an analyti
form of the gauge. It may be seen in Fig. 1, where the ma
mal variance of all of the variablesm, q, P, andD is plotted
versus the iteration steps.

The difficulty mentioned above remains in the transver
field case where one could not fix the gaugeD(x) but solve
the equations self-consistently atT50. We can show that
even the choice ofNx580 andNy5800 does not guarante
the stability of the numerical procedure. Figure 2 shows
dependence of the maximum variance of all of the variab
m, q, P, andD on iteration steps for several different valu
of Nx andNy . The Hamiltonian parameters are chosen to
G51.8 andH50.1. The minimal value of the maximum
variance is about 0.02 forNx580 andNy5800. Further it-
eration leads to the instability~the situation does not chang
if one chooses other sets of parameters!. Unfortunately, due
to limitation of computational facilities we could not go t
larger values ofNx and Ny . We expect, however, that th
correct solution of the replica-symmetry-breaking equatio
would give the nonlinear susceptibility with the exponent
1/2 below the transition line.

We have also considered the classical limit of the tra
verse fieldXY model. Similar to the Ising case, the critic
field atT50 is found to be equal toGc52 and the nonlinear

FIG. 1. The dependence of the maximum variance of all of
variablesm, q, P, andD on iteration steps for the standard Isin
spin glass atT50 andH50 ~Nx520, Ny5200!. The choice of the
gaugeD(x)512x guarantees much better stability of the nume
cal procedure. The inset shows the dependence of the Parisi f
tion q(x) on x. The solid line corresponds to our results obtain
for Nx520. The results of Sommers and Dupont~Ref. 12! ~dashed
line! correspond toNx5160.
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susceptibility exponentg̃51/2. Our results agree with thos
of Pazmandi and Domanski.5 It would be interesting to study
the classical limit of the quantum models in finite dimensio
to explore the role of quantum fluctuations.

ACKNOWLEDGMENTS

Discussions with T. Kopec´ and H. Rieger are appreciate
This work was supported by the Polish agency KBN~Grant
No. 2P302 127 07!.

APPENDIX A

The critical value ofG at T50 can be calculated by tak
ing into account the form of linear susceptibilityx ~16!. It is
seen thatx is real asG.Gc52. However there exists a
alternative method to calculateGc . We start from the follow-
ing relation for the transition point valid at any temperatu

Tc5
C2~0,p!

C0~0,p!
~A1!

and

pc5Tc , ~A2!

whereCn(q,p) is defined by Eq.~5!. By plugging Eq.~A2!
into the definition ofCn(0,p) one obtains

Cn~0,p!5
1

2p E
0

2p

dw cosnw

3expFbcS Gcsinw1
cos2w

2 D G . ~A3!

After the following change of variable: cosw5zATc, where
Tc is expressed inJ unit, we get

FIG. 2. The dependence of maximum variance on iterat
steps. The values ofNx andNy are shown next to the curves. W
choseG51.8 andH50.1.
s

:

Cn~0,p!5
~21!n

p
Tc

~n11!/2

3E
2Abc

Abc dz

A12Tcz
2

zn

3expS 1

2
z2D cosh~bcGcA12Tcz

2!. ~A4!

For Tc→0, i.e., largebc the asymptotic form ofCn(0,p) is

Cn~0,p!'
~21!n

p
Tc

~n11!/2 cosh~bcGc!

3E
2`

`

dz znexpF2
~Gc21!

2
z2G . ~A5!

With the help of Eq.~A5! the condition~A1! takes the form
for Gc.1

15
1

Gc21
. ~A6!

HenceGc52.

APPENDIX B

In order to derive Eq.~25! for l we use the following
expression of the free energy per one spin (H50):

f 5 lim
n→0

1

n H b

4 (
a51

n

pa
21

b

2 (
a.a8

n

qaa8
2

2b21

3 ln Tr expFbG (
a51

n

Sa
x 1

b2

2 (
a51

n

pa~Sa
z !2

1b2 (
a.a8

n

qaa8Sa
z Sa8

z G J , ~B1!

where the replica indexa51,...,n; pa andqaa8 are quadru-
polar and spin-glass parameters, respectively. The symbo
in Eq. ~B1! means that

Tr$A%5
1

~2p!n E
0

2p

)
a51

n

dfaA. ~B2!

One can show thatP, Q, and R in Eq. ~24! may be
written as follows:

P5nb21]2f /]qaa1

2

512b2@^~Sa
z !2Sa1

z !2&2^Sa
z Sa1

z &2], ~B3!

Q5nb21]2f /]qaa1
]qaa2

52b2@^~Sa
z !2Sa1

z Sa2

z &2^Sa
z Sa1

z &^Sa
z Sa2

z &# ~B4!

with a1Þa2 , and

R5nb21]2f /]qaa1
]qa2a3

n



f-

11 720 56MAI SUAN LI, KRZYSZTOF WALASEK, AND MAREK CIEPLAK
52b2@^Sa
z Sa1

z Sa2

z Sa3

z &2^Sa
z Sa1

z &^Sa2

z Sa3

z &#. ~B5!

In Eqs.~B3!–~B5! the symbol̂ •••& denotes averaging within
the framework of the replica-symmetry theory with the e
fective HamiltonianHeff

Heff5
x

2 (
a51

n

~Sa
z !21

bq

2 S (
a51

n

Sa
z D 2

1G (
a51

n

Sa
x . ~B6!

After standard transformations we get

P512b2E
2`

` dy

A2p
exp~2y2/2!

3@C2~q,p!C0~q,p!#21b2q2, ~B7!

Q52b2E
2`

` dy

A2p
exp~2y2/2!

3
C2~q,p!

C0~q,p!
@C1~q,p!/C0~q,p!#21b2q2, ~B8!

and

R52b2E
2`

` dy

A2p
exp~2y2/2!

3@C1~q,p!/C0~q,p!#41b2q2, ~B9!

where Cn(q,p) is given by Eq.~5! with H50. Plugging
~B7!–~B9! into Eq. ~24! we obtain Eq.~25!.
H.
Using Eq. ~5! ~with H50! and changing the variable
cosf5b21/2z one has

Cn~q,p!5
~21!n

p
b2~n11!/2E

2Ab

Ab
dz~12b21z2!1/2zn

3cosh@bG~12b21z2!1/2#exp~xz2/22Abqyz!.

~B10!

In the b→` limit Cn(q,p) has the form

Cn~q,p!5
~21!n

p
b2~n11!/2 cosh~bG!

3E
2`

`

dz znexpS 2
G2x

2
Z22AbqyzD .

~B11!

With the help of the last equation we obtain

$C2~q,p!/C0~q,p!2@C1~q,p!/C0~q,p!#2%25
b22

~G2x!2 .

~B12!

Substituting Eq.~B12! into Eq.~25! we come to the stability
condition ~26! in the main text.
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