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Mean-field theory of the transverse-field Ising spin glass in the classical limit
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An infinite-range transverse-field Ising spin glass is studied in the classical limit. Afth@ phase tran-
sition the nonlinear susceptibility diverges as a function of the field with an exponent of 1/2 which is equal to
the quantum estimates but without a multiplicative logarithmic correction. The replica-symmetric solution fails
at T=0 below the critical value of the transverse field. Equations that break the replica symmetry are con-
structed and are shown to be harder to solve than in the absence of the transverse field. In the absence of the
transverse field their solution agrees with that of Sommers and DudorfPhys. C17, 5785 (1984)].
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[. INTRODUCTION gety~4.5. Both of these values are significantly larger than
1/2. Read, Sachdev and ¥kave demonstrated that above
The transverse-field Ising model, uniform or exchangeD=8 both of the quantum transverse Ising model and the
disordered, undergoes two different phase transitions: theguantum rotor model are governed by the Gaussian fixed
mal and at zero temperatur@ £0).! The latter takes place point of the replica theory.
atI'=TI";, wherel is the transverse field afd, is its critical The quantum mean-field restibas logarithmic correc-
value. The thermal transition is driven by thermal ﬂUCtua'tions to the power-|aw behavior qfnl' Such corrections can
tions and is best understood fbr=0. A mean-field account pe traced as being due to an extra approximation regarding
of these fluctuations becomes exact above an upper criticghtegration over the Matsubara frequency—a feature which

dimensionalityD.. The T=0 transition is driven by the ;|| be shown here to disappear in the purely classical treat-
ground-state reconstruction and it is affected by quantump,ont

zero-point fluctuations. The renewed interest in quantum

. . : In the next section of this paper, we discuss the replica-
spin glasses was stimulated by recent expeririemtsthe

dinolar 1si t LH VE here T iod symmetric solution of the mean-field equations for the clas-
Ipolar Ising magnet LHo, YF,, where T, was varie sical transverse field Ising model. We extend the work of

down to zero by the application of a transverse magnen(l‘:im' Prelovsk, and Tadit’ to the calculation of the nonlin-

field I'. Therefore it became possible to study the quantum tibilit dd trate that th i i
transition by simply tuning the external field. ear susceplibility and demonstrate that the replica-symmetric

The T=0 transition in quantum spin glasses has beer{re_a}tm_ent.is ingppro_priatg fd?<r,0: the nonlinear suscep-
studied in the mean-field approximatidnin particular, tibility is diverging with twice as big an exponent than above
Miller and Husé have found that the nonlinear susceptibil- L ¢+ It should be noted that the question about the nature of
ity, x,y, diverges with an exponefi=1/2 atT'. which is the spin-glass phase a0 is very subtle. The quthors of.
equal to twice the characteristic value of the exchange couRef. 3 and 11 claimed that the replica symmetry is broken in
plings (their dispersion In a related study of the quantum the whole spin-glass phase. Note that no direct result for the
XY spin glass in transverse field, Pazmandi and DomanskiT =0 case has been presented in Ref. 3. Recently Read, Sa-
have also foundy=1/2 at theT=0 transition. chdev, and Y&have demonstrated that the replica symmetry

In this paper, we consider the classical limit of the trans-is broken anywhere except @t=0. We show in this paper
verse Ising spin-glass model and study it within the meanthat the replica symmetry is in fact broken B&0 for I
field approximation which should be appropriate for a suffi-<I",. The difference between our results and theirs may be
ciently large dimensionalityp. By comparing our results to due to the fact that we consider the infinite range interaction
those obtained for the quantum models we demonstrate thathereas the interaction in Ref. 9 is short range.
the T=0 transition is classical in the mean-field limit. Not  In Sec. lll, we construct a mean-field theory that breaks
only’y is equal to 1/2 but alsb . takes on the classical value. the symmetry of the replicas and attempt to calculate the
In finite dimensionalities, the quantum fluctuations becomesusceptibility numerically. Unfortunately, the integration sta-
relevant. The three-dimensioné8D) Monte Carlo simula- bility requires a lot of discretization steps which are beyond
tions of the quantum spin glasses by Guo, Bhatt, and Huseour facilities. We demonstrate, however, that our approach
yield 3~2.8 which is close to th& of 2.9 for the thermal agrees with that of Sommers and Dugdrin the limit of
transition/ On the other hand, fdb =2, Rieger and Yourfy  zero transverse field.
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Il. REPLICA-SYMMETRIC APPROACH

The transverse-field Ising model is described by th
Hamiltonian given by

H= —g JiSIS-T 2 SH+HY S (1)

1 #] i i
In the classical limit,S’ and S become components of a
classical unit vector such thag{)2+ (S)?=1.

We will study model(1) in the mean-field approximation.
Standard methods yield® the replica-symmetric equations
for magnetizationm, Edwards-Anderson parameter and
guadrupolar parameter in the following form:

1o . Caap)
m_ﬂf_wdyexq Y2 eaqm @
:L ” 2 {Cl(qrp)r
a ﬂfwdyex'o( Y2 eam) @
and
:L * 2 CZ(Qap)
p ﬂf_wdyexp( y“12) Colap)’ 4
where

1 2w U
Cn(q,p)=zf0 de cos'e exp B(H+Jq"y)cosp

(p—q)
2

Here H denotes an external fieIdJ2=2j[Ji2]-]a\,, B

+ BI" sing+ B2J?

coSe]|. (5)

=1/kgT, and[---],, denotes an average over random cou-

plings J;; . For simplicity we consider units in which=1.
According to Pirc, Preloek, and Tadit’ the susceptibilityy

is given byxy= B(p—q) and we expect that it is finite at zero
temperature. The integral expression @(q,p), Eg. (5),
can be reduced to the following form:

cram=l [M 2 sexipas) ©
T o1 J1-¢°

where
g(S=p
with x=H +q'?y.

For large3(T—0) the integral(6) can be calculated by
the steepest descent method. Thus one obtains

1
XS+ g S+ 2 IncosiArV1-§)| ()

n

Cn(q,p)~ Soexd B9(Sp)],  (8)

1
V15
where S, is the value ofS at whichg(S) has a maximum.
The necessary condition for the maximgts) is

rs

-5

9'(§)=—x+Sx— 9
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For x=0 Eq.(9) has two solutionsS,=0 and y1—T7?/?
whenI >y andI'<y, respectively. We are interested in the
casel'> y, which is true near the transition point.

In order to investigate critical properties of the system at
T=0 we assume that the transverse fiElis very close to
its critical valuel'; and thatH <1. Under these conditions,
is a small parameter and we can solve B).perturbatively
with respect tax. Up to third order we have

X x3T
MOy Tt T

(10

On substituting this form o5y(x) into Eqg. (9) and then to
Egs.(2)—(4) one obtains

_ H 3 TIgH rH3
TT—x 2(T—x* 2(T—x)*

m (11)

and

__(H+q)
P T |

r
=38 (H*+6H2%q+3g%). (12

For a smallH we introduce the following definitions:
m=xH+ x,H3+ O(H®), (13

wherey and y,, are the linear and nonlinear susceptibilities,
respectively, and

q=qo+gH?+O(H?). (14)

By expanding the right-hand sides of Eq$1l) and (12) up
to the third- and second-order termsHh respectively, we
get the following equations:

1 3l'qe
AT il (153
Yo 3rqg
=2 T (15D
_ 1 _ 6I'qo . d; {1_ GFQO}
LT T T T2 T—x)7°
(150
and
3r
a2 (150)

T

Now we will solve Eqs(158—(150) for the paramagnetic
phase withgy=0 asI'—T'... For the linear susceptibility, in
agreement with Ref. 10, we get

r—\r2—4
X=——5—=1-(I-T)"+O0('-Ty) (16
with T';=2 (a self-consistent derivation df. is given in
Appendix A). The critical behavior of parametegs and y,,

asI'—T] is given by

1
G2=75 (F—T¢) 12 (17)
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and Now we considei close tol',. ForI'—I'J we have

3 [—x~1+(T'-TyY3
xn=—5 (T=T)~*2 18 A

_ A=2(I'-Ty¥*>0 (27)
So y=1/2. This result fory,, is different and the critical ) o
exponent coincides with the quantum result except for thénd the replica-symmetry solution is, as expected, stable
lack of any logarithmic correction, as discussed in the Intro-2bovel’c.
duction. Note that the nonlinear susceptibility has the nega- ForI'—1I'c simple calculations give
tive divergence as in the quantum c&Se.

We now apply the replica-symmetric theory to the spin- I=x~1-(T-D),
glass phase, i.e., whdn<TI';. In the spin-glass phase the o _
nonzero solution of Eq(15b) is A~—2(e=T)<0. (28)

Therefore the replica-symmetry solution is unstable below

1 I'c. Ina i i i
T (T A3[1 (T — N2 c- greement with the result of Ref. 11, this conclusion
Yo 3r (F=0T1= T =) (19 is also valid for the corresponding quantum model. The
On substituting Eq(19) into Eq. (158 we get proof in the quantum case is, however, much more involved.
2T—T2=3 1 lll. REPLICA-SYMMETRY-BREAKING SOLUTION
x=——"F7—=~1-2(I'-I)? (20) . . .
3 6 Below the de Almeida—Thouless line the replica-

symmetry solution is no longer valid. Then the nonergodic
phase should be characterized by the Parisi order-parameter
I—T function g(x). Using the Parisi ansafZ>'°the Duplantier
do~—3 (2)  method® and the Sommers-Dupont variational procedtire
one can obtain the following equations fgpfx) and magne-
whenI'—T'_ . This result coincides with the one obtained in tization m:
Ref. 10. From Eq(150 we get, forl' =T, ,

asI’—TI'; . With the help of Eqs(19) and(20) we get

1 m= Jf P(0y)m(0y)dy, (29
o) 2
By taking into account Eqg22) and (15d) we obtain a(x)= f_wP(x,y)(m(x,y))zdy. (30
. § 1 23 The distribution functionP(x,y) andm(x,y) obey the fol-
X == o T —T° @3 |owing equations:
From Eq.(23) it is seen thafy=1 asT'—TI', which is : _ axy) _, : )
different from?y=1/2 from abovd’.. The fact thaty below Px.y) 2 F (y) FACOMOx,Y) P(x.y)

I'; becomes larger than aboué, itself signifies that the (31
replica-symmetry solution is not adequate and one has WQith the boundary
apply the replica-symmetry-breaking theory. Before doing

this, we study the stability of the replica-symmetRS) so- P(0y)=(2mq(0))" Y2exd — (y—H)?2q(0)] (32
lution in more detail using the de Almeida—Thouless
approach and

Following Ref. 13 we consider the following quantity: M(X,y) = G()m’(x y)+A(x)m(x ym(xy) (33

A=P—-2Q+R. (24 with the initial condition
The definitions ofP, Q, andR are given in Appendix B. If D.(y)
A>0 then the RS solution is stable. Otherwise it is unstable. m(1y)= vy (34)
The case ol =0 corresponds to the de Almeida—Thouless Do(y)
line. After tedious calculationésee Appendix Bwe have Here a dot and a prime denotes differentiation with respect to
g x andy, respectively. Functio®(y) is as follows:
= ay
)\=1—,82f —— exp(—y?/2)[C,/Cy— (C1/Cy)?]?. 1 (2 y [p—q(1)]
—w 27 = = —_—
Dy(y) 27 Jo do cod'p ex;{_l_ cosp+ >T2
(25)
If we setA =0 then we have the de Almeida—Thouless line. r
Using the definition ofC,, from Eq.(5), A has the follow- X coSp+ T Sing . (35

ing simple form(see Appendix B
We have also obtained the equations for gauge function
A=1-(T—-x)"2 (26) A(x) and quadrupolar parametpr
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—q(1
P 2( )+A(x)=de PO.y)m'(xy),  (36)
Da(y)

To solve the diffusionlike equatior{81) and(33) numeri-

cally we transform them into the following integral
equations-"18
m(x,y)=f7 G(x,y;1y")m(1y")dy’
1 . 0
_f dX’A(X’)f dy'G(x,y;x",y")
X —
xm(x',y")ym’(x",y"), (39

P(x,y)=(@2mq(x))" exil — (y—H)%20q(x)]
+f0 A(X’)ﬁxdy’G(X’,y’;x,y)

X(m(x",y")P(x"y")", (39

where the Green function is given by
G(xy;x",y" ) =[2m(@(x") = q(x))] "
X exg —(y—y’)%2(q(x") —q(x))].
(40)

We now can solve Eq$38), (39), (36), and(30) iteratively.
Note that becaus&(x=1)=0 we can use Eq36) to find xy
(atx=1) andA(x) (atx#0). At T=0 we have to use

p—a(l)
XY=

T (41)

and the boundary valum(1y) in the following way. The
form of Eq. (34) suggests tham(1l,y) may be obtained by
the steepest descent method anflL,y)=S,, where atS,
the function

A(S)=yS+xSP+T'(1-SH)? (42)

has a maximum.
WhenP(x,y) andm(x,y) are found we can use E¢R9)
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FIG. 1. The dependence of the maximum variance of all of the
variablesm, g, P, andA on iteration steps for the standard Ising
spin glass af =0 andH =0 (N,=20,N,=200). The choice of the
gaugeA(x) =1—x guarantees much better stability of the numeri-
cal procedure. The inset shows the dependence of the Parisi func-
tion g(x) on x. The solid line corresponds to our results obtained
for N,=20. The results of Sommers and DupdRef. 12 (dashed
line) correspond tdN, = 160.

algorithm we have checked the results obtained by Sommers
and Dupont? for the standard Ising spin glass fo=0 and
H=0 (here the replica-symmetry-breaking equations are
similar to ours but with different boundary conditioni we
use the same model gaugd€x)=1—x as in Ref. 12, then
we can reproduce their results as shown in the inset of Fig. 1.
We can show that even in the Ising spin-glass dasthout
the transverse fie)dit is much harder to solve the replica-
symmetry equations af=0 without assuming an analytic
form of the gauge. It may be seen in Fig. 1, where the maxi-
mal variance of all of the variables, g, P, andA is plotted
versus the iteration steps.

The difficulty mentioned above remains in the transverse-
field case where one could not fix the gaukgex) but solve
the equations self-consistently &t=0. We can show that
even the choice of,=80 andN, =800 does not guarantee
the stability of the numerical procedure. Figure 2 shows the

to obtain the magnetization and therefore the nonlinear SUgtependence of the maximum variance of all of the variables

ceptibility
Xn=[M(2AH)—2m(AH)+2m(—AH)

—m(—2AH)]/(2AH)3. (43

m, g, P, andA on iteration steps for several different values
of N, andN, . The Hamiltonian parameters are chosen to be
I'=1.8 andH=0.1. The minimal value of the maximum
variance is about 0.02 fdd,=80 andN,=800. Further it-
eration leads to the instabilitifhe situation does not change

The iterative procedure is to take place in the order: Eqif one chooses other sets of parametetdnfortunately, due

(38) — EQ.(39 — Eq.(29 — Eq.(30) — Eq. (36) — Eq.

to limitation of computational facilities we could not go to

(38). In order to perform the iterations numerically, we dis- larger values ofN, andN,. We expect, however, that the

cretized the variables andy, dividing the interval0,1] into
N, pieces and the intervatk-5,5] into N, piecedy is chosen
in this interval becausd’(x,y) should be very small for

larger |y|], respectively. The convergence of the numerical

correct solution of the replica-symmetry-breaking equations
would give the nonlinear susceptibility with the exponent of
1/2 below the transition line.

We have also considered the classical limit of the trans-

iteration is monitored by the maximum variance of all of theverse fieldXY model. Similar to the Ising case, the critical
variablesm, g, P, andA. In order to check the numerical field atT=0 is found to be equal t6 ;=2 and the nonlinear
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T T T T T [ T I T (_ 1)”
6 - . Co(0p)= —— T2
r=1.8, H=0.1 |
i ] r dz

85— — XJVﬂ_—zzn

<Zg 20,200 | / —JBe N1-T.z

:D<>1:f' 40,400 Xexy{i 22| cosh B N1-T.Z%). (A4)

= 3 i . For T.—0, i.e., larges, the asymptotic form of,(0,p) is

= / ,,

<R - — (—1)"

< Co(0p)~ ——— T¢" ™" costiBcI"o)

e /'/ . . 80,800 X f Uz fexp{ a CT 2. (A9
0 PRI S i st SRV s
0 4 8 12 16 With the help of Eq(A5) the condition(Al) takes the form
ITERATION for Fe>1

FIG. 2. The dependence of maximum variance on iteration 1= 1 (A6)
steps. The values dfi, andN, are shown next to the curves. We - r—-1
chosel'=1.8 andH=0.1.

Hencel ;= 2.

susceptibility exponeny=1/2. Our results agree with those
of Pazmandi and Domanskit would be interesting to study APPENDIX B

the classical limit of the quantum models in finite dimensions

to explore the role of quantum fluctuations. In order to derive Eq(25) for A we use the following

expression of the free energy per one sgih=0):
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APPENDIX A N
The critical value ofl” at T=0 can be calculated by tak- + B2 E qaa,sflsz, , (B1)
ing into account the form of linear susceptibiligy(16). It is a>a’

seen thaty is real asI'>I".=2. However there exists an .
X v where the replica index=1,...n; p, andq,, are quadru-

alternative method to calculalg,. We start from the follow- | d spin-al t tvelv. Th bol T
ing relation for the transition point valid at any temperature:.po ar and spin-giass parameters, respectively. the symbol 1r

in Eq. (B1) means that
 Cy(0p)

= 1 27 "
“~Co(0p) (A A= o | T doA ®2)
(277) 0 a=1
and
One can show thaP, Q, andR in Eq. (24) may be
p.=Te, (A2)  Wwritten as follows:
whereC,(q,p) is defined by Eq(5). By plugging Eq.(A2) P=ng"19*flaqz,,
into the definition ofC,(0,p) one obtains
=1-B((S))%S;, ) —(SiSh )l (B3)
1 2m
Cn(0p) =5 fo de cos'e Q=nB"'#f/30 40,000,
coé = - BU(S)’S, S~ (SIS N(SISE,)] (B4
T (578 ) (%)

W|th a]_?& Ao, and

After the following change of variable: cps-z\/T,, where

— —142
T, is expressed id unit, we get R=nB""9"1/094a,00a,a,
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Using Eq. (5 (with H=0) and changing the variable

:_BZ[<SZSZ Sz Sz >_<SZSZ ><SZ Sz >] )
cos¢p=p %z one has

(B5)

In Egs.(B3)—(B5) the symbok---) denotes averaging within
the framework of the replica-symmetry theory with the ef-

fective HamiltonianH

n n 2 n
eﬁzg PIRCHA A 2 Si| +T2 S (86)
After standard transformations we get
P=1-p2 dy A —y2/2)
ex
. J— y
X[Ca(q,p)Co(a,p) 1>+ B0, (B7)
Q=-p*| Fexq y212)
Ca(a,p) 2 2 2
XCoap) [C1(a,p)/Co(d,p)]°+B°q%  (BY)
and
R=-8 f eXIO( y?/2)
><[Cl(q,p>/Co(q,p)]4+ﬂ2q2. (B9)

where C,(q,p) is given by Eq.(5) with H=0. Plugging
(B7)—(B9) into Eq. (24) we obtain Eq.(25).

(—D" B—(n+1)/zJ“$ dz(l_B—lzZ)UZZn
m -VB

x cosh BI(1— B~ 122 Y2exp yZ22/2— \Bay2).

Cn(q-p):

(B10)
In the B—o limit C,(qg,p) has the form
("
Cala,p)=——"8 (M+112 cosh{ AT)
XJ' dz Z'ex —TZZ—\/ﬁyz .
(B11)
With the help of the last equation we obtain
-2
{Ca(a.p)/Co( @)~ [Ca(a,P)/Cola.P) Y= (52
(B12)

Substituting Eq(B12) into Eq. (25) we come to the stability
condition (26) in the main text.
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