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Nonmagnetic impurities in spin-gapped and gapless Heisenberg antiferromagnets
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We discuss the effects of nonmagnetic impuritistatic holey in the S=1/2 Heisenberg model on a
two-dimensional(2D) square lattice, and on two- and three-leg ladders. Results of quantum Monte Carlo
simulations show that iee localized moment is induced around an isolated impurity only in the spin-gapped
two-leg ladder, in agreement with previous theoretical expectations. The localization length & iti2
impurity moment in a two-leg ladder with isotropic couplingssd..5 lattice spacings. In gapless ladd@dd
number of legsand in the 2D lattice, no free moments are induced. However, in the 2D system, which has
antiferromagnetic long-range order B0 and a gap for longitudinal fluctuations, the impurity leads to a
localized distortion of the magnetization in the direction of the broken symmetry, withSotal/2. The shape
of the distortion is in close agreement with previous spin-wave calculations. For all the syststaggered
moment is induced by the impurity. For the gapped two-leg ladder this is exponentially localized within a
length equal to the spin correlation length of the lad@eB.2 lattice spacings For the three-leg ladder, the
integrated staggered moment diverges as the system size goes to infinity, but the staggered magnetization at a
given site appears to vanish. In 2D, we discuss the behavior seen in finite systems both with and without
additional symmetry-breaking mechanisms. We also discuss the effect of impurities on the NMR Knight shift
and the bulk magnetic susceptibilify50163-182€7)00541-9

I. INTRODUCTION The Hamiltonian for the various lattices that we study is

L . . . the standard Heisenberg model with nearest-neighbor inter-
Nonmagnetic impurities introduced into various cuprate_ ione

material alter their magnetic properties in ways which reflect

the nature of the correlations in the pure systems. Experi- R

mentally, Mahajaret al! have used thé%f NMR response H=J>"S-S, (1)

to study the effect of Zn impurities on surrounding Cu spins (L)

in YBay(Cu; _yZny)Os.,« for various amounts of oxygen. where(i,j) denotes a pair of nearest-neighbor sites on a
Azumaet al? have studied the case of Zn impurities substi-square lattice witmx L sites =2,3L), and the primed
tuted for Cu in the two-leg and three-leg spin-1/2 Heisenbergum excludes impurity sites. Here we focus primarily on the
ladder materials $¢Cu, _yZny),03 and Sp(Cu; —,Zn,)30s. problem of the magnetic correlations around a single non-
If the Zn impurity maintains a nominal &l charge, the magnetic impurity, and only comment on some aspects of
Zn?* would have a (8)*° S=0 configuration and act as a the case of a finite impurity concentration. We use a finite-
nonmagnetic impurity. Thus an interesting question istemperature quantum Monte Carl@QMC) technique based
whether a nonmagnetic impurity can induce a local momenbn a power series expansion of the operator exgH),

on the surrounding Cii sites. In the fully oxidized YBCQ  where 8 is the inverse temperatut T (“stochastic series
material, the induced moment was found to be small, of orexpansion’).* This technique is an improved variant of the
der 0.2ug per Zn, while it was of order 085 per Zn for an  so-called Handscomb techniquand is free from systematic
oxygen reduced sample which exhibited a spin gap. This wasrrors of the “Trotter breakup” used in standard worldline
in approximate agreement with theoretical expectations thanethods Low enough temperatures can be reached for ob-
a nonmagnetic impurity can only induce a local momenttaining ground state results for lattices with up to hundreds
when the mother phase has a spin dd@om this point of  of sites. The method has recently been applied to a variety of
view, one would expect that in spin-gapped antiferromag-spin problems.

netic two-leg ladders, Zn impurities would create local mo- The outline of the rest of the paper is as follows. In Sec. Il
ments, while in three-leg ladders they would not. Howeverwe calculate the magnetization distribution around isolated
the initial experiments on the two- and three-leg laddersmpurities atT=0. Finite-size scaling of results for the dif-
found that comparable local moments were introduced irferent types of lattices are used to determine whether or not
both of these systems. Here we use numerical techniques tocalized moments are formed. In Sec. Ill we discuss the
investigate the problem of induced moments around noneffects of impurities on the NMR Knight shift at finife. In
magnetic impurities in the Heisenberg model on a two-Sec. IV we discuss systems with a finite concentration of
dimensional2D) square lattice, as well as in two- and three-impurities, in particular the effects on the bulk susceptibility.
leg ladders. We summarize our study in Sec. V.
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FIG. 1. lllustration of the different lattices with a single spin at
(x,y)=(0,0) removed(indicated by the solid circles The bold 01 |
lines indicate sites at a frame distariRe-2 from the impurity.

Il. MAGNETIZATION DISTRIBUTION -0.2
AND LOCALIZED MOMENTS

In this section the magnetization distribution Bt 0 is
investigated for systems with a single impurity. For a bipar- FIG. 2. The average magnetization vs the distance from the
tite lattice with an even number of sites, removing one spinimpurity for a two-leg ladder of length =64. Open circles are for
leads to a ground state witB= 1/28 The ground state is sites on the same leg€0) as the impurity, and solid circles for
hence twofold degenerate, with?= = 1/2. Choosing one of sites on the chain across the impurity<(1).
these states, one can calculate the position dependent mag-
netization{ S*(x,y)). The behavior of this quantity as a func- spread over the system, and as the system size grows one
tion of the distance from the impurity site gives direct infor- will observe that for a fixe®R, |4(R)—0. We use the stag-
mation on whether or not a moment is formed. gered quantityl .(R) in a similar manner to determine

Here we will present numerical results for two- and three-whether a staggered moment is induced. Since the staggered
leg ladders, as well as 2D systems. Figure 1 illustrates thenagnetization is not a conserved quantity, the size of a stag-
different lattices with an impurity atx(y)=(0,0). For the gered moment can be arbitrary.
ladders, thex andy directions are defined as the rung and
chain directions, respectively. We use periodic boundary A. Two-leg ladders
conditions in both directions in the 2D case, and in the chain i i ) oy )
direction of the ladders. The QMC calculations were carried /e begin by discussing the two-leg laddet}in which a
out at temperatures low enough for thermal expectation valloc@lized moment is expected to be induced, on account of
ues to be completely dominated by the ground state. Typithe Pure szystem being gappﬁﬁlgure 2 shows the magne-
cally, inverse temperaturgg~L, 2L, and 4. were used for tization (S*(x,y)) vs the dl_stan_ce _from the |mpur|ty for a
the two-leg ladders, three-leg ladders, and 2D lattices, re2 X 64 system. The magnetization is largest at the site on the

spectively. Comparing with results at higher temperaturesS@me rung as the impurity, and has a rapidly decaying oscil-
we find that there are only very minor contributions of ex- [ating behavior versus the distance from the impurity. Figure
cited states in the o= results discussed here. 3 shows the integrated uniform and staggered magnetizations

For the discussion of the magnetization distribution weVS R for systems of linear sizels=16, 32, and 64, wittR
define the “frame distance’R from the impurity as indi- defined in Fig. 1. There are only very minor differences in

cated in Fig. 1. The total uniforrt0) and staggeretir) mag- Io(R) for th.e d?fferent !attice sizesl, and Fhe e_lpproach to the
netizations of frameR are defined according to full magne'uzatlon 1/2. is gxponent|al. A line f'lt to[MO(R)]
for R=3 gives a localization lengtl,~ 1.5 lattice spacings.

The induced staggered magnetizatdn(R) has a localiza-
Mo(R)= 2_R<SZ(X=V)>7 (28 tion length £,~3.2, consistent with the spin correlation

roen= length of the pure laddéf. The ratio&, /£y~2 is consistent
with the ratio of the gaps of the pure ladder at the corre-

M, (R)= 2 (=1)YS4xy)), (2b)  sponding momentk= (0,0) andk= (7, ). The total stag-

rxy)=R gered moment,(R—x)~2.8.

wherer (x,y) is the frame distance between the impurity and
the site at X,y). We also define the total magnetizations

o B. Three-leg ladders
within distanceR:

Ladders with an odd number of legs are gapless, and a
uniform moment is therefore not expected to form around an
lo-(R)= 2 Mo(R"). (3 impurity2 The low-energy properties of the three-leg ladder
R=R maps onto those of the spin-1/2 chanOne might then
For a system with a localize8= 1/2 moment) o(R) should expect the case of a static impurity to correspond to a spin-
approach 1/2 exponentially fast Rs». Equivalently, fora 1/2 chain with a defect. Eggert and Affleck used conformal
given distanceR close to the impurityl(R) should ap- field theory to study various defects in spin-1/2 chains, and
proach a finite value as the system size goes to infinity. Oroncluded that in most cases defects are screened and the
the other hand, if no moment is formed, the magnetization idixed point is a chain with open boundary conditidAsiow-
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] from the impurity for three-leg ladders of lengths=32, 64, and
96. Solid lines are fox=0 (center chain, with the impurijy and
25 ¢ dashed lines fox=1,3 (edge chain For L=64 andL =96, there
are~5% statistical errors foy>10, which affect the overall am-
20 plitudes, but not the oscillating behavior.
‘5& 15 [ &g -3 1 ] with a staggered magnetization. Hence, the behavior found
= % in the open spin-1/2 chain would likely only be reproduced
IV R - at very large distances from the impurity, even if this map-
1.0 ] ping would indeed be the correct one.
5 . ] Figure 4 shows our results for the local staggered magne-
05 0 5 10 i tization|{S*(x,y))| versus the distance from the impurity for
! R systems with up to Z96 sites. At long distances,
‘ . . . . . |(S*(x,y))| is almost flat, and its magnitude decreases as the
0.0 system size increases. The integrated uniform and staggered
0 5 10 . 15 20 25 30 N L 4
R magnetizations are shown in Fig. 5. The even-odd oscilla-

tions inl4(R), which are absent for the two-leg ladder, are

clearly due to the fact that the rungs have an odd number of
FIG. 3. The integrated uniforrftop pane) and staggeretbot-  sjtes, so that an effective cancellation of the staggered mag-

tom panel magnetizations vs the distance from the impufigfth  netization can only occur for ode (with the impurity on the

R defined in Fig. ] for two-leg ladders of length. =16 (solid  conter chaip Nevertheless, as the system size grows, a clear

circles, 32 (open circleg and 64(solid squares The insets show decay ofl o(R) for eachR can be seeffor example, the inset
the logarithms of the corresponding frame magnetizations for, 0 '

L =64, with lines indicating fits to extract the localization lengths. ShOWS|°(R= .10) vs the inverse ladder I(_andtrr;onsstent
with no localized moment ak—c. The integrated stag-

ever, they also pointed out that defectsSs 3/2 chains can gered magnetizatiori ;(R) grows approximately linearly
cause different behaviofeven thoughS=1/2 andS=3/2  with R, with a slope which is smaller for the larger systems
chains otherwise have the same low-energy properties [in accordance with the flat behavior observed above for
particular that a defect with smaller spin in 88 3/2 chain  [(S(x,y))|]. The full staggered momett,(L/2) appears to
may lead to overscreening, and this in turn could lead eithediverges ad —o, but the divergence is clearly slower than
to an effective system corresponding to the periodic chain ok. If indeed! (R)~R, andl (L/2)~L*%, with «<1, then
possibly to some nontrivial fixed poift.tis hence not clear 1,(R)—0 for any R as L—. However, our results for
what kind of behavior to expect in the three-leg ladder withsmall R are not of sufficient accuracy to rule out a different
an impurity. behavior very close to the impurity. In any case, the behavior

In the open spin-1/2 chain, there is a staggered magnetappears to be different from the\t/ decay of the staggered
zation decaying as {f (times an oscillating function of) magnetization with distance from the open end of a spin-
with the distance from an erld,which hence would be ex- 1/2 single chairt’ and hence indicates that the system does
pected also around an impurity in the three-leg ladder if thenot map onto this model. The tendency to spread the induced
impurity is screened. However, the situation may be complistaggered magnetization evenly over the whole system may
cated by the presence of the defect with its screening cloudndicate a divergent screening length. Further studies are
which although having total spin 0, can also be associatedlearly needed to resolve this issue.
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-0 10 20 30 - 40 with an impurity at &,y)=(0,0), along the lines r(0) (solid
R circles, and (,r) (open circles
; r . . from the impurity in them?*=—1/2 sector of a 1X 12 lat-
' ey tice. The magnitude of the magnetization is almost indepen-
8 ooo° dent of the distance. Naively one might expect that this stag-
I " O ] gered order induced by removing a spin is equal to the
o °°O° sublattice magnetization. This is not the case, however. To
.o. °°° see this, we first consider the sublattice magnetization
6 o & - which for a rotationally invariant finite system, can be de-
. S L fined as®
) f o
=4l n=° & ] m*/vV3=1S_IN, (4
4 nnn..,o - , whereS,, is the staggered structure factor
DD.‘; 1
27 e - Sp=y 2 X (DTS (x,Y1) SH(Xe Y2))-
° N X1.¥1 X2.Y2
ﬁ (5
0 : . » . In a lattice with one spin removed the rotational invariance is
0 10 20 30 40 broken. However, in contrast to the thermodynamic limit
R broken-symmetry state, the staggered magnetization is not

fully locked in thez direction. It is clear that the removal of

a single spin from a large system cannot significantly change
the average long-distance correlation functions, and hence
scaling Eq.(4) to infinite system size should give the correct
sublattice magnetization also with an impurity present. The
staggered magnetizatigiS*(x,y))| induced by a missing
spin (in a finite lattice, and scaling to infinite system size
without breaking the symmetrymust therefore be smaller
than the true sublattice magnetizatiori . In Fig. 7 we com-
pare S, /N calculated on 2D lattices with and without an

impurity, and the average
Effects of an impurity in the 2D Heisenberg model was

previously discussed by Bulet al,'® on the basis of linear 1 ,

spin-wave theory and exact diagonalization of>a4tattice. m.=12_1 Xz:«/ (S (x. )l (6)

It was concluded that the tot&F= 1/2 distortion of the order '

parameter is localized to the close vicinity of the impurity, of the staggered magnetization of systems with an impurity.

and that the order is actually enhanced at the site closest Without fluctuations inS*(x,y) (as would be the case if the

the impurity. symmetry is fully broken and staggered magnetization has
Here we begin by studying the doubly degene@tel/2  locked in thez direction, m, would be equal toyS,/N.

ground state of small periodic square lattices with one spirThe results in Fig. 7 clearly show that there are in fact large

removed, in the same way as done above for the ladder syfluctuations, sincen,, is considerably smaller thatlS_/N.

tems. Figure 6 shows the average magnetization vs distandée dependence ofi,, on 1L is close to linear, and scaling

FIG. 5. The integrated uniforrftop panel and staggeredbot-
tom panel magnetizations vs the distance from the impufigjth
R defined in Fig. 1 for three-leg ladders of length=32 (open
squarey 64 (solid circleg, and 96(open circles The inset of the
top panel show$,(R=10) vs the inverse system size.

C. 2D systems
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to infinite system size givesn,~0.11. \/S./N is only
slightly affected by the presence of a static hole, as expectei
and scales to a value consistent with the kntiwhsublattice

0.20

magnetizationm®/v3~0.18. Hence, there is a facter3 &

relatingm_ and the full staggered magnetization in this case =
Figure 8 shows the integrated uniform magnetization

Io(R) for different system sizes. For a given distafic&om 0.10

the impurity, 15(R) decreases with increasing system size,
approaching a finite value ds—. Quadratic fits used for
extrapolations are shown f&t=1 andR=2. The results are
considerably lower than those obtained within spin-wave
theory®® Again, this is clearly due to a rotational reduction, 0.00 '
as discussed above. The longitudinal component of the ma 0.00 0.05
netization is only partially directed along the quantization
axis used, and the distortion of the longitudinal component i<
therefore not seen fully in this type of calculation.

In order to study the full effects of an impurity on the
antiferromagnetic background, we have to explicitly breakT
the symmetry, so that the longitudinal correlation functions
can b_e directly accessed. Here we achieve this situation py We next define the distortion due to an impurity as
coupling the edges of a system with open boundary condi-
tions to spins which are fixed in an antiferromagnetic con- (S 2= (S, — (D)o, 7)
figuration. For this Ising-type interaction we arbitrarily
choose the same streng,ﬂ‘]as the Heisenberg interaction where(SIZ>| is the expectation value calculated with the cen-
among the interior spins. At the center of the system, théer spin removed, andS’), is the results for the intact lat-
staggered edge spins have an effect similar to a staggereéide. We use a sign convention such t&f),>0 for the
field with a strength that vanishes as the system size growgenter spin, so that it measures tiegluctionof the magne-
Comparing results for this system with one where the centetization in the presence of the impurity. The QMC results for
spin is removed gives a direct measure of the distortion ogites close to the impurity are in good quantitative agreement
the antiferromagnetic background due to an impurity. Thewith the results of linear spin-wave theory presented by Bu-
two lattices are illustrated in Fig. 9. lut et alX® In particular, the staggered order at the site closest

First, in order to verified that this method gives the knownto the impurity is enhanced. For the largest system studied
value of the staggered magnetization at the center of thaere (=25), the enhancement is 0.0¢89, whereas linear
lattice without an impurity, we studied such systems with upspin-wave theory gives 0.0107.For all other distances the
to 25X 25 spins. Extrapolating the expectation vali§),  staggered magnetization is reduced by the impurity, both in
with i=0 being the center spin, gives a sublattice magnetispin-wave theory and our present numerical calculations
zation ~0.305, which is in good agreement with previous Figure 10 shows the uniform and staggered frame magne-
calculations %1’ tizations, which are defined as in Eq2a) and (2b), with

0.10 0.15 020 0.25

1L

FIG. 8. Upper panel: Integrated momentRgor 2D lattices of
different sizes. Lower panel: Finite-size scaling R+ 1 andR=2.
he curves are quadratic fits to the QMC results.
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FIG. 9. Lattices used to study systems with broken symmetry. -0.2 +
The open and solid circles indicate up and down edge spins which
are coupled to the 2D Heisenberg antiferromagnet by Ising cou-
plings (indicated by dashed lings -0.4 0 5 10 15

(S)4 replacing(Sf). M .(R) is positive for allR which with ’
our definition means that the averaged staggered magnetiza- g, 11. The Knight shift vs the distance from the impurity in a
tion on each frame is reduced by the impurity. BMR(R)  three-leg ladder with. =32 at two different temperatures.
andM _(R) decay exponentially aR increases, with a local-
ization length~1.5 lattice spacings. moment. The profound difference between these cases is

We can now relate these results to those obtained abov@ost clearly seen by considering two well separated impuri-
without the symmetry-breaking boundaries. The extrapolaties on different sublattices. In the two-leg ladder, the corre-
tions shown in Fig. 8 give integrated magnetizationssponding moments can both align along the field in any di-
19(1)=0.024 andlo(2)=0.043. With the staggered bound- rection, whereas in a large but finite 2D system the
aries, the data shown in Fig. 8 givig(1)=0.076 and magnetization associated with a single impurity can align
10(2)=0.135. Hence, the ratidy(2)/Io(1)~1.8 in both  with the field, but aligning the second one would require
cases, but the amplitudes differ by a facte8, which within  twisting the staggered magnetization in the neighborhood of
our numerical accuracy is equal to the factor found abovehe impurity. Hence, the teriinee local moment is appropri-
relating the impurity-induced staggeredmagnetization to  ate only in the context of gapped systems.
the full sublattice magnetization.

The difference between the localized uniform magnetiza- IIl. EINITE-TEMPERATURE KNIGHT SHIET
tion induced around an impurity in the 2D case and the mo-
ment formed in the two-leg ladder is that the former is al- The NMR Knight shiftK is proportional to the local sus-
ways aligned in the direction of the antiferromagneticceptibility of the electrons close to the nucleus under study.

For a strictly on-site hyperfine couplink, is proportional to

. ; the susceptibility of a single spin to a uniform field, and we
here defined accordingly:

k= [ a3 (s(rs0)-p3 (5. ®

0 i

In a system with impurities, the NMR line shape will reflect
A the distribution of Knight shifts in the system, and is hence
an important probe for studying impurity effects. As an ex-
ample, the end effects predicted by Eggert and Affleck for
the spin-1/2 chaitf were recently confirmed experimentally
in the quasi-1D compound £uO; by Takigawaet al,
and also allowed for an accurate determination of the impor-
tant hyperfine form factor.
. For the two-leg ladder, a divergence Kfwould be ex-
pected in view of the localized moment created by the im-
purity. However, as discussed above, the induced staggered
moment is considerably larger than the uniform moment at
low temperatures, which translates to an oscillating behavior
also for the Knight shift. For a gived, K(r—=) ap-
proaches the bulk susceptibilify The sign ofK is positive
for all r at high temperatures. At low temperatures it is nega-
FIG. 10. Uniform (top) and staggeredbotton) magnetization tive for sites on the same sublattice as the impurity. Not
differences within frames at distanBefrom the lattice center, com- surprisingly, this behavior is observed also for the three-leg
pared with some of the linear spin-wayeSW) results by Bulut ladder and the 2D system. Figure 11 shows results for the
et al® three-leg ladder at two temperatures.
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of a finite concentration of honmagnetic impurities on a two-
leg ladder have recently been extensively studied. As we
have seen, a local moment is formed around the impurity
along with an induced staggered magnetization which ex-
04 - 1 perimentally decays on a length set by the spin gap of the
ladder. Fukuyamat al?* showed that for a finite impurity
, ‘ 1 ‘ . concentration, while the amplitude of the staggered magne-
00 02 04 06 08 10 tization was inhomogeneous due to the random distribution
T of impurities, there was a persistence in their staggered spin
FIG. 12. The temperature dependence of the Knight shift at twPOrrelations leading to an enhanage (77, 7) susceptibility.
sites close to an impurity for a 3212 plane(open circley a two- ~ Motomeet al1® used exact diagonalizations of small clusters
leg ladder of lengti. = 64 (solid circles, and a three-leg ladder of and variational calculations to show that antiferromagnetic
lengthL =32 (open squares correlations were enhanced in an impurity doped two-leg
ladder. They also found low-lying excited states in the spin
For a spin-1/2 chain with open boundaries, Eggert and)ap, suggesting that a small but finite concentration of impu-
Affleck predicted aT— 0 local susceptibility(Knight shift) rities reduces or eliminates the spin gap. Similarly, Martins
which increases agr with the distance from the boundary. €t al?°found that impurities induced low-lying excited states
A finite temperature exponentially suppresses the increas#hich are seen in the dynamic magnetic structure factor of a
resulting in a maximum that is shifted towards the interior ofSpin-gapped system. They noted that these states arose when

the chain asT—0. This was confirmed numericall§.Our ~ nonmagnetic impurities doped into a spin-gapped system
results for the three-|eg ladder with an impurity do not ex-created local moments which coupled with a random distri-

hibit the shift of the maximum, even at considerably lowerbution of strengths. These authors also found enhanced anti-

temperatures than those shown in Fig. 11. This is anothdgrromagnetic correlations in the vicinity of a nonmagnetic
indication that the system does not map onto a spin-1/2 chailinpurity for a dimerizedS=1/2 chain(to model CuGeg), a
with a screened defect. system which also has a spin gap. Sigrist and Furésaki
Figure 12 shows the temperature dependenck(@f0) noted that nonmagnetic impurities doped into a two-leg
andK(1,1) for all the systems we have studied. In the tem-Heisenberg ladder create local spin-1/2 degrees of freedom
perature regime considered the behavior is similar for alihich interact via the spin-liquid background. As the tem-
systems, with the strongest growth exhibited by the two-legPerature is lowered, correlations then develop among the im-
ladder, for which a divergence is clearly expected in view ofPurity moments and the system renormalizes into coupled
the existence of a localized staggered momgne diver-  clusters with coherent staggered correlations on a long length
gence will occur at all sites, but the prefactor decays exposcale.
nentially with the distance from the impurjtyif the picture All of these treatments rely on the existence of local mo-
of a renormalization to an open spin-1/2 chain holds for thenents formed around the impurities, which are coupled via
three-leg ladder, the low-temperature Knight shift shouldthe exponential spin-spin correlations in the spin liquid. Thus
converge to a value- \R. As already discussed, none of our the behavior of an impurity doped two-leg ladder should be
numerical results have shown this behavior. In the 2D casélifferent from the 2D lattice, for which we have argued that
we expect a divergence & at all distances in view of the the induced localized magnetization around the impurity

staggered moment resulting from the long-range order of thé0€s not correspond to a free moment, but is always aligned
system aff =0. with the local staggered ordéalthough the system is not

antiferromagnetically ordered at finife the staggered cor-
relation length at lowT is much larger than the localization
length of the distortion found in the previous secjiodere

we contrast the uniform susceptibility of a 2D lattice and a

Another quantity of experimental interest as a probe oftwo-leg ladder.

the effects of impurities is the magnetic susceptibility. In this We begin by showing results for the temperature depen-
case, in order to determine the low-temperature behavior adence of the uniform susceptibility of a periodic 8<8

the susceptibility, one must treat a finite concentration ofHeisenberg model with six randomly placed impurities. Fig-
impurities taking into account their interaction. The effectsure 13 shows two “typical” impurity configurations for

IV. SUSCEPTIBILITY FOR A FINITE IMPURITY
CONCENTRATION
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FIG. 15. The uniform magnetic susceptibility vs temperature for
a pure two-leg ladder with 264 sites, and one of the same size
where eight spins have been removed. Numbering the sites of the
chains 1-64 and 65-128, the removed spins are at sites 1, 22, 31,
which we have carried out simulations. The temperature de46, 70, 79, 99, 120, so that there are equal numbers of spins on each
pendence of for these configurations are shown in Fig. 14, sublattice, and the ground state therefore is a singlet.
along with results for a pure system of the same size. Pure

system results for a lattice of 6454 sites are also shown, 10 paq 5 7ero measure in the partition function in the thermody-
give an idea about the finite-size effects. The two IMPUNtynamic limit, and its spin therefore is irrelevant. Of course, if

conﬁgurat?ons give strikingly_different susceptibilities; for the impurity concentration is sufficiently large to cause the
qonflgl_Jratlon Lx appears to diverge at loW, whereas con- system to break up into disconnected pieces, there will al-
figuration 2 has gy similar to the clean system, although ways be a Curie component arising from small pieces con-
somewhat enhanced. taining an odd number of spins. This contribution survives

The reason for the diffe_rent behavior gf of _the_ WO theN limit, but does not scale linearly with the impurity
configurations can be readily understood qualitatively. As

ready di d. the total fh J state of concentration in 2D.
arga yb |scuss§ I, € %.a St‘.itmci i € gdroun ds a et% ad'f Random impurities in a one-dimensional system, such as
eisenberg model on a bipartite fatlice depends on the dify single chain or a ladder, cut the system into disconnected
ference of the number of spins on the two sublattices. If ther

N dN L blattices. andB velv. th %ieces, and the ones witip,—Ng#0 give rise to a Curie
areNa andNg spins in sublattices, andB, respectively, the ., nintion to the susceptibility which grows with much

ground state haS= 7 [NAo—Ng|.® Hence, in the case under more rapidly than in 2D. However, as reviewed above, for
consideration here, the ground state is a singlet only if thergadders with an even number of legs, a more interesting con-
are equal numbers of impurities on the two sublattices, an@ibution is expected, due to localized moments which are
has a finite spin if this is not the case. If the ground state isnduced around impurities in spin-gapped systems. In order
not a singlet, one of course gets a Curie behavigy aflow  to observe the effects of such localized moments we have
T, whereas ifS=0, y may be finite or decay to zero &-0,  simulated a X 64 site ladder with eight impuritie&orre-
depending on if there is a gap in the spectrum or not. Inspeckponding to a concentratiop=6.25%) in a configuration
ing the hole configurations in Fig. 13, one indeed finds thakuch that the system remains in one connected piece. Fur-
configuration 1 has two holes in one sublattice and four inthermore, we choose the configuration such Mgt Ng, S0
the other one, whereas configuration 2 has three holes ihat the ground state is a singlet and therefore any divergent
each sublattice. This explains the qualitatively different sushehavior is due to localized moments forming around the
ceptibilities of these lattices. The nondivergent behavior inmpurities. The temperature dependence)fan such a sys-
the S=0 case is another indication that inert impurities in 2Dtem is shown in Fig. 15, along with the susceptibility of a
are not associated with localized free moments. Such m@yure Heisenberg ladder. The pure system shows the activated
ments in a finite system wit8=0 would lead to an increase behavior typical for a gapped system. For this césgual
in x before the eventual activated behavior caused by theung and chain couplingsthe gapA ~0.5Q). In contrast, the
finite-size gap, approaching a trie—0 divergence as system with impurities show a minimum jp at T~0.25J,
L—oo. and then a sharp increase for lower temperatures. Since the
For a system withN sites and a random impurity concen- ground state is a singlet wheé¥iy,=Ng, and the system is
trationp, the expected difference of the number of holes orfinite, the uniform susceptibility will eventually vanish as
sublatticesA andB is = \pN. Hence, the Curie part of the T—0. In the thermodynamic limit it will show a true diver-
susceptibility scales as N, and vanishes asl—. Fur-  gence. Free localized moments would give a Curie behavior,
thermore, the temperature at which the Curie behavior wilbut since the system consists of a single connected lattice the
be seen decreases with the system size, since the ground stetduced moments will have an effective interaction which

FIG. 14. The uniform magnetic susceptibility vs temperature for
the hole configurations shown in Fig. 1, and for pure systems.
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depends on the distances between the impurities. As distetization afT=0. It would clearly be interesting to experi-
cussed by Sigrist and Furusakithis leads to a nontrivial mentally search for these effects in the NMR line shape in
divergent behavior. two- and three-leg ladder materials, as was recently done by
Takigawaet al. for the single-chain material $2u0;.*8

The uniform susceptibility of two-leg ladders in the pres-

From these calculations, we have seen that a single nof@nce of a finite concentration of impurities has been dis-
magnetic impurity induces a local moment on a two-leg lad-cussed in detail recentf/.Here we have presented numeri-
der but not on a three-leg ladder or on a 2D lattice. Thecal results confirming that the localized moments in this
induced staggered magnetization around the impurity on gapped system cause a divergent susceptibility at low tem-
two-leg ladder has a localization lengéh~3.2 set by the peratures. We have also shown that this does not occur in the
spin-gap correlation length of the pure ladder. A staggeredapless 2D system, for which the moment introduced by an
magnetization is also induced on a three-leg ladder, but itBnpurity is not free, but aligned with the local staggered
amplitude at a given distance from the impurity decaysorder.
strongly with increasing system side. Nevertheless, the An interesting system in which to study the effects of
staggered magnetization integrated over the whole ladder aponmagnetic impurities would be a 2D system that can be
pears to diverge ds— . We have discussed the possibility tuned through a quantum critical point. The Heisenberg bi-
of the system mapping onto a spin-1/2 chain with a screenekiyer, with interlayer and intralayer couplingls and J;,
defect(which in turn corresponds to an open chaiout the  respectively, is critical atd, /1) eriica~ 2.5.22 Nonmagnetic
behavior found does not appear to support this picture. Ormpurities should hence be associated with free local mo-
finite 2D lattices, the induced staggered magnetization rement only forJ,/J, larger than this value, with the localiza-
mains finite at all distances from the impurity as the systention length diverging atJd,/J1) ¢itical -
size grows, reflecting the long-range order in the ground Note added in prooZn impurity effects on the NMR line
state of the pure system. The sublattice magnetization seen #hape of the type we have discussed here, in Sec. Ill, were
this case(in the direction of the quantization axis uged  recently observed in the two-leg ladder compound $8u
smaller than the full sublattice magnetization, which is seerby Fujiwaraet al?*
only if the symmetry is further broken by a staggered field.
There is an exponentially decaying distortion of the sublat-
tice magnetization in the neighborhood of the impurity. Our
numerical results for the magnitude of this distortion are in  This work was supported by National Science Foundation
good agreement with previous spin-wave calculations. under Grant Nos. DMR-9520776A.W.S. and E.D. and

We have also discussed the NMR Knight shift, which DMR-9527304(D.J.S). The QMC calculations were carried
depends on the temperature and the distance from the impour at the Supercomputer Computations Research Institute
rity in a manner reflecting the behavior of the staggered magtSCRY) at Florida State University.

V. SUMMARY
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