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Nonmagnetic impurities in spin-gapped and gapless Heisenberg antiferromagnets
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We discuss the effects of nonmagnetic impurities~static holes! in the S51/2 Heisenberg model on a
two-dimensional~2D! square lattice, and on two- and three-leg ladders. Results of quantum Monte Carlo
simulations show that afree localized moment is induced around an isolated impurity only in the spin-gapped
two-leg ladder, in agreement with previous theoretical expectations. The localization length of theS51/2
impurity moment in a two-leg ladder with isotropic couplings is'1.5 lattice spacings. In gapless ladders~odd
number of legs! and in the 2D lattice, no free moments are induced. However, in the 2D system, which has
antiferromagnetic long-range order atT50 and a gap for longitudinal fluctuations, the impurity leads to a
localized distortion of the magnetization in the direction of the broken symmetry, with totalSz51/2. The shape
of the distortion is in close agreement with previous spin-wave calculations. For all the systems, astaggered
moment is induced by the impurity. For the gapped two-leg ladder this is exponentially localized within a
length equal to the spin correlation length of the ladder~'3.2 lattice spacings!. For the three-leg ladder, the
integrated staggered moment diverges as the system size goes to infinity, but the staggered magnetization at a
given site appears to vanish. In 2D, we discuss the behavior seen in finite systems both with and without
additional symmetry-breaking mechanisms. We also discuss the effect of impurities on the NMR Knight shift
and the bulk magnetic susceptibility.@S0163-1829~97!00541-9#
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I. INTRODUCTION

Nonmagnetic impurities introduced into various cupra
material alter their magnetic properties in ways which refl
the nature of the correlations in the pure systems. Exp
mentally, Mahajanet al.1 have used the89Y NMR response
to study the effect of Zn impurities on surrounding Cu sp
in YBa2(Cu12yZny)O61x for various amounts of oxygen
Azumaet al.2 have studied the case of Zn impurities subs
tuted for Cu in the two-leg and three-leg spin-1/2 Heisenb
ladder materials Sr2(Cu12yZny)2O3 and Sr2(Cu12yZny)3O5.
If the Zn impurity maintains a nominal Cu21 charge, the
Zn21 would have a (3d)10, S50 configuration and act as
nonmagnetic impurity. Thus an interesting question
whether a nonmagnetic impurity can induce a local mom
on the surrounding Cu21 sites. In the fully oxidized YBCO7
material, the induced moment was found to be small, of
der 0.2mB per Zn, while it was of order 0.8mB per Zn for an
oxygen reduced sample which exhibited a spin gap. This
in approximate agreement with theoretical expectations
a nonmagnetic impurity can only induce a local mome
when the mother phase has a spin gap.3 From this point of
view, one would expect that in spin-gapped antiferrom
netic two-leg ladders, Zn impurities would create local m
ments, while in three-leg ladders they would not. Howev
the initial experiments on the two- and three-leg ladd
found that comparable local moments were introduced
both of these systems. Here we use numerical technique
investigate the problem of induced moments around n
magnetic impurities in the Heisenberg model on a tw
dimensional~2D! square lattice, as well as in two- and thre
leg ladders.
560163-1829/97/56~18!/11701~9!/$10.00
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The Hamiltonian for the various lattices that we study
the standard Heisenberg model with nearest-neighbor in
actions

Ĥ5J( 8
^ i , j &

Si•Sj , ~1!

where ^ i , j & denotes a pair of nearest-neighbor sites on
square lattice withn3L sites (n52,3,L), and the primed
sum excludes impurity sites. Here we focus primarily on t
problem of the magnetic correlations around a single n
magnetic impurity, and only comment on some aspects
the case of a finite impurity concentration. We use a fini
temperature quantum Monte Carlo~QMC! technique based
on a power series expansion of the operator exp(2bĤ),
whereb is the inverse temperatureJ/T ~‘‘stochastic series
expansion’’!.4 This technique is an improved variant of th
so-called Handscomb technique,5 and is free from systematic
errors of the ‘‘Trotter breakup’’ used in standard worldlin
methods.6 Low enough temperatures can be reached for
taining ground state results for lattices with up to hundre
of sites. The method has recently been applied to a variet
spin problems.7

The outline of the rest of the paper is as follows. In Sec
we calculate the magnetization distribution around isola
impurities atT50. Finite-size scaling of results for the dif
ferent types of lattices are used to determine whether or
localized moments are formed. In Sec. III we discuss
effects of impurities on the NMR Knight shift at finiteT. In
Sec. IV we discuss systems with a finite concentration
impurities, in particular the effects on the bulk susceptibili
We summarize our study in Sec. V.
11 701 © 1997 The American Physical Society
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II. MAGNETIZATION DISTRIBUTION
AND LOCALIZED MOMENTS

In this section the magnetization distribution atT50 is
investigated for systems with a single impurity. For a bip
tite lattice with an even number of sites, removing one s
leads to a ground state withS51/2.8 The ground state is
hence twofold degenerate, withmz561/2. Choosing one of
these states, one can calculate the position dependent
netization^Sz(x,y)&. The behavior of this quantity as a func
tion of the distance from the impurity site gives direct info
mation on whether or not a moment is formed.

Here we will present numerical results for two- and thre
leg ladders, as well as 2D systems. Figure 1 illustrates
different lattices with an impurity at (x,y)5(0,0). For the
ladders, thex and y directions are defined as the rung a
chain directions, respectively. We use periodic bound
conditions in both directions in the 2D case, and in the ch
direction of the ladders. The QMC calculations were carr
out at temperatures low enough for thermal expectation
ues to be completely dominated by the ground state. T
cally, inverse temperaturesb'L, 2L, and 4L were used for
the two-leg ladders, three-leg ladders, and 2D lattices,
spectively. Comparing with results at higher temperatu
we find that there are only very minor contributions of e
cited states in the low-T results discussed here.

For the discussion of the magnetization distribution
define the ‘‘frame distance’’R from the impurity as indi-
cated in Fig. 1. The total uniform~0! and staggered~p! mag-
netizations of frameR are defined according to

M0~R!5 (
r ~x,y!5R

^Sz~x,y!&, ~2a!

Mp~R!5 (
r ~x,y!5R

~21!x1y^Sz~x,y!&, ~2b!

wherer (x,y) is the frame distance between the impurity a
the site at (x,y). We also define the total magnetizatio
within distanceR:

I 0,p~R!5 (
R8<R

M0,p~R8!. ~3!

For a system with a localizedS51/2 moment,I 0(R) should
approach 1/2 exponentially fast asR→`. Equivalently, for a
given distanceR close to the impurity,I 0(R) should ap-
proach a finite value as the system size goes to infinity.
the other hand, if no moment is formed, the magnetizatio

FIG. 1. Illustration of the different lattices with a single spin
(x,y)5(0,0) removed~indicated by the solid circles!. The bold
lines indicate sites at a frame distanceR52 from the impurity.
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spread over the system, and as the system size grows
will observe that for a fixedR, I 0(R)→0. We use the stag
gered quantityI p(R) in a similar manner to determin
whether a staggered moment is induced. Since the stagg
magnetization is not a conserved quantity, the size of a s
gered moment can be arbitrary.

A. Two-leg ladders

We begin by discussing the two-leg ladder,9–11 in which a
localized moment is expected to be induced, on accoun
the pure system being gapped.3 Figure 2 shows the magne
tization ^Sz(x,y)& vs the distance from the impurity for
2364 system. The magnetization is largest at the site on
same rung as the impurity, and has a rapidly decaying os
lating behavior versus the distance from the impurity. Figu
3 shows the integrated uniform and staggered magnetizat
vs R for systems of linear sizesL516, 32, and 64, withR
defined in Fig. 1. There are only very minor differences
I 0(R) for the different lattice sizes, and the approach to
full magnetization 1/2 is exponential. A line fit to ln@M0(R)#
for R>3 gives a localization lengthj0'1.5 lattice spacings
The induced staggered magnetizationMp(R) has a localiza-
tion length jp'3.2, consistent with the spin correlatio
length of the pure ladder.10 The ratiojp /j0'2 is consistent
with the ratio of the gaps of the pure ladder at the cor
sponding momentak5(0,0) andk5(p,p).11 The total stag-
gered momentI p(R→`)'2.8.

B. Three-leg ladders

Ladders with an odd number of legs are gapless, an
uniform moment is therefore not expected to form around
impurity.3 The low-energy properties of the three-leg ladd
maps onto those of the spin-1/2 chain.12 One might then
expect the case of a static impurity to correspond to a s
1/2 chain with a defect. Eggert and Affleck used conform
field theory to study various defects in spin-1/2 chains, a
concluded that in most cases defects are screened an
fixed point is a chain with open boundary conditions.13 How-

FIG. 2. The average magnetization vs the distance from
impurity for a two-leg ladder of lengthL564. Open circles are for
sites on the same leg (x50) as the impurity, and solid circles fo
sites on the chain across the impurity (x51).
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56 11 703NONMAGNETIC IMPURITIES IN SPIN-GAPPED AND . . .
ever, they also pointed out that defects inS53/2 chains can
cause different behavior~even thoughS51/2 and S53/2
chains otherwise have the same low-energy properties! in
particular that a defect with smaller spin in anS53/2 chain
may lead to overscreening, and this in turn could lead eith
to an effective system corresponding to the periodic chain
possibly to some nontrivial fixed point.13 It is hence not clear
what kind of behavior to expect in the three-leg ladder wi
an impurity.

In the open spin-1/2 chain, there is a staggered magn
zation decaying as 1/Ar ~times an oscillating function ofr !
with the distance from an end,14 which hence would be ex-
pected also around an impurity in the three-leg ladder if t
impurity is screened. However, the situation may be comp
cated by the presence of the defect with its screening clo
which although having total spin 0, can also be associa

FIG. 3. The integrated uniform~top panel! and staggered~bot-
tom panel! magnetizations vs the distance from the impurity~with
R defined in Fig. 1! for two-leg ladders of lengthL516 ~solid
circles!, 32 ~open circles!, and 64~solid squares!. The insets show
the logarithms of the corresponding frame magnetizations
L564, with lines indicating fits to extract the localization lengths
er
r

ti-

e
i-
d,
d

with a staggered magnetization. Hence, the behavior fo
in the open spin-1/2 chain would likely only be reproduc
at very large distances from the impurity, even if this ma
ping would indeed be the correct one.

Figure 4 shows our results for the local staggered mag
tization u^Sz(x,y)&u versus the distance from the impurity fo
systems with up to 3396 sites. At long distances
u^Sz(x,y)&u is almost flat, and its magnitude decreases as
system size increases. The integrated uniform and stagg
magnetizations are shown in Fig. 5. The even-odd osc
tions in I 0(R), which are absent for the two-leg ladder, a
clearly due to the fact that the rungs have an odd numbe
sites, so that an effective cancellation of the staggered m
netization can only occur for oddR ~with the impurity on the
center chain!. Nevertheless, as the system size grows, a c
decay ofI 0(R) for eachR can be seen@for example, the inset
shows I 0(R510) vs the inverse ladder length#, consistent
with no localized moment asL→`. The integrated stag
gered magnetizationI p(R) grows approximately linearly
with R, with a slope which is smaller for the larger system
@in accordance with the flat behavior observed above
u^Sz(x,y)&u#. The full staggered momentI p(L/2) appears to
diverges asL→`, but the divergence is clearly slower tha
L. If indeed I p(R);R, and I p(L/2);La, with a,1, then
I p(R)→0 for any R as L→`. However, our results for
small R are not of sufficient accuracy to rule out a differe
behavior very close to the impurity. In any case, the behav
appears to be different from the 1/Ar decay of the staggere
magnetization with distancer from the open end of a spin
1/2 single chain,14 and hence indicates that the system do
not map onto this model. The tendency to spread the indu
staggered magnetization evenly over the whole system
indicate a divergent screening length. Further studies
clearly needed to resolve this issue.

r

FIG. 4. The magnitude of the magnetization vs the dista
from the impurity for three-leg ladders of lengthsL532, 64, and
96. Solid lines are forx50 ~center chain, with the impurity!, and
dashed lines forx51,3 ~edge chain!. For L564 andL596, there
are'5% statistical errors fory.10, which affect the overall am-
plitudes, but not the oscillating behavior.
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11 704 56A. W. SANDVIK, E. DAGOTTO, AND D. J. SCALAPINO
C. 2D systems

Effects of an impurity in the 2D Heisenberg model wa
previously discussed by Bulutet al.,15 on the basis of linear
spin-wave theory and exact diagonalization of a 434 lattice.
It was concluded that the totalSz51/2 distortion of the order
parameter is localized to the close vicinity of the impurity
and that the order is actually enhanced at the site closes
the impurity.

Here we begin by studying the doubly degenerateS51/2
ground state of small periodic square lattices with one sp
removed, in the same way as done above for the ladder s
tems. Figure 6 shows the average magnetization vs dista

FIG. 5. The integrated uniform~top panel! and staggered~bot-
tom panel! magnetizations vs the distance from the impurity~with
R defined in Fig. 1! for three-leg ladders of lengthL532 ~open
squares!, 64 ~solid circles!, and 96~open circles!. The inset of the
top panel showsI 0(R510) vs the inverse system size.
,
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from the impurity in themz521/2 sector of a 12312 lat-
tice. The magnitude of the magnetization is almost indep
dent of the distance. Naively one might expect that this st
gered order induced by removing a spin is equal to
sublattice magnetization. This is not the case, however.
see this, we first consider the sublattice magnetizationm1,
which for a rotationally invariant finite system, can be d
fined as16

m1/)5ASp /N, ~4!

whereSp is the staggered structure factor

Sp5
1

N (
x1 ,y1

(
x2 ,y2

~21!x12x21y12y2^Sz~x1 ,y1!Sz~x2 ,y2!&.

~5!

In a lattice with one spin removed the rotational invariance
broken. However, in contrast to the thermodynamic lim
broken-symmetry state, the staggered magnetization is
fully locked in thez direction. It is clear that the removal o
a single spin from a large system cannot significantly cha
the average long-distance correlation functions, and he
scaling Eq.~4! to infinite system size should give the corre
sublattice magnetization also with an impurity present. T
staggered magnetizationu^Sz(x,y)&u induced by a missing
spin ~in a finite lattice, and scaling to infinite system siz
without breaking the symmetry! must therefore be smalle
than the true sublattice magnetizationm1. In Fig. 7 we com-
pareASp /N calculated on 2D lattices with and without a
impurity, and the average

mp5
1

L221 (
x,y

u^Sz~x,y!&u, ~6!

of the staggered magnetization of systems with an impur
Without fluctuations inSz(x,y) ~as would be the case if th
symmetry is fully broken and staggered magnetization
locked in thez direction!, mp would be equal toASp /N.
The results in Fig. 7 clearly show that there are in fact la
fluctuations, sincemp is considerably smaller thanASp /N.
The dependence ofmp on 1/L is close to linear, and scaling

FIG. 6. Site-dependent magnetization of a 2D 12312 lattice
with an impurity at (x,y)5(0,0), along the lines (r ,0) ~solid
circles!, and (r ,r ) ~open circles!.
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56 11 705NONMAGNETIC IMPURITIES IN SPIN-GAPPED AND . . .
to infinite system size givesmp'0.11. ASp /N is only
slightly affected by the presence of a static hole, as expec
and scales to a value consistent with the known16,17sublattice
magnetizationm1/)'0.18. Hence, there is a factor'3
relatingmp and the full staggered magnetization in this ca

Figure 8 shows the integrated uniform magnetizat
I 0(R) for different system sizes. For a given distanceR from
the impurity, I 0(R) decreases with increasing system si
approaching a finite value asL→`. Quadratic fits used for
extrapolations are shown forR51 andR52. The results are
considerably lower than those obtained within spin-wa
theory.15 Again, this is clearly due to a rotational reductio
as discussed above. The longitudinal component of the m
netization is only partially directed along the quantizati
axis used, and the distortion of the longitudinal componen
therefore not seen fully in this type of calculation.

In order to study the full effects of an impurity on th
antiferromagnetic background, we have to explicitly bre
the symmetry, so that the longitudinal correlation functio
can be directly accessed. Here we achieve this situation
coupling the edges of a system with open boundary co
tions to spins which are fixed in an antiferromagnetic co
figuration. For this Ising-type interaction we arbitrari
choose the same strengthJ as the Heisenberg interactio
among the interior spins. At the center of the system,
staggered edge spins have an effect similar to a stagg
field with a strength that vanishes as the system size gro
Comparing results for this system with one where the ce
spin is removed gives a direct measure of the distortion
the antiferromagnetic background due to an impurity. T
two lattices are illustrated in Fig. 9.

First, in order to verified that this method gives the know
value of the staggered magnetization at the center of
lattice without an impurity, we studied such systems with
to 25325 spins. Extrapolating the expectation value^S0

z&,
with i 50 being the center spin, gives a sublattice magn
zation '0.305, which is in good agreement with previo
calculations.16,17

FIG. 7. The staggered structure factor vs inverse system siz
L3L square lattices~solid circles!, and with one spin removed
~open circles!. The solid squares show the induced staggered m
netization averaged over all the sites in a system with one
removed.
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We next define the distortion due to an impurity as

^Si
z&D5^Si

z& I2^Si
z&0 , ~7!

where^Si
z& I is the expectation value calculated with the cen

ter spin removed, and̂Si
z&0 is the results for the intact lat-

tice. We use a sign convention such that^Si
z&D.0 for the

center spin, so that it measures thereductionof the magne-
tization in the presence of the impurity. The QMC results fo
sites close to the impurity are in good quantitative agreeme
with the results of linear spin-wave theory presented by Bu
lut et al.15 In particular, the staggered order at the site close
to the impurity is enhanced. For the largest system studie
here (L525), the enhancement is 0.0086(4), whereas linear
spin-wave theory gives 0.0107.15 For all other distances the
staggered magnetization is reduced by the impurity, both
spin-wave theory and our present numerical calculations

Figure 10 shows the uniform and staggered frame magn
tizations, which are defined as in Eqs.~2a! and ~2b!, with

or

g-
in

FIG. 8. Upper panel: Integrated moment vsR for 2D lattices of
different sizes. Lower panel: Finite-size scaling forR51 andR52.
The curves are quadratic fits to the QMC results.
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11 706 56A. W. SANDVIK, E. DAGOTTO, AND D. J. SCALAPINO
^Si
z&D replacing^Si

z&. Mp(R) is positive for allR which with
our definition means that the averaged staggered magne
tion on each frame is reduced by the impurity. BothM0(R)
andMp(R) decay exponentially asR increases, with a local
ization length'1.5 lattice spacings.

We can now relate these results to those obtained ab
without the symmetry-breaking boundaries. The extrapo
tions shown in Fig. 8 give integrated magnetizatio
I 0(1)50.024 andI 0(2)50.043. With the staggered bound
aries, the data shown in Fig. 8 giveI 0(1)50.076 and
I 0(2)50.135. Hence, the ratioI 0(2)/I 0(1)'1.8 in both
cases, but the amplitudes differ by a factor'3, which within
our numerical accuracy is equal to the factor found ab
relating the impurity-induced staggeredz magnetization to
the full sublattice magnetization.

The difference between the localized uniform magneti
tion induced around an impurity in the 2D case and the m
ment formed in the two-leg ladder is that the former is
ways aligned in the direction of the antiferromagne

FIG. 9. Lattices used to study systems with broken symme
The open and solid circles indicate up and down edge spins w
are coupled to the 2D Heisenberg antiferromagnet by Ising c
plings ~indicated by dashed lines!.

FIG. 10. Uniform ~top! and staggered~bottom! magnetization
differences within frames at distanceR from the lattice center, com
pared with some of the linear spin-wave~LSW! results by Bulut
et al.15
za-

ve
-

s

e

-
-

-

moment. The profound difference between these case
most clearly seen by considering two well separated imp
ties on different sublattices. In the two-leg ladder, the cor
sponding moments can both align along the field in any
rection, whereas in a large but finite 2D system t
magnetization associated with a single impurity can al
with the field, but aligning the second one would requ
twisting the staggered magnetization in the neighborhood
the impurity. Hence, the termfree local moment is appropri-
ate only in the context of gapped systems.

III. FINITE-TEMPERATURE KNIGHT SHIFT

The NMR Knight shiftK is proportional to the local sus
ceptibility of the electrons close to the nucleus under stu
For a strictly on-site hyperfine coupling,K is proportional to
the susceptibility of a single spin to a uniform field, and w
here definedK accordingly:

K~r !5E
0

`

dt(
i

^Sr
z~t!Si

z~0!&5b(
i

^Sr
zSi

z&. ~8!

In a system with impurities, the NMR line shape will refle
the distribution of Knight shifts in the system, and is hen
an important probe for studying impurity effects. As an e
ample, the end effects predicted by Eggert and Affleck
the spin-1/2 chain14 were recently confirmed experimental
in the quasi-1D compound Sr2CuO3 by Takigawaet al.,18

and also allowed for an accurate determination of the imp
tant hyperfine form factor.

For the two-leg ladder, a divergence ofK would be ex-
pected in view of the localized moment created by the i
purity. However, as discussed above, the induced stagg
moment is considerably larger than the uniform momen
low temperatures, which translates to an oscillating beha
also for the Knight shift. For a givenT, K(r→`) ap-
proaches the bulk susceptibilityx. The sign ofK is positive
for all r at high temperatures. At low temperatures it is neg
tive for sites on the same sublattice as the impurity. N
surprisingly, this behavior is observed also for the three-
ladder and the 2D system. Figure 11 shows results for
three-leg ladder at two temperatures.

.
ch
u-

FIG. 11. The Knight shift vs the distance from the impurity in
three-leg ladder withL532 at two different temperatures.
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56 11 707NONMAGNETIC IMPURITIES IN SPIN-GAPPED AND . . .
For a spin-1/2 chain with open boundaries, Eggert a
Affleck predicted aT→0 local susceptibility~Knight shift!
which increases asAr with the distancer from the boundary.
A finite temperature exponentially suppresses the incre
resulting in a maximum that is shifted towards the interior
the chain asT→0. This was confirmed numerically.14 Our
results for the three-leg ladder with an impurity do not e
hibit the shift of the maximum, even at considerably low
temperatures than those shown in Fig. 11. This is ano
indication that the system does not map onto a spin-1/2 c
with a screened defect.

Figure 12 shows the temperature dependence ofK(1,0)
andK(1,1) for all the systems we have studied. In the te
perature regime considered the behavior is similar for
systems, with the strongest growth exhibited by the two-
ladder, for which a divergence is clearly expected in view
the existence of a localized staggered moment~the diver-
gence will occur at all sites, but the prefactor decays ex
nentially with the distance from the impurity!. If the picture
of a renormalization to an open spin-1/2 chain holds for
three-leg ladder, the low-temperature Knight shift sho
converge to a value;AR. As already discussed, none of o
numerical results have shown this behavior. In the 2D ca
we expect a divergence ofK at all distances in view of the
staggered moment resulting from the long-range order of
system atT50.

IV. SUSCEPTIBILITY FOR A FINITE IMPURITY
CONCENTRATION

Another quantity of experimental interest as a probe
the effects of impurities is the magnetic susceptibility. In th
case, in order to determine the low-temperature behavio
the susceptibility, one must treat a finite concentration
impurities taking into account their interaction. The effec

FIG. 12. The temperature dependence of the Knight shift at
sites close to an impurity for a 12312 plane~open circles!, a two-
leg ladder of lengthL564 ~solid circles!, and a three-leg ladder o
lengthL532 ~open squares!.
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of a finite concentration of nonmagnetic impurities on a tw
leg ladder have recently been extensively studied. As
have seen, a local moment is formed around the impu
along with an induced staggered magnetization which
perimentally decays on a length set by the spin gap of
ladder. Fukuyamaet al.21 showed that for a finite impurity
concentration, while the amplitude of the staggered mag
tization was inhomogeneous due to the random distribu
of impurities, there was a persistence in their staggered
correlations leading to an enhancedq5(p,p) susceptibility.
Motomeet al.19 used exact diagonalizations of small cluste
and variational calculations to show that antiferromagne
correlations were enhanced in an impurity doped two-
ladder. They also found low-lying excited states in the s
gap, suggesting that a small but finite concentration of im
rities reduces or eliminates the spin gap. Similarly, Mart
et al.20 found that impurities induced low-lying excited stat
which are seen in the dynamic magnetic structure factor
spin-gapped system. They noted that these states arose
nonmagnetic impurities doped into a spin-gapped sys
created local moments which coupled with a random dis
bution of strengths. These authors also found enhanced
ferromagnetic correlations in the vicinity of a nonmagne
impurity for a dimerizedS51/2 chain~to model CuGeO3), a
system which also has a spin gap. Sigrist and Furusa22

noted that nonmagnetic impurities doped into a two-
Heisenberg ladder create local spin-1/2 degrees of free
which interact via the spin-liquid background. As the tem
perature is lowered, correlations then develop among the
purity moments and the system renormalizes into coup
clusters with coherent staggered correlations on a long len
scale.

All of these treatments rely on the existence of local m
ments formed around the impurities, which are coupled
the exponential spin-spin correlations in the spin liquid. Th
the behavior of an impurity doped two-leg ladder should
different from the 2D lattice, for which we have argued th
the induced localized magnetization around the impu
does not correspond to a free moment, but is always alig
with the local staggered order~although the system is no
antiferromagnetically ordered at finiteT, the staggered cor
relation length at lowT is much larger than the localizatio
length of the distortion found in the previous section!. Here
we contrast the uniform susceptibility of a 2D lattice and
two-leg ladder.

We begin by showing results for the temperature dep
dence of the uniform susceptibilityx of a periodic 838
Heisenberg model with six randomly placed impurities. F
ure 13 shows two ‘‘typical’’ impurity configurations fo

o

FIG. 13. The two impurity configurations for which the susce
tibility was calculated. The solid circles indicate lattice sites witho
spins~nonmagnetic impurities!.
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which we have carried out simulations. The temperature
pendence ofx for these configurations are shown in Fig. 1
along with results for a pure system of the same size. P
system results for a lattice of 64364 sites are also shown, t
give an idea about the finite-size effects. The two impur
configurations give strikingly different susceptibilities; fo
configuration 1,x appears to diverge at lowT, whereas con-
figuration 2 has ax similar to the clean system, althoug
somewhat enhanced.

The reason for the different behavior ofx of the two
configurations can be readily understood qualitatively.
already discussed, the total spinS of the ground state of a
Heisenberg model on a bipartite lattice depends on the
ference of the number of spins on the two sublattices. If th
areNA andNB spins in sublatticesA andB, respectively, the

ground state hasS5 1
2 uNA2NBu.8 Hence, in the case unde

consideration here, the ground state is a singlet only if th
are equal numbers of impurities on the two sublattices,
has a finite spin if this is not the case. If the ground state
not a singlet, one of course gets a Curie behavior ofx at low
T, whereas ifS50, x may be finite or decay to zero asT→0,
depending on if there is a gap in the spectrum or not. Insp
ing the hole configurations in Fig. 13, one indeed finds t
configuration 1 has two holes in one sublattice and four
the other one, whereas configuration 2 has three hole
each sublattice. This explains the qualitatively different s
ceptibilities of these lattices. The nondivergent behavior
theS50 case is another indication that inert impurities in 2
are not associated with localized free moments. Such
ments in a finite system withS50 would lead to an increas
in x before the eventual activated behavior caused by
finite-size gap, approaching a trueT→0 divergence as
L→`.

For a system withN sites and a random impurity conce
tration p, the expected difference of the number of holes
sublatticesA andB is }ApN. Hence, the Curie part of th
susceptibility scales as 1/AN, and vanishes asN→`. Fur-
thermore, the temperature at which the Curie behavior
be seen decreases with the system size, since the ground

FIG. 14. The uniform magnetic susceptibility vs temperature
the hole configurations shown in Fig. 1, and for pure systems.
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has a zero measure in the partition function in the thermo
namic limit, and its spin therefore is irrelevant. Of course
the impurity concentration is sufficiently large to cause t
system to break up into disconnected pieces, there will
ways be a Curie component arising from small pieces c
taining an odd number of spins. This contribution surviv
theN→` limit, but does not scale linearly with the impurit
concentration in 2D.

Random impurities in a one-dimensional system, such
a single chain or a ladder, cut the system into disconnec
pieces, and the ones withNA2NBÞ0 give rise to a Curie
contribution to the susceptibility which grows withp much
more rapidly than in 2D. However, as reviewed above,
ladders with an even number of legs, a more interesting c
tribution is expected, due to localized moments which
induced around impurities in spin-gapped systems. In or
to observe the effects of such localized moments we h
simulated a 2364 site ladder with eight impurities~corre-
sponding to a concentrationp56.25%! in a configuration
such that the system remains in one connected piece.
thermore, we choose the configuration such thatNA5NB , so
that the ground state is a singlet and therefore any diverg
behavior is due to localized moments forming around
impurities. The temperature dependence forx in such a sys-
tem is shown in Fig. 15, along with the susceptibility of
pure Heisenberg ladder. The pure system shows the activ
behavior typical for a gapped system. For this case~equal
rung and chain couplings!, the gapD'0.50J. In contrast, the
system with impurities show a minimum inx at T'0.25J,
and then a sharp increase for lower temperatures. Since
ground state is a singlet whenNA5NB , and the system is
finite, the uniform susceptibility will eventually vanish a
T→0. In the thermodynamic limit it will show a true diver
gence. Free localized moments would give a Curie behav
but since the system consists of a single connected lattice
induced moments will have an effective interaction whi

r
FIG. 15. The uniform magnetic susceptibility vs temperature

a pure two-leg ladder with 2364 sites, and one of the same siz
where eight spins have been removed. Numbering the sites o
chains 1–64 and 65–128, the removed spins are at sites 1, 22
46, 70, 79, 99, 120, so that there are equal numbers of spins on
sublattice, and the ground state therefore is a singlet.
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depends on the distances between the impurities. As
cussed by Sigrist and Furusaki,22 this leads to a nontrivial
divergent behavior.

V. SUMMARY

From these calculations, we have seen that a single n
magnetic impurity induces a local moment on a two-leg la
der but not on a three-leg ladder or on a 2D lattice. T
induced staggered magnetization around the impurity o
two-leg ladder has a localization lengthjp'3.2 set by the
spin-gap correlation length of the pure ladder. A stagge
magnetization is also induced on a three-leg ladder, but
amplitude at a given distance from the impurity deca
strongly with increasing system sizeL. Nevertheless, the
staggered magnetization integrated over the whole ladder
pears to diverge asL→`. We have discussed the possibilit
of the system mapping onto a spin-1/2 chain with a scree
defect~which in turn corresponds to an open chain!, but the
behavior found does not appear to support this picture.
finite 2D lattices, the induced staggered magnetization
mains finite at all distances from the impurity as the syst
size grows, reflecting the long-range order in the grou
state of the pure system. The sublattice magnetization see
this case~in the direction of the quantization axis used! is
smaller than the full sublattice magnetization, which is se
only if the symmetry is further broken by a staggered fie
There is an exponentially decaying distortion of the subl
tice magnetization in the neighborhood of the impurity. O
numerical results for the magnitude of this distortion are
good agreement with previous spin-wave calculations.15

We have also discussed the NMR Knight shift, whic
depends on the temperature and the distance from the im
rity in a manner reflecting the behavior of the staggered m
is-
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netization atT50. It would clearly be interesting to experi
mentally search for these effects in the NMR line shape
two- and three-leg ladder materials, as was recently done
Takigawaet al. for the single-chain material Sr2CuO3.18

The uniform susceptibility of two-leg ladders in the pre
ence of a finite concentration of impurities has been d
cussed in detail recently.22 Here we have presented numer
cal results confirming that the localized moments in th
gapped system cause a divergent susceptibility at low te
peratures. We have also shown that this does not occur in
gapless 2D system, for which the moment introduced by
impurity is not free, but aligned with the local staggere
order.

An interesting system in which to study the effects
nonmagnetic impurities would be a 2D system that can
tuned through a quantum critical point. The Heisenberg
layer, with interlayer and intralayer couplingsJ2 and J1 ,
respectively, is critical at (J2 /J1)critical'2.5.23 Nonmagnetic
impurities should hence be associated with free local m
ment only forJ2 /J1 larger than this value, with the localiza
tion length diverging at (J2 /J1)critical .

Note added in proof.Zn impurity effects on the NMR line
shape of the type we have discussed here, in Sec. III, w
recently observed in the two-leg ladder compound SrCu2O3
by Fujiwaraet al.24
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