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We study numerically the paramagnetic phase of the spin-1/2 random transverse-field Ising chain, using a
mapping to noninteracting fermions. We extend our earlier work, Phys. Re&3, B486 (1996, to finite
temperatures and to dynamical properties. Our results are consistent with the idea that there are Griffiths-
McCoy singularities in the paramagnetic phase described by a continuously varying expaf)enwhere 5
measures the deviation from criticality. There are some discrepancies between the vat(és aftained
from different quantities, but this may be due to corrections to scaling.alleeageon-site time dependent
correlation function decays with a power law in the paramagnetic phase, nam&f?, whereris imaginary
time. However, thaypical value decays with a stretched exponential behavior,-ezg{“), whereu may be
related toz(5). We also obtain results for the full probability distribution of time dependent correlation
functions at different points in the paramagnetic ph§S8163-1827)07641-§

[. INTRODUCTION direction, which was first studied by McCosnd by McCoy
and Wu® Subsequently, the quantum model was studied by
Most critical points occur at a finite temperature and oneShankar and Murttiyand, in great detail, by FishéFrom a
tunes through the transition by varying the temperature itselfieal space renormalization group analysis, which becomes
There are however, many critical points which occur at zergxact on large scales, Fisher obtained many results and con-
temperature and are traversed by varying some other pararfiiderable physical insight. One of the key conclusions is that
eter. These quantum critical points have recently been oflany quantities have very broad distributions, with average
great interest, particularly for systems with disorder. Oneand typical values being quite different. Consequently, a lot
reason for this interest is that even the paramagnetic pha¥ information is lost by averaging. Confirmation of Fisher's
can have quite dramatic singularities. For example, in syssurprising predictions for th&=0, equal time behavior of
tems with a discrete symmetry, such as the Ising model disthe quantum problem, as well as some results for distribu-
cussed in this paper, there is a line in the phase diagram, dipns of various quantities, were obtained in an earlier \;&R)I’k
either side of the critical point, where correlations in time (henceforth denoted by Y)Rwhich used a mapping of the
(but not in spacedecay with a power law:® Power law  Spin problem to noninteracting fermidns'3to obtain accu-
behavior is characteristic of a critical point, but here thisrate numerical results for quite large systems.
critical-like behavior occurs only in the time direction. We I this paper we extend these techniques to finite tempera-
could say that there is a line of “semicritical” points. Fur- tures and finite times. Our data suggest that the singularities
thermore, the exponent characterizing the power law decay @re¢ governed by a continuously varying exponent, though
expected to vary continuously along the Ifé.As a result  there are some discrepancies which we discuss. We also ob-
static response functions may actuadiyergein a finite re-  tain results for thelistribution of time dependent correlation
gion away from the critical poirft.® functions, showing, for example, thattgpical correlation
These singularities arise from regions of the sample whiciunction decays with a stretched exponential dependence on
have stronger interactions than average and were first digime, as opposed to the average which decays with a power,
cussed, many years ago, by Griffithis) the context oftlas- ~ as noted above. Recently, results for dynamical correlations
sical models, where, however, they are rather weakt  at the critical point have been obtained by Rieger and Yoloi
about the same time, McCbyetermined exactly some prop- Using similar techniques to ours. Hence our results will be
erties of a two-dimensional classical modedjuivalent to the ~ restricted to the paramagnetic phase.
disordered one-dimensional quantum magnet that we study
here, finding that the susceptibility diverges before the criti- Il. THE MODEL
cal point is reached. It is now understood that this behavior is ) ) i
due the rare regions, more strongly coupled than average, 1he model that we study is one-dimensional random
discussed by Griffiths, but which give a larger effect in thetransverse-field Ising chain with Hamiltonian
guantum regime than near a classical transition. Hence we L1 L
shall refer to Griffiths singularities in the quantum regime as _ 7 2 X
Griffiths-McCoy singularities. H=- Izl Jdigioia- igl hior @
We shall study here the disordered spin-1/2 Ising chain in
one dimension, for which many properties can be worked outlere the{o{'} are Pauli spin matrices, and the interactidns
in detail. The ground state of this model is closely related tcand transverse fields; are both independent random vari-
the finite-temperature behavior of a two-dimensional classiables, with distributionsr(J) and p(h), respectively. The
cal Ising model with disorder perfectly correlated along onelattice size isL, and, in this paper, we will taki&ee, rather
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than the more usual periodic, boundary conditions. We will L L-1

see later why this is necessary. H= >, hi(clc;—cich)— >, Ji(cl—c)(cl, +ciiq).
Since the model is in one dimension, we can perform a = =1

gauge transformation to make all theandh; positive. Un- ©

less otherwise stated, the numerical work used the followingNote that the fermion Hamiltonian, E§), is bilinear and so

rectangular distribution: describedree fermions.

We define operators| for 1<j<2L by ¥/=c/ and
lI/;'H:ci, where k<i<L. Similarly ¥; is the Hermitian
conjugate of#’ . Note that the¥; and W] satisfy the usual
fermion commutation relations fall i andj.

2) The Hamiltonian, Ed9), can then be written in terms of a
real-symmetric 2 X 2L matrix, H, as
The model is therefore characterized by a single control pa-

]2 for 0<J<1,
7(I)=]o otherwise,

. hy* for 0<h<hy,
p(h)= 0 otherwise.

rameterh,. Defining H=¥THW, (10)
An=[In h]g., whereH has the form
_ ~ A B
Ay=[In I, ® :{_B _A}, i
where[---],, denote an average over disorder, the critical
point occurs wheh' whereA andB areL X L matrices with elements
Ah:AJ' (4) Ai,i:hi1
Clearly this is satisfied if the distributions of bonds and fields — 3/
are equal, and the criticality of the model then follows from Ai 1= —Jil2,
duality.4 A convenient measure of the deviation from criti- A — 3/
cality is given by i+1i= ~Yil4
Ap—A, ) Bii+1=Ji/2,
~ var(In h)+var(in J)°
in ) varin J) Bu1j=— /2 12

where var( - -) denotes the variance. For the distribution in

Eq. (2), we have where, since we have free boundary conditions, elements

with an indexL + 1 are zero. Note thatl is real symmetric.

1 Next we diagonalizeH numerically, to find the single-
o= §|” ho. (6) particle elgenstates with eigenvalugg2, n=1,2,..,2 and
e|genvectorsl># which are linear combinations of ther|
with real coefficient$? It is easy to see that the eigenstates
come in pairs, with eigenvectors that are Hermitian conju-

The numerical technique for static quantities, has beegates of each other and eigenvalues which are equal |n mag-
discussed in detail for periodic boundary conditions by YR.nitude and opposne in S|gn We can therefore de@rﬁgc Y
Here we consider free boundary conditions, which is sim-f €,>0 and(I) =1y, if u' is the state with energy ¢,
pler, so we will only summarize the main results. Following  The Hamiltonian can then be written just in termsLof
Lieb, Schultz, and Mattis we start by using the the Jordan- (rather than 2) modes as
Wigner transformation, which relates the spin operators to
fermion creation and annihilation operatocé,andc, :

Ill. THE METHOD

L
1
H=3 21 €YY= YY)

o’=al+a, =
L
oY=i(al-a;), 1
i=i(ai—ap) =2 el Vv 5] (13
u=1
of=1-2ala;=1-2c/c;, (7) N
where all thee, are now taken to be positive. The average
where energy per site is therefore given by
i-1 L L 1
t_ ot —ix> cf
a/=c; exg —im2, Cicil, - -
b [{ = '} L 2 (n Z)LV’ (14)
i-1 wheren,, is the Fermi function,
a;=ex —iﬂ'E c;'cj Ci. (8
=1 1
n,=—————— (15

The Hamiltonian, Eq(1), can then be writtelt # exp(Be,)+1’
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and the specific heat is consequently given by which follows by cyclically permuting the trace, and so,

L without loss of generality, we just consideei.

1 Substituting the transformation in E(B) one has
Corims 3 [n,(1-n]as (16 . ®
LT n=1 i—1
in units wherekg= 1, which we take from now on. Sij(T):<eXF{ DY C:n(T)Cm(T)}[CiT(T)—FCi(T)]
We next consider equal time correlation functions, de- m=1
fined by F{ i-1
xexg —im>, clc|(ci+c)). 27)
8=, 7 2 (@ ')> (
SinceS;;=S;;, we can takg >i, without loss of generality. This can be simplified since
S is given in terms of a determinant of size-i by™* oy
exd —imCpCm]=AnBm, (29
Giiv1 Giivz Gy where
Gi+1,i+1 Gi+1,i+2 Gi+1,j
Sj= A N £5) Am=Cl +cm,
Gj-1j+1 Gj-1j+2 =+ Gj_yj Bm=Cl—Cm, (29)
where and so
Gij=<(CiT_Ci)(CjT+Cj)>. (19) i—1 ji—1
Gjj can be expressed in terms of the eigenvectors of the Sj(n)= <( 1_:[1 Anm T)Bm(T))Ai(T)( |1:[1 A'B')A1>'
matrix H in Eq. (11). Let us write (30
L HenceS;j(7) involves the product of 2¢j—1) Fermi op-
ciT+ ci= 2 ¢Mi(7T +9,), erators. This number is very large if one is interested in two
n=1 a sites near the center of a large lattice, even if those sites are
L close together.
o= t 20 The situation is much simpler fdr=0 because then the
G —Ci = Vi (Y™ Yu), (20) product of all the operators to the left of sités unity2° and
so
where ¢ and ¢ can be shown to be orthogonal matrices.
Then -1 i-1
L sj<0>=<Ai II AB, A,->=<Bi II AB A,->,
Gij=((ci —c(cj+c))) =i 1=+l
) (31
=D Y, (Y =y )y +y,) where the last line follows becausé= 1. As shown by Lieb
= il (V= Y Tt 7)) et al,™ Wick’s theorem, together with the observation that
L
AA)=—(BB;))=4;, 32
== (1200, (21 Vi) =~ (BiB) = (32
p=1 enables one to writ§;(t=0) as the Toeplitz determinant of
since orderj—i in Eq. (18). This is convenient because the deter-
- minant is small ifi and]j are close together, even for sites far
Yu¥w ={Yu¥)=0, (220 from the boundary of a large system.
‘ ‘ For 7#0 in Eqg.(30) one can still use Wick’s theorem but
YuYw =LYy ) =Ny (23)  now there are many more pairs of operators to be included in

the contractions. Wick’s theorem for fermions requires the
maum over all possible products of pair averages, with a sign
which is 1 or —1 depending on whether an even or odd
permutation of the operators is necessary to get the operators
in the product back to the original order. This is called a
Pfaffian; see, e.g., the book by McCoy and Wuf the

At zero temperature, Eq21) goes over to Eq(54) of YR.

We now discuss how these results are generalized to ti
dependent correlation functioh§*®We are interested in the
o%-a? imaginary timé® correlation function, Sij(7) for
0=<r7=<p, where

S;j(r1— 75) =(aF(m1)o7(12)), (24)  humber of operatorsi2is large(heren=i+j—1), evalua-
. tion of the Pfaffian is intractable because the number of
with terms (—1)!! is too large even for fast computers. How-
_ ever, the Pfaffian is also the square root of an antisymmetric
oi(1)=engle 11N, (25) ; ;
it71 [ matrix (of order 2n) formed from the pair averages. To be

Note that precise, ifA,B,...,Z are Fermi operators, and the average is
over a free Fermi Hamiltoniagin the grand canonical en-
Sij(1)=S;(B—7), (26)  semble, one ha$'
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(ABC---2Z)
0 (AB)  (AC) (AZ)| 12
—(AB) 0 (BC) (BZ)
=| —(AC) —(BC) 0 (CZ)
-4Aa -45@ —«éa » 6
(33

As a simple example, conside+1,j=2 in Eq. (30) for
which Wick’s theorem gives

S1,2( T)= <A1( T)A131A2>
=(A1(1)A)(B1A2) —(A1(7)B1)(A1A,)

+(AL(7)A2){ABy). (34
This is easily shown to equal
0 (AUTAD)  (Al(7)B1) (A(1)Ay)| M
—(A(1)A) 0 (A1By) (A1A;)
- <A1( T)Bl> _<A151> 0 <BlA2> ’
—(A1(NA)  —(A1A2) —(B1Az) 0
(35)

which is just Eq.(33) for this case. Note that E¢32) gives
(A1A,)=0 and we also havAZ=1. Hence, forr=0, we get,
from Eq. (34), the simpler result

51,2(0):<|31A2>v

which also follows immediately from Ed18).

(36)
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V,(1)=(1-n,)e ", (38
and 7= 7,— 7,. From these pair averages the determinant in
Eq. (33) [with the operators in Eq30)] is evaluated numeri-
cally, and finally the square root taken. Since the imaginary
time correlation function is real and positive, there is no
ambiguity about the sign.

We concentrate on thiecal correlation functionS;;(7).
This determines the local susceptibility from

Xii=JB5n(T)dT- (39
0

We determines;;(7) for different values ofr, increasing in a
roughly logarithmic manner, and approximate the integral by
the trapezium rule. We compute the average local correlation
function and average local susceptibility, defined by

1 1
Sad V= 2 [Si(M]av: xav= [ 2 [xiJav- (40
From now on, for compactness of notation, we will denote
Si(7) by S(7). In addition, because there are large fluctua-
tions in the values o§(7) from site to site, we also look at
the distributions of this quantity for different

IV. PHENOMENOLOGICAL DESCRIPTION

From recent work;*#1%14a phenomenological description

of the Griffiths-McCoy region of the paramagnetic phase has
emerged. Singularities arise from small regions which are
“locally in the ferromagnetic phase” and have a very small

energy gap. As a result, there are low energy “cluster” ex-
citations, which have a power law distribution of energies,

It is much more convenient to work evaluate the determi-Ag. The probability of having a low energy excitation is

nant and take the square root than to directly evaluate thgrgnortional to the sizel,, and so we can write the dimen-
Pfaffian. In numerical work, the number of operations re-gignless probability AEP(AE), as

quired to evaluate the determinant is of orden(2 which,
for n a few hundred, is feasible, whereas the {21)!! op-
erations to evaluate the Pfaffian is definitely not.

AEP(AE)~L(AE)Y29, (41)

The pair averages needed for Wick's theorem can bavhere we write the power in terms of a dynamical exponent

evaluated in the same manner used to derive(EL).above
for the equal time correlation functions. The result is

L
<Ai(n>Bj<rz>>=M§1 (@i —Uu(D)+V (D)1,
L
(BilrDA(72)= 2 (Wil Uul(7) =Vl
L
<Ai<n>Aj<rz>>=;1 (N [U(D+V, (D],

L
<Bi(msj<rz>>=;1 ()i —U (1) =V (D],
37

where

U,(7)=n, e’

z(6), since Eq.(41) corresponds to the standard relation be-
tween a length scal@. here and an energy scald\g) here.
The exponent is expected to vary continuously in the
Griffiths-McCoy phase, and we indicate this by the notation,
z(9).

For the distribution used here, E@®), in the limit 6—«
we can neglect the interactions and the excitation energy of a
single spin is just B; . Since theh; have a uniform distribu-
tion for h—0, it follows thatz=1 in this limit, i.e.,

lim z(8)=1.

S—©

(42

Furthermore, it has been establish&that z(5)— at the
critical point, i.e.,

lim z( ) =c. (43)
5—0

The energy per site at low temperature can be estimated
from the energy of the excited clusters, i.e.,
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FIG. 1. The specific heat as a function of for

6=0.549h,=3) and sized =64 and 32. According to Eq45),
the slope is ().

1 exp(— BAE)
Ea\XT) - Ea\XO)’V E f AE P(AE) m
~ L), (44)
so the specific heat varies as
C~ T2 (45

for T—0.

For a site in a cluster with a low energy excitatiart,
the long time behavior of5(7) is exp(~AE7). Averaging
over the distribution gives

Sad 1)~ pze R (46)
and integratingr up to 8 gives
Xl;\/cw-rH z(d), (47)
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behavior is obtained, as expected from Ety).

We now proceed to our results for the time dependent
correlation functions. Data foiS,(7) for hp=2 and 6
(6=0.346 and 0.896at T=0 are shown in Figs. 4 and 5 on
a double logarithmic scale. The results clearly indicate a
power law behavior, as expected from E46).

From our results fo,, andS,( ), we obtainz(5) from
Egs. (45) and (46). We summariz€ these results in Fig. 6.
While the trend in the two sets of data is the same, there are
some differences, which we do not understand very well.
The lattice sizes used are quite large and the data used to
generate the estimates (o) fit a straight line over a fairly
large range, especially for the specific heat. This suggests
that the estimates far( §) should agree well. However, cor-
rections to scaling may be large because free boundary con-
ditions are used here, as opposed to the more conventional
periodic boundary conditions.

for T—0.

To our knowledge, not much is known about the distribu-
tion of S(7) and one of the goals of the present work is to
deduce its form. Note that because we expect the distribution
to be very broad, with average and typical values quite dif-
ferent, we cannot predict its form simply from knowing the
average.

V. RESULTS

We start with our results for the specific heat. The data for
ho=3(6=0.549), shown in Fig. 1, have good straight line
behavior for more than five decades; the slope, equal to
1/z(6), is 0.74.

According to Eq(42) z( ) should tend to unity ag— occ.

This is confirmed by the data for the specific heat for
h=50(6=1.956), shown in Fig. 2, which has a slope of
0.99, very close to the expected value.

10% S NULLALLL B S AL R R T
i 6=0.346 _
%é" 10 E_
:slope=(1/z(6)—1)=—0.53
1 R ETITT B RN B R RN B
10-¢ 10-3 0.01 0.1
T

The temperature dependence of the susceptibility iS FIG. 3. The susceptibility heat as a function©for §=0.346
shown in Fig. 3 forhy=2(6=0.346). Again a power law and sizeL =64.
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FIG. 4. The average on-sif@maginary time dependent corre- ] )
lation function atT=0 for §=0.346. The lattice size is=64. FIG. 6. The dynamic exponer#(5) obtained both from the

specific heat and the time dependent correlation function. The short-

: P _ dashed line indicates the asymptotic vak(@—)=1, and the
Figure 7 shows the distribution of [§(7) for §=0.895. o 2 4 1

The distribution is broad and becomes broader with increaétﬁggcﬂzigled;::? [;S_tgez?sc:'scnfg d?it';slf?éae_inzﬁiiftzr 0=0. At

ing 7. We therefore attempt to collapse the data by plotting it pomnt,o="5, P '

versus the scaling variable

u=1+2z(5). (49
_ InS(7) In Appendix A we show that, within the same set of assump-
X== " (48) tions, the scaling function is given by
with an appropriate choice fop. We shall see that, at a . 1z [ Z (z+1)lz
given value of§, the distributions of5(7) for different times P(x)=c(cx)™ ex z+1 (cx) ' (50
are all given by asingle scaling functionP(x).
Figure 8 shows that the data plotted in this way collapse¥/here
quite well with the choiceu=2.2. For smallx the behavior —In S(7)
seems to be close to linear, though the data for small times X= g1 (51)
T

has a finite intercept, which perhaps vanishesrfoere. We
shall discuss this again later. Scaling plots #+0.549 and 55 also follows from Eqs(48) and (49), andc is a scale
0.346 are shown in Figs. 9 and 10. The valuegafsed in  factor. The data fow=0.895 fit the scaling function in Eg.

these fits are 2.2 and 2.5. , o (50) quite well, with an appropriate choice of the scale factor
From a variable range hopping analysis, Fiéhéas ar-

gued thatu should be related ta() by

O.]. |}|||||||||||J|||l||||||||||||l1
. 8= 0.895
" .'l.
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1073 gt e 1 .
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FIG. 7. The distribution of-In §(7) for §=0.895. The lattice
FIG. 5. As for Fig. 4, but with5=0.895. size isL=64 and 50 000 samples were averaged over.
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FIG. 8. A scaling plot of the data in Fig. 7. The scaling variable  FIG. 10. As for Fig. 8 but with5=0.346. The best fit is for
is given in Eq.(48) and we have takep=2.2 to get the best fit. w=2.5. The solid line corresponds to the scaling distribution in Eq.
The solid line is Eq(50) with z=1.2, consistent with Eq49), and (50) with z(8)=2.0 and the scale factar=0.46. However, this is
¢=0.2. The fit to the data is good. inconsistent since, according to the theory in the Appendirnd

z(8) should be related by Eq49), which would requirez=1.5.

¢ and a value forz(8), and henceu, consistent with that However, this choice of(5) works less well.
from other data shown in Fig. 6. However, the data closer to
the critical point in Figs. 9 and 10 only fit the scaling form if shows that theypical correlation function, which we define
z(8) in Eq. (50) and u in Eq. (48) are adjusted indepen- to be the exponential of the average of the log, is given by
dently. The values for(5) are found to be in reasonable
agreement with those in Fig. 6, but the values goare then Syp(T)=exp([In S(7)]a) ~exp(—c7), (52
somewhat inconsistent with E¢9). Note however, that the . . . .
stretched exponential is only expedtétb be valid for times wherec is a constant, i.e., a §tretche_d exponential. This con-
larger than a characteristic time which diverges at the trant—rr?cs)\tjnv;’r']tl;h(igverage’ which varies as a powetroas

sition. Hence it is possible that our data are not at sufficientl)? The average value is dominated by rare regions which

long times for smalles to get a good estimate far. have a much larger correlation function at long times than in
The fact that the scaling variable is given by E¢8) . | larger c . 9

a typical region. It is interesting to ask whether the average

value is contained within the scaling function, or whether it

0.3 | | | — comes from contributions which are actually corrections to
C - 7 scaling. We shall argue that there dreth scaling and and
025 & N non-scaling contributions to the"(%) behavior in Eq.(46).
C 10 o 1 Similar behavior has been found recently for the distribution
= ™ 30 x 4 of the equal-time end-to-end correlation function at the criti-
02 = ' 100 & 4 cal point?*
- - 300 & 4 To estimate the contribution from the scaling function, we
X 0.15 — assume that the distributioR(x), of the scaling variable,
A » ] in Eq.(48), has the formx? in the limit x— 0, the only region
0.1 . which contributes to the average. This is indeed the case for
' ] the phenomenological theory discussed in the Appendix, for
] which P(x) is given in Eq.(50). SinceS(7)=exp(—xr*),
0.05 ] it follows that the scaling contribution to the average is
>
0 | | | L

* 1
0 2 4 8 S 1)~ fo x2 exp( — x7H#) dx~ Tl (53

x=—(In S(1)) / TV~

0

which is of the form in Eq(46) with the identification

FIG. 9. As for Fig. 8 but with6=0.549. The best fit is for
pn=2.2. The solid line corresponds to the scaling distribution in Eq. M
(50) with z(8)=1.36 and the scale factor=0.36. Although the fit 2(9)= 1+a’ (54)
is not too bad, it is actually somewhat inconsistent beca(s
and x should be related by Eq49), which would requirez=1.2.  Note that the phenomenological theory, E@)—(51), sat-
However, this choice of(5) works less well. isfies this condition with
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time dependent correlation function decays with a continu-
ously varying exponent, see EG6). There are some dis-
crepancies between the valuesz¢®) obtained in different
ways. We suspect that they are due to corrections to scaling,
but one should perhaps also worry that the simple phenom-
enological picture in Sec. IV may be inadequate.

By contrast, theypical time dependent correlation func-

. tion decays with the stretched exponential form in E59),

where the exponent is probably given by Eq49), though

our data close to the critical point shows some discrepancy

with this. At long times, the distribution db(7) has a scal-

ing form, being a functionP(x), of the single variable in

Eq. (48). This may be given by Eq50), though corrections

to scaling in the smakl region prevent us from checking this

thoroughly. For example, the data in the scaling plots in Figs.

10 102 8-10 are expected to go through the origin, but they actually
T do not, the discrepancy being larger for smalter

The average o8() arises both from the sma¥ region
of the scaling function, and from corrections to scaling.

It is interesting to ask to what extent the behavior in the
paramegnetic phase is universal. Presumably the dependence
of z on & is nonuniversalexcept close to the critical pofht
but, for a givenz, is the scaling function for the distribution
of local correlation functions universal? Since the scaling

O]_ LT T TTTTIT T TTTTTT L

P((In S(7)) = 0)

= 0.549
slope = -0.55

lIIII|

1 III\III| | IIIIIIII

FIG. 11. The probability ofy=—In §7) at y=0 for different
values of7 for 6=0.549 andL=64. The slope is-0.55 which is
somewhat less than, but not too far from the value afdy in Fig.
6. Hence this finite value of the probability at$r)=0 (which is a
correction to the scaling forpgives a contribution to the power law
decay of the average correlation function shown in @6).

1 function involves the limit of long times, it is possible that
a= ——. (55  the microscopic details do not matter, only the form of the
z(5) low energy density of states, in which case the distribution
Although the numerical data only fit the phenomenologicalvould be universal.
theory close to the critical point with values pfand z(8) It would be interesting to see to what extent the results

which are inconsistent with E¢49), this may be due to the found here in one dimension go over to higher dimensions.
times studied not being long enough and other corrections to
scaling. It seems very likely that theisa contribution to the ACKNOWLEDGMENTS
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function. ! . .
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contribution 1o th? average correlation functlpn, W.h'Chthe National Science Foundation under Grant No. DMR-
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tive, soP(0)=0 in the scaling limit. However, we see from
the data in Fig. 7 that the value of Pfebln 7)=0] is finite
for finite = though it does decrease for large This finite APPENDIX

intercept is a correction to scaling. It is easy to see that if Following the suggestion of Fish&twe assume a simple
Prolf —In §(r)=0]~7"**), then this finite intercept will phenomenological picture in which there are cluster excita-
give a power law contribution to the average correlationtions |ocalized about different sites. It is plausible that the
function of the form in Eq. (46). Results for \aye function of an excitation will decay exponentially with
Prolj —In (7)=0] for different values ofr at §=0.549 are g distance of order the typical correlation functigt,. The
shown in Fig. 11. The slope is 0.55, which is a little less  contribution to the dynamics of site at the origin from an
than the estimate for 2(5) obtained by other methods, see excitation centered lattice spacings away will therefore be
Fig. 6, but since there are errors in extrapolating the data t@xp(—rlgtyp— €,7). The local correlation function is there-
S(7)=0, this is perhaps not significant. Hence our resultsgre given by

suggest that Préb-In §7)=0] vanishes ag~ %9, which

gives an additional contribution to the average correlation * r
function which is not contained within the scaling function. S(7) =AZO exr{ - §_ - En’T), (A1)
n= typ
VI. CONCLUSIONS where
We have studied the paramagnetic phase of the disordered A=1-eY (=¢1 for ¢1) (A2)

one-dimensional Ising chain in a transverse fidlderage

properties(equal time, time dependent, and temperature deensures thas(0)=1.

pendenk can be characterized by a continuously varying ex- As a simple model we will assume that thg are uncor-
ponentz( ). At criticality, z(0)=« and, for the model stud- related. Writinge,= €ge,, wheree, is a characteristic en-
ied, lims_,..z(8)=1. As an example, the average, on-site,ergy scale, we take the distribution of thgto be
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p(e)=(\+1)e* (0<e<1), (A3) Since 7,(x) vanishes foix<n, it follows that for n>X,,
the full range over whichr,(x) is nonzero is included in the

where we see from Ed41) that last integral, and so

A= Lﬁ 1 (Ad) QuXmin) =1 (N>Xpin)- (A12)
2(9) As a result, the product in EGA10) need only be taken up

Note that at larger there is a competition between the to the last integer below,,,. For n<xy;,, one has
exp(—r/&yp) factor in Eq. (A1), which decreases with in- . AL
creasingr and so would prefer to have small, and the Qn(Xmin)=1—( min ) _ (A13)
exp(— ¢,7) factor which wants to have the smallegt, which T
may be on a site far away.

The average value is easy to work out, since each term ir]1
Eqg. (Al) can be evaluated separately, with the result t

We will see thak,;;<<7and the important values af are
ose where £m< 7, and so we can rewrite EA10) as

T(1+1k) A+1 Xmin_m>)\ Xmn [ xmm—x)Hl
[S(T)]avzwz_, (A5) - . ex fo In| 1 dxt.

for 7>1, where we used EqA4). . . . (Al.4)
However, the average is very different from the typical EXPanding the log usingy,—x<rand performing the inte-

behavior. To see this, we will determine the full distribution 98! 9ives
of S(7). The major simplification in the calculation is that, at

. : ; A+1 [ Xmin— M\ xMt2
large times, the exponent in E@Al) varies over a large T exg - ——5+1|. (Al15)
range, so the sum will be dominated by the largest single T T (A +2)7
term. Writing Eq.(A1) as Remember that this is the probability thay, is the smallest
w0 of thex, and its value if,;,. We therefore next sum over all
S(n=AS exd - ﬁ) (ng) M less tharky, to get the total probability that the minimum
=0 Eyp iS Xpmin» 1-€-,
where Xenin| * 71 X
P min(X -)=( ) ex;{——. (A16)
X, =N n §typ607'en ’ (A?) min\min T ()\ + 2) 7_)\+1
thenS(7) is given for larger by Replacingr by €yé,,7, and changing variables fromy,,
to y=—In[Y7)/A] using Eq.(A8), gives
~ Xmin
S(7)~A ex;{— , (A8) A+1 A2
ftyp Py(Y):gtyp L exg — gtyp y—m :
. €T AN+1 (eg7)
whereXqi, is the smallest of the,,. (A17)

For the time being we will work in units of time where o .
£ypeo=1. At the end, we will put back this factor by replac- It is easy to check that this yields the average value in Eq.

ing 7 by &ypeoT. (AS). ) ) ) ) ]
The probability ofx,, is given by Equation(A17) can be cast in a scaling form if we define
A+1 [ x,—n\* _ Yy InS(n)/A)
7Tn(Xn):T nT ) , (A9) X= P S N (A18)

Note, however, that the scaling limit involves taking
—In §(1)— so the InA term in Eq.(A18) represents an
additive correctionto scaling and can be omitted. This then
leads to Eq(51), in which X\ has been replaced t& using
Eq. (Ad). The probability ofx is then a function just ok
(apart from a scale factpri.e.,

for n<x,<n+ 7 and zero otherwise. Notice that the differ-
entx, have different distributions.

We now wish to determine the probability that minimum
value of thex,, is X, - Let us assume first that it is, which
has the smallest value. The probability tHat x,, is the
smallest andii) its value isxy, is given by

o0 z
77 (Xonir) P(x)=c(cx)? exp{— —(cx) @Dz (A19)
Oty AL Qulxmin), (A10) z+1
o where we have again expressed the result in ternagather
where than\ using Eq.(A4), and
ntr c=(&pea) M. (A20)
Qn(Xemin) = f o(X)dX. (AL1) _ (e
Xmin Equation(A20) is precisely Eq(50) of the text.
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