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Finite-temperature and dynamical properties of the random transverse-field Ising spin chain
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~Received 7 July 1997; revised manuscript received 18 July 1997!

We study numerically the paramagnetic phase of the spin-1/2 random transverse-field Ising chain, using a
mapping to noninteracting fermions. We extend our earlier work, Phys. Rev. B53, 8486 ~1996!, to finite
temperatures and to dynamical properties. Our results are consistent with the idea that there are Griffiths-
McCoy singularities in the paramagnetic phase described by a continuously varying exponentz(d), whered
measures the deviation from criticality. There are some discrepancies between the values ofz(d) obtained
from different quantities, but this may be due to corrections to scaling. Theaverageon-site time dependent
correlation function decays with a power law in the paramagnetic phase, namely,t21/z(d), wheret is imaginary
time. However, thetypical value decays with a stretched exponential behavior, exp(2ct1/m), wherem may be
related toz(d). We also obtain results for the full probability distribution of time dependent correlation
functions at different points in the paramagnetic phase.@S0163-1829~97!07641-8#
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I. INTRODUCTION

Most critical points occur at a finite temperature and o
tunes through the transition by varying the temperature its
There are however, many critical points which occur at z
temperature and are traversed by varying some other pa
eter. These quantum critical points have recently been
great interest, particularly for systems with disorder. O
reason for this interest is that even the paramagnetic p
can have quite dramatic singularities. For example, in s
tems with a discrete symmetry, such as the Ising model
cussed in this paper, there is a line in the phase diagram
either side of the critical point, where correlations in tim
~but not in space! decay with a power law.1–3 Power law
behavior is characteristic of a critical point, but here th
critical-like behavior occurs only in the time direction. W
could say that there is a line of ‘‘semicritical’’ points. Fu
thermore, the exponent characterizing the power law deca
expected to vary continuously along the line.1–4 As a result
static response functions may actuallydivergein a finite re-
gion away from the critical point.2–5

These singularities arise from regions of the sample wh
have stronger interactions than average and were first
cussed, many years ago, by Griffiths,6 in the context ofclas-
sical models, where, however, they are rather weak.7 At
about the same time, McCoy5 determined exactly some prop
erties of a two-dimensional classical model~equivalent to the
disordered one-dimensional quantum magnet that we s
here!, finding that the susceptibility diverges before the cr
cal point is reached. It is now understood that this behavio
due the rare regions, more strongly coupled than aver
discussed by Griffiths, but which give a larger effect in t
quantum regime than near a classical transition. Hence
shall refer to Griffiths singularities in the quantum regime
Griffiths-McCoy singularities.

We shall study here the disordered spin-1/2 Ising chain
one dimension, for which many properties can be worked
in detail. The ground state of this model is closely related
the finite-temperature behavior of a two-dimensional cla
cal Ising model with disorder perfectly correlated along o
560163-1829/97/56~18!/11691~10!/$10.00
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direction, which was first studied by McCoy5 and by McCoy
and Wu.8 Subsequently, the quantum model was studied
Shankar and Murthy9 and, in great detail, by Fisher.4 From a
real space renormalization group analysis, which becom
exact on large scales, Fisher obtained many results and
siderable physical insight. One of the key conclusions is t
many quantities have very broad distributions, with avera
and typical values being quite different. Consequently, a
of information is lost by averaging. Confirmation of Fisher
surprising predictions for theT50, equal time behavior of
the quantum problem, as well as some results for distri
tions of various quantities, were obtained in an earlier wor10

~henceforth denoted by YR!, which used a mapping of the
spin problem to noninteracting fermions11–13 to obtain accu-
rate numerical results for quite large systems.

In this paper we extend these techniques to finite temp
tures and finite times. Our data suggest that the singular
are governed by a continuously varying exponent, thou
there are some discrepancies which we discuss. We also
tain results for thedistributionof time dependent correlation
functions, showing, for example, that atypical correlation
function decays with a stretched exponential dependenc
time, as opposed to the average which decays with a po
as noted above. Recently, results for dynamical correlati
at the critical point have been obtained by Rieger and Iglo14

using similar techniques to ours. Hence our results will
restricted to the paramagnetic phase.

II. THE MODEL

The model that we study is one-dimensional rand
transverse-field Ising chain with Hamiltonian

H52 (
i 51

L21

Jis i
zs i 11

z 2(
i 51

L

his i
x . ~1!

Here the$s i
a% are Pauli spin matrices, and the interactionsJi

and transverse fieldshi are both independent random var
ables, with distributionsp(J) and r(h), respectively. The
lattice size isL, and, in this paper, we will takefree, rather
11 691 © 1997 The American Physical Society
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11 692 56A. P. YOUNG
than the more usual periodic, boundary conditions. We w
see later why this is necessary.

Since the model is in one dimension, we can perform
gauge transformation to make all theJi andhi positive. Un-
less otherwise stated, the numerical work used the follow
rectangular distribution:

p~J!5 H1 for 0,J,1,
0 otherwise,

r~h!5 H h0
21 for 0,h,h0 ,

0 otherwise.
~2!

The model is therefore characterized by a single control
rameter,h0 . Defining

Dh5@ ln h#av,

DJ5@ ln J#av, ~3!

where @•••#av denote an average over disorder, the criti
point occurs when9,4

Dh5DJ . ~4!

Clearly this is satisfied if the distributions of bonds and fie
are equal, and the criticality of the model then follows fro
duality.4 A convenient measure of the deviation from cri
cality is given by4

d5
Dh2DJ

var~ ln h!1var~ ln J!
, ~5!

where var(•••) denotes the variance. For the distribution
Eq. ~2!, we have

d5
1

2
ln h0 . ~6!

III. THE METHOD

The numerical technique for static quantities, has b
discussed in detail for periodic boundary conditions by Y
Here we consider free boundary conditions, which is s
pler, so we will only summarize the main results. Followi
Lieb, Schultz, and Mattis11 we start by using the the Jordan
Wigner transformation, which relates the spin operators
fermion creation and annihilation operators,ci

† andci :

s i
z5ai

†1ai ,

s i
y5 i ~ai

†2ai !,

s i
x5122ai

†ai5122ci
†ci , ~7!

where

ai
†5ci

† expF2 ip(
j 51

i 21

cj
†cj G ,

ai5expF2 ip(
j 51

i 21

cj
†cj Gci . ~8!

The Hamiltonian, Eq.~1!, can then be written15
ll

a

g

a-

l

s

n
.
-

o

H5(
i 51

L

hi~ci
†ci2cici

†!2 (
i 51

L21

Ji~ci
†2ci !~ci 11

† 1ci 11!.

~9!

Note that the fermion Hamiltonian, Eq~9!, is bilinear and so
describesfree fermions.

We define operatorsC j
† for 1< j <2L by C i

†5ci
† and

C i 1L
† 5ci , where 1< i<L. Similarly C i is the Hermitian

conjugate ofC i
† . Note that theC i andC j

† satisfy the usual
fermion commutation relations forall i and j .

The Hamiltonian, Eq~9!, can then be written in terms of
real-symmetric 2L32L matrix, H̃, as

H5C†H̃C, ~10!

whereH̃ has the form

H̃5F A B

2B 2AG , ~11!

whereA andB areL3L matrices with elements

Ai ,i5hi ,

Ai ,i 1152Ji /2,

Ai 11,i52Ji /2,

Bi ,i 115Ji /2,

Bi 11,i52Ji /2, ~12!

where, since we have free boundary conditions, eleme
with an indexL11 are zero. Note thatH̃ is real symmetric.

Next we diagonalizeH̃ numerically, to find the single-
particle eigenstates with eigenvaluesem/2, m51,2,...,2L and
eigenvectorsFm

† which are linear combinations of theC i
†

with real coefficients.16 It is easy to see that the eigenstat
come in pairs, with eigenvectors that are Hermitian con
gates of each other and eigenvalues which are equal in m
nitude and opposite in sign. We can therefore defineFm

† 5gm
†

if em.0 andFm8
†

5gm if m8 is the state with energy2em .
The Hamiltonian can then be written just in terms ofL

~rather than 2L! modes as

H5
1

2 (
m51

L

em~gm
† gm2gmgm

† !

5 (
m51

L

emS gm
† gm2

1

2D , ~13!

where all theem are now taken to be positive. The avera
energy per site is therefore given by

Eav5
1

L (
m51

L FemS nm2
1

2D G
av

, ~14!

wherenm is the Fermi function,

nm5
1

exp~bem!11
, ~15!
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56 11 693FINITE-TEMPERATURE AND DYNAMICAL PROPERTIES . . .
and the specific heat is consequently given by

Cav5
1

LT2 (
m51

L

@em
2 nm~12nm!#av, ~16!

in units wherekB51, which we take from now on.
We next consider equal time correlation functions, d

fined by

Si j 5^s i
zs j

z&. ~17!

SinceSji 5Si j , we can takej . i , without loss of generality.
Si j is given in terms of a determinant of sizej 2 i by11

Si j 5U Gi ,i 11 Gi ,i 12 ••• Gi j

Gi 11,i 11 Gi 11,i 12 ••• Gi 11,j

A A � A

Gj 21,i 11 Gj 21,i 12 ••• Gj 21,j

U , ~18!

where

Gi j 5^~ci
†2ci !~cj

†1cj !&. ~19!

Gi j can be expressed in terms of the eigenvectors of
matrix H̃ in Eq. ~11!. Let us write

ci
†1ci5 (

m51

L

fm i~gm
† 1gm!,

ci
†2ci5 (

m51

L

cm i~gm
† 2gm!, ~20!

where c and f can be shown to be orthogonal matrice
Then

Gi j 5^~ci
†2ci !~cj

†1cj !&

5 (
m51

L

cm ifm j^~gm
† 2gm!~gm

† 1gm!&

52 (
m51

L

~cT! im~122nm!fm j , ~21!

since

^gm
† gm

† &5^gmgm&50, ~22!

^gm
† gm&512^gmgm

† &5nm . ~23!

At zero temperature, Eq.~21! goes over to Eq.~54! of YR.
We now discuss how these results are generalized to

dependent correlation functions.17,18 We are interested in the
sz-sz imaginary time19 correlation function, Si j (t) for
0<t<b, where

Si j ~t12t2!5^s i
z~t1!s j

z~t2!&, ~24!

with

s i
z~t1!5et1Hs i

ze2t1H. ~25!

Note that

Si j ~t!5Sji ~b2t!, ~26!
-

e

.

e

which follows by cyclically permuting the trace, and s
without loss of generality, we just considerj > i .

Substituting the transformation in Eq.~8! one has

Si j ~t!5K expF2 ip (
m51

i 21

cm
† ~t!cm~t!G @ci

†~t!1ci~t!#

3expF2 ip(
l 51

j 21

cl
†cl G ~cj

†1cj !L . ~27!

This can be simplified since

exp@2 ipcm
† cm#5AmBm , ~28!

where

Am5cm
† 1cm ,

Bm5cm
† 2cm , ~29!

and so

Si j ~t!5K S )
m51

i 21

Am~t!Bm~t!D Ai~t!S )
l 51

j 21

AlBl D Aj L .

~30!

HenceSi j (t) involves the product of 2(i 1 j 21) Fermi op-
erators. This number is very large if one is interested in t
sites near the center of a large lattice, even if those sites
close together.

The situation is much simpler fort50 because then the
product of all the operators to the left of sitei is unity,20 and
so

Si j ~0!5K AiF)
l 5 i

j 21

AlBl GAj L 5K BiF )
l 5 i 11

j 21

AlBl GAj L ,

~31!

where the last line follows becauseAi
251. As shown by Lieb

et al.,11 Wick’s theorem, together with the observation tha

^AiAj&52^BiBj&5d i j , ~32!

enables one to writeSi j (t50) as the Toeplitz determinant o
order j 2 i in Eq. ~18!. This is convenient because the dete
minant is small ifi and j are close together, even for sites f
from the boundary of a large system.

For tÞ0 in Eq.~30! one can still use Wick’s theorem bu
now there are many more pairs of operators to be include
the contractions. Wick’s theorem for fermions requires t
sum over all possible products of pair averages, with a s
which is 1 or 21 depending on whether an even or o
permutation of the operators is necessary to get the opera
in the product back to the original order. This is called
Pfaffian; see, e.g., the book by McCoy and Wu.21 If the
number of operators 2n is large~heren5 i 1 j 21!, evalua-
tion of the Pfaffian is intractable because the number
terms (2n21)!! is too large even for fast computers. How
ever, the Pfaffian is also the square root of an antisymme
matrix ~of order 2n! formed from the pair averages. To b
precise, ifA,B,...,Z are Fermi operators, and the average
over a free Fermi Hamiltonian~in the grand canonical en
semble!, one has21
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11 694 56A. P. YOUNG
^ABC•••Z&

5U 0 ^AB& ^AC& ••• ^AZ&

2^AB& 0 ^BC& ••• ^BZ&

2^AC& 2^BC& 0 ••• ^CZ&

A A A � A

2^AZ& 2^BZ& 2^CZ& ••• 0

U 1/2

.

~33!

As a simple example, consideri 51,j 52 in Eq. ~30! for
which Wick’s theorem gives

S1,2~t!5^A1~t!A1B1A2&

5^A1~t!A1&^B1A2&2^A1~t!B1&^A1A2&

1^A1~t!A2&^A1B1&. ~34!

This is easily shown to equal

U 0 ^A1~t!A1& ^A1~t!B1& ^A1~t!A2&

2^A1~t!A1& 0 ^A1B1& ^A1A2&

2^A1~t!B1& 2^A1B1& 0 ^B1A2&

2^A1~t!A2& 2^A1A2& 2^B1A2& 0

U 1/2

,

~35!

which is just Eq.~33! for this case. Note that Eq.~32! gives
^A1A2&50 and we also haveA1

251. Hence, fort50, we get,
from Eq. ~34!, the simpler result

S1,2~0!5^B1A2&, ~36!

which also follows immediately from Eq.~18!.
It is much more convenient to work evaluate the deter

nant and take the square root than to directly evaluate
Pfaffian. In numerical work, the number of operations
quired to evaluate the determinant is of order (2n)3, which,
for n a few hundred, is feasible, whereas the (2n21)!! op-
erations to evaluate the Pfaffian is definitely not.

The pair averages needed for Wick’s theorem can
evaluated in the same manner used to derive Eq.~21! above
for the equal time correlation functions. The result is

^Ai~t1!Bj~t2!&5 (
m51

L

~fT! im@2Um~t!1Vm~t!#cm j ,

^Bi~t1!Aj~t2!&5 (
m51

L

~cT! im@Um~t!2Vm~t!#fm j ,

^Ai~t1!Aj~t2!&5 (
m51

L

~fT! im@Um~t!1Vm~t!#fm j ,

^Bi~t1!Bj~t2!&5 (
m51

L

~cT! im@2Um~t!2Vm~t!#cm j ,

~37!

where

Um~t!5nmeemt,
i-
he
-

e

Vm~t!5~12nm!e2emt, ~38!

andt5t12t2 . From these pair averages the determinan
Eq. ~33! @with the operators in Eq.~30!# is evaluated numeri-
cally, and finally the square root taken. Since the imagin
time correlation function is real and positive, there is
ambiguity about the sign.

We concentrate on thelocal correlation function,Sii (t).
This determines the local susceptibility from

x i i 5E
0

b

Sii ~t!dt. ~39!

We determineSii (t) for different values oft, increasing in a
roughly logarithmic manner, and approximate the integral
the trapezium rule. We compute the average local correla
function and average local susceptibility, defined by

Sav~t!5
1

L (
i

@Sii ~t!#av, xav
loc5

1

L (
i

@x i i #av. ~40!

From now on, for compactness of notation, we will deno
Sii (t) by S(t). In addition, because there are large fluctu
tions in the values ofS(t) from site to site, we also look a
the distributions of this quantity for differentt.

IV. PHENOMENOLOGICAL DESCRIPTION

From recent work,1–4,10,14a phenomenological descriptio
of the Griffiths-McCoy region of the paramagnetic phase h
emerged. Singularities arise from small regions which
‘‘locally in the ferromagnetic phase’’ and have a very sm
energy gap. As a result, there are low energy ‘‘cluster’’ e
citations, which have a power law distribution of energie
DE. The probability of having a low energy excitation
proportional to the size,L, and so we can write the dimen
sionless probability,DEP(DE), as

DEP~DE!;L~DE!1/z~d!, ~41!

where we write the power in terms of a dynamical expon
z(d), since Eq.~41! corresponds to the standard relation b
tween a length scale~L here! and an energy scale (DE) here.
The exponent is expected to vary continuously in t
Griffiths-McCoy phase, and we indicate this by the notatio
z(d).

For the distribution used here, Eq.~2!, in the limit d→`
we can neglect the interactions and the excitation energy
single spin is just 2hi . Since thehi have a uniform distribu-
tion for h→0, it follows thatz51 in this limit, i.e.,

lim
d→`

z~d!51. ~42!

Furthermore, it has been established4,9 that z(d)→` at the
critical point, i.e.,

lim
d→0

z~d!5`. ~43!

The energy per site at low temperature can be estima
from the energy of the excited clusters, i.e.,
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56 11 695FINITE-TEMPERATURE AND DYNAMICAL PROPERTIES . . .
Eav~T!2Eav~0!'
1

L E DEP~DE!
exp~2bDE!

11exp~2bDE!

;T111/z~d!, ~44!

so the specific heat varies as

Cav;T1/z~d!, ~45!

for T→0.
For a site in a cluster with a low energy excitationDE,

the long time behavior ofS(t) is exp(2DEt). Averaging
over the distribution gives

Sav~t!;
1

t1/z~d! , ~46!

and integratingt up to b gives

xav
loc;T2111/z~d!, ~47!

for T→0.
To our knowledge, not much is known about the distrib

tion of S(t) and one of the goals of the present work is
deduce its form. Note that because we expect the distribu
to be very broad, with average and typical values quite
ferent, we cannot predict its form simply from knowing th
average.

V. RESULTS

We start with our results for the specific heat. The data
h053(d50.549), shown in Fig. 1, have good straight lin
behavior for more than five decades; the slope, equa
1/z(d), is 0.74.

According to Eq.~42! z(d) should tend to unity asd→`.
This is confirmed by the data for the specific heat
h550(d51.956), shown in Fig. 2, which has a slope
0.99, very close to the expected value.

The temperature dependence of the susceptibility
shown in Fig. 3 forh052(d50.346). Again a power law

FIG. 1. The specific heat as a function ofT for
d50.549(h053) and sizesL564 and 32. According to Eq.~45!,
the slope is 1/z(d).
-

n
f-

r

to

r

is

behavior is obtained, as expected from Eq.~47!.
We now proceed to our results for the time depend

correlation functions. Data forSav(t) for h052 and 6
~d50.346 and 0.895! at T50 are shown in Figs. 4 and 5 o
a double logarithmic scale. The results clearly indicate
power law behavior, as expected from Eq.~46!.

From our results forCav andSav(t), we obtainz(d) from
Eqs. ~45! and ~46!. We summarize22 these results in Fig. 6
While the trend in the two sets of data is the same, there
some differences, which we do not understand very w
The lattice sizes used are quite large and the data use
generate the estimates forz(d) fit a straight line over a fairly
large range, especially for the specific heat. This sugg
that the estimates forz(d) should agree well. However, cor
rections to scaling may be large because free boundary
ditions are used here, as opposed to the more conventi
periodic boundary conditions.

FIG. 2. The specific heat as a function ofT for
d51.956(h0550) and sizesL564 and 32. According to Eqs.~45!
and ~42!, the slope should be close to unity, as indeed it is.

FIG. 3. The susceptibility heat as a function ofT for d50.346
and sizeL564.
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Figure 7 shows the distribution of lnS(t) for d50.895.
The distribution is broad and becomes broader with incre
ing t. We therefore attempt to collapse the data by plottin
versus the scaling variable

x52
ln S~t!

t1/m ~48!

with an appropriate choice form. We shall see that, at
given value ofd, the distributions ofS(t) for different times
are all given by asinglescaling functionP(x).

Figure 8 shows that the data plotted in this way collap
quite well with the choicem52.2. For smallx the behavior
seems to be close to linear, though the data for small tim
has a finite intercept, which perhaps vanishes fort→`. We
shall discuss this again later. Scaling plots ford50.549 and
0.346 are shown in Figs. 9 and 10. The values ofm used in
these fits are 2.2 and 2.5.

From a variable range hopping analysis, Fisher23 has ar-
gued thatm should be related toz(d) by

FIG. 4. The average on-site~imaginary! time dependent corre
lation function atT50 for d50.346. The lattice size isL564.

FIG. 5. As for Fig. 4, but withd50.895.
s-
it

s

es

m511z~d!. ~49!

In Appendix A we show that, within the same set of assum
tions, the scaling function is given by

P~x!5c~cx!1/z expF2S z

z11D ~cx!~z11!/zG , ~50!

where

x5
2 ln S~t!

t1/~z11! , ~51!

as also follows from Eqs.~48! and ~49!, and c is a scale
factor. The data ford50.895 fit the scaling function in Eq
~50! quite well, with an appropriate choice of the scale fac

FIG. 6. The dynamic exponentz(d) obtained both from the
specific heat and the time dependent correlation function. The sh
dashed line indicates the asymptotic valuez(d→`)51, and the
long dashed line is the prediction of Fisher,4 z2152d for d→0. At
the critical point,d50, z(d) is predicted to be infinite.

FIG. 7. The distribution of2 ln S(t) for d50.895. The lattice
size isL564 and 50 000 samples were averaged over.



r t
if
-
le

an
t

by

on-

ich
in
ge
it
to

ion
iti-

e

for
for

le

q

q.
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c and a value forz(d), and hencem, consistent with that
from other data shown in Fig. 6. However, the data close
the critical point in Figs. 9 and 10 only fit the scaling form
z(d) in Eq. ~50! and m in Eq. ~48! are adjusted indepen
dently. The values forz(d) are found to be in reasonab
agreement with those in Fig. 6, but the values form are then
somewhat inconsistent with Eq.~49!. Note however, that the
stretched exponential is only expected23 to be valid for times
larger than a characteristic time which diverges at the tr
sition. Hence it is possible that our data are not at sufficien
long times for smallerd to get a good estimate form.

The fact that the scaling variable is given by Eq.~48!

FIG. 8. A scaling plot of the data in Fig. 7. The scaling variab
is given in Eq.~48! and we have takenm52.2 to get the best fit.
The solid line is Eq.~50! with z51.2, consistent with Eq.~49!, and
c50.2. The fit to the data is good.

FIG. 9. As for Fig. 8 but withd50.549. The best fit is for
m52.2. The solid line corresponds to the scaling distribution in E
~50! with z(d)51.36 and the scale factorc50.36. Although the fit
is not too bad, it is actually somewhat inconsistent becausez(d)
andm should be related by Eq.~49!, which would requirez51.2.
However, this choice ofz(d) works less well.
o

-
ly

shows that thetypical correlation function, which we define
to be the exponential of the average of the log, is given

Styp~t![exp~@ ln S~t!#av!;exp~2ct1/m!, ~52!

wherec is a constant, i.e., a stretched exponential. This c
trasts with the average, which varies as a power oft, as
shown in Eq.~46!.

The average value is dominated by rare regions wh
have a much larger correlation function at long times than
a typical region. It is interesting to ask whether the avera
value is contained within the scaling function, or whether
comes from contributions which are actually corrections
scaling. We shall argue that there areboth scaling and and
non-scaling contributions to thet1/z(d) behavior in Eq.~46!.
Similar behavior has been found recently for the distribut
of the equal-time end-to-end correlation function at the cr
cal point.24

To estimate the contribution from the scaling function, w
assume that the distribution,P(x), of the scaling variablex,
in Eq. ~48!, has the formxa in the limit x→0, the only region
which contributes to the average. This is indeed the case
the phenomenological theory discussed in the Appendix,
which P(x) is given in Eq.~50!. SinceS(t)5exp(2xt1/m),
it follows that the scaling contribution to the average is

Sav~t!;E
0

`

xa exp~2xt1/m!dx;
1

t~11a!/m , ~53!

which is of the form in Eq.~46! with the identification

z~d!5
m

11a
. ~54!

Note that the phenomenological theory, Eqs.~49!–~51!, sat-
isfies this condition with

.

FIG. 10. As for Fig. 8 but withd50.346. The best fit is for
m52.5. The solid line corresponds to the scaling distribution in E
~50! with z(d)52.0 and the scale factorc50.46. However, this is
inconsistent since, according to the theory in the Appendix,m and
z(d) should be related by Eq.~49!, which would requirez51.5.
However, this choice ofz(d) works less well.
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a5
1

z~d!
. ~55!

Although the numerical data only fit the phenomenologi
theory close to the critical point with values ofm and z(d)
which are inconsistent with Eq.~49!, this may be due to the
times studied not being long enough and other correction
scaling. It seems very likely that thereis a contribution to the
average time dependent correlation function from the sca
function.

However, we shall now argue that there is an additio
contribution to the average correlation function, whi
comes fromcorrectionsto scaling. The exponenta is posi-
tive, soP(0)50 in the scaling limit. However, we see from
the data in Fig. 7 that the value of Prob@2 ln S(t)50# is finite
for finite t though it does decrease for larget. This finite
intercept is a correction to scaling. It is easy to see tha
Prob@2 ln S(t)50#;t21/z(d), then this finite intercept will
give a power law contribution to the average correlat
function of the form in Eq. ~46!. Results for
Prob@2 ln S(t)50# for different values oft at d50.549 are
shown in Fig. 11. The slope is20.55, which is a little less
than the estimate for 1/z(d) obtained by other methods, se
Fig. 6, but since there are errors in extrapolating the dat
S(t)50, this is perhaps not significant. Hence our resu
suggest that Prob@2 ln S(t)50# vanishes ast21/z(d), which
gives an additional contribution to the average correlat
function which is not contained within the scaling functio

VI. CONCLUSIONS

We have studied the paramagnetic phase of the disord
one-dimensional Ising chain in a transverse field.Average
properties~equal time, time dependent, and temperature
pendent! can be characterized by a continuously varying
ponentz(d). At criticality, z(0)5` and, for the model stud
ied, limd→`z(d)51. As an example, the average, on-si

FIG. 11. The probability ofy52 ln S(t) at y50 for different
values oft for d50.549 andL564. The slope is20.55 which is
somewhat less than, but not too far from the value of 1/z(d) in Fig.
6. Hence this finite value of the probability at lnS(t)50 ~which is a
correction to the scaling form! gives a contribution to the power law
decay of the average correlation function shown in Eq.~46!.
l

to

g

l

if

to
s

n

ed

-
-

,

time dependent correlation function decays with a conti
ously varying exponent, see Eq.~46!. There are some dis
crepancies between the values ofz(d) obtained in different
ways. We suspect that they are due to corrections to sca
but one should perhaps also worry that the simple phen
enological picture in Sec. IV may be inadequate.

By contrast, thetypical time dependent correlation func
tion decays with the stretched exponential form in Eq.~52!,
where the exponentm is probably given by Eq.~49!, though
our data close to the critical point shows some discrepa
with this. At long times, the distribution ofS(t) has a scal-
ing form, being a function,P(x), of the single variablex in
Eq. ~48!. This may be given by Eq.~50!, though corrections
to scaling in the smallx region prevent us from checking thi
thoroughly. For example, the data in the scaling plots in Fi
8–10 are expected to go through the origin, but they actu
do not, the discrepancy being larger for smallert.

The average ofS(t) arises both from the smallx region
of the scaling function, and from corrections to scaling.

It is interesting to ask to what extent the behavior in t
paramegnetic phase is universal. Presumably the depend
of z on d is nonuniversal~except close to the critical point4!
but, for a givenz, is the scaling function for the distribution
of local correlation functions universal? Since the scal
function involves the limit of long times, it is possible tha
the microscopic details do not matter, only the form of t
low energy density of states, in which case the distribut
would be universal.

It would be interesting to see to what extent the resu
found here in one dimension go over to higher dimensio
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APPENDIX

Following the suggestion of Fisher,23 we assume a simple
phenomenological picture in which there are cluster exc
tions localized about different sites. It is plausible that t
wave function of an excitation will decay exponentially wi
a distance of order the typical correlation function,j typ . The
contribution to the dynamics of site at the origin from a
excitation centeredn lattice spacings away will therefore b
exp(2r/jtyp2ent). The local correlation function is there
fore given by

S~t!5A(
n50

`

expS 2
r

j typ
2ent D , ~A1!

where

A512e1/j ~.j21 for j@1! ~A2!

ensures thatS(0)51.
As a simple model we will assume that theen are uncor-

related. Writingen5e0en , wheree0 is a characteristic en
ergy scale, we take the distribution of theen to be
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r~e!5~l11!el ~0,e,1!, ~A3!

where we see from Eq.~41! that

l5
1

z~d!
21. ~A4!

Note that at larget there is a competition between th
exp(2r/jtyp) factor in Eq. ~A1!, which decreases with in
creasingr and so would prefer to haver small, and the
exp(2ent) factor which wants to have the smallesten , which
may be on a site far away.

The average value is easy to work out, since each term
Eq. ~A1! can be evaluated separately, with the result

@S~t!#av5
G~111/z!

~e0t!1/z , ~A5!

for t@1, where we used Eq.~A4!.
However, the average is very different from the typic

behavior. To see this, we will determine the full distributio
of S(t). The major simplification in the calculation is that,
large times, the exponent in Eq.~A1! varies over a large
range, so the sum will be dominated by the largest sin
term. Writing Eq.~A1! as

S~t!5A(
n50

`

expS 2
xn

j typ
D , ~A6!

where

xn5n1j type0ten , ~A7!

thenS(t) is given for larget by

S~t!'A expS 2xmin

j typ
D , ~A8!

wherexmin is the smallest of thexn .
For the time being we will work in units of time wher

j type051. At the end, we will put back this factor by repla
ing t by j type0t.

The probability ofxn is given by

pn~xn!5
l11

t S xn2n

t D l

, ~A9!

for n,xn,n1t and zero otherwise. Notice that the diffe
ent xn have different distributions.

We now wish to determine the probability that minimu
value of thexn is xmin . Let us assume first that it isxm which
has the smallest value. The probability that~i! xm is the
smallest and~ii ! its value isxmin is given by

pn~xmin!

Qn~xmin!
)
n50

`

Qn~xmin!, ~A10!

where

Qn~xmin!5E
xmin

n1t

pn~x!dx. ~A11!
in

l

le

Sincepn(x) vanishes forx,n, it follows that for n.xmin ,
the full range over whichpn(x) is nonzero is included in the
last integral, and so

Qn~xmin!51 ~n.xmin!. ~A12!

As a result, the product in Eq.~A10! need only be taken up
to the last integer belowxmin . For n,xmin , one has

Qn~xmin!512S xmin2n

t D l11

. ~A13!

We will see thatxmin!t and the important values ofm are
those where 1!m!t, and so we can rewrite Eq.~A10! as

l11

t S xmin2m

t D l

expH E
0

xmin
lnF12S xmin2x

t D l11GdxJ .

~A14!

Expanding the log usingxmin2x!t and performing the inte-
gral gives

l11

t S xmin2m

t D l

expF2
xmin

l12

~l12!tl11G . ~A15!

Remember that this is the probability thatxm is the smallest
of thexn and its value ifxmin . We therefore next sum over a
m less thanxmin to get the total probability that the minimum
is xmin , i.e.,

Pmin~xmin!5S xmin

t D l11

expF2
xmin

l12

~l12!tl11G . ~A16!

Replacingt by e0j typt, and changing variables fromxmin
to y[2 ln@S(t)/A# using Eq.~A8!, gives

Py~y!5j typS y

e0t D l11

expF2
j typ

l11

yl12

~e0t!l11G .
~A17!

It is easy to check that this yields the average value in
~A5!.

Equation~A17! can be cast in a scaling form if we defin

x5
y

t1/l 52
ln~S~t!/A!

t1/l . ~A18!

Note, however, that the scaling limit involves takin
2 ln S(t)→` so the lnA term in Eq. ~A18! represents an
additivecorrection to scaling and can be omitted. This the
leads to Eq.~51!, in which l has been replaced byz using
Eq. ~A4!. The probability ofx is then a function just ofx
~apart from a scale factor!, i.e.,

P~x!5c~cx!1/z expF2
z

z11
~cx!~z11!/zG , ~A19!

where we have again expressed the result in terms ofz rather
thanl using Eq.~A4!, and

c5~j typ
z e0!1/~z11!. ~A20!

Equation~A20! is precisely Eq.~50! of the text.
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