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Real-space renormalization-group study of the two-dimensional Blume-Capel model
with a random crystal field
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The phase diagram of the two-dimensional Blume-Capel model with a random crystal field is investigated
within the framework of a real-space renormalization-group approximation. Our results suggest that, for any
amount of randomness, the model exhibits a line of Ising-like continuous transitions, as in the pure model, but
no first-order transition. At zero temperature the transition is also continuous, but not in the same universality
class as the Ising model. In this limit, the attradiiorthe renormalization-group senss the percolation fixed
point of the site diluted spin-1/2 Ising model. The results we found are in qualitative agreement with general
predictions made by Berker and Hui on the critical behavior of random md&04.63-182607)03942-9

I. INTRODUCTION independent ofx and 8, one can assume th#t is zero,
regaining the Blume-Capel model.
The Blume-CapelBC) model is a spin-1 Ising model, From the theoretical point of view, the presence of ran-

originally proposed to study first-order magnetic phasedomness may affect the critical behavior of systems in a
transitions' its phase diagram presents a line of continuoudrastic way. Random bontisind random fieldseffects on
transitions and a line of first-order transitions, separated by phase transitions have been studied for a long time. Briefly,
tricritical point. The Hamiltonian of the model is given by the effect of random fields on multicritical phase diagrams is
the following: the presence of an infinitesimal amount of
2 randomness eliminates non-symmetry-breaking first-order
Hec= _‘]2 SiSJ+AE. S (1) transitions and replaces symmetry-breaking first-order tran-
(.0) ! o . . . . ;
sitions by continuous ones in two dimensioms=2), while
where the first sum is over all nearest-neighbor pairs on #or d>2 tricritical points and critical end points are de-
lattice and the last one is over all sitebjs the exchange pressed in temperature and first-order phase transitions are
constantA is the crystal field, and = =1,0. Later, a gen- suppressed only at a finite amount of disortigvhether the
eralization of the BC model was introduced, the Blume-first-order transition in two dimensions is replaced by a con-
Emery-Griffiths (BEG) model? it has been used to study a tinuous transition in the same universality class as the spin-
rich variety of physical systems, among théide-*He mix-  1/2 Ising model, or otherwise, is still an open problém.
tures. Its Hamiltonian reads = Hgc— KZ(i,j>SiZSj2 and the To the best of our knowledge, theoretical works with the
parameters, K, andA were originally related to the energy RFBC model have used some sort of mean-field-like
interactions between the constituents of the systeniHe-  approximatior:*#These approximations describe correctly
4He mixtures, the stat&=0 represents &He atom while the behavior of high-dimensional systems and, even in those
“He atoms are denoted I8~ * 1 states: the superfluid tran- cases, a meaningful discussion on universality classes is not
sition corresponds to the symetry breaking between-tfie possible. The so-called effective-field approximatidar in-
states. stance, cannot describe first-order phase transitions; on the
More recently, the critical behavior GHe-*He mixtures ~ Other hand, standard mean-field approactvsich assume
in random medigmore precisely, in aerogehas been mod- that each spin interacts with all other spins in the sy$tgm
eled by a BC model with a random crystal fi¢RFBC). The ~ not lead to a correct discussion of percolation effects.
presence of the porous media is taken into account by the In the present work, we employ a real-space
introduction of a site-dependent crystal field, which follows renormalization-groupRSRG approximation to discuss the

the probability distribution two-dimensional RFBC model. Our approximation takes into
account spin correlations at all levels, and allows for the
P(A)=pS(A—Ay)+(1—p)S(A;i—A,), 2) discussion of first-order transition$,universality classes,

multicritical pointst! etc. The crystal field probability distri-
whereA; is the field at the pore-grain interface and is a  bution we chose is slightly different from E¢R), namely,
bulk field that controls the concentration 6He atoms>*
More precisely, th(BEG modelhas been used to describe P(A)=pS(A;+A)+(1—p)S(A;—A). ©)
3He-*He mixtures, and the biquadratic exchange parameter
K is related to the interaction energy betwedide-’He at-  We believe that the important physical ingredient lies on the
oms, Vg, throughVss+Va,—2Vs,. SinceV,; is nearly  presence of randomness and not on the exact form of the
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FIG. 1. Construction of a hierarchical lattice adequate to simu-
late the square lattic&; andS, denote terminal spins whilg; and
S, denote internal spins. The original lattice is depicted on the 2 A
left-hand side of the figure, with parametgrs J, K, andA; after 7

doing a partial trace over spirnS; and S, we are left with the
“new” lattice (right-hand sidg with renormalized parameters
p’, J', K’, andA’. Note that the construction of the hierarchical
lattice is done by reversing the length scale transformation.

FIG. 2. Phase diagram of the pure Blume-Capel model, wkere
is the Boltzmann constant afidis the temperature. The first-order
(dashed line flows to a zero-temperature fixed point, where the
largest eigenvalues for odd and even sectors of the RGT matrix
probability distribution. In fact, we performed a mean-field equalb®. TC is the tricritical point, which flows ta* =1.51K*
calculation using Eq(3) as the probability distribution and =0-051A* =3.01(within the present approximatignThe continu-
the results are qualitatively equivalent to those obtained useus line, to the left of TC, is attracted to the spin-1/2 Ising fixed
ing different distributions and the same mean-field approxiP°nt: © (D) stands for orderetisordered phase.
mation.

The remainder of this paper is organized as follows. In Hi234 —I(S1Ss+ 5,54+ S84+ 5,53+ 5,5))

Sec. Il we outline the formalism and discuss some technical — K(S2S%+ SIS0+ S2S2+ S2S2+ S2S2)
points, in Sec. Ill we present the results, and in the last

section we summarize our main conclusions. N

A12 A32 A42 A42
ZZSl+3ZS3+3TS4+ZTSZ, (5)

where the crystal field; follows the probability distribution

Il. FORMALISM
given by Eq.(3), and

We approximate the Bravais lattice, which in our case, is Al
the square lattice, by an appropriate hierarchical lattice. We — #,,=—J'S;S,— K'S?S5+ —2

Ai 2 2
7 ST+ 7 S5
chose one of the simplest cells, depicted in Fig. 1; despite its

simplicity, this cell has been used with success in the studyhere primed quantities are renormalized parameterssdnd
of many ferromagnetic systems. We note that the results ohs a constant, generated by the renormalization procedure.
tained areexacton the chosen hierarchical lattice but only \wWe comment below on the renormalized probability distri-
approximate on the square lattice. In particular, one does n@jutions.
expect to obtain results as precise as those from Monte Carlo Note that this way to write the cell Hamiltoniaf&gs.(5)
simulations or conformal invariance arguments. Nevertheand(6)] is equivalent to attributing weights to the sites in the
less, universality classes and the order of the transitions amne-site(crystal-fieldA) interaction, according to their coor-
very well described by RSRG approximations, particularly indination number. This is necessary for finite lattices in order
two dimensions. to approximate correctly the infinite lattice behavisee, for

We then impose that the correlation function between thénstance, Ref. 13 By using the above procedure we obtain

two terminal sites of the original and renormalized graphghe exact value for the point where both ferromagnetic and
are preserved? paramagnetic phases coexist at zero temperature for the pure

(p=0) Blume-Capel model on the square lattice, namely,
(A/).=2 (see Fig. 2
exp(—BHp)=Tr exp—BHi234, (4) Some points are worth stressing at this stage. First, we
comment on the presence of the biquadratic interadtian
our formalism. Although we are treating the Blume-Capel
where Tr means a partial trace over the internal sites of thenodel K=0), the parameteK is generated by the renor-
cell (S; andS, in Fig. 1). We rewrite the cell Hamiltonians malization procedure and it must be taken into account to
as a sum of “bond” termgfrom now on, the factop willbe  follow the renormalization path. To restrict oneself to a sub-
absorbed into the interaction parameters space that is not invariant usually leads to spurious results.

+G’, (6)
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Second, the renormalization procedure will introduce ran-
domness in all renormalized quantitied’( K’', and A").

One possible approach would be to follow the successivi
renormalized distributions of these parameters in order t
study the phase diagram. We adopted an alternative way th
forces the renormalized distributions to be the same as th XL
initial ones, but with renormalized parameters, namely,
P d)=8(3-J"), PuK)=8(K—=K'), and Pu(A;)
=p'8(A+A")+(1-p")S(A;—A"). The values of)’ and

K’ are obtained by imposing that the first moment of the
actual distributions fod andK and of P,{(J) andP,(K) are
equal, respectively. The valugs andA’ are calculated im-
posing that the two lowest moments ﬁ;p(A) match those
of the real distribution. This procedure has to be used witt
some care: in some systems where the random-field mech
nism is important and the initial randomness is on the inter-
action (J, for instance, forcing the field back into a uniform
distribution leads to incorrect results. In Ref. 14, for mstanceta) representp— 0.1 and(b) representg—0.3. There is no first-

the crystal-field probability distribution is maintained uni- order transition and both the continuous lines belong to the pure

form throughout the renorm?‘"za“on proc_edure. Cor.]s.e'lsing model universality class. The frontier at zero temperature is
guently, the random model critical behavior is charactenstlcattracteol to the random fixed poifsee text O (D) stands for
of a high-dimensional system: the critical temperature of th%rdered(disordereal phase

tricritical point diminishes as randomness is increased but

only reaches the zero-temperature axis at a finite value of the

disorder. As thoroughly discussed in Ref. 7, the mechanisrﬂnearizecj RGT matrix, wherb is the length-scaling param-

. . . _ 2 .
responsible for the lack of first-order phase transitions ircter andd is the dimension of the system. §=(S") is

two-dimensional random systems is the disorder in the Crysc_iiscontinuous, th‘bd eigenvalue belongs to tr)e even sector
tal field, which is not taken into account by approximations®f the RGT matrix. In the present ca®¥=N/N’=5, where
such as the one used in Ref. 14. In the model we study in thi§ iS the number of bonds of the original cell ahd is the
paper, however, the important physical ingredient is the disfumper of bonds of the renormalized one.
order in the field, which is not approximated away by our
RSRG procedure. Finally, we wou_ld !ike to mention 'ghat the lIl. RESULTS
way we treated the random field distribution is not unique. In
this work we assume that only one field acts on each site and In Fig. 2 the pure §=0) phase diagram is depicted for
a weight is associated to the fiel(his weight is the ratio completeness. We would like to stress that the dashed line
between the coordination number of the site in the cell andand its zero-temperature pojris attracted to a fixed point
the coordination number of the site on the square Iattice (which depends on the approximatipwhere the largest ei-
Conversely, one could also take the number of fields actingenvalue for both even and odd sections of the RGT matrix
in a given site as equal to the coordination number of the sitequalsh?, indicating a first-order phase transitionrmand in
in the cell. We performed calculations using both proce-g. Note that theK=0 plane isnot an invariant one and the
dures. The results do not vary qualitativénd some times biquadratic interactiof is generated by the renormalization
guantitatively from one approach to the other. The approachtransformation.
we chose, however, leads to simpler expressions, which are Following Ref. 7, the first-order transition should vanish
easier to deal with analytically. for p>0 (random model This is actually the behavior we
The expressions connecting renormalized and original pasbserve. In fact, the first-order fixed-point attractor of the
rameters are easily obtained following the procedure outlinedashed line in Fig. 2 is found to be unstable along phe
above but are too lengthy to be explicitly written here. For-direction. This is the expected physical behavior when ran-

FIG. 3. Phase diagrams of the RFBC modelgdet p, (see text

mally, they can be expressed as domness is introduced. On the other hand, the attractor of the
pure Ising model transition line, namely,p{=0J*
J'=3(p,JK,A), K'=K'(p,JK,A), =0.4407K* = —0.0731A* = — ), is stable along the same
direction. There are still two possibilities for the random
A'=A"(p,dK,A), p'=p'(p,J.K,A). (7  model critical behavior: either the whole line of continuous

transition belongs to the universality class of the spin-1/2
Critical points are then evaluated as nontrivial fixed points ofising model or an unstable fixed point at finite temperature
the above relations; phases are identified according to thgeparates the Ising critical line from another continuous line,
attractor of their points. The order of the transition is ob-which belongs to a new universality class. Our results sup-
tained through the study of the largest eigenvalue of theport the first option: the Ising critical line extends down to
renormalization-group transformati¢RGT) matrix!® More  the zero-temperature poisee Fig. 3, where typical phase
precisely, a first-order phase transition such tmat(S) is  diagrams forp<p.=1/2 are depicted Here there are still
discontinuous at the transition point is signaled by the prestwo possible scenarios. The continuous transitiorpfsi0 or
ence of an eigenvalue equal b9 in the odd sector of the 1 belongs either to the pure or to the disordered Ising model
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creases, in contrast to the result obtained by a cluster varia-
tional approach on a similar modglwhich leads to a
constant value for 4/J). for any p<p.. The latter result
might be an artifact of the cluster variational approximation.
D At zero temperature, points on the frontier between the
disordered and ordered phases flow to a random fixed point
[p* =1/2J* =, K* = 2|n(2)—J* ,A* =], such that)*/A*
=0. This is the percolation fixed point of the site-diluted
spin-1/2 Ising model. In fact, foA = the RFBC model is
equivalent to the random site spin-1/2 Ising model, where
0 sites are present or absent with probabititgr 1— p, respec-
tively. This comes from the fact that, fdce=, a + A crys-
tal field acting on a given site forces that site to be in $he
A =0 state(absent, while a —A field forces the site to be
, } , I either in the stat&=1 or in the state&s= —1 (both represent
10 20 30 a present site Thus, only for high enougp an infinite clus-
ter of S= =1 states will form and will be able to sustain
FIG. 4. Phase diagrams of the RFBC modelgier 1/2, whichis  order. Exactly ap=p., there is such an infinite cluster but
the value ofp, in our approximation. The critical line touches the ts critical temperature is zero. Therefore, the critical param-
3Z:Z-$erp]g§;ature axis at/J=c=. O (D) stands for ordere@isor-  gyor (A7) reachese for p=p, (see Fig. 4 Our evaluation
P ' of p. is 1/2, while the accepted value for the site percolation

universality class. For the hierarchical lattice we use in thisCrltlcal probability on the square lattice g =0.5927. It is

- . . not unusual that small-cell RSRG approximations fail to ob-
work, the specific-heat critical exponent of the pure ISIngtain a quantitatively precise value. Note, however, that we do
model « is negative and disorder is irrelevant, according to d yp ' ' :

the Harris criteriort. Therefore, the continuous transitions obtain the c;orrect qualitative behavior, i..e., a finite yalug of
depicted in Figs. 3, 4, and 5 belong to the pure Ising modePc .[contrarllly to the standard mean-field approximation,
universality class. For the corresponding model on a twoWhich predictsp.=0 (Ref. 3]. .
dimensional Bravais lattice, whete=0, the Harris criterion For p>pc, the critical line never touches tha(J) axis.
is inconclusive. The accepted behavior, when disorder i&ven atA/J=< the infinite cluster ofS=*1 spins is, on a
present, is the following: critical exponents of the randomlarge scale, a two-dimensional object and its critical tempera-
model retain the same values as their pure conterparts btire is finite(see Fig. 5.
logarithmic corrections are introduced by randomnédsx- At this point, it is worthwhile to compare our results with
perimental results also indicate the same critical exponenthose from mean-field calculatiorisee Refs. 3,4,8)9Stan-
for the pure and random two-dimensional Ising modeébn  dard mean-field analysis leads to a first-order transition in-
the other hand, wherx is positive, as in the three- side the ordered phase, ending in a critical end point, a reen-
dimensional Ising model, disorder makes the system crosgant behavior in thekT/Jx A/J diagram and a physically
over to a new universality class. incorrect value fop.. We have already commented on this
Note that the critical value oA/J that separates the or- |ast feature. Concerning the first-order transition inside the
dered and disordered phased/{)., increases ap in-  ordered phase, it has been shown that it is unstable against
randomness in two dimensiohAshus, it is expected that a
reliable approximation to a two-dimensional system will not
find such a transition. Finally, we found no reentrance in our
results; actually, in some other models reentrant behavior has
been found ford=3 systems, but not in their two-
KT ) dimensional counterpartsee, for example, Ref. 1.8We
] should also point out that more sophisticated mean-field-like
approximations have been applied to the RFBC model. They
lead to a finite value op, but still predict the existence of a
first-order transition in the random model as well as a reen-
trant behavior. Hence, the results shown in this work reflect
the correct qualitative behavior of the RFBC model in two
dimensions.

10 20 30 IV. SUMMARY

FIG. 5. Phase diagram of the RFBC model fior 0.6=p. . The A RSRG procedure is applied to the RFBC model in two
critical line never touches the zero-temperature a®i§D) stands  dimensions. Our calculation recovers the correct phase dia-
for ordered(disordered phase. gram of the pure model and predicts that no first-order phase
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transition is maintained when randomness is introduced. Thibehavior is also predicted by standard mean-field approxima-
is in accordance with general predictions for two-tions.
dimensional disordered modélswWe also obtain that the

whole line of continuous transitions, fpr# 0, belongs to the

Ising universality class, discarding the existence of an un-
stable fixed point at finite temperature. The zero-temperature
frontier between ordered and disordered phas&s)), is This work was partially supported by the Brazilian agen-
attracted to the percolation fixed point of the site dilutedcies CNPg and FINEP. We would like to thank P. M. C. de
Ising model. Contrary to results from a cluster variationalOliveira, S. M. de Oliveira, and S. L. A. de Queiroz for
analysis} the value of (\/J). increases ap increases. Such helpful discussions.

ACKNOWLEDGMENTS

*Electronic address: nsbranco@fsc.ufsc.br. T, Kaneyoshi and J. Mielnicki, J. Phys. Condens. Ma&eB773
Electronic address: bmbp@if.uff.br. (1990.

M. Blume, Phys. Rev141, 517(1966; H. W. Capel, Physic82, ~ 1°M. E. Fisher and A. N. Berker, Phys. Rev.28, 2507 (1982.

966 (1966. 1R, R. Netz and A. N. Berker, Phys. Rev.4, 15 019(1993.
2M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev4A1071 123 \v. Essam and C. Tsallis, J. Phys18, 409 (1986.

(1971. 3R, R. dos Santos, J. Phys.18, L1067 (1985.
3A. Maritan, M. Cieplak, M. R. Swift, F. Toigo, and J. R. Banavar, 144 Dickison and J. Yeomans, J. Phys16, L345 (1983.

. Phys. Rev. Lett69, 221 (1992. _ 15E. D. A. Aaf@ Reis, S. L. A. de Queiroz, and R. R. dos Santos,
C. Buzano, A. Maritan, and A. Pelizzola, J. Phys. Condens. Mat- Phys. Rev. B54, R9616(1996.

ter 6, 327 (1994.

5A B. Harris. J. Phvs. G. 1671(197 18], B. Ferreira, A. R. King, V. Jaccarino, J. L. Cardy, and H. J.
6Y. | ) arrlz,s. K ?\/AS' P’h R( I_ZDIL‘&5 1399(1975 Guggenheim, Phys. Rev. B3, 5192(1983; M. Hagen, R. A.
7Séem%rai:star;ce. Ka,Hui Z;.d :VN %erI’(er Phys Rév L& Cowley, R. M. Nicklow, and H. lkedabid. 36, 401 (1987
y y . . . y . . . 17 . .
D. Stauffer and A. Aharonyintroduction to Percolation Theo
2507 (1989; or A. N. Berker, J. Appl. Phys70, 5941 (1991, 2nd ed.(Taylor and Franc)?: London, 1992 ry
and references therein. Alay ' '

18 .
8C. E. I. Carneiro, V. B. Henriques, and S. R. Salinas, J. Phys. A W. Hoston and A. N. Berker, Phys. Rev. Le7, 1027(1991;

23, 3383(1990, and references therein. N. S. Branco, Physica 232 477(1996, and references therein.



