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Real-space renormalization-group study of the two-dimensional Blume-Capel model
with a random crystal field
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The phase diagram of the two-dimensional Blume-Capel model with a random crystal field is investigated
within the framework of a real-space renormalization-group approximation. Our results suggest that, for any
amount of randomness, the model exhibits a line of Ising-like continuous transitions, as in the pure model, but
no first-order transition. At zero temperature the transition is also continuous, but not in the same universality
class as the Ising model. In this limit, the attractor~in the renormalization-group sense! is the percolation fixed
point of the site diluted spin-1/2 Ising model. The results we found are in qualitative agreement with general
predictions made by Berker and Hui on the critical behavior of random models.@S0163-1829~97!03942-8#
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I. INTRODUCTION

The Blume-Capel~BC! model is a spin-1 Ising model
originally proposed to study first-order magnetic pha
transitions:1 its phase diagram presents a line of continuo
transitions and a line of first-order transitions, separated b
tricritical point. The Hamiltonian of the model is given by

HBC52J(
^ i , j &

SiSj1D(
i

Si
2 , ~1!

where the first sum is over all nearest-neighbor pairs o
lattice and the last one is over all sites,J is the exchange
constant,D is the crystal field, andSi561,0. Later, a gen-
eralization of the BC model was introduced, the Blum
Emery-Griffiths ~BEG! model:2 it has been used to study
rich variety of physical systems, among them3He-4He mix-
tures. Its Hamiltonian readsH5HBC2K(^ i , j &Si

2Sj
2 and the

parametersJ, K, andD were originally related to the energ
interactions between the constituents of the system. In3He-
4He mixtures, the stateS50 represents a3He atom while
4He atoms are denoted byS561 states: the superfluid tran
sition corresponds to the symetry breaking between the61
states.

More recently, the critical behavior of3He-4He mixtures
in random media~more precisely, in aerogel! has been mod-
eled by a BC model with a random crystal field~RFBC!. The
presence of the porous media is taken into account by
introduction of a site-dependent crystal field, which follow
the probability distribution

P~D i !5pd~D i2D1!1~12p!d~D i2D2!, ~2!

whereD1 is the field at the pore-grain interface andD2 is a
bulk field that controls the concentration of3He atoms.3,4

More precisely, theBEG modelhas been used to describ
3He-4He mixtures, and the biquadratic exchange param
K is related to the interaction energy betweenaHe-bHe at-
oms, Vab , through V331V4422V34. Since Vab is nearly
560163-1829/97/56~18!/11673~5!/$10.00
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independent ofa and b, one can assume thatK is zero,
regaining the Blume-Capel model.

From the theoretical point of view, the presence of ra
domness may affect the critical behavior of systems in
drastic way. Random bonds5 and random fields6 effects on
phase transitions have been studied for a long time. Brie
the effect of random fields on multicritical phase diagrams
the following: the presence of an infinitesimal amount
randomness eliminates non-symmetry-breaking first-or
transitions and replaces symmetry-breaking first-order tr
sitions by continuous ones in two dimensions (d52), while
for d.2 tricritical points and critical end points are de
pressed in temperature and first-order phase transitions
suppressed only at a finite amount of disorder.7 Whether the
first-order transition in two dimensions is replaced by a co
tinuous transition in the same universality class as the s
1/2 Ising model, or otherwise, is still an open problem.4

To the best of our knowledge, theoretical works with t
RFBC model have used some sort of mean-field-l
approximation.3,4,8,9These approximations describe correc
the behavior of high-dimensional systems and, even in th
cases, a meaningful discussion on universality classes is
possible. The so-called effective-field approximation,9 for in-
stance, cannot describe first-order phase transitions; on
other hand, standard mean-field approaches~which assume
that each spin interacts with all other spins in the system! do
not lead to a correct discussion of percolation effects.

In the present work, we employ a real-spa
renormalization-group~RSRG! approximation to discuss th
two-dimensional RFBC model. Our approximation takes in
account spin correlations at all levels, and allows for t
discussion of first-order transitions,10 universality classes
multicritical points,11 etc. The crystal field probability distri-
bution we chose is slightly different from Eq.~2!, namely,

P~D i !5pd~D i1D!1~12p!d~D i2D!. ~3!

We believe that the important physical ingredient lies on
presence of randomness and not on the exact form of
11 673 © 1997 The American Physical Society
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11 674 56N. S. BRANCO AND BEATRIZ M. BOECHAT
probability distribution. In fact, we performed a mean-fie
calculation using Eq.~3! as the probability distribution and
the results are qualitatively equivalent to those obtained
ing different distributions and the same mean-field appro
mation.

The remainder of this paper is organized as follows.
Sec. II we outline the formalism and discuss some techn
points, in Sec. III we present the results, and in the l
section we summarize our main conclusions.

II. FORMALISM

We approximate the Bravais lattice, which in our case
the square lattice, by an appropriate hierarchical lattice.
chose one of the simplest cells, depicted in Fig. 1; despite
simplicity, this cell has been used with success in the st
of many ferromagnetic systems. We note that the results
tained areexacton the chosen hierarchical lattice but on
approximate on the square lattice. In particular, one does
expect to obtain results as precise as those from Monte C
simulations or conformal invariance arguments. Nevert
less, universality classes and the order of the transitions
very well described by RSRG approximations, particularly
two dimensions.

We then impose that the correlation function between
two terminal sites of the original and renormalized grap
are preserved:12

exp~2bH12!5Tr exp~2bH1,2,3,4!, ~4!

where Tr means a partial trace over the internal sites of
cell (S3 andS4 in Fig. 1!. We rewrite the cell Hamiltonians
as a sum of ‘‘bond’’ terms~from now on, the factorb will be
absorbed into the interaction parameters!

FIG. 1. Construction of a hierarchical lattice adequate to sim
late the square lattice.S1 andS2 denote terminal spins whileS3 and
S4 denote internal spins. The original lattice is depicted on
left-hand side of the figure, with parametersp, J, K, andD; after
doing a partial trace over spinsS3 and S4 we are left with the
‘‘new’’ lattice ~right-hand side!, with renormalized parameter
p8, J8, K8, andD8. Note that the construction of the hierarchic
lattice is done by reversing the length scale transformation.
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H1,2,3,452J~S1S31S1S41S3S41S2S31S2S4!

2K~S1
2S3

21S1
2S4

21S3
2S4

21S2
2S3

21S2
2S4

2!

1S 2
D1

4
S1

213
D3

4
S3

213
D4

4
S4

212
D4

4
S2

2D , ~5!

where the crystal fieldD i follows the probability distribution
given by Eq.~3!, and

H1252J8S1S22K8S1
2S2

21S D18

4
S1

21
D28

4
S2

2D 1G8, ~6!

where primed quantities are renormalized parameters andG8
is a constant, generated by the renormalization proced
We comment below on the renormalized probability dist
butions.

Note that this way to write the cell Hamiltonians@Eqs.~5!
and~6!# is equivalent to attributing weights to the sites in t
one-site~crystal-fieldD) interaction, according to their coor
dination number. This is necessary for finite lattices in ord
to approximate correctly the infinite lattice behavior~see, for
instance, Ref. 13!. By using the above procedure we obta
the exact value for the point where both ferromagnetic a
paramagnetic phases coexist at zero temperature for the
(p50) Blume-Capel model on the square lattice, name
(D/J)c52 ~see Fig. 2!.

Some points are worth stressing at this stage. First,
comment on the presence of the biquadratic interactionK in
our formalism. Although we are treating the Blume-Cap
model (K50), the parameterK is generated by the renor
malization procedure and it must be taken into accoun
follow the renormalization path. To restrict oneself to a su
space that is not invariant usually leads to spurious resu

-

e

FIG. 2. Phase diagram of the pure Blume-Capel model, whek
is the Boltzmann constant andT is the temperature. The first-orde
~dashed! line flows to a zero-temperature fixed point, where t
largest eigenvalues for odd and even sectors of the RGT ma
equalbd. TC is the tricritical point, which flows toJ* 51.51,K*
50.051,D* 53.01~within the present approximation!. The continu-
ous line, to the left of TC, is attracted to the spin-1/2 Ising fix
point. O (D) stands for ordered~disordered! phase.
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Second, the renormalization procedure will introduce r
domness in all renormalized quantities (J8, K8, and D8).
One possible approach would be to follow the success
renormalized distributions of these parameters in orde
study the phase diagram. We adopted an alternative way
forces the renormalized distributions to be the same as
initial ones, but with renormalized parameters, name
Pap8 (J)5d(J2J8), Pap8 (K)5d(K2K8), and Pap8 (D i)
5p8d(D i1D8)1(12p8)d(D i2D8). The values ofJ8 and
K8 are obtained by imposing that the first moment of t
actual distributions forJ andK and ofPap8 (J) andPap8 (K) are
equal, respectively. The valuesp8 andD8 are calculated im-
posing that the two lowest moments ofPap8 (D) match those
of the real distribution. This procedure has to be used w
some care: in some systems where the random-field me
nism is important and the initial randomness is on the in
action (J, for instance!, forcing the field back into a uniform
distribution leads to incorrect results. In Ref. 14, for instan
the crystal-field probability distribution is maintained un
form throughout the renormalization procedure. Con
quently, the random model critical behavior is characteris
of a high-dimensional system: the critical temperature of
tricritical point diminishes as randomness is increased
only reaches the zero-temperature axis at a finite value o
disorder. As thoroughly discussed in Ref. 7, the mechan
responsible for the lack of first-order phase transitions
two-dimensional random systems is the disorder in the c
tal field, which is not taken into account by approximatio
such as the one used in Ref. 14. In the model we study in
paper, however, the important physical ingredient is the
order in the field, which is not approximated away by o
RSRG procedure. Finally, we would like to mention that t
way we treated the random field distribution is not unique
this work we assume that only one field acts on each site
a weight is associated to the fields~this weight is the ratio
between the coordination number of the site in the cell a
the coordination number of the site on the square lattic!.
Conversely, one could also take the number of fields ac
in a given site as equal to the coordination number of the
in the cell. We performed calculations using both proc
dures. The results do not vary qualitatively~and some times
quantitatively! from one approach to the other. The approa
we chose, however, leads to simpler expressions, which
easier to deal with analytically.

The expressions connecting renormalized and original
rameters are easily obtained following the procedure outli
above but are too lengthy to be explicitly written here. F
mally, they can be expressed as

J85J8~p,J,K,D!, K85K8~p,J,K,D!,

D85D8~p,J,K,D!, p85p8~p,J,K,D!. ~7!

Critical points are then evaluated as nontrivial fixed points
the above relations; phases are identified according to
attractor of their points. The order of the transition is o
tained through the study of the largest eigenvalue of
renormalization-group transformation~RGT! matrix.10 More
precisely, a first-order phase transition such thatm[^S& is
discontinuous at the transition point is signaled by the pr
ence of an eigenvalue equal tobd in the odd sector of the
-
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linearized RGT matrix, whereb is the length-scaling param-
eter andd is the dimension of the system. Ifq[^S2& is
discontinuous, thebd eigenvalue belongs to the even secto
of the RGT matrix. In the present case,bd5N/N855, where
N is the number of bonds of the original cell andN8 is the
number of bonds of the renormalized one.

III. RESULTS

In Fig. 2 the pure (p50) phase diagram is depicted fo
completeness. We would like to stress that the dashed
~and its zero-temperature point! is attracted to a fixed point
~which depends on the approximation!, where the largest ei-
genvalue for both even and odd sections of the RGT mat
equalsbd, indicating a first-order phase transition inm and in
q. Note that theK50 plane isnot an invariant one and the
biquadratic interactionK is generated by the renormalization
transformation.

Following Ref. 7, the first-order transition should vanis
for p.0 ~random model!. This is actually the behavior we
observe. In fact, the first-order fixed-point attractor of th
dashed line in Fig. 2 is found to be unstable along thep
direction. This is the expected physical behavior when ra
domness is introduced. On the other hand, the attractor of
pure Ising model transition line, namely, (p* 50,J*
50.4407,K* 520.0731,D* 52`), is stable along the same
direction. There are still two possibilities for the random
model critical behavior: either the whole line of continuou
transition belongs to the universality class of the spin-1
Ising model or an unstable fixed point at finite temperatu
separates the Ising critical line from another continuous lin
which belongs to a new universality class. Our results su
port the first option: the Ising critical line extends down t
the zero-temperature point~see Fig. 3, where typical phase
diagrams forp,pc51/2 are depicted!. Here there are still
two possible scenarios. The continuous transition forpÞ0 or
1 belongs either to the pure or to the disordered Ising mo

FIG. 3. Phase diagrams of the RFBC model forp,pc ~see text!.
~a! representsp50.1 and~b! representsp50.3. There is no first-
order transition and both the continuous lines belong to the p
Ising model universality class. The frontier at zero temperature
attracted to the random fixed point~see text!. O (D) stands for
ordered~disordered! phase.
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11 676 56N. S. BRANCO AND BEATRIZ M. BOECHAT
universality class. For the hierarchical lattice we use in th
work, the specific-heat critical exponent of the pure Isin
modela is negative and disorder is irrelevant, according
the Harris criterion.5 Therefore, the continuous transition
depicted in Figs. 3, 4, and 5 belong to the pure Ising mod
universality class. For the corresponding model on a tw
dimensional Bravais lattice, wherea50, the Harris criterion
is inconclusive. The accepted behavior, when disorder
present, is the following: critical exponents of the rando
model retain the same values as their pure conterparts
logarithmic corrections are introduced by randomness.15 Ex-
perimental results also indicate the same critical expone
for the pure and random two-dimensional Ising model.16 On
the other hand, whena is positive, as in the three-
dimensional Ising model, disorder makes the system cr
over to a new universality class.

Note that the critical value ofD/J that separates the or-
dered and disordered phases, (D/J)c , increases asp in-

FIG. 4. Phase diagrams of the RFBC model forp51/2, which is
the value ofpc in our approximation. The critical line touches th
zero-temperature axis atD/J5`. O (D) stands for ordered~disor-
dered! phase.

FIG. 5. Phase diagram of the RFBC model forp50.6*pc . The
critical line never touches the zero-temperature axis.O (D) stands
for ordered~disordered! phase.
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creases, in contrast to the result obtained by a cluster va
tional approach on a similar model,4 which leads to a
constant value for (D/J)c for any p,pc . The latter result
might be an artifact of the cluster variational approximatio

At zero temperature, points on the frontier between
disordered and ordered phases flow to a random fixed p
@p* 51/2,J* 5`,K* 5 3

4 ln(2)2J* ,D*5`#, such thatJ* /D*
50. This is the percolation fixed point of the site-dilute
spin-1/2 Ising model. In fact, forD5` the RFBC model is
equivalent to the random site spin-1/2 Ising model, wh
sites are present or absent with probabilityp or 12p, respec-
tively. This comes from the fact that, forD5`, a 1D crys-
tal field acting on a given site forces that site to be in theS
50 state~absent!, while a 2D field forces the site to be
either in the stateS51 or in the stateS521 ~both represent
a present site!. Thus, only for high enoughp an infinite clus-
ter of S561 states will form and will be able to sustai
order. Exactly atp5pc , there is such an infinite cluster bu
its critical temperature is zero. Therefore, the critical para
eter (D/J)c reaches̀ for p5pc ~see Fig. 4!. Our evaluation
of pc is 1/2, while the accepted value for the site percolat
critical probability on the square lattice ispc50.5927.17 It is
not unusual that small-cell RSRG approximations fail to o
tain a quantitatively precise value. Note, however, that we
obtain the correct qualitative behavior, i.e., a finite value
pc @contrarily to the standard mean-field approximatio
which predictspc50 ~Ref. 3!#.

For p.pc , the critical line never touches the (D/J) axis.
Even atD/J5` the infinite cluster ofS561 spins is, on a
large scale, a two-dimensional object and its critical tempe
ture is finite~see Fig. 5!.

At this point, it is worthwhile to compare our results wit
those from mean-field calculations~see Refs. 3,4,8,9!. Stan-
dard mean-field analysis leads to a first-order transition
side the ordered phase, ending in a critical end point, a re
trant behavior in thekT/J3D/J diagram and a physically
incorrect value forpc . We have already commented on th
last feature. Concerning the first-order transition inside
ordered phase, it has been shown that it is unstable ag
randomness in two dimensions.7 Thus, it is expected that a
reliable approximation to a two-dimensional system will n
find such a transition. Finally, we found no reentrance in o
results; actually, in some other models reentrant behavior
been found for d53 systems, but not in their two
dimensional counterpart~see, for example, Ref. 18!. We
should also point out that more sophisticated mean-field-
approximations have been applied to the RFBC model. T
lead to a finite value ofpc but still predict the existence of a
first-order transition in the random model as well as a re
trant behavior. Hence, the results shown in this work refl
the correct qualitative behavior of the RFBC model in tw
dimensions.

IV. SUMMARY

A RSRG procedure is applied to the RFBC model in tw
dimensions. Our calculation recovers the correct phase
gram of the pure model and predicts that no first-order ph
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transition is maintained when randomness is introduced. T
is in accordance with general predictions for tw
dimensional disordered models.7 We also obtain that the
whole line of continuous transitions, forpÞ0, belongs to the
Ising universality class, discarding the existence of an
stable fixed point at finite temperature. The zero-tempera
frontier between ordered and disordered phases, (D/J)c , is
attracted to the percolation fixed point of the site dilut
Ising model. Contrary to results from a cluster variation
analysis,4 the value of (D/J)c increases asp increases. Such
his
o-

un-
ture

ed
al

behavior is also predicted by standard mean-field approxim
tions.
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