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Dynamic structure factor of the spin- transverse Ising chain
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Institute for Condensed Matter Physics, 1 Svientsitskii Street, L'viv-11, 290011, Ukraine
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The dynamic structure factor of the spintransverse Ising chain is obtained by means of a numerical
approach suggested earlj€. Derzhko and T. Krokhmalskii, Ferroelectrit82,21 (1997]. Frequency shapes
of the dynamic structure factor at various values of the wave vector, transverse field, and temperature are
displayed and discussef$50163-182¢07)04141-9

I. INTRODUCTION. THE BASIC FORMALISM may be summarized as follows: the relations between spin-
operators and Fermi operators read
The one-dimensional spifidsing model in a transverse
field is an important subject of theoretical studies not only
because of its usefulness in solid state physics but also be-
cause a lot of its statistical mechanics properties can be ex-

X—l + - 4+ - + -+
Sj—2<P1 PLP2 P2 P—1Pj-1Pj »

amined exactly=* However, since the early 1970’s it has 1 P
been known that there are great difficulties in the calculation ST P1PLP2 P2 Pj-19j-19)
of some time-dependent spin correlation functions for this
model and in spite of many papers dealing with this 1
rﬁ_g %ﬂg L S_Z:__ o (3)
proble (see also recent pap devoted to similar j 5% ¢

studies for the one-dimensional sginéX mode) the inves-

tigation of dynamic properties calls for more efforts. The aimwhere
of the present paper is to provide a fresh view on the exami- N
nation of spin dynamics. Namely, we shall extend the nu- i . - 4 .
merical approach elaborated earlier for equilibrium statistical ~ %i — ;1 Ppj(mp F7p), @) = p; Woilnp = mp);
mechanics calculations for spin-XY chaingd®? to the (4)
analysis of dynamic properties of the transverse Ising model .
studying in particular its dynamic structure factor. the transformed Hamiltonia(d) has the form

N

We consider a spig-chain described by the Hamiltonian N 1
— + _
N N—1 H—k;/\k 7 Mk 2),
H=QY si+3> sfst,,, (1)
=1 =1

{ng:n}=0qc, {ng.m}={nq .7 }=0; (5

where(} is the transverse field at site adds the interaction A, ®,;, ¥; are determined from the equations
between the neighboring sites. We shall be interested in the

time-dependent two-spin correlation functio(’qf’(t)sﬁn}, \

where the angle brackets denote a thermodynamic average

((---))=SHde PH(---)]/Spe™#". The correlation function 121 Wpi(AjntBjn) =Ap®pn,
betweenz components was derived in Ref. 2. We shall re-

strict ourselves mainly to the correlation function betwaen

N
components of two spins noting that all other nonzero corre- 2 Dpi(Ajn—Bjn) = A,V
i=1

pj-

lation functions can be found by the differentiation P
1d N N
<ij(t)sjy+n>: _<S]y(t)S}(+n>:§ a<5}((t)5}(+n>a 121 PPy :;1 WV =dqr,
5 N N
1d O b, =D, VW, =6 6
(OS] == 5 (SO, @ 24 PoPoi= 2 o pi= ©

with A”595”+(J/4)5]’|+1+(J/4)5J'|_1, B”E(J/
In order to evaluate the quantity of interest one should4)d;+1—(3/4) & i-1. For further details see Refs.
rewrite the Hamiltoniar{1) in terms of Fermi operators with 1,4,11,12. In view of Egs.(3)—(5) the calculation of
the help of the Jordan-Wigner transformation and then tqsj(t)s;, ) reduces to the exploiting of the Wick-Bloch-de
diagonalize the obtained bilinear fermion form. Basic resultdDominicis theorem and the result can be expressed com-
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pactly in the form of the Pfaffian of the 2{2n—1)X2(2j+n—1) antisymmetric matrix constructed from elementary
contractions

Asf (DS =(e1 (Der (Des (Dey (1) o 1(De_1(D e (Dol e1 0305 -

% of - + -+ — + - +
Pj—1Pj-1Pj Pj Pj+1Pj+1"" "Pj+n—1(Pj+n—1(Pj+n>

0 (¢1 1) (¢103) s (e (D)
+ - -+ - +
—(e1 0 0 1@ (e (D
| Tlelen) ' (ei03) (e D) | -
_<¢I(t)¢j++n> _<<PI(t)‘P;—+n> _<(P;(t)‘Pj++n> T 0
|
where the finite chain size N, presence of boundaries
N . 1<j,j+n=<N, and finite timet. These effects lead to the
(o ety =3 & @ coshii Ayt — BA/2) deviation from a time behavior inherent in the infinite chain
@t Pm =y o piTem coshBA,/2) which constitutes the concern of the present paper.
To reveal the region of validity of the results derived we
sinh(i A pt— BA /2) performed different additional calculations some of which

N
<<pj+(t)(p;]>= - E JORYR G are described below. Figure 1 presents the results of a study
p=1

cosiSAp/2) of the finite-size and boundary effects for the static spin cor-
N o relation functions. From Fig. 1 one can see that the results of
(o (eH =S ¥ sinh(i A pt—BA/2) finite-chain calculations do not depend on the made choice of
¢ (Dem T & PP T eosHBAL2) N andj at =10 (and higher temperatureg/hereas they do
depend on this choice aB=500. To study the low-
N cost(i A pt—BA /2) temperature behavior of the static spin correlations one must
- == - consider longer chains and takefarther from the bound-
Dynamic properties of many-body system can be described In Fig. 2 we s.how few dynamic spin-correlgtion functions
in term of the dynamic structure factor (sj(t)sj,.n) with j =32 at low temperature. As it can be seen
N ee]
SXX(K"")Engl gikn _xdte— e\tlelmt<S}<(t)S}<+n> 0.15
h * 0.10
:nzl e "I Re . dtel(w+le)t<S}((t)S}(+n>, Ng‘ .
@,
"
e—+0, (9) ~ 0.05
which involves the correlation functiorésf(t)s}ﬁr n (7) (see,
e.g., Ref. 13
Il. NUMERICAL CALCULATIONS
-5 0.10
Let us describe the further numerical calculations in some Ng. L e, veeer ]
details. Formulag6)—(8) form the starting point for the cal- N . ””"*:;ggg;!fgggmmmm,,ﬁ N
culations. Considering a chain of tHhé=280 spins with 2 o005k mx‘;;;;;;;;;;;;;;;;‘:’j;;_
J=—1 and a certain value of the transverse field within the ++++
range of(2=0.1-5 we solved theN X N standard problem *+++++*T
i _ _ e — L N L
(6) obtaining in result\,, ®,;, ¥,;. Then takingj = 21,32 0.005—55"30 SoTIEHTy

and a certaim within the range of 0 to 30,50 we computed

elementary contr_actlor(Q) mvolv_ed in Eq.(7) for the given FIG. 1. (SIS, ) vs n for Q=0.5: exact results g8=2 (Refs.
temperature within the range p=10-0.001 and the timé 3 g (circleg and numerical ones #=500 and@=10. (a) j =N/2,
up to 120(although sometimes up to 1600) and evaluatedne results forN=100,140,200,280 a8=500 correspond to the
numerically the Pfaffian obtaining as a result a correlationcurves 2-5, respectively, whereas @t 10 the results for alN
betweerx components of spins at the siteandj+n taken  coincide(curve 1. (b) N= 280, the results fof=21,32,70,100,140
at the moments of timé andt=0, respectively. There are at 8=500 correspond to curves 2-(Be last two curves 5 and 6
few practical limitations of the described approach, that iscoincide, whereas a= 10 the results for al] coincide(curve 1.



56 DYNAMIC STRUCTURE FACTOR OF THE SPIN;. .. 11661

s, o~
:§ 0.2 \ I “%
O A -
S 0N T < 0.0
o
@ AV NS NN
W 0.0 TS \;L -0.1
(]
o =

1 1 t 1 1
~ -~
<
w3 %> 0.05
s =
8 ¥ 0.0
'n &
T -0.05
& E
1 1 1 1 1
: 3 oo A {\A
" "2 0.02
w [
= = - r\/\ [\/\ N
- =
ng “® \/\/ W
o2 T —0.02
8 B -
\ 1 l l | | l L
0 10 20 30 40 50 t 0 10 20 30 40 50 t

FIG. 2. Real and imaginary parts (§3,(t)ss,, ) vst for n=0,2,8 and different values of the transverse fi@le 0.2 (dotted curvel
0 =0.5(dashed curvesQ =1 (solid curve$, N=280, 3=5.

from this figure, the graphs of R&(t)s3,,,) and exact one at infinite temperature with the increase of tem-
Im(s3,(t)S3,. ) decay ag—oe (with hardly visible oscilla- perature is observable. In Fig. 5 the results of the finite-chain
tions forn=0) atQ) =0.2, execute small oscillations around calculations of the frequency-dependent Fourier transforms
a dying curve without changing of sign s> at(=0.5, ©0f xx and yy autocorrelation functions ®5*(w)

and oscillate more frequently around zero dying oft as» Ef’f@dte‘E“'e“”‘(sj*(t)sf}, e—+0 at a few temperatures

at Q=1. As the intersite distance increases the value of are plotted. The comparison of these results with the ones at
spin correlations decreases and a time delay in their appegB=o, N=2 obtained within a totally different numerical
ance increases. The finite-size and boundary effects in thaepproach(Fig. 3 of Ref. § shows a nice agreement between
computation of dynamic spin correlation functions can bethem. Small wiggles in the curves correspondingBte 50

seen in Fig. 3, where we show the autocorrelation function are caused by abrupt breaking off due to the boundary effects
Q=0.5 (the conclusions for smaller and larger values of theof the (s;4(t)s)q att=180[see Fig. &)] that for this tem-
transverse field as well as for pair correlation functions withperature at such times has still rather appreciable values. The
n#0 are qualitatively the sameAs is evident from Fig. @)  wiggles can be removed either by increasing the valijeasf

the time dependence ¢§y,(t)sy») over long time interval by increasing the value of that slightly smooths the fre-
exhibits finite-size effects in the form of echos. The longerquency shapes and decreases in particular the heights of their
the chain is, the larger the time is when the first echo occurgeculiarities. Thus, the lower the temperature is, the larger
The same echo effects were observed and discussed in Réfe time interval in which(sj(t)sj, ,) should be computed

10. The results which are plotted in Fig(bB demonstrate appears. We also found an excellent agreement with the ex-
how the choice of at fixedN influences the time behavior act results for thezz correlation functioné and confirmed

of (s}‘(t)s}‘). The boundary effects definitely manifest them- the correctness of our scheme by checking relati@nhshat
selves at long times; the farther from the boundary thejsite connect(s;(t)s;,,) with other correlation functions after

is, the larger the times are up to which time-dependent spin
correlations are not affected by the boundary. On the othe 0.2
hand, the large values dff andj demand corresponding
computer resources, since a time of solution of the standar
problem (6) and calculation of the elementary contractions
(8) strongly depends oN and a time of computation of the
Pfaffian(7) essentially depends gn Anyway, the finite-size 02555200300 ~0% 700 200 300 ¥
and boundary effects are easy to recognize and in a wid
range of parameters one may derive the dynamic spin corres>
lation functions that are not subject to these influence, i.e. = 0.10

0.1

-0.1+

Re(s™(t)s™)

0.15 0.00 i

that refer to infinite chains. % os ) 1;:‘005 ()
It is interesting to compare the results derived numerically ~ 1 3 =
with some known in particular cases exact results. In Fig. 4  0.005——=5—yig 3= -0.105——d5—d5 1851

the changes of the dependence on time of the autocorrelation

function with the increasing temperature are compared with g, 3. (sX(t)s*) vst for 0=0.5. () B=5, j=N/2, 1: N=20
the exact results available at infinite temperature.rapid (short-dasheld Cujrvgsz; N=40 (long-dashed curves3: N=80
approaching of the results of finite-chain calculations to thgsolid curves. (b) =50, N=280, 1:j=21, 2:j=32, 3:j=46.
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FIG. 4. Time dependence of thex autocorrelation function at L L
0 =0.5: the exact result g8¢=0, N=« (Ref. 7 (solid curve and 0 20 40 60 t g 20 40 60 t
the results of the finite-chain computation(sk(t)s3,) for N=280
at 8=10,5,2,1,0.1(curves 1-5, respectively FIG. 6. F(t) and A(t) vs t for different n*. 1: n*=5, 2:

n*=10, 3: n*=15, 4: n*=20, 5. n*=25, 6: n*=30 (solid

computing the latter correlation functions in a similar man-curves: N=280,j=32,0=0.5, 5=10.

ner.
To examine the accuracy of the spatial Fourier transforpaper. Finally, let us underline that the suggested method in
mation in Eq.(9) we studied the effects of truncation the sum contrast to Ref. 14 avoids the appearance of the<2"
overn. In Figs. Ga), 7(a) and Gb), 7(b) we show the time eigenvalue and eigenvector problem that allows us to con-
dependence ofF(t)=<ij(t)ij)+222i1(ij(t)ij+n) and S|d¢r rgther long chalns, and d'lffe.rs from the approach ex-
X e N Xpes X ploited in Refs. 15,10 in two points: we use elementary con-
A()=(sj(t)s)) +227-1(— 1) (s{(1)sjn) [Such expres-  yactions(8),(6) instead of the known explicit expressions
sions appear in the calculation &(0,w) and Si(m, ),  and we calculate the Pfaffians rather than the corresponding
respectively for different n*. From these figures one can geterminants that are the square roots of the Pfaffians. The
easily see how important is to take a sufficiently large nums;rst circumstance provides a generalization of the elaborated
ber of terms in the sum over in Eq. (9) to reproduce cor-  gcheme for random chairfsee Refs. 11,22and the second
rectly the low-frequency behavigcompare, e.g., the results one permits to calculate Fourier transforms of the correlation
for F(t) andA(t) with n* =5 andn* =30 displayed in Figs.  functions avoiding a problem of choosing the sign while tak-

6,7]. ] ing the square root of determinants.
To sum up, the data produced in the presented below

calculations for the dynamic structure factor in the chosen

ranges of paramete(that are relevant to applications in con- Ill. DYNAMIC STRUCTURE FACTOR
densed matter physicpertain to infinite chains. Evidently, . . .
the described approach also permits the study of finite-size & shall discuss the dynamics of the transverse Ising

effects; this is, however, beyond the scope of the preseﬂPOdel looking at the dynamic §tructure fac(@b_. The fre-
quency shapes d&,,(«,w) for different x at various trans-

verse fields and temperatures are depicted in Figs. 8,9. Let us
turn to the discussion of the obtained results.

In the main plots in Fig. & and Fig. 8b) the low-
temperature dependencesf( «,w) vs w at differentx are
depicted for small and large values of transverse field, i.e.,
0 =0.2 (the Ising-like caseand =1 (the case of almost
noninteracting spins in external fig)despectively. Compar-
ing these plots one finds that in the Ising-like c&g «, )

1 exhibits two peaks in contrast to the case of almost noninter-

ar acting spins whers,,(«,») exhibits one peak. The differ-
=5 F ence is conditioned by the fact that for sm@lithe depen-
o L 2 denceS|\_,e'“(s{(t)s, ,) vst has two definite time scales
B - of varying that results in two-peak frequency shapes for
B ' 3 J Sk, @), whereas at largel, Sh_1e'*(s{(t)s], ,) oscil-
0.0 05 10 15 @ lates almost harmonically that leads to one-peak shapes. In

the latter cas&,,(k,w) is sensitive to the finite time cutoff
FIG. 5. ®3%(w), =X,y vs o for Q=0.5 obtained from the that produces small wiggles in the curves corresponding to
finite-chain calculations N=280, j =46, ¢=0.005) at different low temperature in Fig. @). For =0.2 S;,(0,0) has the
temperatureg=50,10,1(curves 1-3, respectively high zero-frequency peak and the low and broad high-
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FIG. 7. The same as in Fig. 6 fét=1.

frequency peak. Ax increases the height of the first peak
decreases and it shifts towards high frequencies whereas the
width of the second peak decreases, its height increases, and
it also slightly moves towards high frequencies. Kb+ 1
S.(0,w) reveals one high and broad peak that decreases its
height and moves towards high frequencies with the increas-
ing of the wave vector. In the insets in FiggaBand 8b) the
dependences of the frequency shafgg0,w) on tempera-

ture are plotted. In the Ising-like case with the increase of
temperature the heights of both peaks decrease and the high-
frequency peak shifts slightly towards=1. In the case of
almost noninteracting spins in external field one observes the
decrease of peak height and its shift towaags 1 with the
increasing of temperature.

In order to understand how two-peak shapes transform
into one-peak shapes as the transverse field increases we per-
formed the calculations d§,,(0,w) and S,,(7,w) at B=5
for the few values of transverse field in the range of
0=0.2-0.7 (Fig. 9. As can be seen from Fig.(® the
high-frequency peak in the cun®,(0,w)—w for 0 =0.2
with the increase of the transverse field moves towards the
low-frequency peak that in turn becomes broder. 86 0.5
two peaks have already coalesced. A further increase of the
transverse field leads to the shift of one peak to higher fre-
guencies. A similar behavior with the increasing of trans-
verse field is inherent in the dependergg(,w)—-w that
can be seen from Fig.(®): while Q) increases the low-
frequency peak for(=0.2 moves towards the high-

Sxx(K , w)

05 1.0 15w

(a)

)
o
I

0.0

0.5

0.0

1.0

05 1.0 15w
S 45
(b)

1.5 w
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FIG. 8. Frequency-dependent structure factor at different wave
vectors and temperatures f¥=0.2 (@) and Q=1 (b). The main
plot shows the dependenc&,,(x,w) vs o at B=5 for
k=0,7/4,7/12,3m/4,7r (curves 1-5, respectivelythe inset repre-

frequency peak that becomes broader{)at 0.5 two peaks sents the dependen@®,(0,w) Vs  for 8=5,2,1,0.001(curves
are coalesced into one peak that moves towards higher fra-4, respectively e=0.001 for the curves depicted if@) and

guencies with a further increase 9f.

€=0.03 for the curves depicted ib).
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FIG. 9. Frequency-dependent structure factoBat5 for k=0
(@ and k=w (b) for the few transverse fields
0=0.2,0.3,0.35,0.4,0.5,0.6,0.7 (curves  1-7, respectively
€=0.001.
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The obtained results can be presented in a slightly differ-

ent manner. Namely, we can derive the dependence of the

peaks positiong» and widthsI' on «. The dispersion rela-

tions w(«) at different temperatures and transverse fields are FIG. 10. The positions of the peaks 8f,( «,») as a function of

plotted in Fig. 10. It should be noted that the accuracy ofx for 0=0.2 (a), 2=0.3 (b), 2=0.5 (c), Q=1 (d) at several

estimation of peaks positions for the transverse fields smalleralues of temperaturgg=5 (solid curvey, S=1 (long-dashed

than 0.5 becomes bad at small The dispersion of peaks curves, 8=0.1(short-dashed curves

positions and widths disappears with increasing of tempera-

ture since all correlation functions in E(p) except the au- (< J/2) and large > J/2) transverse fields are hoped to
tocorrelation function die away with the raising of tempera-pe gpservable in the corresponding measurements on quasi-
ture. In principle, we can also draw out the dependenc@,q gimensional hydrogen-bonded ferroelectrics such as
I'(x) . However, the value of depgnds on the chosen val_ue CsH,PO,, PbHPQ, (neutron scattering, dielectric
qf € (in contrast to th_e peaks positionsthat are not sensi- measurement®1® and J aggregategabsorption and emis-
tlv%gou;rl]le mzdeu(;?l%'gs&i?;) andT'(x) are interpreted as sion spectra’®? respectively. However, a comparison with
the eneréy anqd damping of quasiparticles E|owever iexperimental results demands the introduction of a weak in-

' ' Jerchain interaction and these problems as well as the recon-

should be noted that in the considered case the relation be: . ) . .
tween the fermions with the energy, and infinite lifetime sideration of some approximate approaches exploited earlier

and the quasiparticles with the energyx) and damping for the analysis of experimental data require a separate study.
I'(x) that yields finite lifetime is not simple, since the latter
objects represents excitations of arbitrarily many fermions
(see Refs. 5)8 IV. ACKNOWLEDGMENTS
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