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Dynamic structure factor of the spin-1
2 transverse Ising chain

Oleg Derzhko and Taras Krokhmalskii
Institute for Condensed Matter Physics, 1 Svientsitskii Street, L’viv-11, 290011, Ukraine

~Received 1 July 1997!

The dynamic structure factor of the spin-1
2 transverse Ising chain is obtained by means of a numerical

approach suggested earlier@O. Derzhko and T. Krokhmalskii, Ferroelectrics192,21 ~1997!#. Frequency shapes
of the dynamic structure factor at various values of the wave vector, transverse field, and temperature are
displayed and discussed.@S0163-1829~97!04141-6#
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I. INTRODUCTION. THE BASIC FORMALISM

The one-dimensional spin-1
2 Ising model in a transvers

field is an important subject of theoretical studies not o
because of its usefulness in solid state physics but also
cause a lot of its statistical mechanics properties can be
amined exactly.1–4 However, since the early 1970’s it ha
been known that there are great difficulties in the calculat
of some time-dependent spin correlation functions for t
model and in spite of many papers dealing with th
problem5–8 ~see also recent papers9,10 devoted to similar
studies for the one-dimensional spin-1

2 XX model! the inves-
tigation of dynamic properties calls for more efforts. The a
of the present paper is to provide a fresh view on the exa
nation of spin dynamics. Namely, we shall extend the
merical approach elaborated earlier for equilibrium statist
mechanics calculations for spin-1

2 XY chains11,12 to the
analysis of dynamic properties of the transverse Ising mo
studying in particular its dynamic structure factor.

We consider a spin-1
2 chain described by the Hamiltonia

H5V(
j 51

N

sj
z1J (

j 51

N21

sj
xsj 11

x , ~1!

whereV is the transverse field at site andJ is the interaction
between the neighboring sites. We shall be interested in
time-dependent two-spin correlation functions^sj

a(t)sj 1n
b &,

where the angle brackets denote a thermodynamic ave
^(•••)&[Sp@e2bH(•••)#/Spe2bH. The correlation function
betweenz components was derived in Ref. 2. We shall
strict ourselves mainly to the correlation function betweex
components of two spins noting that all other nonzero co
lation functions can be found by the differentiation

^sj
x~ t !sj 1n

y &52^sj
y~ t !sj 1n

x &5
1

V

d

dt
^sj

x~ t !sj 1n
x &,

^sj
y~ t !sj 1n

y &52
1

V2

d2

dt2
^sj

x~ t !sj 1n
x &. ~2!

In order to evaluate the quantity of interest one sho
rewrite the Hamiltonian~1! in terms of Fermi operators with
the help of the Jordan-Wigner transformation and then
diagonalize the obtained bilinear fermion form. Basic resu
560163-1829/97/56~18!/11659~7!/$10.00
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may be summarized as follows: the relations between s
operators and Fermi operators read

sj
x5

1

2
w1

1w1
2w2

1w2
2

•••w j 21
1 w j 21

2 w j
1 ,

sj
y5

1

2i
w1

1w1
2w2

1w2
2

•••w j 21
1 w j 21

2 w j
2 ,

sj
z52

1

2
w j

1w j
2 , ~3!

where

w j
15 (

p51

N

Fp j~hp
11hp!, w j

25 (
p51

N

Cp j~hp
12hp!;

~4!

the transformed Hamiltonian~1! has the form

H5 (
k51

N

LkS hk
1hk2

1

2D ,

$hq ,h r
1%5dqr , $hq ,h r%5$hq

1 ,h r
1%50; ~5!

Lp , Fp j , Cp j are determined from the equations

(
j 51

N

Cp j~Ajn1Bjn!5LpFpn ,

(
j 51

N

Fp j~Ajn2Bjn!5LpCpn ,

(
j 51

N

Fq jF r j 5(
j 51

N

Cq jC r j 5dqr ,

(
p51

N

FpiFp j5 (
p51

N

CpiCp j5d i j , ~6!

with Ai j [Vd i j 1(J/4)d j ,i 111(J/4)d j ,i 21, Bi j [(J/
4)d j ,i 112(J/4) d j ,i 21. For further details see Refs
1,4,11,12. In view of Eqs.~3!–~5! the calculation of
^sj

x(t)sj 1n
x & reduces to the exploiting of the Wick-Bloch-d

Dominicis theorem and the result can be expressed c
11 659 © 1997 The American Physical Society
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pactly in the form of the Pfaffian of the 2(2j 1n21)32(2j 1n21) antisymmetric matrix constructed from elementa
contractions

4^sj
x~ t !sj 1n

x &5^w1
1~ t !w1

2~ t !w2
1~ t !w2

2~ t !•••w j 21
1 ~ t !w j 21

2 ~ t !w j
1~ t !w1

1w1
2w2

1w2
2

•••

3w j 21
1 w j 21

2 w j
1w j

2w j 11
1 w j 11

2
•••w j 1n21

1 w j 1n21
2 w j 1n

1 &

5PfS 0 ^w1
1w1

2& ^w1
1w2

1& ••• ^w1
1~ t !w j 1n

1 &

2^w1
1w1

2& 0 ^w1
2w2

1& ••• ^w1
2~ t !w j 1n

1 &

A A A ••• A

2^w1
1~ t !w j 1n

1 & 2^w1
2~ t !w j 1n

1 & 2^w2
1~ t !w j 1n

1 & ••• 0

D , ~7!
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where

^w j
1~ t !wm

1&5 (
p51

N

Fp jFpm

cosh~ iLpt2bLp/2!

cosh~bLp/2!
,

^w j
1~ t !wm

2&52 (
p51

N

Fp jCpm

sinh~ iLpt2bLp/2!

cosh~bLp/2!
,

^w j
2~ t !wm

1&5 (
p51

N

Cp jFpm

sinh~ iLpt2bLp/2!

cosh~bLp/2!
,

^w j
2~ t !wm

2&52 (
p51

N

Cp jCpm

cosh~ iLpt2bLp/2!

cosh~bLp/2!
. ~8!

Dynamic properties of many-body system can be descri
in term of the dynamic structure factor

Sxx~k,v![ (
n51

N

eiknE
2`

`

dte2eutueivt^sj
x~ t !sj 1n

x &

5 (
n51

N

eikn2ReE
0

`

dtei ~v1 i e!t^sj
x~ t !sj 1n

x &,

e→10, ~9!

which involves the correlation functions^sj
x(t)sj 1n

x & ~7! ~see,
e.g., Ref. 13!.

II. NUMERICAL CALCULATIONS

Let us describe the further numerical calculations in so
details. Formulas~6!–~8! form the starting point for the cal
culations. Considering a chain of theN5280 spins with
J521 and a certain value of the transverse field within
range ofV50.125 we solved theN3N standard problem
~6! obtaining in resultLp , Fp j , Cp j . Then takingj 521,32
and a certainn within the range of 0 to 30,50 we compute
elementary contractions~8! involved in Eq.~7! for the given
temperature within the range ofb51020.001 and the timet
up to 120~although sometimes up to 1600) and evalua
numerically the Pfaffian obtaining as a result a correlat
betweenx components of spins at the sitesj and j 1n taken
at the moments of timet and t50, respectively. There ar
few practical limitations of the described approach, that
d

e

e

d
n

,

the finite chain size N, presence of boundarie
1< j , j 1n<N, and finite timet. These effects lead to th
deviation from a time behavior inherent in the infinite cha
which constitutes the concern of the present paper.

To reveal the region of validity of the results derived w
performed different additional calculations some of whi
are described below. Figure 1 presents the results of a s
of the finite-size and boundary effects for the static spin c
relation functions. From Fig. 1 one can see that the result
finite-chain calculations do not depend on the made choic
N and j at b510 ~and higher temperatures! whereas they do
depend on this choice atb5500. To study the low-
temperature behavior of the static spin correlations one m
consider longer chains and takej farther from the bound-
aries.

In Fig. 2 we show few dynamic spin-correlation function
^sj

x(t)sj 1n
x & with j 532 at low temperature. As it can be see

FIG. 1. ^sj
xsj 1n

x & vs n for V50.5: exact results atb5` ~Refs.
3,8! ~circles! and numerical ones atb5500 andb510. ~a! j 5N/2,
the results forN5100,140,200,280 atb5500 correspond to the
curves 2–5, respectively, whereas atb510 the results for allN
coincide~curve 1!. ~b! N5280, the results forj 521,32,70,100,140
at b5500 correspond to curves 2–6~the last two curves 5 and 6
coincide!, whereas atb510 the results for allj coincide~curve 1!.
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FIG. 2. Real and imaginary parts of^s32
x (t)s321n

x & vs t for n50,2,8 and different values of the transverse fieldV50.2 ~dotted curves!,
V50.5 ~dashed curves!, V51 ~solid curves!; N5280,b55.
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from this figure, the graphs of Re^s32
x (t)s321n

x & and
Im^s32

x (t)s321n
x & decay ast→` ~with hardly visible oscilla-

tions forn50) atV50.2, execute small oscillations aroun
a dying curve without changing of sign ast→` at V50.5,
and oscillate more frequently around zero dying off ast→`
at V51. As the intersite distancen increases the value o
spin correlations decreases and a time delay in their app
ance increases. The finite-size and boundary effects in
computation of dynamic spin correlation functions can
seen in Fig. 3, where we show the autocorrelation functio
V50.5 ~the conclusions for smaller and larger values of
transverse field as well as for pair correlation functions w
nÞ0 are qualitatively the same!. As is evident from Fig. 3~a!
the time dependence of^sN/2

x (t)sN/2
x & over long time interval

exhibits finite-size effects in the form of echos. The long
the chain is, the larger the time is when the first echo occ
The same echo effects were observed and discussed in
10. The results which are plotted in Fig. 3~b! demonstrate
how the choice ofj at fixedN influences the time behavio
of ^sj

x(t)sj
x&. The boundary effects definitely manifest them

selves at long times; the farther from the boundary the sij
is, the larger the times are up to which time-dependent s
correlations are not affected by the boundary. On the o
hand, the large values ofN and j demand correspondin
computer resources, since a time of solution of the stand
problem ~6! and calculation of the elementary contractio
~8! strongly depends onN and a time of computation of th
Pfaffian~7! essentially depends onj . Anyway, the finite-size
and boundary effects are easy to recognize and in a w
range of parameters one may derive the dynamic spin co
lation functions that are not subject to these influence,
that refer to infinite chains.

It is interesting to compare the results derived numerica
with some known in particular cases exact results. In Fig
the changes of the dependence on time of the autocorrela
function with the increasing temperature are compared w
the exact results available at infinite temperature.7 A rapid
approaching of the results of finite-chain calculations to
ar-
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exact one at infinite temperature with the increase of te
perature is observable. In Fig. 5 the results of the finite-ch
calculations of the frequency-dependent Fourier transfo
of xx and yy autocorrelation functions F0

aa(v)
[*2`

` dte2eutueivt^sj
a(t)sj

a&, e→10 at a few temperature
are plotted. The comparison of these results with the one
b5`, N5` obtained within a totally different numerica
approach~Fig. 3 of Ref. 8! shows a nice agreement betwe
them. Small wiggles in the curves corresponding tob550
are caused by abrupt breaking off due to the boundary eff
of the ^s46

x (t)s46
x & at t.180 @see Fig. 3~b!# that for this tem-

perature at such times has still rather appreciable values.
wiggles can be removed either by increasing the value ofj or
by increasing the value ofe that slightly smooths the fre
quency shapes and decreases in particular the heights of
peculiarities. Thus, the lower the temperature is, the lar
the time interval in whicĥ sj

x(t)sj 1n
x & should be computed

appears. We also found an excellent agreement with the
act results for thezz correlation functions2 and confirmed
the correctness of our scheme by checking relations~2! that
connect ^sj

x(t)sj 1n
x & with other correlation functions afte

FIG. 3. ^sj
x(t)sj

x& vs t for V50.5. ~a! b55, j 5N/2, 1: N520
~short-dashed curves!, 2: N540 ~long-dashed curves!, 3: N580
~solid curves!. ~b! b550, N5280, 1: j 521, 2: j 532, 3: j 546.
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computing the latter correlation functions in a similar ma
ner.

To examine the accuracy of the spatial Fourier trans
mation in Eq.~9! we studied the effects of truncation the su
over n. In Figs. 6~a!, 7~a! and 6~b!, 7~b! we show the time

dependence of F(t)5^sj
x(t)sj

x&12(n51
n* ^sj

x(t)sj 1n
x & and

A(t)5^sj
x(t)sj

x&12(n51
n* (21)n^sj

x(t)sj 1n
x & @such expres-

sions appear in the calculation ofSxx(0,v) and Sxx(p,v),
respectively# for different n* . From these figures one ca
easily see how important is to take a sufficiently large nu
ber of terms in the sum overn in Eq. ~9! to reproduce cor-
rectly the low-frequency behavior@compare, e.g., the result
for F(t) andA(t) with n* 55 andn* 530 displayed in Figs.
6,7#.

To sum up, the data produced in the presented be
calculations for the dynamic structure factor in the chos
ranges of parameters~that are relevant to applications in co
densed matter physics! pertain to infinite chains. Evidently
the described approach also permits the study of finite-
effects; this is, however, beyond the scope of the pres

FIG. 5. F0
aa(v), a5x,y vs v for V50.5 obtained from the

finite-chain calculations (N5280, j 546, e50.005) at different
temperaturesb550,10,1~curves 1–3, respectively!.

FIG. 4. Time dependence of thexx autocorrelation function a
V50.5: the exact result atb50, N5` ~Ref. 7! ~solid curve! and
the results of the finite-chain computation of^s32

x (t)s32
x & for N5280

at b510,5,2,1,0.1~curves 1–5, respectively!.
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paper. Finally, let us underline that the suggested metho
contrast to Ref. 14 avoids the appearance of the 2N32N

eigenvalue and eigenvector problem that allows us to c
sider rather long chains, and differs from the approach
ploited in Refs. 15,10 in two points: we use elementary c
tractions ~8!,~6! instead of the known explicit expression
and we calculate the Pfaffians rather than the correspon
determinants that are the square roots of the Pfaffians.
first circumstance provides a generalization of the elabora
scheme for random chains~see Refs. 11,12! and the second
one permits to calculate Fourier transforms of the correlat
functions avoiding a problem of choosing the sign while ta
ing the square root of determinants.

III. DYNAMIC STRUCTURE FACTOR

We shall discuss the dynamics of the transverse Is
model looking at the dynamic structure factor~9!. The fre-
quency shapes ofSxx(k,v) for different k at various trans-
verse fields and temperatures are depicted in Figs. 8,9. Le
turn to the discussion of the obtained results.

In the main plots in Fig. 8~a! and Fig. 8~b! the low-
temperature dependences ofSxx(k,v) vs v at differentk are
depicted for small and large values of transverse field,
V50.2 ~the Ising-like case! and V51 ~the case of almos
noninteracting spins in external field!, respectively. Compar-
ing these plots one finds that in the Ising-like caseSxx(k,v)
exhibits two peaks in contrast to the case of almost nonin
acting spins whenSxx(k,v) exhibits one peak. The differ
ence is conditioned by the fact that for smallV the depen-
dence(n51

N eikn^sj
x(t)sj 1n

x & vs t has two definite time scale
of varying that results in two-peak frequency shapes
Sxx(k,v), whereas at largeV, (n51

N eikn^sj
x(t)sj 1n

x & oscil-
lates almost harmonically that leads to one-peak shapes
the latter caseSxx(k,v) is sensitive to the finite time cutof
that produces small wiggles in the curves corresponding
low temperature in Fig. 8~b!. For V50.2 Sxx(0,v) has the
high zero-frequency peak and the low and broad hi

FIG. 6. F(t) and A(t) vs t for different n* . 1: n* 55, 2:
n* 510, 3: n* 515, 4: n* 520, 5: n* 525, 6: n* 530 ~solid
curves!; N5280, j 532, V50.5, b510.
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FIG. 7. The same as in Fig. 6 forV51.
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frequency peak. Ask increases the height of the first pea
decreases and it shifts towards high frequencies wherea
width of the second peak decreases, its height increases
it also slightly moves towards high frequencies. ForV51
Sxx(0,v) reveals one high and broad peak that decrease
height and moves towards high frequencies with the incre
ing of the wave vector. In the insets in Figs. 8~a! and 8~b! the
dependences of the frequency shapesSxx(0,v) on tempera-
ture are plotted. In the Ising-like case with the increase
temperature the heights of both peaks decrease and the
frequency peak shifts slightly towardsv51. In the case of
almost noninteracting spins in external field one observes
decrease of peak height and its shift towardsv51 with the
increasing of temperature.

In order to understand how two-peak shapes transf
into one-peak shapes as the transverse field increases we
formed the calculations ofSxx(0,v) and Sxx(p,v) at b55
for the few values of transverse field in the range
V50.220.7 ~Fig. 9!. As can be seen from Fig. 9~a! the
high-frequency peak in the curveSxx(0,v) –v for V50.2
with the increase of the transverse field moves towards
low-frequency peak that in turn becomes broder. ForV50.5
two peaks have already coalesced. A further increase of
transverse field leads to the shift of one peak to higher
quencies. A similar behavior with the increasing of tran
verse field is inherent in the dependenceSxx(p,v) –v that
can be seen from Fig. 9~b!: while V increases the low-
frequency peak forV50.2 moves towards the high
frequency peak that becomes broader, atV50.5 two peaks
are coalesced into one peak that moves towards higher
quencies with a further increase ofV.
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FIG. 8. Frequency-dependent structure factor at different w
vectors and temperatures forV50.2 ~a! and V51 ~b!. The main
plot shows the dependenceSxx(k,v) vs v at b55 for
k50,p/4,p/2,3p/4,p ~curves 1–5, respectively!; the inset repre-
sents the dependenceSxx(0,v) vs v for b55,2,1,0.001~curves
1–4, respectively!. e50.001 for the curves depicted in~a! and
e50.03 for the curves depicted in~b!.
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The obtained results can be presented in a slightly dif
ent manner. Namely, we can derive the dependence of
peaks positionsv and widthsG on k. The dispersion rela-
tionsv(k) at different temperatures and transverse fields
plotted in Fig. 10. It should be noted that the accuracy
estimation of peaks positions for the transverse fields sma
than 0.5 becomes bad at smallk. The dispersion of peak
positions and widths disappears with increasing of temp
ture since all correlation functions in Eq.~9! except the au-
tocorrelation function die away with the raising of tempe
ture. In principle, we can also draw out the depende
G(k). However, the value ofG depends on the chosen valu
of e ~in contrast to the peaks positionsv that are not sensi
tive to the made choice ofe).

Usually the quantitiesv(k) and G(k) are interpreted as
the energy and damping of quasiparticles. However
should be noted that in the considered case the relation
tween the fermions with the energyLk and infinite lifetime
and the quasiparticles with the energyv(k) and damping
G(k) that yields finite lifetime is not simple, since the latt
objects represents excitations of arbitrarily many fermio
~see Refs. 5,8!.

To conclude, we presented the numerical approach
examining the dynamic properties of the one-dimensio
spin-12 Ising model in transverse field and evaluated the w
vector- and frequency-dependent dynamic structure fa
for this model~Figs. 8,9!. The main features of the dynam
structure factor in the presented limiting cases of sm

FIG. 9. Frequency-dependent structure factor atb55 for k50
~a! and k5p ~b! for the few transverse fields
V50.2,0.3,0.35,0.4,0.5,0.6,0.7 ~curves 1–7, respectively!;
e50.001.
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(V,J/2) and large (V.J/2) transverse fields are hoped
be observable in the corresponding measurements on q
one-dimensional hydrogen-bonded ferroelectrics such
CsH2PO4, PbHPO4 ~neutron scattering, dielectric
measurement!,16,18 and J aggregates~absorption and emis
sion spectra!,19,20 respectively. However, a comparison wi
experimental results demands the introduction of a weak
terchain interaction and these problems as well as the re
sideration of some approximate approaches exploited ea
for the analysis of experimental data require a separate st
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FIG. 10. The positions of the peaks ofSxx(k,v) as a function of
k for V50.2 ~a!, V50.3 ~b!, V50.5 ~c!, V51 ~d! at several
values of temperatureb55 ~solid curves!, b51 ~long-dashed
curves!, b50.1 ~short-dashed curves!.
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