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Stability of commensurate phases of a planar model with competing interactions
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We study a one-dimensional planar model with competing interactions at zero temperature in the limit of
low and high external magnetic fields. The stability of commensurate phases with wave number
go=2m(P/Q), whereP/Q is an irreducible fraction, is discussed in the continuum approximation. We show
that for small fieldsH— 0+, the helical phase with perio@>4 has a width proportional tbl®2. Similarly,
for high fieldsH—H_.—, whereH, is the critical field for the parafan transition, the fan phase with period
Q=4 has a width proportional ttH—H|(?~2* if Q is an even number arth —H|(?~ V2 if Q is an odd
number.[S0163-18207)05642-1

I. INTRODUCTION and at zero temperature by numerical minimization of the
energy. They found that the transition between helical and
Since the beginning of the 1960’s many materials, mosfan phases is continuous for wave numbgrs/2 and dis-
notably rare-earth elements and their compounds, have beeontinuous otherwise. Harris, Rastelli, and Tadavesti-
found to display a variety of modulated magnetic ordefifg. gated the phase locking of the commensurate configurations
In particular, helical or spiral structures, which may trans-for the low-temperature and low-field regime of the three-
form into a fan structure by the application of an externaldimensional extension of the modgdl.1). Also we mention
magnetic field, have been observed in Th, Dy, Ho, and thé¢hat the model1.1) with the inclusion of anisotropy energy
manganese compounds MaMnAU,, and MnP? The zero  was considered by Kitano and Naganfigad more recently
temperature properties of such systems have often been molly Sasak?

eled by a one-dimensional classical plat@rXY) spin with In this work we study the lock-in and stability of com-
competing first- and second-neighbor interactions with enmensurate helical and fan phases at low and high fields, re-
ergy given by spectively. The stability limit of commensurate phases is de-

termined using the continuum approximation along the lines
of the work of Theodorou and Rit& for the Frenkel-

E({an}):_‘h; Cos{anﬂ_an)_b; Cog On+2— bn) Kontorova modeéf and of Bak and von Bum'? for the
ANNNI 3 model.

~HY, cos,, 1.2
n Il. HELICAL PHASES AT LOW FIELDS

where 6, is the anglenth spin makes with the magnetic At zero field andJ,<0 the energy1.1) is minimized by
field*~®For J,>0 there is no competition and the model cana ferromagnetic structure for<-—4, antiferromagnetic
be trivially solved. In this work we will consider only the structure for «=4, and a perfect helical structure
frustrated casd,<0 and the competition parameter O,=qn+ ¢, where ¢ is an arbitrary phase and the wave
numberq is given by
Ji
=3,

o

(1.2

o

q=cosl( _Z)’ (2.1

in the range—4<a<4 where modulated structures are fa-

vored. for —4<a=<4? Therefore a commensurate helical phase has
Nagamiya, Nagata, and Kitahmvestigated the zero tem- a zero width of stability at zero field, but a small field will

perature properties of the model using an approximate andend to pin the structure relative to the field and give it a

lytic theory based on low- and high-field expansions. Theirfinite width of stability.

phase diagram in thel — « plane consists of commensurate  Let us consider a commensurate helical structure of wave

helical and fan phases with wave numbges 7,27/3,7/2, numbergo=2m(P/Q), where P/Q is an irreducible frac-

and large regions of incommensurate helical phases at lowion. We will assume that a small field will in general distort

fields and fan phases at high fields. They assumed that ttbe perfect helical structure found at zero fiéldn excep-

transitions between commensurate and incommensurat®n is the helical structuregg= /4 which is unstable

phases, as well as between helical and fan phases, were figgainst a “double spin-flop stat&”® consisting of two iden-

order. Later Robinson and Ersfoanalyzed the model using tical interpenetrating spin-flop states. The distorted helix can

numerical methods, and obtained a qualitatively similarbe described by

phase diagram. Carazza, Rastelli, and Padssestigated the

model at finite temperatures using transfer matrix method 0,=qon+ ¢,, (2.2
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where ¢, is periodic with periodQ admitting the Fourier
expansion

¢n=§ ¢qe‘q”=¢o+§’¢qe‘q", (2.3

where the prime in the surﬁ(’] indicates that the harmonic
g=0 was excluded. With the notations
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usual approximatiot?*? that keeps only the main harmonic
g= *£(g in the expansiori2.4) of ¢, we have,

Pn= g, €9"+ c.c=2Acogqon+ @), (2.6

where we have WritterquO:Aei“.

We observe that the energy.1) is given by the real part
of

bo=¢ andg,=> b€, (2.4 E=—2 [Je/ne1 )4 Jpeifhea™ ) 4 Helfn],
q n
(2.7
we have ) _ ) )
Inserting§,, given by Eq.(2.5) into the above expression we
0,=qon+ o+ ¢, . (2.5 may write the expansion
In the above expressio# is the phase that pins the helical *
structure relative to the magnetic field, wherggsdescribes E= E E, (2.9
the distortion of the helical structure due to the field. For 1=0
small fields it is natural to assume that,|<1. Within the  where
.l . . . .
Bi= = 792602 (¢ns1— @)+ 3287902 (@nip—@n) +HEPD, @0y 2.9
Substituting the Fourier expansidd.4) for ¢,, we find
i| | | | |
N™E=— T "bq, - '¢q|[ J.e'%] ] (e%i—1)+J,e2%]] (eizqi—l)}A( > q; | +He'’A| go+ > qj> ]
far =1 j=1 =1 =1
(2.10

whereN is the number of spins, and the functid{q) is
defined by

1 if g=0(mod2m)
0 otherwise.

A(g)= (213

Inserting result€2.12) and (2.13 into the real part 0f2.8)
the normal contribution to the energy is obtained as

oo

Therefore the only terms that contribute to the sum of Eqyhere the coefficienta, are given by

(2.10 are the normalN) terms for which the argument of
the functionA is zero and the umklapflJ) terms for which
the argument is a multiple of2

Let us initially consider only the contribution from normal
terms. Within the approximatio(2.6) which takes into ac-
count only the main harmonic we haeg=*q, and the
equationE'-zlquo can be satisfied for evdnof the form
|=2k in (£) different ways. Withg = A€’ we obtain for
the real part the result

—1=(N) (_1)k2k
NTER=-———
(k')

+J,€082(1— cosAyy)<]AZK,

[J1cogo(1— cogyp)*

(2.12

Analogously, the equationg+ Z}=1q-=0 can be satisfied

for odd| of the forml=2k+1 in (2**1) different ways, and
we obtain

(1"

N _—
(k+1)(k!)?

NEW, = sin(¢p—a)HAZTL, (2.13

N‘lE(N)=|ZO a A, (2.14
_ (_ l)k2k J 1— k
A= (k)2 [J;cogo(1~cogp)
+J,c082,(1— cosyg)X], (2.153
(-
32k+1—m3|n( ¢—a)H. (2.15h
The first three coefficients, are
1
2=~ 53(do), (2.162
a;=sin(¢p—a)H, (2.16b
a;=[2J3(do) —J(240) —I(0)]/2, (2.1609
where
J(ng)=2J,cong+2J,cosnq. (2.19
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Keeping terms up té\? in Eq. (2.14 and minimizing with
respect toA we obtain
a

A= 28, 23(d0)—3(0)=3(2q0)

sin(¢—a),
(2.18

and the normal contribution to the energy correctH® is
found to be

H2
~2[23(q0)—J(0) - I(2q0)]

1
NTIEM= - ZJ(qo)
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These results are in agreement with Nagamiya, Nagata, and
Kitano* We observe that the phageis arbitrary, meaning
that there is no pinning of the commensurate phase to the
field when only the normal contributions are taken into ac-
count.

In order to determine the phagewe have to consider the
umklapp contributions to the energy. Since the amplitAde
is proportional toH, Eq. (2.10 shows that there are two
lowest order umklapp contributions of ordeR to the en-
ergy. The first one comes from the terh+Q—1 with
gj=do(j=1,...Q—1), and the second frorh=Q with

gj=do Or g;=—0 (J=1,...Q). Thus the umklapp con-
tribution to the energy in the lowest order is found to be

X sirt(¢p— a). (2.19

The energy is minimized fop— a an odd multiple ofr/2.

Choosinga= ¢+ 7/2 for the amplitudeA in Eq. (2.18 to be NIEV=(-1)VcoNe, (2.2
positive, we finally have
0,=qon+ d—2Asin(ngy+ ¢). (2.20  whereV is given by
|
1 _1)Q2pQ+1 1
V= (Q_—l)!HAQ*l— %AQ{ (—1)PJ3;sin® %cosqurstianocoquo , (2.22
for evenQ and
1 -1 (Q+1)/22Q+l 7
V= o= HAQfl—( ) o AQ[(—1)PJlsinQ%sinqurJgsianosiano , (2.23

for oddQ. It is clear that the value ap which minimizes the We will assume that the defect can be described in terms of
umklapp energy2.2]) is an even or odd multiple ofr/Q a smooth variation of the phagewith constant amplitudé
depending on the sign &f. We conclude, therefore, that the given by Eq.(2.18), that is,

phaseg in the expressiofi2.20 for 6, is fixed in general by

the umklapp energy of orde®, in agreement with the On=doN+ én+t ¢n, (2.24
results of Ref. 7. We observe that fQr>3 higher harmonics where

$mq, (M>1), of orderH™* which were neglected in the

expansion(2.6) may give extra contributions of the same on=—2Asin(gon+ ¢,). (2.29

order to the umklapp energy. Thus the expressa3 for o ) _ _
Substitutingé,, given by Eq.(2.24) in the expressior{2.7)

the pinning potential vanishes fap=27/5 and 4x/5, but 4 ;
this is due to the neglect of the second harmonic in the exi" the energy we can write it as an expansion of the form

pansion (2.20. Taking into account the second harmonic (2-8 With

contribution we find a nonzero pinning potential, in agree- .

ment with numerical study of these phaSe®n the other E=— I J equE g(Pn+17 (o — o)
hand, the vanishing of pinning potenti@.23 for the phase ' [t n el

go= /3 is an exact result because in the expan§®®0 no
higher order harmonics are present in this case. It can be
shown that this phase is exceptional, presenting a continuous
degeneracy of the ground state for arbitrary fitlidsa way
analogous to the ground state of the triangular antiferromag-
netic planar model in a fiefP~*8Finally, the pinning poten-
tial (2.22 also vanishes for the helical configuration . ) . o
Qo= /2, but this result is spurious because the helical conYV€ €an again classify the various terms of the expansion into
figuration is unstable in the presence of a field, being reormal and umklapp terms. Let us first consider the normal
placed by a “double spin-flop phase” as soon as the field i€ontribution. Forl =0 expanding the differencesy 1~ ¢,
turned orf">” Therefore our result that assumed helical struc@d  @n+2—¢n Up to  second order, and using
ture cannot be applied to this phase. $n+1— ¢n=de/dn and ¢, ,— ¢y~2d¢/dn we obtain

We will now study the stability of the helical structures
determined above against creation of defects or solitoifs.

+Jzei2qoz ei(¢n+27¢n)(§0n+2_ ‘Pn)l
n

+HY, eldontidngl | (2.26
n

EMV=—N(J;cosyo+ J,cosy,)
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> . . d¢
+ f [J4Singg+ 2J23|n2q0]ﬁ

1 de)\?
+§[chosqo+4choszqo] an dn.

(2.27

Notice that the term with the fieldl gives a negligible con-
tribution because of the strongly oscillating factelflo",
Analogously forl=1 andl=2 we get

NEN=—HA, (2.283
N~LEN = AZ[2J,coq1(1— cogyy)
+2J,c089(1—cosyy)]. (2.28h
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The value of the parameter=J, /J, for which the phasegg
is stable at zero field igg= —4cog),. In terms ofa and «g
we have

J
5= %\/16— a(a—ay), (2.333
_ |‘]2| 2 - 2
= T(aao—Zao-l- 16)~(16—agj)/4. (2.33D

Following the analysis of Frank and Van der MeriVex-
pression2.31) implies that the commensurate phase is stable
against defect creation as long as

2
|8l <]V, (2.39
r

We observe that there are also terms involving the derivaSinced=a—a, andV=H?, we conclude that the boundary

tives of ¢ in the expression oEYY , but since these are of
order A? they can be neglected in comparison with similar
terms inEYY . Therefore we obtain in ordek?,

©
©

d
E(N>=EE:N)+I ([JlsinqurZJZSiano]d—q;

1 de\?
+§[J1cosqo+4chosaqo] dan dn,

(2.29

whereE(CN) is the normal energy corresponding to the com-
mensurate phase with no defects.

We will next consider the umklapp contribution to the
energy. As in the commensurate case, in the lowest ord
they arise from the terms=Q—1 andl=Q in the expan-
sion. Ignoring all the terms containing strongly oscillating
factors we get

f (2.30

E(U)=(—1)QVJ dn coRe(n),

whereV is given by Eqs(2.22) or (2.23. Finally, adding the

of the commensurate phase is given by

|a— a0|0<HQ/2.

(2.39

Therefore our calculations show that all the commensurate
helical phases will in general have a width of stabilityr

for H>0. This width will be proportional t¢19’2, and there-
fore will be very narrow for long period structures. An ex-
ception is the period three helical phagg=2#/3 for which

the pinning potential/ vanishes, and we expect a zero width
of stability. In the case of spin-flop phasg= 7 we have
6=0, which implies that the instability of this phase is not
caused by defect creation and the transition is presumably of
first order. Similarly we expect that the period four “double
spin-flop phase”qy= /2 at low fields will undergo a first-

ec;rder transition to the nearby helical phases.

Ill. FAN PHASES AT HIGH FIELDS

The modulated structures found at high fields are the fan
phases in which the spins oscillate around the direction par-
allel to the field* We will study the pinning of the commen-
surate fan phases and the stability of these phases against the
defect creation in much the same way as the previous sec-
tion, but the results will be different due to the difference in

normal contribution(2.29 and the umklapp contribution e spin structures.
(2.30 we have for the difference between defective and | et ys consider a commensurate fan phase with wave

commensurate configurations the result

[ |42 gees

+|V|[1iCOS{Q¢>)]]dn,

d¢
dn

a

deb
T3

dn

(2.31

where Ec=EM+EY) is the energy of the commensurate
phaseV is given by Eqs(2.22) or (2.23, the sign in front of
cosine is+ if (—1)QV is positive and— otherwise, and®
anda are given by

6= —J48ingy— 2J3,Sin2q,, (2.323

a=J,co9g+4J,c08,. (2.32h

number given byyy=27(P/Q) whereP/Q is an irreducible
fraction. Close to the transition to the paramagnetic phase the
angles that the spins make with the field will be small, that
is, | #,| < 1. Expanding the cosines in the expresdibri) for

the energy we obtain

E=> E,
=0

(3.1
where
E——QE [31(0ns1— 00) 2+ 3O 2~ 0,)?
1= (2|)! = 1\Yn+1 n 2\Un+2 n
+HO2. (3.2

Introducing the Fourier representatiﬂn=2q0qe‘q” expres-
sion (3.2) becomes
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A(e%92—1) + H]A (g + - - - +0).

3.3

In our approximate calculations we will keep only the first phaseg in the spin structuré3.4) is not fixed if we consider

harmonic in the Fourier expansion féy,,

On= 04 ei%“+ 0_q, e 90"=2Acoqqon+ ¢), (3.4

where we have writterd, —Ae"”

+
Let us first compute the contributions due to normal term%rder for

in the expansior{3.3). Sinceq;= *+q,, there are {) dlffer-
ent ways of satisfying the conditiom,+---+qy=
Therefore the normal contribution &, is given by

_1y!
N—lEl(N): ((Zl)i |6q0|2| 2|)[J1|elq0_1|2|+J |82|q0 1|2|
+H]. (3.9

Using aqoeri‘/’ we can write the total normal contribution
to the energy3.1) in the form

0

N—1E<N>:IZ aA?, (3.6
=0
where
I Gt (1 cosy)!+J,(1— cosayy)' + =
[ ()2 1 0 2 LAY
3.7
The first three coefficienta, are given by
ag=—-J;—J,—H (3.89
a;=—[J(qe) —J(0)—H], (3.8b
1
a;=—713J(0)~43(qo) +J(200) +H],  (3.80

where we used the definitiof2.17) for J(nq). Considering
terms up to ordeA* in the expansiorf3.6) and minimizing
with respect toA we obtain in leading order

[ 2[Aae)-30)-H] |7 3.9
- [43(g0)—33(0)—J(200) —H '
Thus the solution foA is possible only for
H=<J(do)—J(0)=H, (3.10

whereH. is the critical field for the parafan transition. The
normal contribution to the energy in leading order is given

by

(He—H)?
3J(0)—J(2qg) —H’
(3.11

N IEN=N"1E,—
P 43(qg)—

only the normal contributions.

Let us consider the contributions from the umklapp terms.
In the approximatior{3.4) in which only the main harmonic
is taken into account, that i®};=*qg, the condition that
-+0, be a multiple of 27 is satisfied in the lowest

L Q/2 if Qiseven, a1

7 |Q  if Qisodd. .12
Therefore we find for the lowest order umklapp contribution
to the energy the result

NEV=N"EY=Vcosd ¢, (3.13
where
2L+l
V=— 20! A J,(1—cogyg)-cod qq
+J,(1—cos)-+(—1)"27"H].  (3.19

In order for the energy3.13 to be a minimum the phasg¢
should be an even or odd multiple #f2L depending on the
sign of V. Thus the phasé is in general determined by the
umklapp terms of ordeA?“~ (H.—H)", whereL =Q/2 for
evenQ and L=Q for odd Q. We observe that the other
harmonics that were neglected in the expangi®d) may
give contributions of the same order to the pinning potential,
but this should not alter our conclusions. An exception is the
caseQ=3 which is known to have zero pinning energy for
all fields®

We will next examine the stability of commensurate fan
phases against the defect creation. These defects will be de-
scribed by structures of the form

0,=A€@n* )t ¢ c=2Acogqon+¢,), (3.15

whereA is given by Eq.(3.9). We will begin by calculating
the contribution due to normal terms. Inserting the expres-
sion (3.19 into the expression for the energ$.2) and ne-
glecting all sums involving strongly oscillating terms we find

E<“>=E&“)+b§ <¢n+1—¢n>+c; (Pns1— bn)?

+d§ <¢n+2—¢n>+e§ (¢ni2— dn)? (310

whereEE;N) is the normal energy in the commensurate phase

and the coefficients, ¢, d, ande are given in ordeA? by

b=2J;singpA%, c=J;C09A2, (3.173

where Ep is the energy of the paramagnetic phase. These

results are in agreement with Ref. 4. We observe that the

d=2J,sin200A%?, e=J,cosAA%.  (3.17hH
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The umklapp contribution to the energy can be computed in

the similar way. Substituting,, given by Eq.(3.15 into

expression3.2) with [ =L given by Eq.(3.12 we find that
the lowest order contribution to the umklapp energy can b

written in the form

E(U):E(CU)+|V|§ (1=cosd ¢y), (3.18
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IV. SUMMARY AND DISCUSSIONS

We have determined the exponents governing the phase

Lpoundaries of commensurate helical phases at low fields and

commensurate fan phases at high fields using the continuum
approximation for the stability analysis. We found that for
H—0+ a helical phase with perio@>4 has a width pro-
portional toH?2. Similarly, for H—H.—, whereH, is the
critical field for the parafan transition, a fan phase with pe-

where EY” is the umklapp energy of the commensurateriod Q=4 has a width proportional tH — H|(?~2"4if Q is

phase and the sign in front of cosine-sif V>0 and —
otherwise.

Adding the normal(3.16 and umklapp(3.18 contribu-
tions, and making the

an even number andd —H /|9~ V2 if Q is an odd number.
Exceptions to the above results are the spin-flop phase
0o= 7 which our calculations indicate undergoes a first-

continuum  approximationsorder transition both at low and high fields; the peri@e- 3

¢ni1— da~do/dn and ¢, ,— p,~2d¢/dn , the energy phaseqo=2m/3 which has a zero pinning enefgand
difference AE between the defective and commensurateshould presumably have a zero width of stability for arbitrary

structures becomes

AE—Fd 5d¢ a[de)? V|(1*cosL
= n %+§ﬁ +|V][(1+cosd ¢) |,
(3.19
where
a=2c+8e=2A%[J;cog)y+4J,c0s2),], (3.203
8= —b—2d=—2A7[J;singo+ 2J,SiN2q,].
(3.20h
In terms of the parameter=J,/J, we have
a=A?J,|(aay—2a2+16)/2, (3.213
6=~A2|3,| 16— ai(a— ap)/2, (3.21h

whereay= —4cog),. Using the resul{2.34) for the stability

fields; and the period four “double spin-flop phase”
go= /2 at low fields which we expect to undergo a first-
order transition.

Our calculations were based on the same kind of approxi-
mations that is known to give good results for the
Frenkel-Kontorov and ANNNI modelst? The approxima-
tion of taking only the first harmonic of the modulation and
ignoring the second and higher order harmonics in the ex-
pansions such as E@.4) was made to keep the calculations
for general commensurate phd&&) not too involved, but it
should not change the exponents governing the phase bound-
aries. On the other hand, the continuum approximation for
the stability analysis seems to be necessary in order to get
analytic results, and may in some cases lead to results that
are qualitatively incorrect concerning the nature of the tran-
sition. Thus the continuum approximation predicts a continu-
ous transition for thé2,2)-antiphase of the ANNNI modéf,
but numerical calculations seem to indicate that the transition

limit of the commensurate phase, we conclude that the fais first ordef’. Even though this might be the case for some

phase is stable inside the regipm— ag|oc|H—H¢|/~ 172
Remembering thakt is given by Eq.(3.12 we finally find

|[Hc—H|(Q"2"  for evenQ,

|[H.—H| QY2 for 0ddQ. (322

|a— ag| =

phases, the exponents governing the phase boundaries might
still be correct because if the transition is weakly first order
we do not expect significant change in its location. Our ana-
lytic results seem to agree qualitatively with numerical
calculations’? but a detailed comparison seems to be diffi-
cult because the widths of commensurate phases are very

Thus we conclude that every commensurate fan phase witharrow, implying that very long period structures have to be

period Q=4 has a finite width of stability foH<H,.

determined, challenging both numerical precision and com-

Again, our results show that these widths are very narrow fopytational resources.
long period phases. We note, however, that the exponents
characterizing the width for the fan phases in expression

(3.22 are different from those of helical phases given in Eq.

(2.35. For the spin-flop phas®=2 we havedé=0, which
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