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Stability of commensurate phases of a planar model with competing interactions

Jair L. Cadorin* and Carlos S. O. Yokoi
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970 Sa˜o Paulo, SP, Brazil

~Received 24 June 1997!

We study a one-dimensional planar model with competing interactions at zero temperature in the limit of
low and high external magnetic fields. The stability of commensurate phases with wave number
q052p(P/Q), whereP/Q is an irreducible fraction, is discussed in the continuum approximation. We show
that for small fieldsH→01, the helical phase with periodQ.4 has a width proportional toHQ/2. Similarly,
for high fieldsH→Hc2, whereHc is the critical field for the parafan transition, the fan phase with period
Q>4 has a width proportional touH2Hcu(Q22)/4 if Q is an even number anduH2Hcu(Q21)/2 if Q is an odd
number.@S0163-1829~97!05642-7#
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I. INTRODUCTION

Since the beginning of the 1960’s many materials, m
notably rare-earth elements and their compounds, have
found to display a variety of modulated magnetic ordering1,2

In particular, helical or spiral structures, which may tran
form into a fan structure by the application of an extern
magnetic field, have been observed in Tb, Dy, Ho, and
manganese compounds MnO2, MnAu2, and MnP.3 The zero
temperature properties of such systems have often been
eled by a one-dimensional classical planar~or XY) spin with
competing first- and second-neighbor interactions with
ergy given by

E~$un%!52J1(
n

cos~un112un!2J2(
n

cos~un122un!

2H(
n

cosun , ~1.1!

where un is the anglenth spin makes with the magneti
field.4–6 For J2.0 there is no competition and the model c
be trivially solved. In this work we will consider only th
frustrated caseJ2,0 and the competition parameter

a5
J1

J2
~1.2!

in the range24<a<4 where modulated structures are f
vored.

Nagamiya, Nagata, and Kitano4 investigated the zero tem
perature properties of the model using an approximate a
lytic theory based on low- and high-field expansions. Th
phase diagram in theH2a plane consists of commensura
helical and fan phases with wave numbersq5p,2p/3,p/2,
and large regions of incommensurate helical phases at
fields and fan phases at high fields. They assumed tha
transitions between commensurate and incommensu
phases, as well as between helical and fan phases, were
order. Later Robinson and Erdo¨s5 analyzed the model usin
numerical methods, and obtained a qualitatively sim
phase diagram. Carazza, Rastelli, and Tassi6 investigated the
model at finite temperatures using transfer matrix meth
560163-1829/97/56~18!/11635~7!/$10.00
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and at zero temperature by numerical minimization of
energy. They found that the transition between helical a
fan phases is continuous for wave numbersq.p/2 and dis-
continuous otherwise. Harris, Rastelli, and Tassi7 investi-
gated the phase locking of the commensurate configurat
for the low-temperature and low-field regime of the thre
dimensional extension of the model~1.1!. Also we mention
that the model~1.1! with the inclusion of anisotropy energ
was considered by Kitano and Nagamiya8 and more recently
by Sasaki.9

In this work we study the lock-in and stability of com
mensurate helical and fan phases at low and high fields
spectively. The stability limit of commensurate phases is
termined using the continuum approximation along the lin
of the work of Theodorou and Rice10 for the Frenkel-
Kontorova model11 and of Bak and von Bo¨hm12 for the
ANNNI13,14 model.

II. HELICAL PHASES AT LOW FIELDS

At zero field andJ2,0 the energy~1.1! is minimized by
a ferromagnetic structure fora<24, antiferromagnetic
structure for a>4, and a perfect helical structur
un5qn1f, where f is an arbitrary phase and the wav
numberq is given by

q5cos21S 2
a

4 D , ~2.1!

for 24<a<4.4 Therefore a commensurate helical phase
a zero width of stability at zero field, but a small field wi
tend to pin the structure relative to the field and give it
finite width of stability.

Let us consider a commensurate helical structure of w
numberq052p(P/Q), where P/Q is an irreducible frac-
tion. We will assume that a small field will in general disto
the perfect helical structure found at zero field.4 An excep-
tion is the helical structureq05p/4 which is unstable
against a ‘‘double spin-flop state’’4,6 consisting of two iden-
tical interpenetrating spin-flop states. The distorted helix c
be described by

un5q0n1fn , ~2.2!
11 635 © 1997 The American Physical Society
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11 636 56JAIR L. CADORIN AND CARLOS S. O. YOKOI
where fn is periodic with periodQ admitting the Fourier
expansion

fn5(
q

fqeiqn5f01(
q

8fqeiqn, ~2.3!

where the prime in the sum(q8 indicates that the harmoni
q50 was excluded. With the notations

f05f andwn5(
q

8fqeiqn, ~2.4!

we have

un5q0n1f1wn . ~2.5!

In the above expressionf is the phase that pins the helic
structure relative to the magnetic field, whereaswn describes
the distortion of the helical structure due to the field. F
small fields it is natural to assume thatuwnu!1. Within the
q
f

al
r

usual approximation10,12 that keeps only the main harmon
q56q0 in the expansion~2.4! of wn we have,

wn5fq0
eiq0n1 c.c.52Acos~q0n1a!, ~2.6!

where we have writtenfq0
5Aeia.

We observe that the energy~1.1! is given by the real part
of

E52(
n

@J1ei ~un112un!1J2ei ~un122un!1Heiun#.

~2.7!

Insertingun given by Eq.~2.5! into the above expression w
may write the expansion

E5(
l 50

`

El , ~2.8!

where
El52
i l

l ! FJ1eiq0(
n

~wn112wn! l1J2ei2q0(
n

~wn122wn! l1Heif(
n

eiq0nwn
l G . ~2.9!

Substituting the Fourier expansion~2.4! for wn we find

N21El52
i l

l ! (
q1 . . . ql

8fq1
•••fqlH FJ1eiq0)

j 51

l

~eiq j21!1J2ei2q0)
j 51

l

~ei2qj21!GDS (
j 51

l

qj D 1HeifDS q01(
j 51

l

qj D J ,

~2.10!
whereN is the number of spins, and the functionD(q) is
defined by

D~q!5H 1 if q50~mod2p!

0 otherwise.
~2.11!

Therefore the only terms that contribute to the sum of E
~2.10! are the normal~N! terms for which the argument o
the functionD is zero and the umklapp~U! terms for which
the argument is a multiple of 2p.

Let us initially consider only the contribution from norm
terms. Within the approximation~2.6! which takes into ac-
count only the main harmonic we haveqj56q0 and the
equation( j 51

l qj50 can be satisfied for evenl of the form
l 52k in (k

2k) different ways. Withfq0
5Aeia we obtain for

the real part the result

N21E2k
~N!52

~21!k2k

~k! !2
@J1cosq0~12cosq0!k

1J2cos2q0~12cos2q0!k#A2k. ~2.12!

Analogously, the equationq01( j 51
l qj50 can be satisfied

for odd l of the forml 52k11 in (k
2k11) different ways, and

we obtain

N21E2k11
~N! 5

~21!k

~k11!~k! !2
sin~f2a!HA2k11. ~2.13!
.

Inserting results~2.12! and ~2.13! into the real part of~2.8!
the normal contribution to the energy is obtained as

N21E~N!5(
l 50

`

alA
l , ~2.14!

where the coefficientsal are given by

a2k52
~21!k2k

~k! !2
@J1cosq0~12cosq0!k

1J2cos2q0~12cos2q0!k#, ~2.15a!

a2k115
~21!k

~k11!~k! !2
sin~f2a!H. ~2.15b!

The first three coefficientsal are

a052
1

2
J~q0!, ~2.16a!

a15sin~f2a!H, ~2.16b!

a25@2J~q0!2J~2q0!2J~0!#/2, ~2.16c!

where

J~nq!52J1cosnq12J2cos2nq. ~2.17!
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Keeping terms up toA2 in Eq. ~2.14! and minimizing with
respect toA we obtain

A52
a1

2a2
52

H

2J~q0!2J~0!2J~2q0!
sin~f2a!,

~2.18!

and the normal contribution to the energy correct toH2 is
found to be

N21E~N!52
1

2
J~q0!2

H2

2@2J~q0!2J~0!2J~2q0!#

3sin2~f2a!. ~2.19!

The energy is minimized forf2a an odd multiple ofp/2.
Choosinga5f1p/2 for the amplitudeA in Eq. ~2.18! to be
positive, we finally have

un5q0n1f22Asin~nq01f!. ~2.20!
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These results are in agreement with Nagamiya, Nagata,
Kitano.4 We observe that the phasef is arbitrary, meaning
that there is no pinning of the commensurate phase to
field when only the normal contributions are taken into a
count.

In order to determine the phasef we have to consider the
umklapp contributions to the energy. Since the amplitudeA
is proportional toH, Eq. ~2.10! shows that there are two
lowest order umklapp contributions of orderHQ to the en-
ergy. The first one comes from the terml 5Q21 with
qj5q0( j 51, . . . ,Q21), and the second froml 5Q with
qj5q0 or qj52q0 ( j 51, . . . ,Q). Thus the umklapp con-
tribution to the energy in the lowest order is found to be

N21E~U!5~21!QVcosQf, ~2.21!

whereV is given by
V5
1

~Q21!!
HAQ212

~21!Q/22Q11

Q!
AQF ~21!PJ1sinQ

q0

2
cosq01J2sinQq0cos2q0G , ~2.22!

for evenQ and

V5
1

~Q21!!
HAQ212

~21!~Q11!/22Q11

Q!
AQF ~21!PJ1sinQ

q0

2
sinq01J2sinQq0sin2q0G , ~2.23!
s of

rm

into
al

g

for oddQ. It is clear that the value off which minimizes the
umklapp energy~2.21! is an even or odd multiple ofp/Q
depending on the sign ofV. We conclude, therefore, that th
phasef in the expression~2.20! for un is fixed in general by
the umklapp energy of orderHQ, in agreement with the
results of Ref. 7. We observe that forQ.3 higher harmonics
fmq0

(m.1), of orderHm,4 which were neglected in the

expansion~2.6! may give extra contributions of the sam
order to the umklapp energy. Thus the expression~2.23! for
the pinning potential vanishes forq052p/5 and 4p/5, but
this is due to the neglect of the second harmonic in the
pansion ~2.20!. Taking into account the second harmon
contribution we find a nonzero pinning potential, in agre
ment with numerical study of these phases.6 On the other
hand, the vanishing of pinning potential~2.23! for the phase
q05p/3 is an exact result because in the expansion~2.20! no
higher order harmonics are present in this case. It can
shown that this phase is exceptional, presenting a continu
degeneracy of the ground state for arbitrary fields6 in a way
analogous to the ground state of the triangular antiferrom
netic planar model in a field.15–18Finally, the pinning poten-
tial ~2.22! also vanishes for the helical configuratio
q05p/2, but this result is spurious because the helical c
figuration is unstable in the presence of a field, being
placed by a ‘‘double spin-flop phase’’ as soon as the field
turned on.4,5,7Therefore our result that assumed helical str
ture cannot be applied to this phase.

We will now study the stability of the helical structure
determined above against creation of defects or solitons.10,12
x-

-
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We will assume that the defect can be described in term
a smooth variation of the phasef with constant amplitudeA
given by Eq.~2.18!, that is,

un5q0n1fn1wn , ~2.24!

where

wn522Asin~q0n1fn!. ~2.25!

Substitutingun given by Eq.~2.24! in the expression~2.7!
for the energy we can write it as an expansion of the fo
~2.8! with

El52
i l

l ! FJ1eiq0(
n

ei ~fn112fn!~wn112wn! l

1J2ei2q0(
n

ei ~fn122fn!~wn122wn! l

1H(
n

eiq0n1 ifnwn
l G . ~2.26!

We can again classify the various terms of the expansion
normal and umklapp terms. Let us first consider the norm
contribution. Forl 50 expanding the differencesfn112fn
and fn122fn up to second order, and usin
fn112fn'df/dn andfn122fn'2df/dn we obtain

E0
~N!52N~J1cosq01J2cos2q0!
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1E
2`

` H @J1sinq012J2sin2q0#
df

dn

1
1

2
@J1cosq014J2cos2q0#S df

dnD 2J dn.

~2.27!

Notice that the term with the fieldH gives a negligible con-
tribution because of the strongly oscillating factoreiq0n.
Analogously forl 51 andl 52 we get

N21E1
~N!52HA, ~2.28a!

N21E2
~N!5A2@2J1cosq0~12cosq0!

12J2cos2q0~12cos2q0!#. ~2.28b!

We observe that there are also terms involving the der
tives of f in the expression ofE2

(N) , but since these are o
order A2 they can be neglected in comparison with simi
terms inE0

(N) . Therefore we obtain in orderA2,

E~N!5EC
~N!1E

2`

` H @J1sinq012J2sin2q0#
df

dn

1
1

2
@J1cosq014J2cos2q0#S df

dnD 2J dn,

~2.29!

whereEC
(N) is the normal energy corresponding to the co

mensurate phase with no defects.
We will next consider the umklapp contribution to th

energy. As in the commensurate case, in the lowest o
they arise from the termsl 5Q21 and l 5Q in the expan-
sion. Ignoring all the terms containing strongly oscillatin
factors we get

E~U!5~21!QVE
2`

`

dn cosQf~n!, ~2.30!

whereV is given by Eqs.~2.22! or ~2.23!. Finally, adding the
normal contribution~2.29! and the umklapp contribution
~2.30! we have for the difference between defective a
commensurate configurations the result

DE5E2EC

5E
2`

` H 2dS df

dnD1
a

2S df

dnD 2

1uVu@16cos~Qf!#J dn, ~2.31!

where EC5EC
(N)1EC

(U) is the energy of the commensura
phase,V is given by Eqs.~2.22! or ~2.23!, the sign in front of
cosine is1 if ( 21)QV is positive and2 otherwise, andd
anda are given by

d52J1sinq022J2sin2q0 , ~2.32a!

a5J1cosq014J2cos2q0 . ~2.32b!
-

r

-

er

d

The value of the parametera5J1 /J2 for which the phaseq0
is stable at zero field isa0524cosq0. In terms ofa anda0
we have

d5
uJ2u
4

A162a0
2~a2a0!, ~2.33a!

a5
uJ2u
4

~aa022a0
2116!'~162a0

2!/4. ~2.33b!

Following the analysis of Frank and Van der Merwe,19 ex-
pression~2.31! implies that the commensurate phase is sta
against defect creation as long as

udu,
2

p2
AauVu. ~2.34!

Sinced}a2a0 andV}HQ, we conclude that the boundar
of the commensurate phase is given by

ua2a0u}HQ/2. ~2.35!

Therefore our calculations show that all the commensu
helical phases will in general have a width of stabilityDa
for H.0. This width will be proportional toHQ/2, and there-
fore will be very narrow for long period structures. An e
ception is the period three helical phaseq052p/3 for which
the pinning potentialV vanishes, and we expect a zero wid
of stability. In the case of spin-flop phaseq05p we have
d50, which implies that the instability of this phase is n
caused by defect creation and the transition is presumab
first order. Similarly we expect that the period four ‘‘doub
spin-flop phase’’q05p/2 at low fields will undergo a first-
order transition to the nearby helical phases.

III. FAN PHASES AT HIGH FIELDS

The modulated structures found at high fields are the
phases in which the spins oscillate around the direction p
allel to the field.4 We will study the pinning of the commen
surate fan phases and the stability of these phases again
defect creation in much the same way as the previous
tion, but the results will be different due to the difference
the spin structures.

Let us consider a commensurate fan phase with w
number given byq052p(P/Q) whereP/Q is an irreducible
fraction. Close to the transition to the paramagnetic phase
angles that the spins make with the field will be small, th
is, uunu!1. Expanding the cosines in the expression~1.1! for
the energy we obtain

E5(
l 50

`

El , ~3.1!

where

El52
~21! l

~2l !! (n
@J1~un112un!2l1J2~un122un!2l

1Hun
2l #. ~3.2!

Introducing the Fourier representationun5(quqeiqn expres-
sion ~3.2! becomes
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N21El52
~21! l

~2l !! (
q1 . . . q2l

uq1
•••uq2l

@J1~eiq121!•••~eiq2l21!1J2~e2iq121!•••~e2iq2l21!1H#D~q11•••1q2l !.

~3.3!
st
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In our approximate calculations we will keep only the fir
harmonic in the Fourier expansion forun ,

un5uq0
eiq0n1u2q0

e2 iq0n52Acos~q0n1f!, ~3.4!

where we have writtenuq0
5Aeif.

Let us first compute the contributions due to normal ter
in the expansion~3.3!. Sinceqi56q0, there are (l

2l) differ-
ent ways of satisfying the conditionq11•••1q2l50.
Therefore the normal contribution toEl is given by

N21El
~N!52

~21! l

~2l !!
uuq0

u2l~ l
2l !@J1ueiq021u2l1J2ue2iq021u2l

1H#. ~3.5!

Using uq0
5Aeif we can write the total normal contributio

to the energy~3.1! in the form

N21E~N!5(
l 50

`

alA
2l , ~3.6!

where

al52
~21! l

~ l ! !2
2lFJ1~12cosq0! l1J2~12cos2q0! l1

H

2l G .

~3.7!

The first three coefficientsal are given by

a052J12J22H, ~3.8a!

a152@J~q0!2J~0!2H#, ~3.8b!

a252
1

4
@3J~0!24J~q0!1J~2q0!1H#, ~3.8c!

where we used the definition~2.17! for J(nq). Considering
terms up to orderA4 in the expansion~3.6! and minimizing
with respect toA we obtain in leading order

A5H 2@J~q0!2J~0!2H#

4J~q0!23J~0!2J~2q0!2HJ 1/2

. ~3.9!

Thus the solution forA is possible only for

H<J~q0!2J~0!5Hc , ~3.10!

whereHc is the critical field for the parafan transition. Th
normal contribution to the energy in leading order is giv
by

N21E~N!5N21EP2
~Hc2H !2

4J~q0!23J~0!2J~2q0!2H
,

~3.11!

where EP is the energy of the paramagnetic phase. Th
results are in agreement with Ref. 4. We observe that
s

e
e

phasef in the spin structure~3.4! is not fixed if we consider
only the normal contributions.

Let us consider the contributions from the umklapp term
In the approximation~3.4! in which only the main harmonic
is taken into account, that is,qi56q0, the condition that
q11•••1q2l be a multiple of 2p is satisfied in the lowes
order for

l 5L5H Q/2 if Q is even,

Q if Q is odd.
~3.12!

Therefore we find for the lowest order umklapp contributi
to the energy the result

N21E~U!5N21EL
~U!5Vcos2Lf, ~3.13!

where

V52
2L11

~2L !!
A2L@J1~12cosq0!LcosLq0

1J2~12cos2q0!L1~21!L22LH#. ~3.14!

In order for the energy~3.13! to be a minimum the phasef
should be an even or odd multiple ofp/2L depending on the
sign of V. Thus the phasef is in general determined by th
umklapp terms of orderA2L;(Hc2H)L, whereL5Q/2 for
even Q and L5Q for odd Q. We observe that the othe
harmonics that were neglected in the expansion~3.4! may
give contributions of the same order to the pinning potent
but this should not alter our conclusions. An exception is
caseQ53 which is known to have zero pinning energy f
all fields.6

We will next examine the stability of commensurate f
phases against the defect creation. These defects will be
scribed by structures of the form

un5Aei ~q0n1fn!1c. c.52Acos~q0n1fn!, ~3.15!

whereA is given by Eq.~3.9!. We will begin by calculating
the contribution due to normal terms. Inserting the expr
sion ~3.15! into the expression for the energy~3.2! and ne-
glecting all sums involving strongly oscillating terms we fin

E~N!5EC
~N!1b(

n
~fn112fn!1c(

n
~fn112fn!2

1d(
n

~fn122fn!1e(
n

~fn122fn!2, ~3.16!

whereEC
(N) is the normal energy in the commensurate ph

and the coefficientsb, c, d, ande are given in orderA2 by

b52J1sinq0A2, c5J1cosq0A2, ~3.17a!

d52J2sin2q0A2, e5J2cos2q0A2. ~3.17b!
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The umklapp contribution to the energy can be computed
the similar way. Substitutingun given by Eq. ~3.15! into
expression~3.2! with l 5L given by Eq.~3.12! we find that
the lowest order contribution to the umklapp energy can
written in the form

E~U!5EC
~U!1uVu(

n
~16cos2Lfn!, ~3.18!

where EC
(U) is the umklapp energy of the commensura

phase and the sign in front of cosine is1 if V.0 and2
otherwise.

Adding the normal~3.16! and umklapp~3.18! contribu-
tions, and making the continuum approximatio
fn112fn'df/dn and fn122fn'2df/dn , the energy
difference DE between the defective and commensura
structures becomes

DE5E
2`

`

dnF2d
df

dn
1

a

2S df

dnD 2

1uVu~16cos2Lf!G ,
~3.19!

where

a52c18e52A2@J1cosq014J2cos2q0#, ~3.20a!

d52b22d522A2@J1sinq012J2sin2q0#.
~3.20b!

In terms of the parametera5J1 /J2 we have

a5A2uJ2u~aa022a0
2116!/2, ~3.21a!

d5A2uJ2uA162a0
2~a2a0!/2, ~3.21b!

wherea0524cosq0. Using the result~2.34! for the stability
limit of the commensurate phase, we conclude that the
phase is stable inside the regionua2a0u}uH2Hcu(L21)/2.
Remembering thatL is given by Eq.~3.12! we finally find

ua2a0u}H uHc2Hu~Q22!/4 for evenQ,

uHc2Hu~Q21!/2 for oddQ.
~3.22!

Thus we conclude that every commensurate fan phase
period Q>4 has a finite width of stability forH,Hc .
Again, our results show that these widths are very narrow
long period phases. We note, however, that the expon
characterizing the width for the fan phases in express
~3.22! are different from those of helical phases given in E
~2.35!. For the spin-flop phaseQ52 we haved50, which
indicates that the instability of this phase is not caused
creation of defects and should undergo a first-order tra
tion. Also the phaseq052p/3 has a zero pinning energy6

and we expect a zero width of stability.
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IV. SUMMARY AND DISCUSSIONS

We have determined the exponents governing the ph
boundaries of commensurate helical phases at low fields
commensurate fan phases at high fields using the continu
approximation for the stability analysis. We found that f
H→01 a helical phase with periodQ.4 has a width pro-
portional toHQ/2. Similarly, for H→Hc2, whereHc is the
critical field for the parafan transition, a fan phase with p
riod Q>4 has a width proportional touH2Hcu(Q22)/4 if Q is
an even number anduH2Hcu(Q21)/2 if Q is an odd number.
Exceptions to the above results are the spin-flop ph
q05p which our calculations indicate undergoes a firs
order transition both at low and high fields; the periodQ53
phase q052p/3 which has a zero pinning energy6 and
should presumably have a zero width of stability for arbitra
fields; and the period four ‘‘double spin-flop phase
q05p/2 at low fields which we expect to undergo a firs
order transition.

Our calculations were based on the same kind of appro
mations that is known to give good results for th
Frenkel-Kontorova10 and ANNNI models.12 The approxima-
tion of taking only the first harmonic of the modulation an
ignoring the second and higher order harmonics in the
pansions such as Eq.~3.4! was made to keep the calculation
for general commensurate phaseP/Q not too involved, but it
should not change the exponents governing the phase bo
aries. On the other hand, the continuum approximation
the stability analysis seems to be necessary in order to
analytic results, and may in some cases lead to results
are qualitatively incorrect concerning the nature of the tra
sition. Thus the continuum approximation predicts a contin
ous transition for the~2,2!-antiphase of the ANNNI model,12

but numerical calculations seem to indicate that the transit
is first order20. Even though this might be the case for som
phases, the exponents governing the phase boundaries m
still be correct because if the transition is weakly first ord
we do not expect significant change in its location. Our a
lytic results seem to agree qualitatively with numeric
calculations,21 but a detailed comparison seems to be dif
cult because the widths of commensurate phases are
narrow, implying that very long period structures have to
determined, challenging both numerical precision and co
putational resources.
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