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The ordering of silver ions in the superionic conducieAgl has been studied using a discrete version of
density-functional theory. We obtained a transition to a low-temperature phase different from that found by
Maddenet al. using computer simulationghys. Rev. B45, 10 206(1992]. We suggest that the difference
originates from the fact that the llattice is fixed in our study, while the periodic boundary conditions in the
simulation allow certain deformations of the llattice on the basis of calculated energies for deformed
structures. We therefore argue that the structural change of thettice and the ordering of Ag ions onto
particular sublattices are correlated processes, rather than the ordering abigydriving thea— 3 transition,
as suggested by Madden al. The controversial order-disorder transition within #aghase is also discussed
in terms of a deformation of the | lattice.[S0163-182607)01042-4

[. INTRODUCTION dence for an order-disorder transition within thephase.
Figure 2 shows the structure of the low-temperature ordered
Silver iodide undergoes a first-order transition from the phase M phasg. These authors noted the structural similar-
phase to the highly conducting phase at about 420 K at ity of the M phase ang3-Agl, and showed that gliding of
normal pressurex-Agl is a superionic or fast-ion conductor alternate(110 planes of I in the M phase with contraction
because it has excess sites for silver ionszdAgl, | ~ ions  of the cell can lead to the wurtzite structure of Bghase
form a bcc lattice, and most Agions occupy interstitial (see Fig. 3 as in the Burgers mechanism for a transition
tetrahedral sites. There are six times as many such sites &&m bcc to hcp’ Because the ordereéd phase occurs when
Ag ™ ions, and the ions can move among the sites by crosghe change of bcc to hep of the llattice is prevented, they

ing a low-energy barrier. InB-Agl, | ~ ions have the hcp argued that the ordering tendency of Agdons in the a
structure, and Ag ions are tetrahedrally coordinated to | phase is the driving force for the— 8 phase transition.
(wurtzite structurg In addition to thea—g transition, an We have studied this ordering transition of Agn «-Ag|

order-disorder transition has been proposed to occur withinising a lattice version of the density-functional approach. In
the a phase by Perrott and FletcheThey observed a heat- our model, I ions are fixed in a perfect bee lattice, and
capacity change at about 700 K like those in first-order phas@g ™ ions are restricted to tetrahedral interstitial sites, as in
transitions. Raman-scattering intensity and depolarization raSzabcs study. However, the more realistic potential model
tio measurements around that temperdtuaned changes in used in simulations is employe@ee Sec. I)l. The direct
elastic constants determined by Brillouin scattefimjso  correlation functions are calculated from the hypernetted
support the suggestion. There are some contradictory experi-
ments, howevet.

The phase diagram of Agl over a wide range of tempera-
ture and pressure, including the-g transition, has been
investigated using a constant stress molecular-dynamics
simulation®® Tallor® found a heat-capacity change in the
simulation like that observed experimentally.

Szabd studied the phase transition ia-Agl using a
mean-field theory for a lattice gas with nearedtN) and
next-nearest-neighbo(NNN) interactions. He considered
only tetrahedral interstitial sites which are known to have the
highest occupancies, and redivided them into six interpen-
etrating bcc sublattices, as in Fig. 1. A disordered state is
stable at high temperature, and an ordered state where only
one sublattice is occupied(phase was found to be stable
at low temperature. Partially ordered intermediate phases
were also found, and he argued that these phases might ex-
plain the heat-capacity and Raman experiments. FIG. 1. Six sublattices of tetrahedral sitésith i=i’) intro-

More recently, Madden and co-work&showed thatin a  duced by SzahoBlack circles represent | ions and white circles
molecular-dynamicg$MD) simulation with a simulation box T, sites. The 12 sublatticesvith i #i’) will be discussed later in
of fixed shape and size, Agions undergo a second-order the textK, L, ..., andR denote planes parallel {d10), and repeat
order-disorder transition at about 400 K, although the | in spaceK planes consist of sublattices 4 and 6, #af 4’ and
lattice structure cannot change from bcc. There was no evi’, etc.
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FIG. 2. Structure of th&/l phase. Szabtype-1 sites irM planes
(sublattice 1 and type-3 sites iR planes(sublattice 3) are occu-
pied in this ordered state. Black circles representdns and white
ones Ag" ions.

chain (HNC) closure or Monte CarldMC) simulation. Our
results turned out to be different from what was expected
from the MD simulation of Ref. 8, however. Agions be-
come ordered in th® phase instead dfl at low tempera-
ture. Among the many approximations made in our calcula-
tions, the most important one, different from those in Ref. 8,
is that ions are restricted to particular lattice sites. We argue
that a small hcp-like deformation of the llattice from bcc
that is compatible with the cubic periodic boundary condi-  (b)
tion (a deformation allowed in Madden’s simulation but not
allowed in our studymay be responsible for the transitionto ~ FIG. 3. (& (110 planes of theM phase. Gliding of alternate
the M phase. Therefore, the—g transition may not be layers is indicated by arrows on thg Ieft. In going from Mephase
driven by the ordering transition of A+g alone, but by a to t_he,[_% phase, tetrahedra_l coordination of Ago |~ s_hould be
correlated structural change of land ordering of Ag that ~ Maintainedi(b) Corresponding planes of thé phase. I' ions now
occur simultaneously. The possibility of an order—disorderfOIrm an hep lattice.
transition within thea phase is discussed in terms of a struc-
tural deformation.

The outline of this paper is as follows. In Sec. Il, the
density-functional theory applied to the Agl system is de-

in the lattice analog of density-functional theory described in
Ref. 10. The Helmholtz free-energy difference between the
ordered and disordered phases is

scribed, and the results obtained by the HNC closure and MC P 12
simulation are presented in Secs. Ill and IV. In Sec. V, the Pac_ N
difference between our results and those of Ref. 8 is dis- NAF Z‘l [S(n) = S(no)]

cussed, and the possible role of a deformation of the | 1 12

lattice is suggested. A future extension of this study to incor- 1 —
porate the structural change of the lattice is proposed in - _21 le Cij(Nj—No)(Nj—No), @
Sec. VI.
where
Il. DENSITY-FUNCTIONAL APPROACH S(n)=n In n+(1-n)In(1—n), @)
We consider the phase transition of Agons restricted to and

the tetrahedralT,) sites when T ions are fixed in a perfect
bcc lattice. We divide th 4 sites into 12 sublattices, as in N
Fig. 1, to incorporate the symmetry of tihk phasewhere 1 T = E Cor
and 3 are occupieflas well asD (where 1 and 1 are oc- &y L
cupied. Let the occupation number for each of the 12 sub-

lattices ben; (i=1,2,...,12). The Helmholtz free energy is Ciy;_ is the direct correlation function of Afg for the sepa-
expanded around the disordered state whgreny,=1/6, ration of sitei in the 1st cell and sit¢ in the Lth cell. N is
and truncated at the pair direct correlation function level, ashe number of unit cells of the bcc Ilattice, which is half

©)
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TABLE I. Equivalentc;;'s.

Cij Equivalent{ij}

C11 11 22 33 44 55 66
C1o 12,15 21,23,24,26 32,35 42,45 51,53,54,56 62,65
C13 13 31 46 64
Cia 14,14 36,36 41,47 63,63
C1s 16 34 43 61
C1y/ 11’ 22’ 33’ 44’ 55’ 66’
Cyo 12',15' 21',23',24' 26’ 32,35’ 42' 45’ 51',53',54’,56' 62',65'
Cry 13’ 31 46’ 64’
Crer 16’ 34 43’ 61’
Cys 25 52

Cosr 25’ 52

the number of silver ions. The first derivative of the excessThe termsch_ij(nj—no) which appear in Eq(4) can be
free-energy term is zero becausdn;—ng)=0. written as follows:
Equilibrium occupation numbers are obtained by mini-
mIZIng AF' gIVIng 22 C_l(lr)j(nj_no):(a1+a2)(v +W+X+y+Z)+2a2X,
i

1

n= , 4
1+exp{ - 7’_2 cij(nj—no) 2; Co21yj(Nj=Ng)=—(ar+ax)v—(a;—ay)y,

where the undetermined multiplier is fixed by the condi-
tion ${2;n;=2. Because of the symmetry of the lattice, 2 Cyan)(Nj—Ng) = — (a3 +ax))w—(a; — a,)z,
somec;; are equivalent to each other, as shown in Table I. J

Note thatc;; = cji= Cirjr=Cjrir andcI )= c,, In addition to
c,J , we also defmec”, the sum of the dlrect correlation

functions between Szalsosublatticei andj, as follows:

2; C_4(4r)j(nj_n0):(al_a2)(l) +W+X+y+ Z)—2a2X,

1 €)
Cij:Cij+Cij/:E(Cij+cij/+ci/j+cirj/). (5) o
_ ~ B 22 Co(s)j(Nj—Ng) = —(ay—a,)v — (a; +a,)y,
There are only three different ¢;;’s (€11=TCy ]

=iy 61426252636, and ’6122’6132 e ) Any i andi’
form a bcc lattice together, angl,=¢C,,. If i andj sublat-
tices have nearest neighbors on each offigrs ¢, and if

they have next-nearest nelghbom§—cl4
Let us consider the states studied by SZadfirst. These M andAF can be calculated from the above and Hgsand
states have a symmetry such thatn;,, and the following ~ (1)- The above equations look similar to those in Ref. 7, and

221_: Co(6)j(Nj—Ng) = —(ay—ax))w—(a; +a,)z.

occupation numbers : a, anda, can be e'xpressed in terms of Fhe nearest- and
next-nearest potential parameters used in that reference.
n{=ny=nNg+tv+w+x+y+z, However, the effective NN and NNN interaction potentials
summed over all lattice sites diverge in the case of a Cou-
N,=nNy =Ng—v, lomb potential, whereaa,; anda, are well behaved because
the infinite parts are subtracted out by the linear combina-
N3=N3z =Ng—W, tions that define them.
We now consider an ordered phase with the symmetry of
Ng=Ng =Ny—X, (6)  theM phase. Ifn,=nj,, it follows that
Ns=Ng/=Ng—Y, Ny=N3 =Ng+2W+X+y+2z,
Ng=Ng =Ng—Z. Ny=Nyr =Ng=Ng,=Ng—W,
Because of the symmetries q§ andcIJ , there are only two
linear combinations o€;;’s that matter in the Szabstates: N3=Ny =No—X, (10)
a,="Cy1+Cy4— 2Cyp, (7 Nyg=Ng'=No—Y,

az='611—'614. (8) I’l6=l’l4/=no—2.



11 488 CHAOK SEOK AND DAVID W. OXTOBY 56

There are two additional linear combinationsaf’s that Ciyju=0 if i=j andL=1
appear in the final equations in this case:
o —Buiy . otherwise, (15
8= Ca1™ Carr ~ Cas¥ Cas (1) where vy . =Vagag(rizjL)- Szab¢s calculation consists of
= such a mean-field approximation, together with a further re-
a=C16~ Cy¢'- (12

striction to near-neighbor interactions. For the full long-
We now find range potential, eaod:_]j alone does not converge if thog, ;,
are summed over the infinite lattice, bat—a, can be ob-
tained as follows. For example; can be written by using

2; C1(3nj(Nj—No) = —(a; +a+2ag)w—2agx relationships of th&;;’s:
—(axt+azgtayy—(a,+az—au)z, a1=C11+C14— 2C1= 1/4(C11+ Copt Cagt Cost C1gt Cyg
+Co51 C52— C12— €21~ Co4— C4p— C15— C51— C45— Csy) .-
22 C2(2!Y5v5r)j(nj_no)zzalw, (16)

Taking into account Eq5), —4NB 1a, is the same as the
total energy of a system in which the effective positive

22 Ca11)j(Nj—Ng) = — (ay+ 8y~ 2a3) W+ 2a5x charges are placed on 1’, %, and 4, negative charges on
) 2,2, 5, and B, and nothing on the others. This energy can
—(a,—az—a,)y—(a,—az+a,)z, be calculated using the Ewald methddand the calculated
values are
(13
a;=43160 KT,
22 C4(6r)j(nj - no) = - (al_ az_ 2a4)W+ 2a4X a2: 34212 K/T,
+(axtaztay)yt+(az—astay)z, a;=38106 KIT, (17
a,=7428.9 KIT.

22 Coar)j(Nj—Ng) = — (81— A+ 28,)W— 2a,X
] With the above, the low-temperature ordered state is the
+(ay—g—a,)y+ (ay+az—ay)z. S/zat_)oD state where only one Szalswblattice(say 1 and
1’) is predominantly occupied and the others have small
occupancies  with ny=n, and Ny =nNz(3)=Ns(s)
ll. THE HNC CLOSURE =ng(s) . TheD state is found to be stable up to about 6600
K which is far above the melting temperature of A@30
K). This disagrees strongly with the result in Ref. 8 where
the disordered state is stable abovéd00 K, and the ordered
state isM below that temperature. The above approach gives
vV — 0'014804+ 0.36 such a high transition temperature becausecthg has been
AgAg(r) 11 ' . T
r r assumed to be zero instead of a large negative number, as
can be seen from the following calculations.
114.48 036 1.1736 Let us employ instead the HNC app.rOX|mat|on, wh|ch is
VAgI(r):—g___ e (14) more sophisticated than the above simple mean-field ap-
r r r proximation. Our system is the same as a lattice one-
component plasma because Agons do not feel the struc-
446.64 036 2.3472 6.9331 ture of the I" lattice (every Ag" site is equivalent It is
—t , known that the HNC closure is a very good approximation in
r 4 6 .
r r r the continuous one-component plasma probtéfhe one-

. et R — component plasma parameter here js=B(Z€)’/a s
where lengths are in A and energiesefit A=14.40 eV. The _ 23468 KIT wherea s is the radius of the Wigner-Seitz

Zb_oﬂvirgr?;i?gﬁl Q:(S;aziinﬂ:/;?;astggﬁiSffi)Lileljn;ﬁgrgﬁ lf:éng th((:eell. Tnt:oellattice Ornstein-Zernike equation for the disordered
sites are equivalent, only g is used here. We ignore the system™is
1/r*1 term which is smaller than therlterm by a factor of 5.5 SuS
4 . . ij “1L k1M
10™" at the separation between the nearest tetrahedral sitels;; ;; =c;jq — 1_—+n02 E (cil,kM— 1_—) Piem, i »
The lattice parametea=5.206 A is used, as in Ref. 8. Mo koM Mo
The simplest way to calculate the direct correlation func- (18)
tions a;—a, is through a simple mean-field approximation. and the lattice analog of the HNC closure is
Although we shall see that this gives unsatisfactory results, it
is worth presenting first. In this approximation, CipjL=—Bviyj . —In(hijy . + 1) +hijy ., (29

We employ the following pair potential model used in the
computer simulations®8

Vi(r)=
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where h;;; =gi1;. —1. We follow the iterative method of 0.6 . . . . .
Ref. 13 to solve the above equations. With an initial guess o
hi1j . theciy; are calculated from Eq19) and 041 o 7
n 02| ° A
0 ©%
Ciqig=— ——— Citit Ny i 20 s o <
i1i1 1_noj§i ;1 iLiLMjL,ia (20) 0 so Bty o000
- ° 0
Theh;;;. andc;, ;. thus obtained are inserted in the follow- £ -02f ° §
ing equation: oal . |
1 o8l ]
hil,jL: _ .
(1—ng) ™t —NgCi1 o8k |
<
X|CijLtnoY, 2 Cingmhiw|s (2D 1o 2 4 6 8 10 12
k#i M#1
(a) 4r/a
and the new triah;;,_ is 06 . . . [ .
i =(Ohig +(1-h{es (22) 04 o° .
where 0<t<1 is chosen to achieve a faster convergence 02 | g, . 4
The system size needed to assure convergence ranges frt °

|t mad =4a for 900 K to 6a for 350 K. In solving the equa- ° s
tions, h;1; is assumed to be zero for|>|r ../, but long-

=~ - L ks J
rangedc;, j_ = — Bv;1;_ are included for this range. Because 5 0 N
the system is not spherically symmetric, the correlation func 04 | .
tions depend on direction as well as distance, as can be se o
from the multivalued nature of the distribution function in e i

Fig. 4@). The distinct separations that give different values
of the pair-correlation function were determined by consid-
ering the symmetry of the lattice and usigg ju=djm i - -t £ ' . ' '
The correlation functions have been calculated béfore
for a similar model, but with an approximation that they
depend only on distance. 06 ' T ' T '

The parametera;—a, are calculated from an Ewald sum-
mation of the— Bv;,; term and a direct summation of the

04 E

remaining terms in Eq(19). The calculated values for 500 02t ° .
K, for example, are oo R
0 s oo 906 R 4 0 s
a,=3.1606, - °
< 02F .
a2: 53797, 04 + ° 4
a;=2.9644, (23 0.6 - 4
a,=—1.1831. hadl l
These are far smaller in magnitude than those in @&). s > . s s ” 1
However, the ordered phase obtained is once agairDthe () ar/a
phase, notM, and no intermediate phase was found. The
transition temperature is about 350 K. FIG. 4. Pair correlation functions at 900 K calculated fréen

the HNC closure(b) Monte Carlo simulation, antt) from Ref. 8.

IV. MONTE CARLO SIMULATION . T . .
ering all periodic images of the ions in a background of

As a complementary way to calculate the correlationopposite charg® In order to save computation time, Ewald
functions and a direct way to study phase transitions, wenergies for all the different separations of pairs of‘Aigns
performed lattice Monte Carlo simulations on this system. Aare calculated in advance and referred to later in the simula-
cubic simulation box with sides ofsBwhich consists of 1024 tion cycles. The correlation functions can be calculated for
Ag " ions was used. It is larger than the size used in Ref. §r|<4a. Those at 900 K are shown in Fig(b} and com-
where the box size was é)°. The side should be an even pared with those from the above HNC calculatiéiig. 4(a)]
multiple of a in order for the periodic boundary condition to and Ref. 8[Fig. 4(c)]. The distance at whiclg(r) has its
be consistent with the existence of khphase. The energy maximum value calculated from HNCr € 10/4a) is
of the system is calculated using the Ewald method, considslightly smaller than that from MC and Ref. 8 \/12/4a).
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A similar shift occurs in the continuous systéfriNote that 2 - ' ' - .
the D phase has the first peak gfr) atr=12/4a. Also, sk ]

the amplitude ofg(r) from HNC is smaller than from MC,
as in the continuous cadé.

An ordered phase with the bcc structure was obtained 05 .
below ~700 K, significantly higher than that obtained from
the HNC density-functional calculation. One can understandy
this from the behavior of the pair-correlation functions in 05 1
Fig. 4. The fact that the low-temperature phasB jsnotM,
is also expected from the fact that the perfectly ordebed

phase, where the Agion structure has the same symmetry A5 1
as the I' lattice, has lower energy thavi (Ey,—Ep=1.204 2t i
kJ/mo). . . . .

One might think that because the tetrahedral sites are oc 28 0.05 0.1 015 0.2 o,'zs 03
cupied by only 70% at-400 K2 and even fewer at higher 5

temperatures, interactions with other sites might favorithe
phase. We investigated this possibility by including the trigo-
nal interstitial sites that lie half-way between neighboring
tetrahedral sites. The occupancy of the tetrahedral sites Et phase.
high temperature from simulation is similar to that found in
Ref. 8, but it increases as the temperature is lowered and the or 8 of Ref. 8 whether there is a small deformation of
system goes to a phase similarDoat ~600 K. This exten- 6~0.15% because of large fluctuations in the position of
sion of the simulation thus still does not account for theions. If the ordering of Ag ions in theM phase is accom-
observation of thévl phase in Ref. 8. In fact, a trigonal site panied by the structural deformation of the lattice, the
is not a potential well, but a saddle point in passing from onex— transition is not driven by the former alone, as sug-
T4 site to anothet! It is usually thought that sites other than gested by Maddest al, but both changes play a role in the
T4 are on the paths for motion of Agions amongr sites.  transition.
We now proceed further to suggest that the same kind of
V. DEFORMATION OF THE | - LATTICE defornjation may be .related to t.he. proposed order-disorder
transition seen experimentally within thephase. If a small

It has been shown that our model gives hephase at deformation of the T lattice occurs in ther phase, theT
low temperature instead of Madde¥s phase, although nei- sites are no longer equivalent, and different sites will have
ther Madden’s model nor ours allows bcc—hcp transformasifferent occupancies. However, the state can be still consid-
tion of the I lattice. Our lattice approximation for Agions  erably disordered, giving high conductivity. The transition
does not seem to explain the difference, in view of the calfrom the isotropic high temperatutephase to an anisotropic
culations just mentioned that include the trigonal sites. Herelisordered or partially ordered phase with a deformed |
we discuss the possibility that a change of the structure of thiattice is consistent with Raman-scattering experim@ifise
| ~ lattice occurred in the simulation of Ref. 8, as well as inabove proposition is also consistent with the fact that the
real Agl. a—D transition temperaturel(,_p) is very high (~ 700 K)

In Ref. 8, it was argued that tHé phase is unstable with from the above MC simulation. Because the defornid
respect to the deformation shown in FigagB[gliding of  phase has lower energy thén the expectedr—M transi-
alternate(110) planes of I'], which would lead to the stable tion temperature is higher thaf,_p, which is already
B phase, if the stress imposed by the boundary condition igigher thanT,_,~400 K from Ref. 8. However, if there
relaxed; therefore, the ordering of Agions drives the tran- exists an intermediate phase betweeandM, the transition
sition to theB phase. TheM phase is transformed to th®  temperature toV can be lower thai ,_p .
phase by a glide of= \2/8a and a small change in the size  In the intermediate phase, the lattice of a-Agl will not
and shape of the unit cell. We note that the deformation obe the bcc, but a deformed bcc just abovedhes transition
Fig. 3@ can occur without violating the periodic cubic temperature T,- ), although the deformation will be very
boundary condition in the simulation. If this deformation is small (5<0.15). The structure of Agl just abovg,_ ; was
favored energetically, it might be responsible for the transi-determined by StrocR using x-ray scattering. He analyzed
tion to theM phase in Ref. 8. We calculated the energies ofthe data in terms of the possible peaks for a unit cell that
the perfectly orderedM phase when thel lattice is de- consists of 16 moleculgs bcc unit cell has twg and found
formed and Ag™ ions are kept tetrahedrally coordinated to that the positions of strong peaks are consistent with the bcc
| ~ ions. The result obtained by E(l4) and the Ewald sum- structure. However, the deformatio®<0.15 is so small
mation for each potential energy tefis shown in Fig. 5. that the extra peaks for a deformed bcc will have intensities
The energy for a deformeld phase is lower than that of the less than 3% of the highest peak, and those peaks will be
D phase for a narrow range aroudek 0.15. Therefore, one very broad because the gliding 6110 planes is a soft
can understand that tH2 phase is stable in our model be- mode® Therefore, deformation of the™l lattice may not
cause such a deformation is not allowed, whereasMhe have been noticed in the above and later experiments. If such
phase obtained in Ref. 8 may have actually a slightly dea structural change occurs, there must also be a change in
formed I™ structure. However, it is difficult to tell from Figs. Bragg peak intensities when plotted against temperature, but

FIG. 5. Energy of the deformell phase AE, versus degree of
deformationd. Zero of the energy corresponds to the energy of the
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no appreciable change was found in x-jrgayand bg=C11+Ci3 —C114—Crrg,
neutron-scatterirf§ experiments. However, the small change
predicted in the peak intensity(3%) would have been ex-
tremely hard to detect.

to evaluate

2 C_1(3,)](nj - no) = 2b1W+ b2X+ b3y+ b4Z,
VI. A FORMALISM INCORPORATING !
THE DEFORMATION

Although change of density and shape of the cell are not 2 Ca2’ 55)i(Nj = Mo) =DsWH(Dg=by) (x+2),

allowed, incorporation of the deformation discussed above

[gliding of alternate(110) planes of I and accompanied — _

change ofT 4 siteg is important in understanding the mecha- 2 Ca11)(Nj = No) =2(Pg—=b2)W+ (b7 =b2)X+ (bs=—by)y
nism of thea— B transition and the intermediate phase in the

« phase. We discuss a formalism incorporating the deforma- +(bg—by)z, (26)
tion, but the calculation has not yet been carried out.
The free energy is now a function @;} and &: S Catery;(Nj— o) =2(loy — b3)w+ (by—b3)x— by
]

F({ni}, 8) =F agag({ni}, 8) + Eaqi({ni}, 8) + E;(9).
(24) +(by—bg)z,

E, is the interaction energy between™ |ions, and o

Eag=NZi€in; whereg; is the potential at sité due to the E Ce(an)j(Nj—Ng) =2(bg—by)W+ (bg—b,)x+ (b —by)y

| = lattice. AlthoughE,, andE,g are infinite, the difference !

between the free energies of different states can be calcu- +(b,—by)z.

lated. The free energy due to the interactions of silver ions o T _ ) _

F agag Can be calculated by a method similar to Sec. Il. TheThe number of distinct separations for which pair-
symmetry of the lattice has changed, and the coordinates @Prrelation functions should be calculated is now 2951 and
the T4 sites now depend o@. The 12 sublattices are not 9807 for|r n{=4a and 6a, respectively, compared to 302
equivalent to each other any more, and there are three grouggd 936 when there is no deformation. If the HNC closure is
of different sublattices: {1,3',4,6'}, {1',3,4',6}, and !0 be used, ten times more computation time is required for a
{2,2’,5,5’}_ Because of the reduced Symmetry, there are thate with fixedT and 5, and it will take a considerable
differentc;;’s instead of the 11 in Sec. IE(y, Cy,, C13, €14, ~ @MOUNt of time to search for free-energy minima in the two-
C16, C11/, C1ors C1a's Coars Cigrs C1r17y C1rors Carar, Crios Cprg,  diMensional space of temperature ahdvioreover, the prob-
C1/6: Co2, Coor, Cos, Cas), and eight linear combinations of lem of finding the free energies of the reference states with
them,b,—bg, must be calculated: different lattice structures must be solved, although they may

b;=Cq1+C13 —C1o— C1o,
by=Cq1+ C13 —C11 —Cy3,
b3=C11FC13 —C14— Cig,

b4=C11F C13 — C14 —Cyg,

b5: 20_12+ 20_12/ _C_ZZ_C_ZZ’ —C_25_C_25r y

b6:C_11+C—13r _C_1’2_ Cl’2’ y

b7: Cll+ C13/ - Cl’l' - C1/3,

(29)

be assumed to be the same in a first-order approximation. In
an MC simulation, the homogeneous reference state may not
be stable because the sublattices are not equivalent, so a
different technique should be used. This calculation will be
carried out in the future.
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