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Phase transitions in AgI
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~Received 4 June 1997!

The ordering of silver ions in the superionic conductora-AgI has been studied using a discrete version of
density-functional theory. We obtained a transition to a low-temperature phase different from that found by
Maddenet al. using computer simulations@Phys. Rev. B45, 10 206~1992!#. We suggest that the difference
originates from the fact that the I2 lattice is fixed in our study, while the periodic boundary conditions in the
simulation allow certain deformations of the I2 lattice on the basis of calculated energies for deformed
structures. We therefore argue that the structural change of the I2 lattice and the ordering of Ag1 ions onto
particular sublattices are correlated processes, rather than the ordering of Ag1 ions driving thea –b transition,
as suggested by Maddenet al. The controversial order-disorder transition within thea phase is also discussed
in terms of a deformation of the I2 lattice. @S0163-1829~97!01042-4#
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I. INTRODUCTION

Silver iodide undergoes a first-order transition from theb
phase to the highly conductinga phase at about 420 K a
normal pressure.a-AgI is a superionic or fast-ion conducto
because it has excess sites for silver ions. Ina-AgI, I 2 ions
form a bcc lattice, and most Ag1 ions occupy interstitial
tetrahedral sites. There are six times as many such site
Ag 1 ions, and the ions can move among the sites by cro
ing a low-energy barrier. Inb-AgI, I 2 ions have the hcp
structure, and Ag1 ions are tetrahedrally coordinated to I2

~wurtzite structure!. In addition to thea –b transition, an
order-disorder transition has been proposed to occur wi
the a phase by Perrott and Fletcher.1 They observed a heat
capacity change at about 700 K like those in first-order ph
transitions. Raman-scattering intensity and depolarization
tio measurements around that temperature2 and changes in
elastic constants determined by Brillouin scattering3 also
support the suggestion. There are some contradictory ex
ments, however.4

The phase diagram of AgI over a wide range of tempe
ture and pressure, including thea –b transition, has been
investigated using a constant stress molecular-dynam
simulation.5,6 Tallon6 found a heat-capacity change in th
simulation like that observed experimentally.

Szabo´7 studied the phase transition ina-AgI using a
mean-field theory for a lattice gas with nearest-~NN! and
next-nearest-neighbor~NNN! interactions. He considere
only tetrahedral interstitial sites which are known to have
highest occupancies, and redivided them into six interp
etrating bcc sublattices, as in Fig. 1. A disordered stat
stable at high temperature, and an ordered state where
one sublattice is occupied (D phase! was found to be stable
at low temperature. Partially ordered intermediate pha
were also found, and he argued that these phases migh
plain the heat-capacity and Raman experiments.

More recently, Madden and co-workers8 showed that in a
molecular-dynamics~MD! simulation with a simulation box
of fixed shape and size, Ag1 ions undergo a second-orde
order-disorder transition at about 400 K, although the2

lattice structure cannot change from bcc. There was no
560163-1829/97/56~18!/11485~8!/$10.00
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dence for an order-disorder transition within thea phase.
Figure 2 shows the structure of the low-temperature orde
phase (M phase!. These authors noted the structural simila
ity of the M phase andb-AgI, and showed that gliding of
alternate~110! planes of I2 in the M phase with contraction
of the cell can lead to the wurtzite structure of theb phase
~see Fig. 3!, as in the Burgers mechanism for a transiti
from bcc to hcp.9 Because the orderedM phase occurs when
the change of bcc to hcp of the I2 lattice is prevented, they
argued that the ordering tendency of Ag1 ions in the a
phase is the driving force for thea –b phase transition.

We have studied this ordering transition of Ag1 in a-AgI
using a lattice version of the density-functional approach
our model, I2 ions are fixed in a perfect bcc lattice, an
Ag 1 ions are restricted to tetrahedral interstitial sites, as
Szabo´’s study. However, the more realistic potential mod
used in simulations is employed~see Sec. III!. The direct
correlation functions are calculated from the hypernet

FIG. 1. Six sublattices of tetrahedral sites~with i 5 i 8) intro-
duced by Szabo´. Black circles represent I2 ions and white circles
Td sites. The 12 sublattices~with iÞ i 8) will be discussed later in
the text.K, L, ..., andR denote planes parallel to~110!, and repeat
in space.K planes consist of sublattices 4 and 6, andP of 48 and
68, etc.
11 485 © 1997 The American Physical Society
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11 486 56CHAOK SEOK AND DAVID W. OXTOBY
chain ~HNC! closure or Monte Carlo~MC! simulation. Our
results turned out to be different from what was expec
from the MD simulation of Ref. 8, however. Ag1 ions be-
come ordered in theD phase instead ofM at low tempera-
ture. Among the many approximations made in our calcu
tions, the most important one, different from those in Ref
is that ions are restricted to particular lattice sites. We ar
that a small hcp-like deformation of the I2 lattice from bcc
that is compatible with the cubic periodic boundary con
tion ~a deformation allowed in Madden’s simulation but n
allowed in our study! may be responsible for the transition
the M phase. Therefore, thea –b transition may not be
driven by the ordering transition of Ag1 alone, but by a
correlated structural change of I2 and ordering of Ag1 that
occur simultaneously. The possibility of an order-disord
transition within thea phase is discussed in terms of a stru
tural deformation.

The outline of this paper is as follows. In Sec. II, th
density-functional theory applied to thea-AgI system is de-
scribed, and the results obtained by the HNC closure and
simulation are presented in Secs. III and IV. In Sec. V,
difference between our results and those of Ref. 8 is
cussed, and the possible role of a deformation of the2

lattice is suggested. A future extension of this study to inc
porate the structural change of the I2 lattice is proposed in
Sec. VI.

II. DENSITY-FUNCTIONAL APPROACH

We consider the phase transition of Ag1 ions restricted to
the tetrahedral (Td) sites when I2 ions are fixed in a perfec
bcc lattice. We divide theTd sites into 12 sublattices, as i
Fig. 1, to incorporate the symmetry of theM phase~where 1
and 38 are occupied! as well asD ~where 1 and 18 are oc-
cupied!. Let the occupation number for each of the 12 su
lattices beni ( i 51,2, . . .,12). The Helmholtz free energy i
expanded around the disordered state whereni[n051/6,
and truncated at the pair direct correlation function level,

FIG. 2. Structure of theM phase. Szabo´ type-1 sites inM planes
~sublattice 1! and type-3 sites inR planes~sublattice 38) are occu-
pied in this ordered state. Black circles represent I2 ions and white
ones Ag1 ions.
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in the lattice analog of density-functional theory described
Ref. 10. The Helmholtz free-energy difference between
ordered and disordered phases is

b

N
DF5(

i 51

12

@S~ni !2S~n0!#

2
1

2(i 51

12

(
j 51

12

c̄i j ~ni2n0!~nj2n0!, ~1!

where

S~n!5n ln n1~12n!ln~12n!, ~2!

and

c̄i j 5 (
L51

N

ci1,jL . ~3!

ci1,jL is the direct correlation function of Ag1 for the sepa-
ration of sitei in the 1st cell and sitej in the Lth cell. N is
the number of unit cells of the bcc I2 lattice, which is half

FIG. 3. ~a! ~110! planes of theM phase. Gliding of alternate
layers is indicated by arrows on the left. In going from theM phase
to the b phase, tetrahedral coordination of Ag1 to I2 should be
maintained.~b! Corresponding planes of theb phase. I2 ions now
form an hcp lattice.
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TABLE I. Equivalent c̄i j ’s.

c̄i j Equivalent$ i j %

c̄11 11 22 33 44 55 66
c̄12 12,15 21,23,24,26 32,35 42,45 51,53,54,56 62,6
c̄13 13 31 46 64
c̄14 14,148 36,368 41,418 63,638
c̄16 16 34 43 61
c̄118 118 228 338 448 558 668
c̄128 128,158 218,238,248,268 328,358 428,458 518,538,548,568 628,658
c̄138 138 318 468 648
c̄168 168 348 438 618
c̄25 25 52
c̄258 258 528
s

ni

e,

n

nd
and
nce.
ls
ou-
e
na-

of
the number of silver ions. The first derivative of the exce
free-energy term is zero because( i(ni2n0)50.

Equilibrium occupation numbers are obtained by mi
mizing DF, giving

ni5
1

11expF2g2(
j

c̄i j ~nj2n0!G , ~4!

where the undetermined multiplierg is fixed by the condi-
tion ( i 51

12 ni52. Because of the symmetry of the lattic
somec̄i j are equivalent to each other, as shown in Table
Note thatc̄i j 5 c̄ j i 5 c̄i 8 j 85 c̄ j 8 i 8 and c̄i j 85 c̄i 8 j . In addition to
c̄i j , we also definec̃i j , the sum of the direct correlatio
functions between Szabo´’s sublatticei and j , as follows:

c̃i j 5 c̄i j 1 c̄i j 85
1

2
~ c̄i j 1 c̄i j 81 c̄i 8 j1 c̄i 8 j 8!. ~5!

There are only three different c̃i j ’s ( c̃115 c̃22
5. . . , c̃145 c̃255 c̃36, and c̃125 c̃135 . . . ). Any i and i 8
form a bcc lattice together, andc̃i i 85 c̃11. If i and j sublat-
tices have nearest neighbors on each other,c̃i j 5 c̃12, and if
they have next-nearest neighbors,c̃i j 5 c̃14.

Let us consider the states studied by Szabo´7 first. These
states have a symmetry such thatni5ni 8, and the following
occupation numbers :

n15n185n01v1w1x1y1z,

n25n285n02v,

n35n385n02w,

n45n485n02x, ~6!

n55n585n02y,

n65n685n02z.

Because of the symmetries ofc̄i j andc̃i j , there are only two
linear combinations ofc̄i j ’s that matter in the Szabo´ states:

a15 c̃111 c̃1422c̃12, ~7!

a25 c̃112 c̃14. ~8!
s

-

I.

The terms( j c̄i j (nj2n0) which appear in Eq.~4! can be
written as follows:

2(
j

c̄1~18! j~nj2n0!5~a11a2!~v1w1x1y1z!12a2x,

2(
j

c̄2~28! j~nj2n0!52~a11a2!v2~a12a2!y,

2(
j

c̄3~38! j~nj2n0!52~a11a2!w2~a12a2!z,

2(
j

c̄4~48! j~nj2n0!5~a12a2!~v1w1x1y1z!22a2x,

~9!

2(
j

c̄5~58! j~nj2n0!52~a12a2!v2~a11a2!y,

2(
j

c̄6~68! j~nj2n0!52~a12a2!w2~a11a2!z.

ni andDF can be calculated from the above and Eqs.~4! and
~1!. The above equations look similar to those in Ref. 7, a
a1 and a2 can be expressed in terms of the nearest-
next-nearest potential parameters used in that refere
However, the effective NN and NNN interaction potentia
summed over all lattice sites diverge in the case of a C
lomb potential, whereasa1 anda2 are well behaved becaus
the infinite parts are subtracted out by the linear combi
tions that define them.

We now consider an ordered phase with the symmetry
the M phase. Ifn15n38, it follows that

n15n385n012w1x1y1z,

n25n285n55n585n02w,

n35n185n02x, ~10!

n45n685n02y,

n65n485n02z.
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There are two additional linear combinations ofc̄i j ’s that
appear in the final equations in this case:

a35 c̄112 c̄1182 c̄131 c̄138, ~11!

a45 c̄162 c̄168. ~12!

We now find

2(
j

c̄1~38! j~nj2n0!52~a11a212a3!w22a3x

2~a21a31a4!y2~a21a32a4!z,

2(
j

c̄2~28,5,58! j~nj2n0!52a1w,

2(
j

c̄3~18! j~nj2n0!52~a11a222a3!w12a3x

2~a22a32a4!y2~a22a31a4!z,

~13!

2(
j

c̄4~68! j~nj2n0!52~a12a222a4!w12a4x

1~a21a31a4!y1~a22a31a4!z,

2(
j

c̄6~48! j~nj2n0!52~a12a212a4!w22a4x

1~a22a32a4!y1~a21a32a4!z.

III. THE HNC CLOSURE

We employ the following pair potential model used in t
computer simulations:5,6,8

VAgAg~r !5
0.014804

r 11
1

0.36

r
,

VAgI~r !5
114.48

r 9
2

0.36

r
2

1.1736

r 4
, ~14!

VII~r !5
446.64

r 7
1

0.36

r
2

2.3472

r 4
2

6.9331

r 6
,

where lengths are in Å and energies ine2/ Å514.40 eV. The
above potential has been very successful in reproducing
a –b transition. Because the I2 lattice is fixed and all Ag1

sites are equivalent, onlyVAgAg is used here. We ignore th
1/r 11 term which is smaller than the 1/r term by a factor of
1024 at the separation between the nearest tetrahedral s
The lattice parametera55.206 Å is used, as in Ref. 8.

The simplest way to calculate the direct correlation fun
tions a1–a4 is through a simple mean-field approximatio
Although we shall see that this gives unsatisfactory result
is worth presenting first. In this approximation,
he

es.

-

it

ci1,jL50 if i 5 j andL51

2bv i1,jL otherwise, ~15!

where v i1,jL5VAgAg(r i1,jL). Szabo´’s calculation consists of
such a mean-field approximation, together with a further
striction to near-neighbor interactions. For the full lon
range potential, eachc̄i j alone does not converge if theci1,jL
are summed over the infinite lattice, buta1–a4 can be ob-
tained as follows. For example,a1 can be written by using
relationships of thec̃i j ’s:

a15 c̃111 c̃1422c̃1251/4~ c̃111 c̃221 c̃441 c̃551 c̃141 c̃41

1 c̃251 c̃522 c̃122 c̃212 c̃242 c̃422 c̃152 c̃512 c̃452 c̃54!.

~16!

Taking into account Eq.~5!, 24Nb21a1 is the same as the
total energy of a system in which the effective positi
charges are placed on 1, 18, 4, and 48, negative charges on
2, 28, 5, and 58, and nothing on the others. This energy c
be calculated using the Ewald method,11 and the calculated
values are

a1543160 K/T,

a2534212 K/T,

a3538106 K/T, ~17!

a457428.9 K/T.

With the above, the low-temperature ordered state is
Szabo´ D state where only one Szabo´ sublattice~say 1 and
18) is predominantly occupied and the others have sm
occupancies with n45n48 and n2(28)5n3(38)5n5(58)
5n6(68) . TheD state is found to be stable up to about 66
K which is far above the melting temperature of AgI~830
K!. This disagrees strongly with the result in Ref. 8 whe
the disordered state is stable above;400 K, and the ordered
state isM below that temperature. The above approach gi
such a high transition temperature because theci1,i1 has been
assumed to be zero instead of a large negative numbe
can be seen from the following calculations.

Let us employ instead the HNC approximation, which
more sophisticated than the above simple mean-field
proximation. Our system is the same as a lattice o
component plasma because Ag1 ions do not feel the struc
ture of the I2 lattice ~every Ag1 site is equivalent!. It is
known that the HNC closure is a very good approximation
the continuous one-component plasma problem.12 The one-
component plasma parameter here isg5b(Ze)2/a WS
523468 K/T wherea WS is the radius of the Wigner-Seit
cell. The lattice Ornstein-Zernike equation for the disorde
system10 is

hi1,jL5ci1,jL2
d i j d1L

12n0
1n0(

k
(
M

S ci1,kM2
d ikd1M

12n0
DhkM, jL ,

~18!

and the lattice analog of the HNC closure is

ci1,jL52bv i1,jL2 ln~hi1,jL11!1hi1,jL , ~19!
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56 11 489PHASE TRANSITIONS IN AgI
where hi1,jL5gi1,jL21. We follow the iterative method o
Ref. 13 to solve the above equations. With an initial gues
hi1,jL , theci1,jL are calculated from Eq.~19! and

ci1,i152
n0

12n0
(
j Þ i

(
LÞ1

ci1,jLhjL ,i1 . ~20!

Thehi1,jL andci1,jL thus obtained are inserted in the follow
ing equation:

hi1,jL5
1

~12n0!212n0ci1,i1

3Fci1,jL1n0(
kÞ i

(
MÞ1

ci1,kMhkM, jL G , ~21!

and the new trialhi1,jL is

hi1,jL
new5~ t !hi1,jL1~12t !hi1,jL

guess, ~22!

where 0,t,1 is chosen to achieve a faster convergen
The system size needed to assure convergence ranges
ur maxu54a for 900 K to 6a for 350 K. In solving the equa-
tions, hi1,jL is assumed to be zero forur u.ur maxu, but long-
rangedci1,jL52bv i1,jL are included for this range. Becaus
the system is not spherically symmetric, the correlation fu
tions depend on direction as well as distance, as can be
from the multivalued nature of the distribution function
Fig. 4~a!. The distinct separations that give different valu
of the pair-correlation function were determined by cons
ering the symmetry of the lattice and usinggiL , jM 5gjM ,iL .
The correlation functions have been calculated befo14

for a similar model, but with an approximation that the
depend only on distance.

The parametersa1–a4 are calculated from an Ewald sum
mation of the2bv i1,jL term and a direct summation of th
remaining terms in Eq.~19!. The calculated values for 50
K, for example, are

a153.1606,

a255.3797,

a352.9644, ~23!

a4521.1831.

These are far smaller in magnitude than those in Eq.~17!.
However, the ordered phase obtained is once again thD
phase, notM , and no intermediate phase was found. T
transition temperature is about 350 K.

IV. MONTE CARLO SIMULATION

As a complementary way to calculate the correlat
functions and a direct way to study phase transitions,
performed lattice Monte Carlo simulations on this system
cubic simulation box with sides of 8a which consists of 1024
Ag 1 ions was used. It is larger than the size used in Re
where the box size was (6a)3. The side should be an eve
multiple of a in order for the periodic boundary condition t
be consistent with the existence of anM phase. The energy
of the system is calculated using the Ewald method, con
f

.
rom

-
en

s
-

e

e

8

d-

ering all periodic images of the ions in a background
opposite charge.15 In order to save computation time, Ewal
energies for all the different separations of pairs of Ag1 ions
are calculated in advance and referred to later in the sim
tion cycles. The correlation functions can be calculated
ur u,4a. Those at 900 K are shown in Fig. 4~b! and com-
pared with those from the above HNC calculation@Fig. 4~a!#
and Ref. 8@Fig. 4~c!#. The distance at whichg(r ) has its
maximum value calculated from HNC (r 5A10/4a) is
slightly smaller than that from MC and Ref. 8 (r 5A12/4a).

FIG. 4. Pair correlation functions at 900 K calculated from~a!
the HNC closure,~b! Monte Carlo simulation, and~c! from Ref. 8.
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A similar shift occurs in the continuous system.16 Note that
the D phase has the first peak ofg(r ) at r 5A12/4a. Also,
the amplitude ofg(r ) from HNC is smaller than from MC,
as in the continuous case.12

An ordered phase with the bcc structure was obtai
below ;700 K, significantly higher than that obtained fro
the HNC density-functional calculation. One can understa
this from the behavior of the pair-correlation functions
Fig. 4. The fact that the low-temperature phase isD, not M ,
is also expected from the fact that the perfectly orderedD
phase, where the Ag1 ion structure has the same symme
as the I2 lattice, has lower energy thanM (EM2ED51.204
kJ/mol!.

One might think that because the tetrahedral sites are
cupied by only 70% at;400 K,8 and even fewer at highe
temperatures, interactions with other sites might favor theM
phase. We investigated this possibility by including the trig
nal interstitial sites that lie half-way between neighbori
tetrahedral sites. The occupancy of the tetrahedral site
high temperature from simulation is similar to that found
Ref. 8, but it increases as the temperature is lowered and
system goes to a phase similar toD at ;600 K. This exten-
sion of the simulation thus still does not account for t
observation of theM phase in Ref. 8. In fact, a trigonal sit
is not a potential well, but a saddle point in passing from o
Td site to another.17 It is usually thought that sites other tha
Td are on the paths for motion of Ag1 ions amongTd sites.

V. DEFORMATION OF THE I 2 LATTICE

It has been shown that our model gives theD phase at
low temperature instead of Madden’sM phase, although nei
ther Madden’s model nor ours allows bcc–hcp transform
tion of the I2 lattice. Our lattice approximation for Ag1 ions
does not seem to explain the difference, in view of the c
culations just mentioned that include the trigonal sites. H
we discuss the possibility that a change of the structure of
I 2 lattice occurred in the simulation of Ref. 8, as well as
real AgI.

In Ref. 8, it was argued that theM phase is unstable with
respect to the deformation shown in Fig. 3~a! @gliding of
alternate~110! planes of I2], which would lead to the stable
b phase, if the stress imposed by the boundary conditio
relaxed; therefore, the ordering of Ag1 ions drives the tran-
sition to theb phase. TheM phase is transformed to theb
phase by a glide ofd5A2/8a and a small change in the siz
and shape of the unit cell. We note that the deformation
Fig. 3~a! can occur without violating the periodic cub
boundary condition in the simulation. If this deformation
favored energetically, it might be responsible for the tran
tion to theM phase in Ref. 8. We calculated the energies
the perfectly orderedM phase when the I2 lattice is de-
formed and Ag1 ions are kept tetrahedrally coordinated
I 2 ions. The result obtained by Eq.~14! and the Ewald sum-
mation for each potential energy term15 is shown in Fig. 5.
The energy for a deformedM phase is lower than that of th
D phase for a narrow range aroundd50.15a. Therefore, one
can understand that theD phase is stable in our model be
cause such a deformation is not allowed, whereas theM
phase obtained in Ref. 8 may have actually a slightly
formed I2 structure. However, it is difficult to tell from Figs
d

d

c-

-

at

he

e

-

l-
e
e

is

f

i-
f

-

7 or 8 of Ref. 8 whether there is a small deformation
d;0.15a because of large fluctuations in the position
ions. If the ordering of Ag1 ions in theM phase is accom-
panied by the structural deformation of the I2 lattice, the
a –b transition is not driven by the former alone, as su
gested by Maddenet al., but both changes play a role in th
transition.

We now proceed further to suggest that the same kind
deformation may be related to the proposed order-diso
transition seen experimentally within thea phase. If a small
deformation of the I2 lattice occurs in thea phase, theTd
sites are no longer equivalent, and different sites will ha
different occupancies. However, the state can be still con
erably disordered, giving high conductivity. The transitio
from the isotropic high temperaturea phase to an anisotropi
disordered or partially ordered phase with a deformed2

lattice is consistent with Raman-scattering experiments.2 The
above proposition is also consistent with the fact that
a –D transition temperature (Ta2D) is very high (; 700 K!
from the above MC simulation. Because the deformedM
phase has lower energy thanD, the expecteda –M transi-
tion temperature is higher thanTa2D , which is already
higher thanTa2M;400 K from Ref. 8. However, if there
exists an intermediate phase betweena andM , the transition
temperature toM can be lower thanTa2D .

In the intermediate phase, the I2 lattice ofa-AgI will not
be the bcc, but a deformed bcc just above thea –b transition
temperature (Ta2b), although the deformation will be very
small (d,0.15a). The structure of AgI just aboveTa2b was
determined by Strock18 using x-ray scattering. He analyze
the data in terms of the possible peaks for a unit cell t
consists of 16 molecules~a bcc unit cell has two!, and found
that the positions of strong peaks are consistent with the
structure. However, the deformationd,0.15a is so small
that the extra peaks for a deformed bcc will have intensi
less than 3% of the highest peak, and those peaks wil
very broad because the gliding of~110! planes is a soft
mode.20 Therefore, deformation of the I2 lattice may not
have been noticed in the above and later experiments. If s
a structural change occurs, there must also be a chang
Bragg peak intensities when plotted against temperature,

FIG. 5. Energy of the deformedM phase,DE, versus degree o
deformationd. Zero of the energy corresponds to the energy of
D phase.
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no appreciable change was found in x-ray19 and
neutron-scattering20 experiments. However, the small chan
predicted in the peak intensity (,3%! would have been ex
tremely hard to detect.

VI. A FORMALISM INCORPORATING
THE DEFORMATION

Although change of density and shape of the cell are
allowed, incorporation of the deformation discussed ab
@gliding of alternate~110! planes of I2 and accompanied
change ofTd sites# is important in understanding the mech
nism of thea –b transition and the intermediate phase in t
a phase. We discuss a formalism incorporating the defor
tion, but the calculation has not yet been carried out.

The free energy is now a function of$ni% andd:

F~$ni%,d!5FAgAg~$ni%,d!1EAgI~$ni%,d!1EII~d!.
~24!

EII is the interaction energy between I2 ions, and
EAgI5N( ie ini wheree i is the potential at sitei due to the
I 2 lattice. AlthoughEII andEAgI are infinite, the difference
between the free energies of different states can be ca
lated. The free energy due to the interactions of silver io
FAgAg can be calculated by a method similar to Sec. II. T
symmetry of the lattice has changed, and the coordinate
the Td sites now depend ond. The 12 sublattices are no
equivalent to each other any more, and there are three gr
of different sublattices: $1,38,4,68%, $18,3,48,6%, and
$2,28,5,58%. Because of the reduced symmetry, there are
different c̄i j ’s instead of the 11 in Sec. II (c̄11, c̄12, c̄13, c̄14,
c̄16, c̄118, c̄128, c̄138, c̄148, c̄168, c̄1818, c̄1828, c̄1848, c̄182, c̄183,
c̄186, c̄22, c̄228, c̄25, c̄258), and eight linear combinations o
them,b1–b8 , must be calculated:

b15 c̄111 c̄1382 c̄122 c̄128,

b25 c̄111 c̄1382 c̄1182 c̄13,

b35 c̄111 c̄1382 c̄142 c̄168,

b45 c̄111 c̄1382 c̄1482 c̄16,

b552c̄1212c̄1282 c̄222 c̄2282 c̄252 c̄258, ~25!

b65 c̄111 c̄1382 c̄1822 c̄1828,

b75 c̄111 c̄1382 c̄18182 c̄183 ,
, V
t
e

a-

u-
s
e
of

ps

0

b85 c̄111 c̄1382 c̄18482 c̄186 ,

to evaluate

(
j

c̄1~38! j~nj2n0!52b1w1b2x1b3y1b4z,

(
j

c̄2~28,5,58! j~nj2n0!5b5w1~b62b1!~x1z!,

(
j

c̄3~18! j~nj2n0!52~b62b2!w1~b72b2!x1~b42b2!y

1~b82b2!z, ~26!

(
j

c̄4~68! j~nj2n0!52~b12b3!w1~b42b3!x2b3y

1~b22b3!z,

(
j

c̄6~48! j~nj2n0!52~b62b4!w1~b82b4!x1~b22b4!y

1~b72b4!z.

The number of distinct separationsr for which pair-
correlation functions should be calculated is now 2951 a
9807 for ur maxu54a and 6a, respectively, compared to 30
and 936 when there is no deformation. If the HNC closure
to be used, ten times more computation time is required fo
state with fixedT and d, and it will take a considerable
amount of time to search for free-energy minima in the tw
dimensional space of temperature andd. Moreover, the prob-
lem of finding the free energies of the reference states w
different lattice structures must be solved, although they m
be assumed to be the same in a first-order approximation
an MC simulation, the homogeneous reference state may
be stable because the sublattices are not equivalent,
different technique should be used. This calculation will
carried out in the future.
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