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Optical conductivity of the Hubbard model
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We study the response to a static electric figdarge stiffnessand the frequency-dependent conductivity
of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means
of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the
original strongly correlated electrons. We found that the Mott transition at half filling is well described by the
charge stiffness behavior, and that the values for this quantity off half filling agree reasonably well with
numerical results. Furthermore, for the frequency-dependent conductivity we trace back to the origin of the
band that appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of the
midinfrared band in highF, compounds[S0163-182€07)01124-1

I. INTRODUCTION cently developed a spin and charge rotational-invariant ap-
proach to the Hubbard modef,based on a mixed fermion-

In experimental studies of the optical conductivitfw) boson representation of the original electrons. It gives a
in high-T, materials, it is observed that, upon doping, weightfairly good account of different properties in a paramagnetic
appears inside the charge-transfer gap of the undopdghase with only short-range resonantly-valence-t&\B)-
compounds. The origin of this so-called midinfrared band is type magnetic correlations, which might correspond to the
not completely clear yet, being related for some compoundgeal situation aff=0". In the present paper, we apply this
to trapped holes near dopant atoms, or to the Cu-O chains ifethod to study the static respori&rude weight and op-
the YBa,Cu304., family.?2 On the other hand, numerical tical conductivity of the Hubbard model, and trace back the
studies suggest that the midinfrared band may be caused, @tigin of the midinfrared band to the interplay between
least in part, by the spin excitations that surround hole carcharged bosons and spin fermions used in our description.
riers. Moreover, these studies seem to imply that the unusudihis confirms the subtle connection of the midinfrared band
behavior of o(w) might be a general feature of strongly to magnetic fluctuations, and its appearance as a general fea-
interacting electron systems, bearing no connection to th&ure of strongly correlated electron systems.
presence of superconductivity. In the next sectioriSec. 1) we introduce the method and

The two-dimensional single-band Hubbard model is aS€t up some notation, in Sec. Ill we describe the calculation
drastic simplification of realistic multiorbital models pro- of the Drude weightor charge stiffnessand in Sec. IV we
posed to explain the physics of the higlh-materials. Even consider the system response to a homogeneous frequency-
so, it contains a great deal of the essential physics of corredependent electric field and obtain the optical conductivity.
lated electrons, for which both charge and spin degrees dfinally, in Sec. V we present some conclusions.
freedom are relevant. For this reason, most of the humerical
studies above mentioned have been performed on this model
and its strong-repulsion descendent, the so-called Il. MIXED BOSON-FERMION DESCRIPTION
model® These studies have been carried out on finite lattices OF CORRELATED ELECTRONS
of up to 4x4 sites, and show clear indications of the appear- \we consider the Hubbard Hamiltonian,
ance of states inside the Hubbard gap. The energy scale of
these states s?ould be of the order of the antiferromagnetic
coupling J~4t“/U to substantiate the claims that they are 1
associated to magnetic fluctuations, but this does not appear| - _tm)U CLCI’U“LUZ (n”nu— Eni) _MEi ni, @
so clearly from the numerical results.

Although numerical methods are usually far more reliable + o )
than approximate analytical techniques, they suffer from sewhere c;, creates an electron at site with spin o,
vere limitations related to the small system sizes that can bis=Ci,Ci,, andn;=n;;+n; . We have included an on-site
considered. Consequently, it is of interest to give alternativeenergyU/2 so that the chemical potential is zero for the
evidence for the existence of the midinfrared band and tdalf-filled case, and in the following we will measure the
investigate its origin by using less-controlled methods thagnergy in units ot=1.
can access the thermodynamic limit. For theJ model, an As in Ref. 5, we replace the original fermion operators
attempt in this directichfound that the inclusion of magnetic according toc;,= e/'s;,+ od;s], and the corresponding dag-
fluctuations are essential for these properties. We have reered expressions for their Hermitian conjugates. Hede
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are bosonic operators associated to the charge degrees if filling, however, either the* or thew ™ branch become
freedom that destroy empty and double occupied sites, regapless, and there is always a condensate ®gthd, that
spectively. Thes,'s are fermionic operators that take care of breaks the particle-hole symmetry. Their relative values de-
the spin degrees of freedom by destroying single occupiegend on whether we are doping with particles or holes, and,
sites with the corresponding spin projection. In order for thisas expected, the system is always a conductor.
to be a faithful representation of the original Fermi algebra, In the next section we will characterize the change in the
the configuration space must be restricted to have exactlgystem behavioffrom metallic to insulatingby considering
one particle per site, i.e.efei+d?di+2(,si“‘asia= 1. This the charge stiffness as a function of doping fbrU. .
constraint is enforced by introducing Lagrange multipliers
A; at every site. ll. CHARGE STIFFNESS
In a coherent-state path-integral formulation of the prob- )
lem we decouple the charge and spin degrees of freedom by Here we examine the current response to a vector poten-
means of a Hubbard-Stratonovich transformation. Thdial of wave vectory=0 and frequency» in thex direction,
saddle-point approximation to the resulting path integral isAx(t) =A.e~'“'.%% In the presence of the vector potential,
equivalent, for homogeneous Hubbard-Stratonovich fieldéhe kinetic energy is modified by the Peierls phase factors:
and\’s, to a self-consistent diagonalization of the following t—t€'®%iA<" wherex;;=x;—x;=£1 in units of the lattice
spin and charge Hamiltonians: spacing. The total current density &=ie[P,,H], with
P,=Zix;n; the polarization operator. Expanding the phase
H _2 s N 2 srt 1t factors to ordeA?, the usual paramagnetic and diamagnetic
sT & (€t N)SgSko— . 9L Sk Skt 8-k Skt ] contributions to the total current are obtained:
@ Jy=ej+e’TA,. (5
and . + .
Herej,=itZ jyXi;Ci,Cj, iS thex component of the paramag-
B . + q + netic current density, ant, = —t2<ij>xi2j c;r,,cj(r is the kinetic
Hc_ik: [(extN)exet (et N)didy] energy associated with theoriented links. The frequency-
dependent uniform electric conductivity,,(w) character-
izes the linear response of the current to the electric field

_ c Tyt . . .
Ek: gled -k +ed]. B E(w)=iwA ). Its real part is given by
Here the operators with subind&xare the Fourier transform B ) 1 o
of site operatorses=—2Ay,—U/2, gi=2By, for fermi- Reo(w)=2me%| ped(w) — 5—imll(w+i07) |,
ons, €= —2Cy+u, €1=2Cy,—pu, gi=2Dy, for (6)

bosons, andy,=2X,co¥k, , with k, the a component
of the wave vectok. The parameter#\,B,C, andD are
obtained from the self-consistency equatioA;(eiTeQ 1 (g
—(d'd;), B=(e,d)+(gd), C=3,(sl,s,), and D Hxx(iwn)=ﬁf dre' (T j(1i0). (D
=(si;S1) +(sjSi1)- o . . 0

The spin and charge Ham|lt0n|an_s can be dlagongllzgdrhe Drude weight of thé-function contribution is given in
by standard Bogoliubov transformations. In the ferm|on|c,[errns of the charge stiffness
case we obtain the quasiparticle dispersion relation

where

r=V(eg+N)2+(gp)% The forresponding result for pe=3(~T)—Rel, (0—0)] )
the charge bosons is w; =E{+(ef—e€Y), where
Ef=V\°—(g5)%. At half filling w«=0=C, so that 11 1€0]j,]#)]2
e£=0=¢! andw"=ES=w". For U larger than a critical =N §<_Tx>_§0 EE | 9)

valueU.=2.7 these degenerate bosonic dispersion relations
have a gap and the bosons do not condense, which correshere the last line can be obtained directly from second-
sponds to the insulating phase. WHer: U, the gap closes, order perturbation theofy.

the bosons condense, and the system becomes a conductorBy using the slave-boson constraint the polarization op-
In this case the ground-state wave function is a mixture of arator can be writte®®, == x;(d/d;—ele;). In this way we
condensate and paired zero-point excitations: assign(opposit¢ charges only to the bosons, and the para-

R ; - - magnetic current operator becomes
|\IIGS>:edOdk:o+eOekzoe’Ekbkekd—ke’EkkakTS—ki|O>_ (4)

Heree, andd, are the condensate values andf, can be szE [2tCsiri<X(elek—dT_kd_k)
obtained in terms of the coefficients of the Bogoliubov trans- k
formations in the usual way. Notice that in Eg) the zero- +2tDsinkX(ekd_k+eldT_k)]. (10)

point excitations above the condensate are paired, so that

they contain the same number @fandd and ofs; ands, This procedure is arbitrary and reflects the gauge invariance
guanta. This is a reflection of the fact that the approximatiorintroduced in the theory by splitting the original fermion
preserves the rotational and particle-hole symmetries. Ofeperators Using this freedom one can transfer the effects
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FIG. 1. Charge stiffnesp. as a function of doping fold =6 1.0 ' !
(full line), 8 (dashed ling and 10(point line). Inset: Comparison of ’3\
our result forU=8 with numerical results on a>44 lattice from <
Ref. 3. X .
o) Y
of the Peierls phase factor entirely to the bosons, which is 0.5 :

physically motivated by their interpretation as charge opera-
tors.

The evaluation of Eqg9) and(10) shows that the paired
zero-point excitations give no contribution to the charge
stiffness, which could be expected, since the pairs do not
carry charge. The charge boson condensate contributes only 0.0L :
to the kinetic energy, so that the stiffness becomes

pc=tC(e2—d2)+2tDeyd, . (11) )

FIG. 2. Optical conductivityr,,(w) as a function ofw for (a)

In Fig. 1 we show the behavior gf; as a function of U=6 ands=0 (full line), 0.1 (dashed ling and 0.2(point line);
doping for different values o). The inset gives a compari- (b) §=0.1 andU=4 (dashed ling 6 (point line), and 8(full line).
son to exact numerical results for the charge stiffness ob-
tained on a & 4 lattice atU =282 Notice that the extrapola- ized form convenient for further manipulations, the final re-
tion to half filling of the numerical results would give a sult is
negative stiffness, which is related to the small size of the

lattice and explains in part the small discrepancies with our 1
result. The same qualitative behavior is obtained for all val- j, ,_ =N E E SE (E d,k, B o(K'_ ,k,+)¢k,+)
ues ofU (U>U,). As expectedp, is zero in the insulating == a=1

phase ¢=0), the onset of conductivity occurs at zero dop-
ing and has a steep rise for small doping that becomes more
pronounced as we increasé. This is in agreement with
numerical results, and is related to the decreasing of the RVB
singlet binding energy withJ in our picture(which is analo-  Where k.=k=q/2, ¢i=(ef.d_y), and yi=(s]; .5 «)-
gous to the decreasing dfin the short-range antiferromag- The 2x2 matricesBs , andFs , are defined as
netic phase of thé—J mode).

In the next section we will discuss the system’s response 1( €, 0 )

€

X| 2 vk F sk ,k+>¢k+), (12)

to a frequency-dependent applied field. Bsa(k_ ki )= >

S
*k+

IV. OPTICAL CONDUCTIVITY

. . e 1( 0 —€X )
The response of the system to a time-varying applied field Bea(k_ ,ky)=% o, (13
is given by the optical conductivit§6). To study the current- ' 2 0

current response functioi,,(w-+i0") entering in this ex-
pression, we consider the current operator in terms of the 0 0

original fermions: j, q-o=it=;,(c/,Ci+xs— €l xoCis), and Foa(ks k=31 s o s ) (14)
replace them by the slave fermions and bosons. In a factor- 2\ & _te 0
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where € =cok,, ¢ =sink,, and Bg,(k_,k,) foradynamic field they contribute through their interactions

_ _nt " with the zero-point bosonic excitations. In particular, Eq.

:SS'?E:? ::3(' :le“(zl;_alr(]a[): jl?i(k{ ’)k:_I):'t sl(:;"(kk++’)k‘) (12) reduces to Eq(10) by simply taking its ground-state
S, — ] ’ S, s N s, — .

. . average in the fermionic spin sector.
Note that this expression for the current would lead to the" , dynamical part of the conductivity can now be ob-

same result for the charge stiffness than the simplefBge tained from Eqs(6) and (7) by a direct calculation of the
(10] used in the calculation of the previous section. This istime-ordered products of fermions and bosons. At the saddle-
so because for a static electric field the paired chargelessoint level the result is a convolution of fermion and boson
fermions are not excited by the fielthe Drude weight is due susceptibilities, which can be split into two contributions:
only to the contribution of the condensed bogottowever, o(w)=0(w)+o,(w). We found

iR

0'1(&)):2 rs

q rs== a

. {TD°B, 4(00)D Bs s(AOITH Gy F_; a(ks K-)G Fog (k- ks)]

X 8w~ (wg + Ek++Eki)z]—Tr[DOBr,a(O,q)D;stﬁ(q,O)]Tr[GaF,r'a(kJr KOGy Fog gk k)]

X 8l w®—(wq +Ey, +E¢ )%1}

and
4
Uz(w)=% r52:+ rs ;:1{Tr[D;+Br,a(k+,k_)DkiBS,B(k_,k+)]Tr[G;7F_r,a(k_,k+)Gk‘+F_S,B(k+,k_)]
X [ w?= (o +o +E +E )T}
|
Here as an indirect evidence that the midinfrared band is associ-
ated with the spin excitations that have a characteristic en-
o e?, eodg ergy scale given by and decreases with increasiblg The
= ed o2 upper Hubbard band is clearly associated with double occu-
o0 0

pancy excitations. More precisely, the contributiento the
and we introduced the bosonic  propagatorOPtical conductivity mentioned above can be split in two
Dy(iw)=D; /(iw—w;)+Dy /(iw+ wy), which is the Fou-  {€ms that involve the breaking of two spin singlet pairs, with
rier transform Oka(T):—(TT(bk(TMl(O)). and the corre- the energies of these processes shifted by those of the
“acoustic” (gaplesy and “optical” (gappedl boson
branches, respectively. The transitions that contribute to the
éNeight inside the Hubbard gap are associated to the term
With the acoustic branch, so that the energies involved near
k=0 correspond only to magnetic pair breaking. The second
term contributes to the upper Hubbard band along with the
processes involved ior, (two spin pair-breaking processes
Pplus the creation of both acoustical and optical boson exci-

sponding fermionic propagatorG(iw)=G, /(iw+Ey)

+ Gy (iw—Ey). The termo;(w) corresponds to the contri-

bution of the condensate and zero-point excitation product

while o5(w) comes from the paired-paired excitation terms.
In Fig. 2 we present the results for the optical conductiv-

ity with @>0. In Fig. 2a) we showo,(w) for U=6 and

different values ofs. The contributions of the low-energy

excitations characteristic of the metallic behavior are con” .

tained in the Drude peafnot shown in this figurg which tations. . . . .

has a total weight given in Fig. 1. It can be seen that upon In closing this section, we would like to comment on the

doping a well-developed midinfrared band appears. At a freS4™M rule fulfilled by the optical conductivity, which relates

o : : the frequency integral of () to the mean kinetic energy.
uencyw~U the excitations involving the upper Hubbard XX . ) o
gand giill)e a second peak in (o) Thge integfzﬁced area of 'nourcase, the results do not satisfy this condition due to the
().

the midinfrared band is comparable to the upper Hubbar _nphysical enl_arge_ment of the F.OCk space inherent to the
band, this is in agreement with numerical restilfss & in- !nd Of approximation we are using. This has been recog-
creases the chemical potential moves down and , as eQ—'ZEd In_previous StUd'eS.Of other properties, such as the
pected, the upper Hubbard band contribution to the conduC,f—i)gﬁ_ﬂirr::ggr&p-?ﬁga;udrﬁnf&tlg ?grd ﬂrreorfr;:nLuenrwlésp_)ggeechlgce%p:a—
tivity moves to higher frequencies. Note that the same ductivit . b q y-dep
behavior is obtained for the midinfrared band. In Figh)2 conductivity 1S given

we give o,,(w) for §=0.1 and different values df. In this

case, while the contribution of the upper Hubbard band 1 T

moves to higher energies, the midinfrared band moves to- 2f dwoxx(w)=—< x) (15)

ward the origin with increasing. This result could be taken 2me '
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To fullfil this relation the kinetic energy has to be calculatedand to steeply vanish when approaching the insulating phase
in the same approximation as,,(w), which in our calcula- at half filling. Moreover, its behavior with increasing

tion scheme goes beyond the saddle-point level. (Slig.htly risin.g with U) follows the pattern observed in nu-
In order to get an idea of the magnitude of the deviation inmerical studies. ' o
the sum rule, we have calculated E(5) for the half-filled The saddle-point approximation used to calculate the

case using the kinetic energy corrected by Gaussiaffequency-dependent conductivity allows us to separate the
fluctuations:® In this case we found a disagreement of aboutcharge and spin degrees of freedom that in our description
15% between the right-hand and left-hand side terms of Ec@e of bosonic and fermionic character, respectively. The real
(15). To show that for dopped systems the deviation is of theelectron excitations are to be calculated as a convolution of
same order, an explicit calculation dfT,) beyond the these two contributions. In the lardé limit studied in this
saddle-point level is required. Such calculation is not availWork, the half-filled case is insulating. Only upon doping, the
able and is out of the scope of the present paper. We streS¥Stem becomes metallic and is signed by the occurrence of
that using the Gaussian fluctuations for the kinetic energy i§ Drude peak. In this phase the charge excitations have two
only a way to estimate the left-hand side of Etf) but does ~Pranches, an acoustic and an optical one; the later involves
not guarantee that the two terms of the sum rule have beefouble occupation and has a characteristic energy of the or-
calculated at the same footness. A cure to these problentier ofU. The spin excitations have a single gapped branch,
results from a proper handling of the particle-number restricthese excitations correspond to break RVB-type singlets. The

tion in constrained Hamiltonian theotywhich is, however, €lectron-hole type excitations induced by the external field
out of the scope of the present paper. involve charge and spin excitations. In the limit of uniform

electric field @—0) the acoustic charge branch convoluted
with the spin excitations give rise to the midinfrared absorp-
tion, the optical charge branch always involves double occu-
We have performed a study of the linear response of th@ation and contributes to the upper band.

Hubbard model to a homogeneous electric field, by using a In conclusion the frequency-dependent conductivity
mixed boson-fermion representation of the original stronglyshows a well developed midinfrared band, which we related
correlated electrons. In a paramagnetic phase of the RVEb the pair-breaking of RVB singlets. This connection high-
type, with only short-range spin singlets, the system presenights the importance of magnetic processes in the appear-
a Mott transition that can be characterized by the behavior ofnce of weight inside the Hubbard gap, and points to the
the charge stiffnesg,, i.e., the response to a static field. In presence of a midinfrared band as a generic feature of Hub-
particular, the values gf. as a function of doping for large bard andt-J-like models, and perhaps of most strongly cor-
U was found to agree reasonably well with numerical resultsrelated electron systems.

V. CONCLUSIONS
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