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Optical conductivity of the Hubbard model
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We study the response to a static electric field~charge stiffness! and the frequency-dependent conductivity
of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means
of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the
original strongly correlated electrons. We found that the Mott transition at half filling is well described by the
charge stiffness behavior, and that the values for this quantity off half filling agree reasonably well with
numerical results. Furthermore, for the frequency-dependent conductivity we trace back to the origin of the
band that appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of the
midinfrared band in high-Tc compounds.@S0163-1829~97!01124-7#
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I. INTRODUCTION

In experimental studies of the optical conductivitys(v)
in high-Tc materials, it is observed that, upon doping, weig
appears inside the charge-transfer gap of the undo
compounds.1 The origin of this so-called midinfrared band
not completely clear yet, being related for some compou
to trapped holes near dopant atoms, or to the Cu-O chain
the YBa2Cu3O61x family.

2 On the other hand, numerica
studies suggest that the midinfrared band may be cause
least in part, by the spin excitations that surround hole c
riers. Moreover, these studies seem to imply that the unu
behavior ofs(v) might be a general feature of strong
interacting electron systems, bearing no connection to
presence of superconductivity.3

The two-dimensional single-band Hubbard model is
drastic simplification of realistic multiorbital models pro
posed to explain the physics of the high-Tc materials. Even
so, it contains a great deal of the essential physics of co
lated electrons, for which both charge and spin degree
freedom are relevant. For this reason, most of the nume
studies above mentioned have been performed on this m
and its strong-repulsion descendent, the so-calledt2J
model.3 These studies have been carried out on finite latti
of up to 434 sites, and show clear indications of the appe
ance of states inside the Hubbard gap. The energy sca
these states should be of the order of the antiferromagn
coupling J;4t2/U to substantiate the claims that they a
associated to magnetic fluctuations, but this does not ap
so clearly from the numerical results.

Although numerical methods are usually far more relia
than approximate analytical techniques, they suffer from
vere limitations related to the small system sizes that can
considered. Consequently, it is of interest to give alterna
evidence for the existence of the midinfrared band and
investigate its origin by using less-controlled methods t
can access the thermodynamic limit. For thet2J model, an
attempt in this direction4 found that the inclusion of magneti
fluctuations are essential for these properties. We have
560163-1829/97/56~3!/1141~5!/$10.00
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cently developed a spin and charge rotational-invariant
proach to the Hubbard model,5,6 based on a mixed fermion
boson representation of the original electrons. It gives
fairly good account of different properties in a paramagne
phase with only short-range resonantly-valence-band~RVB!-
type magnetic correlations, which might correspond to
real situation atT501. In the present paper, we apply th
method to study the static response~Drude weight! and op-
tical conductivity of the Hubbard model, and trace back t
origin of the midinfrared band to the interplay betwe
charged bosons and spin fermions used in our descript
This confirms the subtle connection of the midinfrared ba
to magnetic fluctuations, and its appearance as a genera
ture of strongly correlated electron systems.

In the next section~Sec. II! we introduce the method an
set up some notation, in Sec. III we describe the calcula
of the Drude weight~or charge stiffness!, and in Sec. IV we
consider the system response to a homogeneous freque
dependent electric field and obtain the optical conductiv
Finally, in Sec. V we present some conclusions.

II. MIXED BOSON-FERMION DESCRIPTION
OF CORRELATED ELECTRONS

We consider the Hubbard Hamiltonian,7

H52t (
^ i j &s

cis
† cjs1U(

i
S ni↑ni↓2 1

2
ni D2m(

i
ni , ~1!

where cis
† creates an electron at sitei with spin s,

nis5cis
† cis , andni5ni↑1ni↓ . We have included an on-sit

energyU/2 so that the chemical potentialm is zero for the
half-filled case, and in the following we will measure th
energy in units oft51.

As in Ref. 5, we replace the original fermion operato
according tocis5ei

†sis1sdisis
† and the corresponding dag

gered expressions for their Hermitian conjugates. Heree,d
1141 © 1997 The American Physical Society
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1142 56ALVAREZ, BALSEIRO, AND CECCATTO
are bosonic operators associated to the charge degre
freedom that destroy empty and double occupied sites,
spectively. Thess’s are fermionic operators that take care
the spin degrees of freedom by destroying single occup
sites with the corresponding spin projection. In order for t
to be a faithful representation of the original Fermi algeb
the configuration space must be restricted to have exa
one particle per site, i.e.,ei

†ei1di
†di1(ssis

† sis51. This
constraint is enforced by introducing Lagrange multiplie
l i at every site.

In a coherent-state path-integral formulation of the pro
lem we decouple the charge and spin degrees of freedom
means of a Hubbard-Stratonovich transformation. T
saddle-point approximation to the resulting path integra
equivalent, for homogeneous Hubbard-Stratonovich fie
andl ’s, to a self-consistent diagonalization of the followin
spin and charge Hamiltonians:

Hs5(
ks

~ek
s1l!sks

† sks2(
k
gk
s@sk↑

† s2k↓
† 1s2k↓sk↑#,

~2!

and

Hc5(
k

@~ek
e1l!ek

†ek1~ek
d1l!dk

†dk#

2(
k
gk
c@ekd2k1ek

†d2k
† #. ~3!

Here the operators with subindexk are the Fourier transform
of site operators,ek

s522Agk2U/2, gk
s52Bgk for fermi-

ons, ek
e522Cgk1m, ek

d52Cgk2m, gk
c52Dgk for

bosons, andgk5(acoska , with ka the a component
of the wave vectork. The parametersA,B,C, andD are
obtained from the self-consistency equationsA5^ei

†ej&
2^di

†dj&, B5^eidj&1^ejdi&, C5(s^sis
† sjs&, and D

5^si↓sj↑&1^sj↓si↑&.
The spin and charge Hamiltonians can be diagonali

by standard Bogoliubov transformations. In the fermion
case we obtain the quasiparticle dispersion relat
Ek
s5A(eks1l)21(gk

s)2. The corresponding result fo
the charge bosons is vk

65Ek
c6(ek

e2ek
d), where

Ek
c5Al22(gk

c)2. At half filling m505C, so that
ek
e505ek

d and v15Ek
c5v2. For U larger than a critical

valueUc.2.7 these degenerate bosonic dispersion relat
have a gap and the bosons do not condense, which c
sponds to the insulating phase. WhenU,Uc the gap closes
the bosons condense, and the system becomes a cond
In this case the ground-state wave function is a mixture o
condensate and paired zero-point excitations:

uCGS&5ed0dk50
†

1e0ek50
†

e2(kbkek
†d2k

†
e2(k f ksk↑

† s2k↓
†

u0&. ~4!

Heree0 andd0 are the condensate values andbk , f k can be
obtained in terms of the coefficients of the Bogoliubov tra
formations in the usual way. Notice that in Eq.~4! the zero-
point excitations above the condensate are paired, so
they contain the same number ofe andd and ofs↑ ands↓
quanta. This is a reflection of the fact that the approximat
preserves the rotational and particle-hole symmetries.
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half filling, however, either thev1 or thev2 branch become
gapless, and there is always a condensate withe0Þd0 that
breaks the particle-hole symmetry. Their relative values
pend on whether we are doping with particles or holes, a
as expected, the system is always a conductor.

In the next section we will characterize the change in
system behavior~from metallic to insulating! by considering
the charge stiffness as a function of doping forU.Uc .

III. CHARGE STIFFNESS

Here we examine the current response to a vector po
tial of wave vectorq50 and frequencyv in thex direction,
Ax(t)5Axe

2 ivt.8,9 In the presence of the vector potentia
the kinetic energy is modified by the Peierls phase facto
t→teiexi j Ax(t), wherexi j5xi2xj561 in units of the lattice
spacing. The total current density isJx5 ie@Px ,H#, with
Px5( ixini the polarization operator. Expanding the pha
factors to orderA2, the usual paramagnetic and diamagne
contributions to the total current are obtained:

Jx5e jx1e2TxAx . ~5!

Here j x5 i t(^ i j &xi j cis
† cjs is thex component of the paramag

netic current density, andTx52t(^ i j &xi j
2 cis

† cjs is the kinetic
energy associated with thex-oriented links. The frequency
dependent uniform electric conductivitysxx(v) character-
izes the linear response of the current to the electric fi
Ex(v)5 ivAx(v). Its real part is given by

Resxx~v!52pe2S rcd~v!2
1

2pv
ImPxx~v1 i01! D ,

~6!

where

Pxx~ ivn!5
1

NE0
b

dteivnt^Tt j x~t! j x~0!&. ~7!

The Drude weight of thed-function contribution is given in
terms of the charge stiffness

rc5
1
2 @^2Tx&2RePxx~v→0!# ~8!

5
1

NF12 ^2Tx&2 (
nÞ0

z^0u j xun&z2

En2E0
G , ~9!

where the last line can be obtained directly from seco
order perturbation theory.8

By using the slave-boson constraint the polarization
erator can be writtenPx5( ixi(di

†di2ei
†ei). In this way we

assign~opposite! charges only to the bosons, and the pa
magnetic current operator becomes

j x5(
k

@2tCsinkx~ek
†ek2d2k

† d2k!

12tDsinkx~ekd2k1ek
†d2k

† !#. ~10!

This procedure is arbitrary and reflects the gauge invaria
introduced in the theory by splitting the original fermio
operators.10 Using this freedom one can transfer the effe
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56 1143OPTICAL CONDUCTIVITY OF THE HUBBARD MODEL
of the Peierls phase factor entirely to the bosons, which
physically motivated by their interpretation as charge ope
tors.

The evaluation of Eqs.~9! and~10! shows that the paired
zero-point excitations give no contribution to the char
stiffness, which could be expected, since the pairs do
carry charge. The charge boson condensate contributes
to the kinetic energy, so that the stiffness becomes

rc5tC~e0
22d0

2!12tDe0d0 . ~11!

In Fig. 1 we show the behavior ofrc as a function of
doping for different values ofU. The inset gives a compari
son to exact numerical results for the charge stiffness
tained on a 434 lattice atU58.3 Notice that the extrapola
tion to half filling of the numerical results would give
negative stiffness, which is related to the small size of
lattice and explains in part the small discrepancies with
result. The same qualitative behavior is obtained for all v
ues ofU (U.Uc). As expected,rc is zero in the insulating
phase (d50), the onset of conductivity occurs at zero do
ing and has a steep rise for small doping that becomes m
pronounced as we increaseU. This is in agreement with
numerical results, and is related to the decreasing of the R
singlet binding energy withU in our picture~which is analo-
gous to the decreasing ofJ in the short-range antiferromag
netic phase of thet2J model!.

In the next section we will discuss the system’s respo
to a frequency-dependent applied field.

IV. OPTICAL CONDUCTIVITY

The response of the system to a time-varying applied fi
is given by the optical conductivity~6!. To study the current-
current response functionPxx(v1 i01) entering in this ex-
pression, we consider the current operator in terms of
original fermions: j x,q505 i t( is(cis

† ci1xs2ci1xs
† cis), and

replace them by the slave fermions and bosons. In a fac

FIG. 1. Charge stiffnessrc as a function of doping forU56
~full line!, 8 ~dashed line!, and 10~point line!. Inset: Comparison of
our result forU58 with numerical results on a 434 lattice from
Ref. 3.
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ized form convenient for further manipulations, the final r
sult is

j x,q505
1

N(
q

(
s56

s(
a51

4 S (
k8

fk82

† Bs,a~k82 ,k81!fk81D
3S (

k
ck2

† F2s,a~k2 ,k1!ck1D , ~12!

where k65k6q/2, fk
†5(ek

† ,d2k), and ck
†5(sk↑

† ,s2k↓).
The 232 matricesBs,a andFs,a are defined as

Bs,1~k2 ,k1!5
1

2S ek2

s
0

0 e2k1

s D ,
Bs,3~k2 ,k1!5

1

2S 0 2e2k1

s

0 0
D , ~13!

Fs,3~k1 ,k2!5
1

2S 0 0

ek2

s 1e2k1

s
0D , ~14!

FIG. 2. Optical conductivitysxx(v) as a function ofv for ~a!
U56 andd50 ~full line!, 0.1 ~dashed line!, and 0.2~point line!;
~b! d50.1 andU54 ~dashed line!, 6 ~point line!, and 8~full line!.
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1144 56ALVAREZ, BALSEIRO, AND CECCATTO
where ek
15coskx , ek

25sinkx , and Bs,2(k2 ,k1)

5Bs,1(k1 ,k2), Bs,4(k2 ,k1)5Bs,3
t (k1 ,k2), Fs,i(k1 ,k2)

5Bs,i(k2 ,k1)( i51,2), andFs,4(k1 ,k2)5Fs,3
t (k2 ,k1).

Note that this expression for the current would lead to
same result for the charge stiffness than the simpler one@Eq.
~10!# used in the calculation of the previous section. This
so because for a static electric field the paired charge
fermions are not excited by the field~the Drude weight is due
only to the contribution of the condensed bosons!. However,
to
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for a dynamic field they contribute through their interactio
with the zero-point bosonic excitations. In particular, E
~12! reduces to Eq.~10! by simply taking its ground-state
average in the fermionic spin sector.

The dynamical part of the conductivity can now be o
tained from Eqs.~6! and ~7! by a direct calculation of the
time-ordered products of fermions and bosons. At the sad
point level the result is a convolution of fermion and bos
susceptibilities, which can be split into two contribution
s(v)5s1(v)1s2(v). We found
s1~v!5(
q

(
r ,s56

rs (
a,b51

4

$Tr@D0Br ,a~0,q!Dq
2Bs,b~q,0!#Tr@Gk1

1 F2r ,a~k1 ,k2!Gk2

2 F2s,b~k2 ,k1!#

3d@v22~vq
21Ek1

1Ek2
!2#2Tr@D0Br ,a~0,q!Dq

1Bs,b~q,0!#Tr@Gk1

2 F2r ,a~k1 ,k2!Gk2

1 F2s,b~k2 ,k1!#

3d@v22~vq
11Ek1

1Ek2
!2#%

and

s2~v!5(
q

(
r ,s56

rs (
a,b51

4

$Tr@Dk1

1 Br ,a~k1 ,k2!Dk2

2 Bs,b~k2 ,k1!#Tr@Gk2

1 F2r ,a~k2 ,k1!Gk1

2 F2s,b~k1 ,k2!#

3d@v22~vk1

1 1vk2

2 1Ek1
1Ek2

!2#%.
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D05S e0
2 e0d0

e0d0 d0
2 D

and we introduced the bosonic propaga
Dk( iv)5Dk

1/( iv2vk
1)1Dk

2/( iv1vk
2), which is the Fou-

rier transform ofDk(t)52^Ttfk(t)fk
†(0)&, and the corre-

sponding fermionic propagatorGk( iv)5Gk
1/( iv1Ek)

1Gk
2( iv2Ek). The terms1(v) corresponds to the contri

bution of the condensate and zero-point excitation produ
while s2(v) comes from the paired-paired excitation term

In Fig. 2 we present the results for the optical conduct
ity with v.0. In Fig. 2~a! we showsxx(v) for U56 and
different values ofd. The contributions of the low-energ
excitations characteristic of the metallic behavior are c
tained in the Drude peak~not shown in this figure!, which
has a total weight given in Fig. 1. It can be seen that up
doping a well-developed midinfrared band appears. At a
quencyv;U the excitations involving the upper Hubba
band give a second peak insxx(v). The integrated area o
the midinfrared band is comparable to the upper Hubb
band, this is in agreement with numerical results.3 As d in-
creases the chemical potential moves down and , as
pected, the upper Hubbard band contribution to the cond
tivity moves to higher frequencies. Note that the sa
behavior is obtained for the midinfrared band. In Fig. 2~b!
we givesxx(v) for d50.1 and different values ofU. In this
case, while the contribution of the upper Hubbard ba
moves to higher energies, the midinfrared band moves
ward the origin with increasingU. This result could be taken
r

s,
.
-

-

n
-

d

x-
c-
e

d
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as an indirect evidence that the midinfrared band is ass
ated with the spin excitations that have a characteristic
ergy scale given byJ and decreases with increasingU. The
upper Hubbard band is clearly associated with double oc
pancy excitations. More precisely, the contributions1 to the
optical conductivity mentioned above can be split in tw
terms that involve the breaking of two spin singlet pairs, w
the energies of these processes shifted by those of
‘‘acoustic’’ ~gapless! and ‘‘optical’’ ~gapped! boson
branches, respectively. The transitions that contribute to
weight inside the Hubbard gap are associated to the t
with the acoustic branch, so that the energies involved n
k50 correspond only to magnetic pair breaking. The seco
term contributes to the upper Hubbard band along with
processes involved ins2 ~two spin pair-breaking processe
plus the creation of both acoustical and optical boson e
tations!.

In closing this section, we would like to comment on th
sum rule fulfilled by the optical conductivity, which relate
the frequency integral ofsxx(v) to the mean kinetic energy
In our case, the results do not satisfy this condition due to
unphysical enlargement of the Fock space inherent to
kind of approximation we are using. This has been rec
nized in previous studies of other properties, such as
one-particle spectral density and momentum-space occ
tion number.11 The sum rule for the frequency-depende
conductivity is given by8

1

2pe2E2`

`

dvsxx~v!52
^Tx&
2

. ~15!
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56 1145OPTICAL CONDUCTIVITY OF THE HUBBARD MODEL
To fullfil this relation the kinetic energy has to be calculat
in the same approximation assxx(v), which in our calcula-
tion scheme goes beyond the saddle-point level.

In order to get an idea of the magnitude of the deviation
the sum rule, we have calculated Eq.~15! for the half-filled
case using the kinetic energy corrected by Gauss
fluctuations.13 In this case we found a disagreement of ab
15% between the right-hand and left-hand side terms of
~15!. To show that for dopped systems the deviation is of
same order, an explicit calculation of^Tx& beyond the
saddle-point level is required. Such calculation is not av
able and is out of the scope of the present paper. We s
that using the Gaussian fluctuations for the kinetic energ
only a way to estimate the left-hand side of Eq.~15! but does
not guarantee that the two terms of the sum rule have b
calculated at the same footness. A cure to these probl
results from a proper handling of the particle-number rest
tion in constrained Hamiltonian theory,12 which is, however,
out of the scope of the present paper.

V. CONCLUSIONS

We have performed a study of the linear response of
Hubbard model to a homogeneous electric field, by usin
mixed boson-fermion representation of the original stron
correlated electrons. In a paramagnetic phase of the R
type, with only short-range spin singlets, the system pres
a Mott transition that can be characterized by the behavio
the charge stiffnessrc , i.e., the response to a static field.
particular, the values ofrc as a function of doping for large
U was found to agree reasonably well with numerical resu
B

ys

ys
n

n
t
q.
e
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ss
is

en
s
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e
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B
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and to steeply vanish when approaching the insulating ph
at half filling. Moreover, its behavior with increasingU
~slightly rising withU) follows the pattern observed in nu
merical studies.

The saddle-point approximation used to calculate
frequency-dependent conductivity allows us to separate
charge and spin degrees of freedom that in our descrip
are of bosonic and fermionic character, respectively. The
electron excitations are to be calculated as a convolution
these two contributions. In the largeU limit studied in this
work, the half-filled case is insulating. Only upon doping, t
system becomes metallic and is signed by the occurrenc
a Drude peak. In this phase the charge excitations have
branches, an acoustic and an optical one; the later invo
double occupation and has a characteristic energy of the
der ofU. The spin excitations have a single gapped bran
these excitations correspond to break RVB-type singlets.
electron-hole type excitations induced by the external fi
involve charge and spin excitations. In the limit of unifor
electric field (q→0) the acoustic charge branch convolut
with the spin excitations give rise to the midinfrared abso
tion, the optical charge branch always involves double oc
pation and contributes to the upper band.

In conclusion the frequency-dependent conductiv
shows a well developed midinfrared band, which we rela
to the pair-breaking of RVB singlets. This connection hig
lights the importance of magnetic processes in the app
ance of weight inside the Hubbard gap, and points to
presence of a midinfrared band as a generic feature of H
bard andt-J-like models, and perhaps of most strongly co
related electron systems.
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