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We consider the screening of a magnetic impurity id,a_,2-wave superconductor. The properties of the
d,2_,2 state lead to an unusual behavior in the impurity magnetic susceptibility, the impurity specific heat, and
in the quasiparticle phase shift which can be used to diagnose the nature of the condensed state. We construct
an effective theory for this problem and show that it is equivalent to a multichdanelper nodenonmar-
ginal Kondo problem with linear density of states and coupling constafihere is a quantum phase transition
from an unscreened impurity state to an overscreened Kondo state at a critical valbieh varies withA,
the superconducting gap away from the nodes. In the overscreened phase, the impurity Fermidetgdhe
amplitudeA of the ground state singlet vanishXtlike A, exp(—constA) andJ—J., respectively. We derive
the scaling laws for the susceptibility and specific heat in the overscreened phase at low fields and tempera-
tures.[S0163-18207)01341-4

[. INTRODUCTION tween magnetic impurities and the electrons of a Fermi lig-
uid that causes the Kondo effect. However, unlike the Kondo
The problem of magnetic impurities ohrwave supercon- effect in metals, because the density of states of normal qua-
ductors has been a subject of intense reseiarthis known  siparticles in al-wave superconductor vanishes at the Fermi
that in anisotropic superconductors, such asa ,» state, energy, screening is absent in perturbation theory and a criti-
magnetic impurities act as pair-breaking cemensd hence cal exchange coupling between the quasiparticles and the
reduce the amplitude of the condensate. Experimentally, thenagnetic impurity is necessary for Kondo screening to take
main effect of these impurities is to reduce the critical tem-place. Thus, magnetic impurities which couple strongly to
peratureT, of the superconducting state. the quasiparticles, such as Zn which substitute for Cu is the
Quantum-mechanical fluctuations of magnetic impuritiesplanes, may actually be Kondo screened at very low tem-
give rise other important effects particularly when coupled toperatures while Ni, which appears to couple more weakly,
the fermionic quasiparticles of the superconducting state. Imay not get to be in a Kondo screening regime. Likewise,
a normal metal these correlations lead to the Kondo screenmagnetic impurities on sites away from the CuO planes are
ing of the impurity and to the generation of dynamical en-weakly coupled and therefore are less likely to undergo
ergy scales such as the Kondo temperature. In highKondo screening. We will see below that the critical cou-
temperature superconductors, the effects of the magnet@ing (which we will only estimate very roughly in this
impurities appear to depend significantly not only on thework) is controlled byA,, the size of the gap away from the
nature of the impurity but also on where the magnetic impu-nodes at zero temperature, and typically it is a fraction of
rity is located. The conventional interpretation of the role ofAg.
magnetic impurities in high-temperature superconductors re- The onset of Kondo screening at a critical value of the
lies, for the most part, on the chemical differences of theexchange coupling constant is a quantum critical point. We
impurities (mainly Zn and Nj and on the actual location of will show in this work that the behavior of the magnetic
the impurities on the lattice relative to the CuO planes. Thampurity, both near and beyond the phase transition, has
main focus of recent work on this subject has focused omnique signatures which follow from the nature of the con-
how much different impurities are able to depré&sgRef. 7) densate and hence can be used to investigate its nature.
and on the power laws that stat{or clasical impurites ~Among its most salient features are the temperature and
induce on low-tempreture properties. magnetic field dependence of the impurity magnetic suscep-
In this paper we investigate the physics that results fromiibility and specific heat which exhibit strong deviations
the exchange coupling between isolated magnetic impuritiekom Fermi-liquid behavior. We will also show that the qua-
and the quasiparticles of the superconducting state. In pasiparticle phase shift exhibits a strong frequency dependence
ticular we will be interested in finding out under what cir- and a broad resonance and that the structure of the quasipar-
cumstances there is a Kondo-like dynamical screening of thticle scattering matrix has detailed information on the phases
magnetic impurity by the quasiparticles. The mechanism tha&and signs associated witfrwave superconductivity. Thus,
we have in mind is analogous to the exchange coupling bethe physics of magnetic impurities in drwave supercon-
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ductor can be used to diagnose the nature of the supercodeveloped a larg&t theory for this problem and found that
ducting order. The purpose of this paper is to describe theste essential singularity of the Kondo temperature is replaced
effects in detail. by power law singularities determined by the DOS exponent
The Kondo problem in metdishas been intensively and r. However, in that work only the regime<Or < was con-
extensively studied and it is by now very well understood. Itsidered. The behavior of these systems for smaillas also
is described in terms of amoothcrossover from a margin- exlored by Chen and Jayaprak&shnd by Ingerset who
ally unstable fixed point at zero exchange coupling to aused a generalization of Wilson's numerical renormalization
stable Fermi-liquid fixed point with a screend impurit}?  group (RG) for this problem. The case of interest for a
The validity of this picture has been confirmed by the exacd-wave superconductor is=1 which turns out to be special
solution by the Bethe ansafz®and by largeN methods*  in several ways. In Ref. 29 we discussed recently the closely
We will refer to this case as to thmarginal Kondo problem related problem of a magnetic impurity in a flux phase which
since it bears a strong resemblance to a critical system at iis also an example of an=1 system. In this paper we show
low critical dimension. that these two problems can be mapped onto each other in
In a conventionak-wave superconductor the Kondo ef- spite of the fact that spin fluctuations do break Cooper pairs.
fect is suppressed by the formation of the superconducting One aspect of the physics of magnetic impurities in a
gap, as shown by the classic theory of Abrikosov andd-wave superconductor that we will not consider here are the
Gorkov?!® However, in the case of @wave superconductor, effects of the depressiofand/or actual vanishingof the
there are quasiprticle states inside the superconducting gawave order parameter near the impurity site. This effect is
which concentrate near the nodes of the order parameteindependent of the spin and it actually static. In any event,
Although the density of states vanishes at the Fermi energyhe vanishing of the condensate at the impurity site leads to
for strong enough exchange coupling it may still be possibldéerms that do not conserve fermion number in the effective
that isolated magnetic impurities may still be screend by thédamiltonian and hence may lead to importafgpin-
guasiparticles. The central idea of this work is that the wayindependenteffects. This is a conceptually important prob-
this screening happens may be used as a tool to study ttem and it will be addressed elsewhéfeA self-consistent
superconducting order. calculation based on the BCS approximation can be found in
Impurities cause many different effects in superconductRef. 23.
ors. In the case of a d-wave symmetry, any sort of scattering In this paper we will make use of a very simple model of
breaks pairs and, for instance, static magnetic impurities the quasiparticle dynamics in d2_,2 superconductot*>?
produce quasiparticle bound states in the gap of the supewe will use the fact, strongly supported by the corner-
conductor. However, the binding energy of these states varjunction interference experimeritsas well as by angle-
ishes in the vicinity of the nodes of thel-wave resolved photoemission spectroscdiy (ARPES, that the
superconductot*!® Random potential scattering also leads high-temperature superconductors haw,a ,» condensate
to interesting effects, in particular close to the nodes of thevith four symmetrically arranged nodes where the quasipar-
superconductor where the density of sta@®S) of quasi- ticle gap vanishes. The first evidence that the gap vanishes at
particle states, which behave like Dirac fermions near thehe d,2_,, nodal line was reported by Shest al>* Ding
nodes vanishedinearly with the energymeasured from the et al® reported measurements of the momentum depen-
Fermi energy. It has also been shown that random potentialdence of the superconductor gap in®,CaCyOg, , con-
scattering should generally lead tdiaite DOS at the Fermi  sistent with a gap function of the form cég(—cosk,), as
energy (zerg for Dirac fermions in random potentidls®®  expected for al-wave order parameter. Interestingly enough,
and ind-wave superconductof&22! The precise behavior in underdoped systems, photoemission supports the idea that
of the DOS appears to depend on how many nodes arme gap may survive through a large range of temperature
coupled and on what channels are mixed by the scatteringto the normal stat&** It is also well established that the
processe$®?223However, if the superconductor is suffi- high-temperature superconductors are not conventional BCS
ciently clean, the effective DOS induced by the disorder issystems in the sense that their normal states deviate strongly
exponentiallysmallt’8and its effects can be neglected. No- from the predictions of Fermi-liquid theory and that the in-
tice, however, that the combined effects of Kondo screeningeractions are strong. Thus, a straightforward BCS self-
and random scattering is a problem that is still not undertoodgonsistent approach should not work, particularly in view of
even in metalé*?° the fact that there is not a well-established mechanism for
The problem of a quantum magnetic impurity coupled tosuperconductivity in these materials. Nevertheless, whatever
fermions with a vanishing DOS at the Fermi energy wasactual the mechanism is, it should describe a system with
discussed by Withoff and Fradkffi.In contrast with the nodes and with gapless quasiparticle branches. The actual
Fermi liquid which has a finite DOS at the Fermi energy, coefficients of this effective Hamiltonian cannot be derived
Kondo screening of the magnetic impurity could only hap-in a simpleminded way from a microscopic system but its
pen for values of the exchange coupling constararger  form will be determined by the requirementsag 2 sym-
than some critical value. If the DOS vanishes with a powemetry. Thus we will use a phenomenologically motivated
of the energy with exponent, the fixed point atJ=0 is  BCS-like model for the quasiparticles with nodes consistent
stable forr>0 and a new unstable fixed point appears atwith d,>_,2 symmetry but without a self-consitent derivation
J.>0, signaling a quantum phase transition. We will refer toof its coefficients. We will consider the case of a very clean
this problem as the nonmarginal Kondo problem andea- system and at very low temperatures so as to neglect fluc-
sures the deviation from marginality. Using a close analogytuations of the amplitude of the superconducting order pa-
with the theory of critical phenomena, Withoff and Fradkin rameter.
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In Sec. lll we derive an effective Kondo-like Hamiltonian the quasiparticles on the CuO planes. At temperatures higher
for the problem of a single magnetic impurity in an other-thanTy (but still belowT.) the system behaves as if it were
wise perfectd,z_y2 superconductor. In this model we focus at its quantum critical point af .
on the effects of the quasiparticles close to the nodes of the In Ref. 29 we discussed the solution of the problem of a
dy2_,2 state within an energy rangk,, the gap of the su- _ma_gnetic impurity in a flux phase problem which, as we
perconductor away from the nodes. We also include, albeit ifndicated above, is closely related the problem af-wave
rather crude fashion, the effects of the states above the sguperconductor. In that work we used the laMelimit to
perconducting gap since they affect the value of the criticainvestigate a similar phase transition. However, the results
exchange constant. By expanding the electron operator in tH8at we present here for the scaling behavior of the physical
exact quasiparticle states of tidgz_,2 superconductor, we observables near this transition disagree with our previous
map this problem of two-dimensional physics into an effec-work of Ref. 29. The reason for the discrepancy is that in the
tive one-dimensional system of chiral fermions coupled toprocess of carrying out the lardé: limit divergent series
the impurity. The effective Hamiltonian is almost identical to heed to be handled and in Ref. 29 these series were regulated
the problem of a magnetic impurity in a flux phase that wein in @ manner that is incompatible with an integer filliQg
discussed in Ref. 29. The only difference here is that thef the impurity in the slave fermion representation. This in-
symmetry is SU(2)spin but there are four speciéer fla-  consistency is removed in this paper and the results that we
vors) of chiral fermions, one per node. The mapping of thepresent here supersede those of Ref. 29.
electronoperator into the effective one-dimensional fermion  This paper is organized as follows. In Sec. Il we present a
contains all the information about the coherence factors ofummary of the main results of this paper including experi-
the d,2_2 state and, hence, it includes the pair-breaking efmentally accessible predictions for magnetic impurities in
fects caused by the spin fluctuations of the impurity. As ahigh-temperature superconductors. In Sec. Il we describe
bonus, we get explici(although qualitative relations be- the mapping of the model of a single magnetic impurity
tween the effective coupling constants, the relative imporcoupled to ad,2_,2 superconductor to an effective theory of
tance of intranode and internode scattering processes, afdliral fermions in one dimension with a non marginal cou-
important parameters such as the location of the impuritpling. In Sec. IV we discuss the largés approximation and

(relative to the CuO planeand the superconducting ga.  in Sec. V we discuss the solution of the saddle point equa-
We will find that, in fact, there is always one effective chan-tions, valid in theN.—c limit, and use it to investigate the
nel that matters. phase diagram of this problem at zero temperature and zero

A considerable number of theoretical tools have been demagnetic field. In Sec. VI we calculate the low- and zero-
veloped to study Kondo systems. For magnetic impurities irfemperature magnetic susceptibility of the impurity at zero
a metallic host, which have an essentially constant density cind finite(but smal) fields in theN.— < limit. Similarly, the
states near the Fermi energy, the different methods complénpurity entropy and specific hegt low temperatures and
ment each other in a manner such that we now have a rath&elds) are calculated in Sec. VIl again in thg—c limit. In
complete understanding of this phenomenon at a nonpertuec. VIl we conclude with a discussion of the implications
bative level. However, with the exception of larjemeth-  of our results and their relation with other work, particularly
ods or Wilson’s numerical renormalization group, all thethe RG work of Ingersent. Relevant details of the computa-
other methods(including the powerful mapping to one- tion of various integrals are given in the Appendix.
dimensional logarithmic gases, the exact solution via the Be-
the ansatz and the conformal field theory approa@nnot
be appiled to systems with a vanishing density of states. For

these reasons in this work we use the laNgeapproach, In this section we give a brief summary of our main re-
even thoughN =2 for thed-wave superconductor. In con- sults and discuss their implications for magnetic impurities
ventional Kondo systemd.=2 andN.=< are known to be in high-temperature superconductors.
smoothly connected and, although it is likely that this will (1) We introduce a model for a single magnetic impurity
also hold for ad-wave system, there is still no evidence thatin ad,2_,2 condensatésee Sec. I) with HamiltonianH
it is also true for this problem. In any case, given the lack of
alternative approaches, we will present here a I&tge-
the(c))ry of our problem. _ o o H=2, E(E)CEUCEU_Z A(E)CETCLZNL H.c.

ur largeN, theory predicts that magnetic impurities in Ko K
clean cuprate superconductors should undergo a quantum
phase transition at a critical exchange constant whose typical +s. f dsz(;)CT(;); C ,(;)‘ 2.1)
value is crudely estimated to be below the superconducting T
gap A, (details are given in the next and in the last two
section$. Our estimates indicate that, for an exchange couThis is accurate at energies and temperatures low with re-
pling J with strength about 10% larger than the critical cou-spect to the gapj, of thed,2_ 2 condensate away form the
pling, the anomalous behaviors that we predict should b@odes. We use a simple lattice model for the_,. quasi-
accessible to measurements of the low-temperature heat cparticles(see Ref. 1, which yields a qualitative description
pacity and magnetic susceptibilifguch as in nuclear quad- of the superconductor, but it has the correct nodal structure
rupole resonanceNQR)] with magnetic fieldH~1—-10 T  and that is all that we actually need to know. Next we con-
and at temperaturés~1—10 K. The magnetic fields should struct an effective model of one-dimensional chiral fermions
be in planeso as not to disturb the kinematic properties ofcoupled to the impurity:

Il. SUMMARY OF RESULTS
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‘ = dp ) 1 2x 1
Heff:azl lr:ET,L Jlx Z lepda(r(p)daa(p) Gf(X’A):AO\/E ex —K1_2X+A+ 1_2X+A
4 = dp X[1+0O(A,A In A)], (2.3
T
+a21 U,VZM (Ja/Z){Jw 27 \/mdav(p)} where e=2.7172... andx=Q¢/N.. This singular relation

betweene; and A results from a logarithmic singularity in
- o » dp’ the saddle point equation for the impurity occupancy. This
XTav'Sﬁmp[ ﬁw o Wdav(p’)}’ (2.2) singularity is absent for<<1. In this senset =1 is like an
“upper critical dimension” for impurity problems. The ac-
tual dependence on the coupling constant is determined by
wherev andv’ are the velocities of the quasiparticles of the S0lving the equation of state, E(.15),
d-wave state along the two lattice directions. This is the 1 1 A
; ; 0
model that we actually investigate. The nature of dhe > —— —%( -
state is presenta) in the momentum dependence of the in- mv
teraction between the chiral fermions and the impufége A rough estimate offx can be obtained by settinQ;=1
Eq. (3.32] and (b) in the number and angular momenta of and N.=2. We find that, for {/J.)—1~0.2 and
the channels that are coupled to the impurége Eqs(3.23 Ap=~100 K, Tc=¢€~9K, while, for (J/J.)—1~0.1,
and(3.24]. We truncate the momentum dependence of thel,~1 K.
interaction beyond a momentum scateAq/(27\vv') (5) We have calculated the impurity susceptibility and
where it saturates, indicating that the effective density ofspecific heat in the overscreened phdsel, for magnetic
states is nearly constant for states above the/gaand up to  fields and temperatured, T<<Ty which can be realized un-

an upper cuttoff scal®, the bandwidth of the normal qua- €ssJ is too close tal.. ForT<H<Ty we find[Eq. (6.15]
the susceptibility

A+0O(A®). (2.9

siparticles;s(lZ). A typical value ofA, for a CuO supercon-

ductor is 100 K and>/A,=10. 2 Ay
(2) In Secs. IV and V we solve this effective model in the Ximp~Nc(€—) H In "

largeN. limit. The physical properties of the system in the f

N.—c limit are determined by the behavior of timhase while, in the opposite regimel <T<Ty [Eq. (6.16)],

shift 8(e) of Eq. (4.8). This is the phase shift acquired by the

guasiparticles of the superconductor as they scatter off the Yimo~ 2N, In Z(Q)T In(&).

magnetic impurity. We find that, in contrast with the conven- mp ¢ f T

tional Kondo problem, the phase shifte) has a strong en- . . e ; AL TT

ergy dependenceXe) is parametrized by the singlet ampli- (S;g;arly, the specific heat in the reginté<T<Ty is [Eq.

tudeA and the impurity Fermi leved; (which plays the role

of the Kondo scale These are determined by solving the A2 Ao

saddle point equation€gs. (5.1) and (5.2)] which yield A Cimp(0,T)~9Z(3)N¢ —T? In(—),

and ¢; as functions of the impurity fillindQ;, the exchange €t

constant], the temperatur@, and the magnetic fielti. while for T*H<Ty we find instead the resulEq. (7.7)]
(3) Phase transition: We find that, 8= H =0, the system

has a quantum phase transition at a critical coupling constant (A A

Jo~(2vv'/Ap)/[1+In(D/Ay)]. This transition separates a CimP(H’T)%NC? & TH n H/

weak-coupling free phase in which the impurity is nearly i . . . .
free with a Curie-like susceptibility, from a strong-coupling 1he low-field regime is clearly very different from a Fermi
phase where the impurity is screened. We find that the iml_l_qyld although a Wilson ratio can still be defined and it is
purity is actuallyoverscreenedsince the impurity magnetic finite [Eq. (7.6)]
susceptibilityvanishedor J=J, atT=H=0. A nave use of

the BCS estimates yields~D sir’(k,)/[1+In(D/Ay)] which )
is larger thanmA, unlessky<1 (which is not unreasonable TXimp(H,T)  2In2

However, strong-coupling corrections in the superconductofrhe pehavior in the high field regime is more like a Fermi
(which, at best, can only be estimated and depend stronglyquid. These behaviors should be accessible to experiments
on the details of the mechanism of superconductiiiygen- i, clean samples of cuprate superconductors at magnetic
eral will invalidate the simple relation between the velocitiesfig|ds of 1-10 Tesla.

ko andA,. However, we expect that<A,, typically being We have not investigated yet the quantum critical regime

of order of Ao/2 or so. However, a precise estimate requiresy 7T, , which we will discuss in a separate publicatin.
a more sophisticated calculation than the one we do here. For

the puroposes of this work it will be sufficient to know that
J.<Ay,.

(4) Kondo scale: We find that, close to and abdye the In this section we construct the model that describes the
Kondo scaleT = ¢; is related to the singlet amplitude by  coupling of the quasi-particles of @&wave superconductor
[Eq. (5.9] to a localized magnetic impurity. We will show explicitly

Cimp(H.T) 94(3)

Ill. THE MODEL
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that this model maps exactly onto a model of a magneticthe Fermi operatorsEU create quasiparticles with momen-
impurity coupled to the spinons of a flux phase that we dis-

cussed in Ref. 29. The strategy that we will follow in this UM K. spin o, and energye(k). Here u is the chemical
section consists of first writing down a simple model for thepotential for the quasiparticles. The gap functitb(k) for a

quasiparticles of thel-wave superconductor with a physi- dy2_y2 superconductor given by

cally reasonable coupling to a local magnetic moment. Next

we will carry a dimensional reduction of this problem down A(k)=Ao[cogks) —cogkz)]. 3.3

to a model of effective one-dimensionhiral) fermions  Here A, set the scale for the gap away from the nodes. The
which has all the symmetries of thiewave superconductor. one-particle spectrum of this simple Hamiltonian agrees
The effective one-dimensional model coincides exactly withyajitatively with the observed photoemission spectrum.

the nonmarginal Kondo problem that was discussed in Ref. Next we write the quasiparticle operators in the Nambu-

29. In the next section we will use the results of Ref. 29 toggrkov forns2

draw conclusions on the effects of magnetic impurities in

d-wave superconductors. . ( Cki )
(k)= e (3.9

A. Free Hamiltonian K

In terms of the Nambu-GorkofNG) spinors, the free part of

We begin by choosing a model of &wave supercon- o HamiltonianH, can now be written as

ductor with the form of a BCS-type Hamiltonian. It has a
kinetic energy ternfwhich we choose to be of the form of a - - - -
tight-binding Hamiltoniah and a pairing term withd-wave Ho=2 ®T(K){[e(k)—u]ma—A(K)7}@(k), (3.5
symmetry. In Sec. lll B we will describe the way magnetic k

impurities couple to the quasiparticles. Here we will makewherer; and 5 are two Pauli matrices. This model has four
the phenomenological assumption that therd-isave pair- nodeé at the points in the Brillouin zone given by

ing regardless of the mechanism that gives rise to that pairg+ Ko, * ko), with ko=arccosf/4t). The spectrum of the

ing. BCS-type models which exhibit-wave pairing(driven  quasiparticles crosses the Fermi surface at those points and
by antiferromagnetic fluctuationshave been proposed by the gap closes. As a consequence, the quasiparticles have a
Bickers, Scalapino, and White and by Monthoux and linear dispersion relation in the vicinity of thesedes This
Pines! Here we will use a BCS model of this type to de- can be showhby expanding for small momentum departures
scribe the dynamics of the quasipatrticles. around the -kq,*= ko) points.

What will be important for the dynamics is that the model  The next step in the construction of an effective low-
exhibits four nodes where the gap vanishes and that the gaghergy model is to describe the dynamics of the quasiparti-
is fairly large away from the nodes. Thus, we will concen-cles close to the nodes. To this end we assign a label for each
trate on the behavior of the quasiparticles close to the nodegne of the four nodes. Let=1,2,3,4 be this label and we
Instead of using the full detailed form of the gap, we will assign the labed=1 to the nodeKy,ko), a=2 to the node
replace it by a linearized spectrum with a wave vector cutofff —k,, —k,), a=3 to the node € kq,ko), anda=4 to the
A (relative t(.) thg Iocathn of the no}ieuqh that thg ENeI9Y  hode Ko, — ko). Let ﬁ be the momentum relative to the
of the quasiparticles with wavevectaoY is approximately node. It is useful to work in the rotated basig=(1/

equal to the valué\ of the superconductor gap away from _ B . N
the nodes. The actual structure of the quasiparticle spectru%i)(quLqZ) and p,=(142)(q~qp), with velocities

X v=2v2t sinkg), v' =v2A, sin(y), whereA is the size of
away from the nodes will play a very small role and such . ) -
states will be neglected. This view is supported by recenthe superconductor gap at ItS maximum val_ue. e p)
photoemmission experiments by Shemal3* and Ding denote thgNambu-Gorkov spingroperator which creates a
et al® in YBaCuO superconductors where a Fermi surfacequasiparticle with(rotated momentump relative to the
is seen at optimal doping and it disappears progressivelwave vector of noda. The free Hamiltonian now takes the
away from the nodeg$where the gap vanishesor under-  form
doped systems. Hence, the important features of the quasi- )
particle spectrum that we will keep are the four nodes where _ d“p $,2 , >
the excitations are gapless, the correct behavior under lattice 10~ —(ZW)Z{q)l(p)(v P17+ v pPa7)P1(pP)
symmetries(and parity, and the Fermi velocities at the R R
nodes. o —®Yp)(vp1Tatv P2 ()}

The Hamiltonian for the quasiparticles of a BCS-type su-

erconductor in the absence of impurities is dzp > / >
P P _J W{‘Pg(p)(vpzrgﬂw p171)P3(P)

St MU - -
HOZKE E(k)c‘z”ck"_% A(K)e e g +HC (3.0 —®H(P)(wpyTst v Por)Pa(p)}. 3.6

To make the model concrete we use a lattice model for thIn the long-wavelength limit the Hamiltonian splits into four
?anisotropi() Dirac-like Hamiltonians. In what follows we

quasiparticles with a bare energyk) of the form will refer to these four sets of excitatiofhich represent
. . the four nodes of the-wave superconductpas to the four
e(k)=e(—k)=—2t[cogk;)+cogk,)]+u. (3.2  flavors(or channels
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It will prove useful for our purposes to rotate,(k) to a  are the spinors that diagonalize tevave BCS Hamiltonian
new field ¢, near the nodes. The effective rotational invariance around
each noddin terms of the redefined momeiptnables us to
expand in angular momentum eigenmodes around each node,

.1 -
‘ba(k)=‘72(1—i71)¢a(k), 3.7

_ L(p)= ey, : 3.1
and to writeH, in terms of,, ¥+(P) m;—oc [P (312
0 e.e 0+ This is effectively an angular momentum expansion in ellip-

d? - -
Ho:f ﬁ(z;; (6 o, 0 )WI(P)%(D) tic coordinates around each node.
* H, is now diagonal and takes the simpler form

‘= - dp? 0 e_e f- 4
_‘ﬂz(p)lﬁz(P)]_j W(e_em 0 ) Ho= pr_dp\/wp
a1 Jo 27
X[A(P) ha(p) — Yh(P) a(P)]. (3.9 .
In Eq. (3.8 the following definitions have been used: Xm;_w Tanl 5.+ m(|P) ¥, + m(| P
e, =\(vp)?+(v'px)’=ov'ps — b~ m(IPD o, m(IPD]. (3.13

0.=tan Yvpi/v'p,), o .
B. Impurity interaction
e_=+\(v'p)?+(vpy)i=+vv'p_, Now we consider the interaction term for spin impurities
given by
6_=tan Y(vp,/v'py),

wherev=2v2t sin(k,) andv=v2A, sin(k). Himpzé.fdsz(i)cg(i);W,cg,(i). (3.14
Next we notice the fact that, as far as the kinetic energy is
concernedp., p_, 6., andd_ are just dummy variables In practice we will be interested in well localized impurities.

and that the measure in the integrals is invariant under thgp.c means thatl(x) is sharply peaked at some poiﬁ@
changep,,p, into p..,p- . It urns out—and we show this  \here the impurity is located. Realistic magnetic impurities
below—that the interaction term is also invariant under &, ygacuo and other high-temperature supercondutdrs
redefinition of the integration variables. Naturally, the quasi-p, st always involve magnetic atoms which either substitute

particle operators themselves are not invariant under thesg cy atom or hybridize strongly with it. This is the case for
redefinitions of variables. Hence, although all explicit refer-p; which, due to its hybridization with oxygen, it is believed

ence to the anisotropy can be removed from the Hamiltonian, penave like &= 1/2 impurity spin® Similarly, Zn substi-
it remains quite explicit in the relation between the quasipari tes cu which now behaves like a missibg 1/’2 magnetic

ticle (fermion) operators and the fields that will describe themoment and in this sense is a magnetic impurity. In all cases

effective Hamiltonian, i.e., in generalized coherence factorsyt ¢, sypstitution we will model the impurity as a localized
Taking these observations into consideratibly, can be

! ) S=1/2 moment residing at a site of the square lattice which
put in @ much simpler form we will consider as the origin. Notice, however, that O can
. - g also behave like a magnetic impurity in the cuprates. An O

H :f pdp (27 d@ 0 - vvpe magnetic impurity sits in the middle of the bond instead of a
“Jo 27 Jo 2w Jov'pe'? 0 corner Cu site. This case leads to more complicated form of

4 the effective interaction which we will not discuss in this

> > thesis.
t

ngl Ya(P) Tant(P), (3.9 The effects of magnetic impurities on Cu sites can be

modeled qualitatively in terms of an exchange coupling con-

where Ty, is the 4<4 diagonal matrix in flavor indices stantJ(i) which couples most strongly to the quasiparticles

diag(1-1,—1,1). The signs in the matriX,, account for > i i 2
the parity of each node. Here we have only kept explicitly & X=0 and decays rapidly and symmetrically aroundO0.

the flavor(node indices. For simplicity we will use a model in whicB(x) is a narrow
We now diagonalize the kinetic energy and expand thé5aussian. We can see clearly from the discussion that led to
fields in energy eigenmodes, the effective free Hamiltonian that the only properties of
R - - J()Z) that are important are the amplitudes of its Fourier
P(p)=(Pu () +¢_(p)u_(0), (3.10  transform at the relative wave vector of the nodes. These
Where amplitudes play the role of the effective coupling constants.

Physically, the strength of the exchange coupling is deter-

mined by an overlap integral which decays very quickly.
(3.11)  Thus, impurities which substitute Cu atonmsthe planeare

more strongly coupled than those that substitutec@t of

B 1/1
U¢(9)—E Ry
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the plane Also impurities on sites other than Cu sites are 4 2 2y R 2p R
more weakly coupled to the quasiparticles than those on CiH = 53 Z abE f —de;i(p)f ——5pi(P")
sites. These observations are important since we will see in =1 (2m) (2m)

Sec. V that the impurities are Kondo screened if their ex- 4

change coupling constants are large enough. 1S Z K 2 f _2¢ )
We now proceed to find the contribution of the impurity af21 (2m ail
interaction to the effective Hamiltonian. In momentum space d2p’
Eqg. (3.14 becomes x(ifz)i,jj W(//g'j(—p’)-i-H.C. (3.18
d*k d*K e TRy " In Eqg. (3.18 the indicesa,b are the flavor indices which
Hmp=| 52 | 5o52d(k=K')S co(K)755:Cor (K'). q. \o. > Indicesa,b ar vor indices which
(2m) (2m) label the effective Dirac fermions species associated with

(3.19 each node. The indicesj run through the spinor compo-
nents (two per each NG spinor, i.e., per ngdand label
linear combinations of quasiparticles with spin up with holes
with spin down. Also notice thgp andp’ now label small

In terms of the NG spinors it reads

2
o Y, TN (! departures from the appropriate node. Using the factithat
Himp= | "i,jzl D=KOIS P iK' is an antisymmetric matrix, we can rewrite H8.18) in the
form
+S_€;® (K®(—k")+H.cl}, (3.16 ,
dp de

whereS; represents the impurity spiﬁ,z%(sx—isy) and Himp=Ss bzz abE f Por f al(p)
€j is a 2x2 skew symmetric tensor.

As before, we expand the NG spinors in their components = dp’ (27 de¢’ -,
centered around the nodes. Since we have four nodes, the Xfo 27 Jo ﬁ‘ﬂb,i(p )

impurity Hamiltonian has terms which describe spin-flip

scattering processes involving, in addition, eventual intern- dp .

ode scattering processes. The strength of these scattering +S_ bEl Kabz f p277 f a1(p)
a,b=

processes is determined Wé) Whereé is the relative

wave vector of a pair of nodes. There are four cases of in- dp’ (2= d0’
terest. P Cr % J(—p")+Hc. (3.19

(D) Q ~0, corresponding to scattering processes that do
not mix nodes(“forward scattering). The corresponding The 4x4 matricesK3, and K, used in Eqs(3.18 and
coupling constant iS(0)=J,. (3.19 are given by

@ Q~2k0é1, which mixes nodes 1 with 3 and 2 with 4. Jo Jg d1 Iy Jg Jo d I
This coupling constant i3, .

(3) Q~2Kq&,, which mixes nodes 1 with 4 and 2 with 3. K3,= Ja Jdo Jo J K= Yo Ja Ji
This coupling constant id,. For systems with exact tetrag- Ji J2 Jo Jg J2 J1 Ja Jo
onal (sguare symmetryJ;=J,. J, I Jg o Ji Iy Jo 4

(4) Q~2ko(e1+€,, which mixes nodes 1 with 2 and 3 (3.20
with 4. These couplin_g constgnts a]ie For _tetragonal SYS- The form of Eq. (3.19 strongly suggests the following
tems they reduce to just oridiagonal couplingJy . change of variables(particle-hole transformatiohsper-

For example, consider an impurity seated at the Cu site g}med on the second component of all four flavors:
x=0. As a crude approximation we may assume

J(x)~J6(x). The Fourier transform tells us that all the cou- U AP)— ¢I’2( —p), Yoo p)ﬂlp;’z(— p),
plings will be the same, and equal b A more realistic ) :
shape forJ(x) would be a Gaussian centered at the impurity Y3 AP) = P3d—P)y  YuAP)—dal—p) (3.21)

sitex=0 and decaying rapidly within a distance of the orderto express the interaction term as a scalar product of two
of a lattice constant \. Thus we take that spin operators.

J(X)%W(zwv)e*(llzxz)iz will generate, for a generik We can now separate the modes and find an effective
vector [which in our case will be Rye;, 2koe,, one-dimensional model. After integration over the angle
2ko(e,+€5), and Xy(e,—e,)], variable ¢, the fields involved in Eq(3.19 become
o) — 1a— N2K212 27 do 1
)= Jem =T (319 fo 2 1a= Lo (pD+ v ()]s,

For the impurity at the origin in a tetragon@quare lattice,
all the coupling constants are real, with>J;=J,>J4. In

the language of the fields introduced in E8.7) the impurity fzw %¢2a=i[¢71+(|p|)— do1-(IpD]a. (3.22
Hamiltonian now becomes
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Now we define, for each flavom, an effective one- J 0 0 0
dimensionalchiral (right-moving Fermi field 0 0
Y2
Kap= , : (3.29
. (p)E{\/m'ﬂo,+,a(|p|) for p>0, . g 1o o 3 o0
1 VIplo- a(lph) for p<o, o 0o o0 -J
with
_[VIp[¢-14a(lph) for p>0,
dza(p)= —JTol (3.29 i
plY-1-allp)) for p<o, I =dg+ g+ I+ 35,
and Eq.(3.19 can be recast as Jp=Jp—Jg+31— 5,
1 = dp Ji=Jo+3g— 31— J,,
Himp=S35 > Kgbj —— VIpldLi(p) §Tr0TYd T 2
2 ab,i — 21
JA:JO_Jd_Jl"FJz. (33@

As one can see in E@3.29 flavors 2 and 4 appear to have

S, andS, with the sign reversed. However, this can be com-
pensated by the following additional rotation in the spin
components:

0 dp’
X f_x S VIp’|dpi(p")

+ hald t
5 3 k0[50 Vbl

= dp’ dy(p)—idy(p), dy(p)— —idy(p),
X —JIp'ldi,(p")+H.c. 3.2
.57 e e, 29 dar(P)—ida;(p),  dy(P)——idy(p). (3.3D

Here we perform the change of variables suggested above ifter all of these manipulations we find that the effective
setting one-dimensional theory for this model is

4

Herr= E z

a=1o=1,|

dyo(p)—di(—p) for a=1,...,4, (3.2

and thus, in the definition given by E@3.24) we rename
d1a(p) as thed;,(p) component of an effective sphene-
dimensional chiral fermion, andga(—p) as thed ,(p)
component. Please notice that this labehdd equivalent to

the spin of the original quasiparticles. In fact, the relation
between these effective one-dimensional chiral fermions and
the original quasiparticles is actually quite complicated. The

2 ao'( aO'(
a=1o,v=1

4
o dp t
2 2 (Ja/2>{ f 7 Mdacxp)}

- - » dp’
XT(rv'Simp[ Jloc % \/mdav(p’)} (332)

(flavor) coupling matrices commute with each otlias re-

quired by the S(P) spin rotation invariandeand can be

In Eg. (3.32 we dropped the primes in E¢3.27) and in the
effective coupling constants. The kinetic energy of the chiral

diagonalized simultaneously by means of the unitary transfermions isE(p) = Jvv'p.

formation

(3.2

wherei=71 or |, the flavor indices andb run from 1 to 4,
and

déi: Uanbi »

1 1 1
y 1/-1 1 -1
=2l —1 -1 1

1
1
1l (3.29
1 -1 -1 1

This rotation brings the coupling matricés}, and K, to
the diagonal form

JJ 0 0 O
0 Jb 0 O
K3 =
ab ’ ]
0 0 J; O
0O 0 0 J,

Equation(3.32 can be recognized to kexactlythe non-
marginal Kondo Hamiltonian that was discussed in Ref. 29.
Hence, the effective Hamiltonian for d-wave supercon-
ductor coupled to a magnetic impurity is essentially equiva-
lent to a (multichannel generalization of a nonmarginal
Kondo problem. There are four channels, one for each node.
The channel degeneracy is generally lifted by the internode
scattering. In fact, Eq(3.30 shows that in the absence of
internode scatteringdi.e., J;=J,=J4=0) the four flavors
couple to the impurity with exactly the same exchange inter-
action strengtil;=J, (a=1,...,4). For a strictly tetragonal
system the couplings are ordered in the sequence
J1>35=J,>J5. Intuitively one expects the channel with
the largest coupling to dominate the low-energy limit. In the
extreme limit in which all internode and intranode ampli-
tudes are exactly equal one finds that channels 2, 3, and 4
decouple and that only the remaining channel 1 couples to
the impurity. Thus, in this limit, the physics of the system is
that of a single-channel nonmarginal Kondo problem.

Given that these two seemingly different systems are ac-
tually equivalent, most of the results found in Ref. 29 carry
over to this problem almost without change but with a new
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physical meaning and processes, in particular including pairN.=2 (i.e., spin one-haf Clearly, in this situatiomN., is not
breaking effects. In Ref. 29 we found that there is a criticallarge. Nevertheless, we expect the laNetheory to give a
value of the exchange coupling constdpt above which the qualitatively correct description. We now proceed with a
impurity spin is screened. We also found there that the critibrief summary of the largét, theory* as adapted to the
cal valueJ. was of the same order as the energy cutoff,physical situation described by the Hamiltonians of the pre-
which here is the superconducting gAp. The reason be- vious section.
hind the existence of a finit&; is that the effective interac- In order explore the physics of this system we extend the
tion between the impurity and the normal excitations is mo-symmetry from SW2) (spin) to SU(N,) and look at it within
mentum dependent and that it vanishes at small momenthe largeN. approximation. Notice that, unlike the Coqgblin-
[see Eq(3.32]. However, the same momentum dependenceSchrieffer modelN, is not related to a magnetic impurity in
makes the effective coupling grow arbitrarily large at largea higher-spin representation. Similarly, the four flavors of
momenta. This last behavior is unphysical and it results fronfermions originate from the nodal structure of the supercon-
the approximations, which are accurate at small momentductor and are not related to an orbital degeneracy as in the
only. This observation motivates a simple redefinition of themultichannel Kondo problem in metals. Thus the problem
model with a finite, momentum-independent, coupling atwe want to study habl.=2 ‘“colors.” The number of “fla-
momenta larger than a scale of the ordet\gf/(27\vv').  vors” is N;=1 if there is node mixing andN;=4 in the

In Ref. 29 we showed that a momentum-dependent couabsence of internode scattering. However, there is a subtlety
pling is equivalent to a change in the density of stdlze9) in the treatment of the impurity once symmetry is extended
for a theory with a momentum-independent coupling confrom SU?2) to SU(N.). For the group SI2), the lowest
stant. The model of Ref. 29 and the model discussed abouwepresentation for an impurity 8=1/2. For SUN;) many
have a DOS vanishing linearly with the energy. We considemore representations are allowed. For example, the funda-

a modified model with the DOS mental representation, which has dimensidp, is con-
structed by occupying aN-fold degenerate multiplet with a
|€l single “slave” fermion!* For generalN,, with the excep-
- for |e|<Aq, . ; o= , .
2oV tion of N.=2, this representation is not self-conjugate or, in
ple)= (3.33  other terms, it is not particle-hole symmetric. Other represen-
5 9 - for Ay<|e|<D, tations can be construct®dy occupying the multiplet with
ay

Q; slave fermions. FoQ;=N./2, which is available foN.

whereA, is the size of the superconductor gap away frome€ven, particle-hole symmetry is exact. We will see below
the nodes. This change in the DOS is equivalent to a saturdbat particle-hole symmetryself-conjugation is a case of
tion of the coupling constant at the momentum scaleSPecial interest. Notice that all choices of representation are,
Aol(2mov"). in pr.|nC|pIe, valid extensions from the physical &Y

In other words, we are assuming a linear dependence dfvariant system. Similar caveats have to be made about the
the DOS with the energy around the gap nodes, up to thghome of a particular generator in the algebra qf[,)(that
energy scale of the superconductor gap. For energies highéflll represent the Zeeman term fbic>2. In fact, in Ref. 26
than the superconducting gdy,, the normal quasiparticles it was shown t_hat some care has to be taken in this choice in
are, for all practical purposes, identical to normal electronsOrder to describe a smooth weak-to-strong field crossover. In
In a realistic cuprate superconductor, the band structure i@ny €vent, we are only interested in the extrapolation of the
actually rather complicated. Nevetheless, we can take int§eSults atN.>2 down toN.=2 where there is no ambigu-
account the contribution of these states to the physics bifies but they are present for al.>2. .
considering a flat fermion band characteristic of a continuum In Ref. 29 it was shown that, after integrating out the
spectrum fromA, up to a bandwidttD, which works as a fermion and impurity degrees of freedom, the impurity con-
high-energy cutoff. As we will see below, the contribution of tribution to the effective actiores=pFin,, takes the form
these states can almost always be ignored but they will enter

in our results in two important place&@) by shifting (down- 1 N Ny
yvards the.critical va]ue of the co_upling con_s;aﬂu and (b). Fimp=— = E TrIn| 0.+ 6f+2 |¢I|ZGO(Z)}
in the scaling behavior for “half-filled” impurities. The shift a=1 =1
in J. is quantitatively important and it results in a down- N
wards shift ofJ; from the nominal value of the supercon- +J' dr & S 62| - Qe
ducting gapA,. Hence, we will assume that<A,. This Jo \ &L fet
happens if the scales df, andD are reasonably well sepa- N
rated. — N
EFimp+f dr J—:(zl |gb|2)—Qfef , (4.2)

IV. LARGE- N, THEORY

In the previous section we constructed a model for a magwhere ¢, are the Hubbard-Stratonovich fields introduced to
netic impurity embedded in d-wave superconductor and decouple the impurity in the largd-formalism. The proper-
showed that it is equivalent to a special nonmarginal Konddies of the normal excitations is encoded in the function
problem. In this section we solve this model in the laMje- Gg(z) (where the complex number= e+i\ is the analytic
approximation, wher&\,. is the rank of the symmetry group extension of the energyWith the new definition of the DOS
of the impurity spin. In the physically relevant situation of Eq. (3.33, the functionGy(z), defined by
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© de p(e) We define
GO(Z)E_f 2mvv’ €—2’ (4.2
- A_E|N=fl|¢l|2 45)
now takes the form ——— (4.
€ Ao whereN; is the number of “flavors.” For the problem of the
n—| for |e|<Aq ravors. Torthe p
ReGy(e+iN)= v’ € ' d-wave superconductof\; in principle is the number of

0 for |e>A nodes and\N;=4. However, we showed above that iheer-
o (4.3 node couplings are always differerfand smaller than the
intranodecoupling. This coupling anisotropy reducesatioe

| €] the number of effective flavors. Hence, from now on, we will
~ 5oy STV for [e[<A,, setN,=1.
Im Go(e+iN)= At finite temperatureT, the effective action of Eq4.1)

becomes arinfinite) series running ovefimaginary Mat-
subara frequencies. Using this approddhe effective free
(4.4  energy becomes

20 v f >A
~ gy S9N for le[>Aq.

— N¢ (= ee —(e+iN) e+ (2,]p|>)Go(e+iN)] Ng (=
Fimp= 517 Lodf P M TN et S dPGole—iN) |~ f,wden(f)‘s(f)' (4.6
|
where &e) is the phase shif® andn(e) is the Fermi func- IFimp 52,:_imp (92|:_imp
tion, Simp: - W’ Cimp: _TWa Ximp™ — W;
1 (4.10
n(e)= Bt (47 \where the total impurity contribution to the free enefgy,,
o is given by
Explicitly we find
— U|2:NC
_1 )\“F 7T|6|A/2 + Fimp:Fimp(Ayff:H:T)+7T J A_Qfef' (41])
o(e)=tan (A—07). 0

€+eA In|Ag/el— € _ _
(4.8  Since bothA ande; are also functions of andH, care must

. . be taken to account for their contribution. However, siace
Go(2) has a branch cut and the jump of the function acrossind ¢, satisfy the SPE’s, we get

this cut is energy dependent. This is an important difference

with the usual Kondo effect in which the jump across the cut IFimp aF—imp IF imp 5F—imp
for the functionGy(z) (see, for example, Ref. 14s energy aT T an JH _ oH . (412
independent and gives essentially foenstant width of the e Ae

resonance. This will not be the case any longer as the widthy, o only the explicit dependence @nandH matters.
of the resonance now becomes energy dependent. This marks

an important departure from the “local Fermi-liquidor the

resonant level modgbehaviot®38characteristic of the usual

marginal Kondo systems. Using the formalism of the previous section, the saddle
The largeN, analysis of this problem proceeds in the point equation§SPE’S take the form

usual manner. Given the impurity free enefgy,,, a set of

V. SADDLE POINT EQUATIONS

values ofe; and A that minimize this free energy is sought. 1 (+D a6
The extremal values o&; and A satisfy the saddle point Q=7 5 den(e) TQ(E) (5.3)
equationg SPE’S
and
JF; JF;
T’“pzo and ae"“p=o. (4.9 w2 1 [+D 98
f — T — — —
N¢ 3 - f—D den(e) &A(G)' (5.2

In the next subsection we will write explicit expressions for

the SPE’s and solve them. Thermodynamic magnitudes suchhereD is the bandwidth cutoff. In general we will be in-
as the impurity entrop,,,, the impurity contribution to the  terested in the regim& H<A<D. In this regime, the con-
specific heaCin,,, and the impurity contribution to the sus- tributions to the SPE’s from energies higher thisncan be
ceptibility ximp as functions of temperatur@nd magnetic well approximated by setting=H = 0. This amounts to set-
field) can be computed from the thermodynamic formulas ting the Fermi function to be&(e)~0, for Ag<e<D, and
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n(e)~N., for —-D<e<—A,. The SPE’s thus are a sum of N, A N. A ln(Alv) N, A In(1/A)
two terms, one coming from energibg§ <A, and one from  Qf~ 2 1+v + 2 1+A In(Alv) T 2 [1+A IN(A/v) ]2
D=|e|=A,.

(mA2)?

(o
A. Impurity occupation + A Inj 1+ [1+A In(A/v)]? L .8
The saddle point equatio(s.1) reduces to It is important to stress that, regardless of the approximations
A made in evaluating the integrals, the first SPE, G&db), is a
f:f 0 den(e) (m2)|€]A relation betweem (the amplitude of the singletand the
Ay T [(7/2) |e|A]*+(e+€A In|Ag/e|—€)®  impurity Fermi level(in units of the gaph,) v at fixed oc-

cupationQ; . This relation is independent of the coupling
constant and it must be solved first. For the problem that we
(5.3 ) _ i o
are discussing here, the relation betweeandA is singular,
_ . _ _ . as implied by the logarithmic singularities in EG.8). We
For the reminder of this paper, we will be interested in thewijll see below that, due to the presence of this singularity,
physics of this system close to the critical coupling constantihe impurity Fermi levek; is no longer simply related to the
In that regime, the singlet amplitude becomes very small = singlet amplitudeA. This phenomenon does not occur in the
and the asymptotic behavior of the SPE's in this domain caronventional Kondo problem in metals, where the DOS is
be evaluated explicitly. N ~ constant. It occurs for systems with a DOS vanistfiagter
Thus, close enough to the phase transition, whers  than linear with the energy. In this sense, the case of a linear
very small, the contribution from the last term in E§.3  DOS is amarginal system.
becomes Let x be the impurity filling fractionx=Q;/N.. The so-
lution of Eq. (5.8) takes the form
2 A0+ €s
1-—arctan —-—+—

+NC 1 2 t’E Ao‘f‘éf
2 |7 A T2 a0

lim
A0 (/2) AoA B p( 1 2 1
v(x,A)=\eexy — 7o 5 T o
Ag 2 [ (w/2) Agh 3 A1-2x+A 1-2x+A
T\Agte)” 37\ Agte R X[1+O(A,A In A)], (5.9
providede;+ A,>0. wheree=2.7172... .

Hence, for generic values of=Q;/N., the impurity
Fermi levelv depends on the singlet amplitudethrough an
essential singularity of the form exp€onstA). As

Qi— N¢/2(x— %), there is a crossover in the functional form
TA/2 of v which now behaves like exp{constA?), which van-
T fm z (wA2)2+ (A In z+ ve TBz)2 (5.9 ishes much faster as approaches zero. It is interesting to
note that if the contributions from the states with energies
wherez=eY Ay/e andv= €;/A,. It is clear that the inte- between—D to — A, had been neglected altogetheryould

For the remainder of this section we will consider the
saddle point equation in the case=-H=0. In this case, the
SPE takes the form

grand in Eq.(5.5) shows a crossover behavior at havevanisheddentically atQ;= N./2, for all finite values of
i A. Sinceat Q;= N./2 the Hamiltonian has an exact particle-
Alnzo=ve “"z,. hole symmetry, it may appear that €;/A, should have to

vanish exactly at this point. In fact, it does not vanish due to
states whose DOS violate the strict linear behavior of the
DOS at low energies.

In the regimer<A <1, this equation has a root at large
given by

eliA 1/A .
>>e . B. Equation of state

A A
zo~<— 1’A)In
14 14
Taking into account the change in the behavior of its de-

nominator, Eq(5.5) can be re-written in two pieces with the
asymptotic form

Let us consider now the second SPE, £&32). This equa-
tion relatesA (the amplitude of the singleto the coupling
constant(once the relation between andA is known. We
will regard this equation as agquation of state

At T=0 andH=0 the second SPE, Ed5.2), can be

N, 1 A In(1/A) :
|<%— + written as
2 |7 1+ A In(Alv) | [1+A In(A/v)]?
(5.6) T2 So, e(e+e)
and Jo Jo "2 (meAl2)Z+ e+ e+ €A In(Agle) ]
(7A/2)? e(e+€f)
> ¢ + d A 5.1
= a N A |t (5.7 €780 A AR (exepz 10

Getting everything together, E¢.1) reduces to the expres- In the second integral of the right-hand siRHS) of Eq.
sion (5.10 it is useful to perform the change of variables €; /¢
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while, in order to treat the first integral or the RHS of Eq. the zero point for the energy, but not necessarily a finite
(5.10 we use agaiz=e**(A,/€). As abovepy=¢;/Ayand  density of quasiparticle states within the nodes of the gap
vp=¢€;/D. We can write (however, see belowThe eigenfunctions remain unchanged
but the eigenenergies are shifted Hy

1 7, dz (1+vze M)
—=—-e =
Jdo 2 el/iA EZ(A 77/2)2+(vze VAL A In 2)2 E=—Hi’/€2(|2)+A2(|Z). (62)
+Z jy % 1+u (5.1)  Thus, after the expansion in small momentum around the
2 )y u (A@/2)?+(1+u)?

nodesof the gap, the two-dimensional spinors will disperse
where we have defined the dimensionless coupling constaifith

do by
0 E=—H=xvv'p, (6.3
1 1 7w%i
oA I wherep has been defined before, in the model without field.
9o S0 o It is not difficult to convince oneself, by going through the
The second integral on the RHS of EG.11) can be (several transformations involved in the reduction to the ef-
shown to give the leading contributions fective one-dimensional model, that, at the level of the one-
dimensional Hamiltonian, the magnetic field enters asia
T fv du 1+u '7TI D 1 magnetic field coupled now to the one-dimensional chiral
2 ), U A2 (1ru? 2 " Ay 1+a? fermions. Thus,
a Ao 4 o dp +
2o Hor= 2 2 | 5 (oo 'p=Hr)dl(pP)d,o(p)
X(1-7a%)+---, (5.12 4 - dp
+
where a®=(wA/2)?<1 in accordance with the hypothesis +/§=:1 v VZ:T . I fﬁw o \/md/a(p)}
thatA is small in the regimes in which we are interested. The C
first integral of the RHS of Eq(5.1]) is treated in the Ap- > > » dp’ - ,
pendix as an example of the approximations used. Retrieving X Tgy Simp le om VIp'ld, . (p") | (6.9
here the results of EQA8) we write Eq.(5.11) in the form
1 D 1 A The change in the kinetic energy, depending on the spin
-_T Inl =+ T — polarization, changes the form of the functi@g(w,H),
o 2 \Ag 2 1+(wA2)? " [1+(mA2)%)?
2y4... = d
+O(A%)+- . (5.13 Go(w,H):f % Ir?l :
Now we define theritical coupling constangs the limit for o w—\vv'pt+H7T

A—0 of Eq.(5.13,

1 ftﬁ lelde 1 L
1 = (D T (5.14 S 2mov’ ) (a)-l—H)—eE( +73)
—=—Inl—|+=. 5.1
9e 2 \8o/ 2 1 o lelde 1
For smallA we obtain the scaling equation + 2mvv’ fﬁm (w—H)—€ 5(1_7'3)’
1 1 Ad m [ wA\? 3 (AO 2 N (5.15 (6.5
oA+ —|—]| |32 cee . (5.
9c Yo 41\ 2 D

where 73 represents an SB(.) diagonal generator having
elements with eigenvalug-1 andN.—r elements with ei-
VI. IMPURITY MAGNETIC SUSCEPTIBILITY genvalue—1. In what follows we will taker =N./2 which
respects theHd— —H symmetry of the S(2) theory. For
eneralr, a particle-hole transformatids not equivalent to
— —H. But for r=N./2 these symmetry transformations
are equivalent. In other terms, for generathis magnetic
field breaks both thél— —H and particle-hole symmetries.
Notice, however, that theepresentationof the impurity is
R . . . determined solely by the char@g; and it is unrelated to.
Ho=2 ®T(K){[e(k)+pu]rs—AK) 7~ H}D(K). In the presence of the field, the impurity level has an effec-
k tive filling factor 2Q; /N, . We will see below thaQ;=N_/2
6.0 is a special case. For the physical cake=2 there is only
Here the magnetic fieltl is multiplied by the 2<2 identity ~ one possible representati¢ne., spinS=1/2) which corre-
matrix. The consequence of the introduction of a finite magsponds taQ;=1=N.2. For generaN, these two situations
netic field is thus, the generation of a finite relative shift indo not necessarily coincide.

In order to consider the effect of a magnetic field in our
model it is necessary to proceed with some care. In principl
we need to go back to the original model to look into the
effects of a finiteH. In terms of the Nambu-Gorkov spinors
the “free Hamiltonian” Hy now becomes
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These changes will be reflected in the phase shift definett is easy to see that in the limiH <¢;(0), one has
in Sec. IV. In presence of a finite field the impurity free

energyFiy, can be written as N, A(0)
C
O H?2

F

A
1+A(0)In W)' (6.1

imp= |2\I_; f mden(e)[é(s-}— H)+d8(e—H)], (6.6
This expression shows that the impurity contribution to the
magnetization vanishes & In H with H—0. As expected,
the impurity magnetization vanishes as the field goes to zero,
thus showing that the magnetic impurity has been
'screenined. However, in a conventionarginal Kondo sys-
tem, the magnetization vanishisearly with the field. Here
instead we find a faster field dependence.

where §e) is given by Eq.(4.8) andn(e) is the Fermi func-
tion. Equation(6.6) is manifestly invariant under the trans-
formationH— —H.

The magnetization and the susceptibility are given, re
spectively, by

= 2F
M mp= — M, Ximp=— i‘g‘p (6.7 It can be shown, using similar arguments, that a general
oH dH expression for the impurity contribution to the magnetic sus-
which take the form ceptibility is given by
Ne [+ an an
= — (e—H)— — N +2 gn| 9o J0
Mimp=5 j_x df(ae(e H)= G (et jole). Ximp(T,H)I—Cf — —(e+H)+—(e—H)}
27 )_» Jde|de de
(6.8
In the limit T— 0, the functiondn(e)/de approaches a nega- _ & erde e
tive Dirac & function localized a&=0. In this limit we find 27 ). (€+1)2
Mimp(O.H) NC[&(H) S(—H)] (6.9 «| 22 22 } (6.12
implY,F ) =—5— — o\~ . . - - . .
2m de XT+H de XT—H
Now we can use Eq4.8) to write an explicit expression for
the magnetization At zero temperature the susceptibility becomes
M(OH) th . (wI2) HA )
H)=-—tan — N. | 96 a9
2 H+HA In(Ag/H) — ¢ Ximp(O,H):_ﬁ - +£ _ (6.13
th . (m/2) HA ) A H
— ——tan .
2 H+HA In(Ao/H) + et Thus, we find that the susceptibility at zero temperature and
(6.10  at low fields[H<€¢(0)] is
|
NA(eZ[H+HA In(Ag/H)]— 2 HA{(mHA/2)?+[H+HA In(Ag/H) %+ €7})
Ximp(OH) = (6.14

{(mHA2)?+[H+HA In(Ag/H)1?+ e7}2— 4eZ[H+HA In(Ay/H)]?

It should be noticed that in all of these expressions, the quanFo summarize, we find that in the low-field limit the zero-
tities e and A are functions of the fieldH, with a limiting  temperature magnetization vanishes Ii& In(A,/H). How-
value €(0) and A(0) for T=H=0 found in Sec. V. The ever, in contrast with the conventional “Fermi-liquid” be-
guantity A(O) should not be confused with,. Hereafter we havior of the Kondo effect in metals, the magnetic
will set A=A(0) ande;= €;(0). Themagnetic susceptibility susceptibility isalsofound to vanish in the low-field limit as
obtained from Eq(6.11) agrees with the limik;>H of Eq.  H In(A/H) and at zero temperature. Hence, in this nonmar-
(6.14 and gives ginal Kondo system, the magnetic impurityaserscreened

even for a single channel of fermions. In the low-

temperature, zero-field regime, the impurity susceptibility
T has aT In(A,/T) behavior which again shows that the impu-

(6.15 rity is overscreened.

A\? Ay A A
XimpNNc E_f H In F+NCE—%H 1—5
In the opposite regimeél <T<¢;, the susceptibility is

VII. IMPURITY ENTROPY AND SPECIFIC HEAT

A A We can estimate the impurity contribution to the specific
Ximp(T,0)~2Ne In Z(e_f>T ln(?)' (6.16 heat in the limitT<H, in the screening regime. Using the
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SPE and some straightforward algebra, the impurity contri- Cimp(H, T) w2
bution to the entropy is Txm(H0) 3 (7.9
JF Ne (=  €dn which is essentially identical to the Wilson ratio for the
S‘mp__ﬂ_TE L\ 27 _deg geloter T ale= ]y ondo effect in Fermi liquids.
r (7.1) Hence we found that in the strong-coupling Kondo phase,
' the impurity specific heat at low temperature and low fields
Using the scalingge=xT this is behaves likeT? In(A,/T) and TH In(Aq/H) depending on
whetherH<T or T<H. Only for T<H do we find the con-
Ne (= e” ventional lineafT behavior of thgzero-field specific heat of
Simp=~ 5 f_mdxx(eu 1)2[5(XT+H)+ S(xT—H)]. the (margina) Kondo effect in Fermi liquids. Notice, how-

(7.2) ever, that the slope of the specific heat in this regime is
field dependent and behaves likeIn(A,/H). However, in
In the limit T<H, we may expand the phase shift around thespite of these differences, we found that the conventionally
pointx=0 to get defined Wilson ratio is still finite but it is different in both

. regimes.

(7.3

© €
Sin=Xi (O,H)TJ XX ——3,
imp= Ximp Y (e+1)? VIIl. DISCUSSION

where ximp(0,H) has been obtained in the previous section. In this paper we constructed a model for the problem of a
The impurity contribution to the specific heat is then equal tomagnetic impurity in ad,2_,2 superconductor. We solved
the impurity contribution to the entropy in this limit. Our this problem using the largd; approximation and found
result shows that the impurity entropy vanishe§at0 and  that there is a quantum phase transition from a phase in
finite field, for T<H. which the impurity is nearly free to a phase in which it is

The general form of the specific heat is overscreened. We estimated the value of the critical coupling
constantJ.. We found thatJ. could be both smaller or
larger tham\,, the gap of thal-wave superconductor, but it
is certainly smaller than the bandwidih of the electrons
that participate in the superconductivity.

} This result agrees with recent work by Ingerémmn a

xT

Ng [+=  ,an[ad 96
Cimp:m . dee & £(6+H)+E(E_H)

N.T Foc e {aa

a6

T e
xT+H 7€

20 dxx® (eX+ 1)2 Je related system. Ingersent used a Wilsonian numerical RG
approach and found that the critical coupling runs off to the
(7.4 cutoff (strong couplingunless either particle-hole symmetry
is broken(for the band fermionsor additional high-energy
states with a flat DOS were added. In the problem of the
A2 Ao d-wave superconductor the former possibility is excluded by
Cimp(0,T)~9Z(3)N¢ —T? In<? , (7.5  the superconductivity itself but the latter is required since
€ such states are always there. In any event there is no reason
to require thatl, should be smaller thaa,. In fact, even if

— o

In the regimeH <T<¢; we find

where {(3) is the Riemann zeta function at 3 and it is a

number of the order of unity. J.=A,, the Kondo scaleT does not track]. and it is
Using the results of Eq6.16 and Eq.(7.5), we can com- almost always small_gr thafu, (ir_l fact, quite a bit smal_le)r
pute the Wilson ratio for the regirmid<T<e¢; and find The yalue of the cr|t|call coupling constant is nom_mlversal
and it depends on details of the high-energy physics of the
Cimp(H,T)  94(3) system. Thus, our approximations have emphasized the role

T (H.T) ~ 52 (7.6)  of the nodes and replaced the states abaAyeby a ‘“flat
Ximp{ band.” Clearly, the solution of the saddle point equations

It is interesting that the ratio is still finite in spite of the fact With the full band structure of the Hamiltonian of Eq. 2.1

the both the specific heat and the susceptibility behave veryill yield a different (possibly smaller value of J.. The

differently than in a Fermi liquid. same caveats apply to the numerical RG calculation of In-
In the high-field limitT<H < ¢; the impurity specific heat geresent, in which a specific discretization of the effective
is model is used. In fact, in most of his work, Ingeresent uses
Wilson’s logarithmic discretization which is very accurate
a2 [ A Ao for the Kondo problem in metals since it is tailored to repro-
Cimp(H, T)~N¢ - (;)TH In(W) : (7.7 duce the logarithmic singularities at high energies of the con-

ventional (margina) Kondo problem. In the case that we
which obeys the relation examine here, the system is very far away for its “lower
critical dimension.” This approach shoulw/erestimate J,
probably by quite a bit. In any event, the actual valuelof
Cimp(H’TW?TXimp(O’H)- (7.9 itself depends on microscopic physics of the cuprates and
there is no reason to believe that it should be tied o
This result leads to a new Wilson ratio We investigated in detail the thermodynamic behavior

77_2
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(impurity susceptibility and specific hgain the over- APPENDIX: ESTIMATION OF INTEGRALS
screened phase where we found that the impurity suscepti-

bility vanishes like H In(Ao/H) (for T< HfTK) O approximations made in treating the integrals of Sec. V. The
T In(4/T) (for H<T<Ty) with a crossover al~H. Fora  gynression given in Eq5.12 is easy to obtain. As for the

Fermi liquid, the impurity susceptibility approaches a con-fj ct integral of the RHS of Eq5.11) we have
stant value aT— 0. The specific heat, on the other hand, was

found to vanish like TH In(Ay/H) (for T<H<Tk) or

T2 In(Ay/T) (for H<T<T). In a Fermi liquid it vanishes T dz (1+vze 12 B

linearly with T. The change in the power law behaviorisan 2% | s 72 (A 7/2)2+ (vze 2+ A In 2)2 =K+,
extension of the earlier work by Withoff and FradfThe (A1)

additional logarithmic singularity is an indication that 1 where the splitting of the integral corresponds to theign
is like an upper critical dimension for the Kondo probléh. in the numerator. At the valuey=[(A/v) eI z, there is

The interesting quantum critical behavior, accessible fol, rqssover in the behavior of the denominator of the inte-

T,H>Ty, was not discussed here and will be the subject Obrand. Forz<z, the leading term id In z for 2>z, we can

a separate publicatiofl. _ keep the termvze 2. Also z, can be approximated by
There are several important effects that we have not in-

cluded here. One is the effect @indompotential scattering
which, naively may induce a nonzero DOS at the Fermi en-
ergy EF=0. Even if this effect is there, the effective DOS
N(E) is very small. In Refs. 17 and 18 it was shown that
N(E)~exp(—constiv) (wherew is the width of the distribu-
tion) and that the elastic mean free path is exponentially T JZO dz 1

The integral of Eq(5.10 is a good representative for the

A
1A
zy~|—e
0 14

In é eliA |5 gliA
- .
Then we can split the integrals as

long, /~exp(+constiv). Since atJ. we have a transition I<:§P

from a state with alivergentzero-temperature susceptibility
(Curie like) to an overscreened state witanishingsuscep- The change of variableis=( 2/7)In z makes the integration
tibility, the rounding effects of a finitébut very small DOS  straightforward to give

should be a very small correction if the material is clean. A
more interesting, and perhaps more important, effect that

oz In? 2+ (w2) (A2)

was not includgd here is the presence of explicit pair break- |<:i2 arcta,ﬁi In z, —arctar( i”
ing by the vanishing of the amplitude of tltewave order A ™ A
patlramcte_ter aAt tge imp;}lj(rity site. This ef:.acrt] should glilveltrisetr:o 7 In{(A/v)In[(Alv) e¥AT} 3
interesting Andreev-like processes which may well alter the ~v= AT -
physics of this problem. We will discuss this problem 2 1+A In{(A/v)In[(Alv) ™3]}
elsewheré? Finally, corrections to théN.—o limit remain ~ On the other hand,
to be estimated.
> T 1 j“ dz 1 Al
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recast in terms of an exponential integral function and proWith these results, the equation of state, keeping only the

duces a constant contribution and a linear termAinThe
leading contribution for smalh gives

T 1
2 |1+ (wAI2)2 [1+(wAl2)

K<~ Zp T O(n) 4+ .

(A8)

leading order contributions is

1 B ’7T| D T 1 A
95 2 M ay) T2 TH (7022 [t (7AD) T2
+0(A?)+--- . (A9)
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