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Overscreening of magnetic impurities indx22y2-wave superconductors
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We consider the screening of a magnetic impurity in adx22y2-wave superconductor. The properties of the
dx22y2 state lead to an unusual behavior in the impurity magnetic susceptibility, the impurity specific heat, and
in the quasiparticle phase shift which can be used to diagnose the nature of the condensed state. We construct
an effective theory for this problem and show that it is equivalent to a multichannel~one per node! nonmar-
ginal Kondo problem with linear density of states and coupling constantJ. There is a quantum phase transition
from an unscreened impurity state to an overscreened Kondo state at a critical valueJc which varies withD0 ,
the superconducting gap away from the nodes. In the overscreened phase, the impurity Fermi levele f and the
amplitudeD of the ground state singlet vanish atJc like D0 exp(2const/D) andJ2Jc, respectively. We derive
the scaling laws for the susceptibility and specific heat in the overscreened phase at low fields and tempera-
tures.@S0163-1829~97!01341-6#
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I. INTRODUCTION

The problem of magnetic impurities ind-wave supercon-
ductors has been a subject of intense research.1–4 It is known
that in anisotropic superconductors, such as adx22y2 state,
magnetic impurities act as pair-breaking centers5 and hence
reduce the amplitude of the condensate. Experimentally,
main effect of these impurities is to reduce the critical te
peratureTc of the superconducting state.6,7

Quantum-mechanical fluctuations of magnetic impurit
give rise other important effects particularly when coupled
the fermionic quasiparticles of the superconducting state
a normal metal these correlations lead to the Kondo scre
ing of the impurity and to the generation of dynamical e
ergy scales such as the Kondo temperature. In h
temperature superconductors, the effects of the magn
impurities appear to depend significantly not only on t
nature of the impurity but also on where the magnetic im
rity is located. The conventional interpretation of the role
magnetic impurities in high-temperature superconductors
lies, for the most part, on the chemical differences of
impurities ~mainly Zn and Ni! and on the actual location o
the impurities on the lattice relative to the CuO planes. T
main focus of recent work on this subject has focused
how much different impurities are able to depressTc ~Ref. 7!
and on the power laws that static~or clasical! impurities
induce on low-tempreture properties.

In this paper we investigate the physics that results fr
the exchange coupling between isolated magnetic impur
and the quasiparticles of the superconducting state. In
ticular we will be interested in finding out under what c
cumstances there is a Kondo-like dynamical screening of
magnetic impurity by the quasiparticles. The mechanism
we have in mind is analogous to the exchange coupling
560163-1829/97/56~17!/11246~16!/$10.00
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tween magnetic impurities and the electrons of a Fermi
uid that causes the Kondo effect. However, unlike the Kon
effect in metals, because the density of states of normal q
siparticles in ad-wave superconductor vanishes at the Fer
energy, screening is absent in perturbation theory and a c
cal exchange coupling between the quasiparticles and
magnetic impurity is necessary for Kondo screening to ta
place. Thus, magnetic impurities which couple strongly
the quasiparticles, such as Zn which substitute for Cu is
planes, may actually be Kondo screened at very low te
peratures while Ni, which appears to couple more weak
may not get to be in a Kondo screening regime. Likewi
magnetic impurities on sites away from the CuO planes
weakly coupled and therefore are less likely to unde
Kondo screening. We will see below that the critical co
pling ~which we will only estimate very roughly in this
work! is controlled byD0 , the size of the gap away from th
nodes at zero temperature, and typically it is a fraction
D0 .

The onset of Kondo screening at a critical value of t
exchange coupling constant is a quantum critical point.
will show in this work that the behavior of the magnet
impurity, both near and beyond the phase transition,
unique signatures which follow from the nature of the co
densate and hence can be used to investigate its na
Among its most salient features are the temperature
magnetic field dependence of the impurity magnetic susc
tibility and specific heat which exhibit strong deviation
from Fermi-liquid behavior. We will also show that the qu
siparticle phase shift exhibits a strong frequency depende
and a broad resonance and that the structure of the quas
ticle scattering matrix has detailed information on the pha
and signs associated withd-wave superconductivity. Thus
the physics of magnetic impurities in ad-wave supercon-
11 246 © 1997 The American Physical Society
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56 11 247OVERSCREENING OF MAGNETIC IMPURITIES IN . . .
ductor can be used to diagnose the nature of the super
ducting order. The purpose of this paper is to describe th
effects in detail.

The Kondo problem in metals8 has been intensively an
extensively studied and it is by now very well understood
is described in terms of asmoothcrossover from a margin
ally unstable fixed point at zero exchange coupling to
stable Fermi-liquid fixed point with a screend impurity.9–11

The validity of this picture has been confirmed by the ex
solution by the Bethe ansatz12,13 and by large-N methods.14

We will refer to this case as to themarginalKondo problem
since it bears a strong resemblance to a critical system a
low critical dimension.

In a conventionals-wave superconductor the Kondo e
fect is suppressed by the formation of the superconduc
gap, as shown by the classic theory of Abrikosov a
Gorkov.15 However, in the case of ad-wave superconductor
there are quasiprticle states inside the superconducting
which concentrate near the nodes of the order param
Although the density of states vanishes at the Fermi ene
for strong enough exchange coupling it may still be poss
that isolated magnetic impurities may still be screend by
quasiparticles. The central idea of this work is that the w
this screening happens may be used as a tool to study
superconducting order.

Impurities cause many different effects in supercondu
ors. In the case of a d-wave symmetry, any sort of scatte
breaks pairs5 and, for instance, static magnetic impuriti
produce quasiparticle bound states in the gap of the su
conductor. However, the binding energy of these states v
ishes in the vicinity of the nodes of thed-wave
superconductor.3,4,16 Random potential scattering also lea
to interesting effects, in particular close to the nodes of
superconductor where the density of states~DOS! of quasi-
particle states, which behave like Dirac fermions near
nodes,vanisheslinearly with the energy~measured from the
Fermi energy!. It has also been shown that random poten
scattering should generally lead to afinite DOS at the Fermi
energy~zero! for Dirac fermions in random potentials17–19

and in d-wave superconductors.20,2,21 The precise behavio
of the DOS appears to depend on how many nodes
coupled and on what channels are mixed by the scatte
processes.2,19,22,23 However, if the superconductor is suffi
ciently clean, the effective DOS induced by the disorder
exponentiallysmall17,18 and its effects can be neglected. N
tice, however, that the combined effects of Kondo screen
and random scattering is a problem that is still not underto
even in metals.24,25

The problem of a quantum magnetic impurity coupled
fermions with a vanishing DOS at the Fermi energy w
discussed by Withoff and Fradkin.26 In contrast with the
Fermi liquid which has a finite DOS at the Fermi energ
Kondo screening of the magnetic impurity could only ha
pen for values of the exchange coupling constantJ larger
than some critical value. If the DOS vanishes with a pow
of the energy with exponentr , the fixed point atJ50 is
stable for r .0 and a new unstable fixed point appears
Jc.0, signaling a quantum phase transition. We will refer
this problem as the nonmarginal Kondo problem andr mea-
sures the deviation from marginality. Using a close analo
with the theory of critical phenomena, Withoff and Fradk
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developed a large-N theory for this problem and found tha
the essential singularity of the Kondo temperature is repla
by power law singularities determined by the DOS expon
r . However, in that work only the regime 0,r< 1

2 was con-
sidered. The behavior of these systems for smallr was also
exlored by Chen and Jayaprakash27 and by Ingersent28 who
used a generalization of Wilson’s numerical renormalizat
group ~RG! for this problem. The case of interest for
d-wave superconductor isr 51 which turns out to be specia
in several ways. In Ref. 29 we discussed recently the clos
related problem of a magnetic impurity in a flux phase wh
is also an example of anr 51 system. In this paper we show
that these two problems can be mapped onto each othe
spite of the fact that spin fluctuations do break Cooper pa

One aspect of the physics of magnetic impurities in
d-wave superconductor that we will not consider here are
effects of the depression~and/or actual vanishing! of the
d-wave order parameter near the impurity site. This effec
independent of the spin and it actually static. In any eve
the vanishing of the condensate at the impurity site lead
terms that do not conserve fermion number in the effect
Hamiltonian and hence may lead to important~spin-
independent! effects. This is a conceptually important pro
lem and it will be addressed elsewhere.30 A self-consistent
calculation based on the BCS approximation can be foun
Ref. 23.

In this paper we will make use of a very simple model
the quasiparticle dynamics in adx22y2 superconductor.31,32

We will use the fact, strongly supported by the corne
junction interference experiments33 as well as by angle-
resolved photoemission spectroscopy34,35 ~ARPES!, that the
high-temperature superconductors have adx22y2 condensate
with four symmetrically arranged nodes where the quasip
ticle gap vanishes. The first evidence that the gap vanishe
the dx22y2 nodal line was reported by Shenet al.34 Ding
et al.35 reported measurements of the momentum dep
dence of the superconductor gap in Bi2Sr2CaCu2O81x con-
sistent with a gap function of the form cos(kx)2cos(ky), as
expected for ad-wave order parameter. Interestingly enoug
in underdoped systems, photoemission supports the idea
the gap may survive through a large range of tempera
into the normal state.34,35 It is also well established that th
high-temperature superconductors are not conventional B
systems in the sense that their normal states deviate stro
from the predictions of Fermi-liquid theory and that the i
teractions are strong. Thus, a straightforward BCS s
consistent approach should not work, particularly in view
the fact that there is not a well-established mechanism
superconductivity in these materials. Nevertheless, whate
actual the mechanism is, it should describe a system w
nodes and with gapless quasiparticle branches. The ac
coefficients of this effective Hamiltonian cannot be deriv
in a simpleminded way from a microscopic system but
form will be determined by the requirements ofdx22y2 sym-
metry. Thus we will use a phenomenologically motivat
BCS-like model for the quasiparticles with nodes consist
with dx22y2 symmetry but without a self-consitent derivatio
of its coefficients. We will consider the case of a very cle
system and at very low temperatures so as to neglect fl
tuations of the amplitude of the superconducting order
rameter.
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11 248 56CARLOS R. CASSANELLO AND EDUARDO FRADKIN
In Sec. III we derive an effective Kondo-like Hamiltonia
for the problem of a single magnetic impurity in an othe
wise perfectdx22y2 superconductor. In this model we focu
on the effects of the quasiparticles close to the nodes of
dx22y2 state within an energy rangeD0 , the gap of the su-
perconductor away from the nodes. We also include, albe
rather crude fashion, the effects of the states above the
perconducting gap since they affect the value of the crit
exchange constant. By expanding the electron operator in
exact quasiparticle states of thedx22y2 superconductor, we
map this problem of two-dimensional physics into an effe
tive one-dimensional system of chiral fermions coupled
the impurity. The effective Hamiltonian is almost identical
the problem of a magnetic impurity in a flux phase that
discussed in Ref. 29. The only difference here is that
symmetry is SU(2)~spin! but there are four species~or fla-
vors! of chiral fermions, one per node. The mapping of t
electronoperator into the effective one-dimensional fermi
contains all the information about the coherence factors
the dx22y2 state and, hence, it includes the pair-breaking
fects caused by the spin fluctuations of the impurity. As
bonus, we get explicit~although qualitative! relations be-
tween the effective coupling constants, the relative imp
tance of intranode and internode scattering processes,
important parameters such as the location of the impu
~relative to the CuO plane! and the superconducting gapD0 .
We will find that, in fact, there is always one effective cha
nel that matters.

A considerable number of theoretical tools have been
veloped to study Kondo systems. For magnetic impurities
a metallic host, which have an essentially constant densit
states near the Fermi energy, the different methods com
ment each other in a manner such that we now have a ra
complete understanding of this phenomenon at a nonpe
bative level. However, with the exception of large-N meth-
ods or Wilson’s numerical renormalization group, all t
other methods~including the powerful mapping to one
dimensional logarithmic gases, the exact solution via the
the ansatz and the conformal field theory approach! cannot
be appiled to systems with a vanishing density of states.
these reasons in this work we use the large-Nc approach,
even thoughNc52 for thed-wave superconductor. In con
ventional Kondo systemsNc52 andNc5` are known to be
smoothly connected and, although it is likely that this w
also hold for ad-wave system, there is still no evidence th
it is also true for this problem. In any case, given the lack
alternative approaches, we will present here a largeNc
theory of our problem.

Our large-Nc theory predicts that magnetic impurities
clean cuprate superconductors should undergo a quan
phase transition at a critical exchange constant whose typ
value is crudely estimated to be below the superconduc
gap D0 ~details are given in the next and in the last tw
sections!. Our estimates indicate that, for an exchange c
pling J with strength about 10% larger than the critical co
pling, the anomalous behaviors that we predict should
accessible to measurements of the low-temperature hea
pacity and magnetic susceptibility@such as in nuclear quad
rupole resonance~NQR!# with magnetic fieldsH;1210 T
and at temperaturesT;1210 K. The magnetic fields shoul
be in plane so as not to disturb the kinematic properties
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the quasiparticles on the CuO planes. At temperatures hig
thanTK ~but still belowTc! the system behaves as if it wer
at its quantum critical point atJc .

In Ref. 29 we discussed the solution of the problem o
magnetic impurity in a flux phase problem which, as w
indicated above, is closely related the problem of ad-wave
superconductor. In that work we used the large-Nc limit to
investigate a similar phase transition. However, the res
that we present here for the scaling behavior of the phys
observables near this transition disagree with our previ
work of Ref. 29. The reason for the discrepancy is that in
process of carrying out the large-Nc limit divergent series
need to be handled and in Ref. 29 these series were regu
in in a manner that is incompatible with an integer fillingQf
of the impurity in the slave fermion representation. This
consistency is removed in this paper and the results tha
present here supersede those of Ref. 29.

This paper is organized as follows. In Sec. II we presen
summary of the main results of this paper including expe
mentally accessible predictions for magnetic impurities
high-temperature superconductors. In Sec. III we desc
the mapping of the model of a single magnetic impur
coupled to adx22y2 superconductor to an effective theory
chiral fermions in one dimension with a non marginal co
pling. In Sec. IV we discuss the large-Nc approximation and
in Sec. V we discuss the solution of the saddle point eq
tions, valid in theNc→` limit, and use it to investigate the
phase diagram of this problem at zero temperature and
magnetic field. In Sec. VI we calculate the low- and ze
temperature magnetic susceptibility of the impurity at ze
and finite~but small! fields in theNc→` limit. Similarly, the
impurity entropy and specific heat~at low temperatures and
fields! are calculated in Sec. VII again in theNc→` limit. In
Sec. VIII we conclude with a discussion of the implicatio
of our results and their relation with other work, particular
the RG work of Ingersent. Relevant details of the compu
tion of various integrals are given in the Appendix.

II. SUMMARY OF RESULTS

In this section we give a brief summary of our main r
sults and discuss their implications for magnetic impurit
in high-temperature superconductors.

~1! We introduce a model for a single magnetic impur
in a dx22y2 condensate~see Sec. III! with HamiltonianH

H5(
kW ,s

e~kW !c
kWs

†
ckWs2(

kW
D~kW !c

kW↑
†

c
2kW↓
†

1H.c.

1SW •E d2xJ~xW !cs
†~xW !tWss8cs8~xW !. ~2.1!

This is accurate at energies and temperatures low with
spect to the gapD0 of the dx22y2 condensate away form th
nodes. We use a simple lattice model for thedx22y2 quasi-
particles~see Ref. 1!, which yields a qualitative description
of the superconductor, but it has the correct nodal struc
and that is all that we actually need to know. Next we co
struct an effective model of one-dimensional chiral fermio
coupled to the impurity:
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Heff5 (
a51

4

(
s5↑,↓

E
2`

` dp

2p
Avv8pdas

† ~p!das~p!

1 (
a51

4

(
s,n5↑,↓

~Ja/2!F E
2`

` dp

2p
Aupudas

† ~p!G
3tWsn•SW impF E

2`

` dp8

2p
Aup8udan~p8!G , ~2.2!

wherev andv8 are the velocities of the quasiparticles of t
d-wave state along the two lattice directions. This is t
model that we actually investigate. The nature of thedx22y2

state is present:~a! in the momentum dependence of the i
teraction between the chiral fermions and the impurity@see
Eq. ~3.32!# and ~b! in the number and angular momenta
the channels that are coupled to the impurity@see Eqs.~3.23!
and ~3.24!#. We truncate the momentum dependence of
interaction beyond a momentum scale;D0 /(2pAvv8)
where it saturates, indicating that the effective density
states is nearly constant for states above the gapD0 and up to
an upper cuttoff scaleD, the bandwidth of the normal qua

siparticlese(kW ). A typical value ofD0 for a CuO supercon-
ductor is 100 K andD/D0>10.

~2! In Secs. IV and V we solve this effective model in th
large-Nc limit. The physical properties of the system in th
Nc→` limit are determined by the behavior of thephase
shift d~e! of Eq. ~4.8!. This is the phase shift acquired by th
quasiparticles of the superconductor as they scatter off
magnetic impurity. We find that, in contrast with the conve
tional Kondo problem, the phase shiftd~e! has a strong en
ergy dependence.d~e! is parametrized by the singlet ampl
tudeD and the impurity Fermi levele f ~which plays the role
of the Kondo scale!. These are determined by solving th
saddle point equations@Eqs. ~5.1! and ~5.2!# which yield D
ande f as functions of the impurity fillingQf , the exchange
constantJ, the temperatureT, and the magnetic fieldH.

~3! Phase transition: We find that, atT5H50, the system
has a quantum phase transition at a critical coupling cons
Jc'(2vv8/D0)/@11 ln(D/D0)#. This transition separates
weak-coupling free phase in which the impurity is nea
free with a Curie-like susceptibility, from a strong-couplin
phase where the impurity is screened. We find that the
purity is actuallyoverscreenedsince the impurity magnetic
susceptibilityvanishesfor J>Jc at T5H50. A naı̈ve use of
the BCS estimates yieldsJc'D sin2(k0)/@11ln(D/D0)# which
is larger thanD0 unlessk0<1 ~which is not unreasonable!.
However, strong-coupling corrections in the superconduc
~which, at best, can only be estimated and depend stro
on the details of the mechanism of superconductivity! in gen-
eral will invalidate the simple relation between the velocit
k0 andD0 . However, we expect thatJc<D0 , typically being
of order ofD0/2 or so. However, a precise estimate requi
a more sophisticated calculation than the one we do here
the puroposes of this work it will be sufficient to know th
Jc,D0 .

~4! Kondo scale: We find that, close to and aboveJc , the
Kondo scaleTK5e f is related to the singlet amplitudeD by
@Eq. ~5.9!#
e

e

f

e
-

nt

-

r
ly

s
or

e f~x,D!5D0Ae expS 2
1

D

2x

122x1D
1

1

122x1D D
3@11O~D,D ln D!#, ~2.3!

where e52.7172... andx5Qf /Nc . This singular relation
betweene f and D results from a logarithmic singularity in
the saddle point equation for the impurity occupancy. T
singularity is absent forr ,1. In this sense,r 51 is like an
‘‘upper critical dimension’’ for impurity problems. The ac
tual dependence on the coupling constant is determined
solving the equation of state, Eq.~5.15!,

1

Jc
2

1

J
'S D0

pvv8DD1O~D3!. ~2.4!

A rough estimate ofTK can be obtained by settingQf51
and Nc52. We find that, for (J/Jc)21'0.2 and
D0'100 K, TK5e f'9 K, while, for (J/Jc)21'0.1,
TK'1 K.

~5! We have calculated the impurity susceptibility an
specific heat in the overscreened phaseJ.Jc for magnetic
fields and temperaturesH,T,TK which can be realized un
lessJ is too close toJc . For T!H!TK we find @Eq. ~6.15!#
the susceptibility

x imp;NcS D

e f
D 2

H ln
D0

H
,

while, in the opposite regimeH!T!TK @Eq. ~6.16!#,

x imp;2Nc ln 2S D

e f
DT lnS D0

T D .

Similarly, the specific heat in the regimeH!T!TK is @Eq.
~7.5!#

Cimp~0,T!'9z~3!Nc

D2

e f
2 T2 lnS D0

T D ,

while for T!H!TK we find instead the result@Eq. ~7.7!#

Cimp~H,T!'Nc

p2

3 S D

e f
DTH lnS D0

H D .

The low-field regime is clearly very different from a Ferm
liquid although a Wilson ratio can still be defined and it
finite @Eq. ~7.6!#

Cimp~H,T!

Tx imp~H,T!
'

9z~3!

2 ln 2
.

The behavior in the high field regime is more like a Fer
liquid. These behaviors should be accessible to experim
in clean samples of cuprate superconductors at magn
fields of 1–10 Tesla.

We have not investigated yet the quantum critical regi
H,T.TK , which we will discuss in a separate publication30

III. THE MODEL

In this section we construct the model that describes
coupling of the quasi-particles of ad-wave superconducto
to a localized magnetic impurity. We will show explicitl
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11 250 56CARLOS R. CASSANELLO AND EDUARDO FRADKIN
that this model maps exactly onto a model of a magn
impurity coupled to the spinons of a flux phase that we d
cussed in Ref. 29. The strategy that we will follow in th
section consists of first writing down a simple model for t
quasiparticles of thed-wave superconductor with a phys
cally reasonable coupling to a local magnetic moment. N
we will carry a dimensional reduction of this problem dow
to a model of effective one-dimensional~chiral! fermions
which has all the symmetries of thed-wave superconductor
The effective one-dimensional model coincides exactly w
the nonmarginal Kondo problem that was discussed in R
29. In the next section we will use the results of Ref. 29
draw conclusions on the effects of magnetic impurities
d-wave superconductors.

A. Free Hamiltonian

We begin by choosing a model of ad-wave supercon-
ductor with the form of a BCS-type Hamiltonian. It has
kinetic energy term~which we choose to be of the form of
tight-binding Hamiltonian! and a pairing term withd-wave
symmetry. In Sec. III B we will describe the way magne
impurities couple to the quasiparticles. Here we will ma
the phenomenological assumption that there isd-wave pair-
ing regardless of the mechanism that gives rise to that p
ing. BCS-type models which exhibitd-wave pairing~driven
by antiferromagnetic fluctuations! have been proposed b
Bickers, Scalapino, and White36 and by Monthoux and
Pines.1 Here we will use a BCS model of this type to d
scribe the dynamics of the quasiparticles.

What will be important for the dynamics is that the mod
exhibits four nodes where the gap vanishes and that the
is fairly large away from the nodes. Thus, we will conce
trate on the behavior of the quasiparticles close to the no
Instead of using the full detailed form of the gap, we w
replace it by a linearized spectrum with a wave vector cu
L ~relative to the location of the node! such that the energy
of the quasiparticles with wavevectorL is approximately
equal to the valueD0 of the superconductor gap away fro
the nodes. The actual structure of the quasiparticle spec
away from the nodes will play a very small role and su
states will be neglected. This view is supported by rec
photoemmission experiments by Shenet al.34 and Ding
et al.35 in YBaCuO superconductors where a Fermi surfa
is seen at optimal doping and it disappears progressi
away from the nodes~where the gap vanishes! for under-
doped systems. Hence, the important features of the qu
particle spectrum that we will keep are the four nodes wh
the excitations are gapless, the correct behavior under la
symmetries~and parity!, and the Fermi velocities at th
nodes.

The Hamiltonian for the quasiparticles of a BCS-type s
perconductor in the absence of impurities is

H05(
kW ,s

e~kW !c
kWs

†
ckWs2(

kW
D~kW !c

kW↑
†

c
2kW↓
†

1H.c. ~3.1!

To make the model concrete we use a lattice model for

quasiparticles with a bare energye(kW ) of the form

e~kW !5e~2kW !522t@cos~k1!1cos~k2!#1m. ~3.2!
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The Fermi operatorsc
kWs

†
create quasiparticles with momen

tum kW , spin s, and energye(kW ). Here m is the chemical

potential for the quasiparticles. The gap functionD(kW ) for a
dx22y2 superconductor given by

D~k!5D0@cos~k1!2cos~k2!#. ~3.3!

HereD0 set the scale for the gap away from the nodes. T
one-particle spectrum of this simple Hamiltonian agre
qualitatively with the observed photoemission spectrum.

Next we write the quasiparticle operators in the Namb
Gorkov form32

F~kW !5S ckW↑

c
2kW↓
† D . ~3.4!

In terms of the Nambu-Gorkov~NG! spinors, the free part o
the HamiltonianH0 can now be written as

H05(
kW

F†~kW !$@e~kW !2m#t32D~kW !t1%F~kW !, ~3.5!

wheret1 andt3 are two Pauli matrices. This model has fo
nodes2 at the points in the Brillouin zone given b
(6k0 ,6k0), with k0[arccos(m/4t). The spectrum of the
quasiparticles crosses the Fermi surface at those points
the gap closes. As a consequence, the quasiparticles ha
linear dispersion relation in the vicinity of thesenodes. This
can be shown2 by expanding for small momentum departur
around the (6k0 ,6k0) points.

The next step in the construction of an effective lo
energy model is to describe the dynamics of the quasipa
cles close to the nodes. To this end we assign a label for e
one of the four nodes. Leta51,2,3,4 be this label and we
assign the labela51 to the node (k0 ,k0), a52 to the node
(2k0 ,2k0), a53 to the node (2k0 ,k0), anda54 to the

node (k0 ,2k0). Let qW be the momentum relative to th
node. It is useful to work in the rotated basisp1[(1/
&)(q11q2) and p2[(1/&)(q12q2), with velocities
v[2&t sin(k0), v8[&D0 sin(k0), whereD0 is the size of

the superconductor gap at its maximum value. LetFa
†(pW )

denote the~Nambu-Gorkov spinor! operator which creates

quasiparticle with~rotated! momentum pW relative to the
wave vector of nodea. The free Hamiltonian now takes th
form

H05E d2p

~2p!2 $F1
†~pW !~vp1t31v8p2t1!F1~pW !

2F2
†~pW !~vp1t31v8p2t1!F2~pW !%

2E d2p

~2p!2 $F3
†~pW !~vp2t31v8p1t1!F3~pW !

2F4
†~pW !~vp1t31v8p2t1!F4~pW !%. ~3.6!

In the long-wavelength limit the Hamiltonian splits into fou
~anisotropic! Dirac-like Hamiltonians. In what follows we
will refer to these four sets of excitations~which represent
the four nodes of thed-wave superconductor! as to the four
flavors ~or channels!.
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It will prove useful for our purposes to rotateFa(kW ) to a
new fieldca ,

Fa~kW !5
1

&

~12 i t1!ca~kW !, ~3.7!

and to writeH0 in terms ofca ,

H05E d2p

~2p!2 S 0 e1e2 iu1

e1eiu1 0 D @c1
†~pW !c1~pW !

2c2
†~pW !c2~pW !#2E dp2

~2p!2 S 0 e2e2 iu2

e2eiu2 0 D
3@c3

†~pW !c3~pW !2c4
†~pW !c4~pW !#. ~3.8!

In Eq. ~3.8! the following definitions have been used:

e1[A~vp1!21~v8p2!2[Avv8p1 ,

u1[tan21~vp1 /v8p2!,

e2[A~v8p1!21~vp2!2[Avv8p2 ,

u2[tan21~vp2 /v8p1!,

wherev[2&t sin(k0) andv[&D0 sin(k0).
Next we notice the fact that, as far as the kinetic energ

concerned,p1 , p2 , u1 , andu2 are just dummy variables
and that the measure in the integrals is invariant under
changep1 ,p2 into p1 ,p2 . It turns out—and we show this
below—that the interaction term is also invariant unde
redefinition of the integration variables. Naturally, the qua
particle operators themselves are not invariant under th
redefinitions of variables. Hence, although all explicit ref
ence to the anisotropy can be removed from the Hamilton
it remains quite explicit in the relation between the quasip
ticle ~fermion! operators and the fields that will describe t
effective Hamiltonian, i.e., in generalized coherence facto

Taking these observations into consideration,H0 can be
put in a much simpler form

H05E
0

` pdp

2p E
0

2p du

2p S 0 Avv8pe2 iu

Avv8peiu 0
D

3 (
a51

4

ca
†~pW !Tabcb~pW !, ~3.9!

where Tab is the 434 diagonal matrix in flavor indices
diag(1,21,21,1). The signs in the matrixTab account for
the parity of each node. Here we have only kept explicit
the flavor~node! indices.

We now diagonalize the kinetic energy and expand
fields in energy eigenmodes,

c~pW !5c1~pW !u1~u!1c2~pW !u2~u!, ~3.10!

where

u6~u!5
1

&

S 1
6eiu D ~3.11!
is

e

a
-
se
-
n,
r-

s.

e

are the spinors that diagonalize thed-wave BCS Hamiltonian
near the nodes. The effective rotational invariance aro
each node~in terms of the redefined momenta! enables us to
expand in angular momentum eigenmodes around each n

c6~pW !5 (
m52`

`

eimuc6m~ upu!. ~3.12!

This is effectively an angular momentum expansion in ell
tic coordinates around each node.

H0 is now diagonal and takes the simpler form

H05 (
a51

4 E
0

` pdp

2p
Avv8p

3 (
m52`

`

Tab@ca,1,m
† ~ upu!cb,1,m~ upu!

2ca,2,m
† ~ upu!cb,2,m~ upu!#. ~3.13!

B. Impurity interaction

Now we consider the interaction term for spin impuriti
given by

H imp[SW •E d2xJ~xW !cs
†~xW !tWss8cs8~xW !. ~3.14!

In practice we will be interested in well localized impuritie

This means thatJ(xW ) is sharply peaked at some pointxW0
where the impurity is located. Realistic magnetic impuriti
in YBaCuO and other high-temperature superconductors1 al-
most always involve magnetic atoms which either substit
a Cu atom or hybridize strongly with it. This is the case f
Ni which, due to its hybridization with oxygen, it is believe
to behave like aS51/2 impurity spin.1 Similarly, Zn substi-
tutes Cu, which now behaves like a missingS51/2 magnetic
moment and in this sense is a magnetic impurity. In all ca
of Cu substitution we will model the impurity as a localize
S51/2 moment residing at a site of the square lattice wh
we will consider as the origin. Notice, however, that O c
also behave like a magnetic impurity in the cuprates. An
magnetic impurity sits in the middle of the bond instead o
corner Cu site. This case leads to more complicated form
the effective interaction which we will not discuss in th
thesis.

The effects of magnetic impurities on Cu sites can
modeled qualitatively in terms of an exchange coupling c

stantJ(xW ) which couples most strongly to the quasiparticl

at xW50 and decays rapidly and symmetrically aroundxW50.

For simplicity we will use a model in whichJ(xW ) is a narrow
Gaussian. We can see clearly from the discussion that le
the effective free Hamiltonian that the only properties

J(xW ) that are important are the amplitudes of its Four
transform at the relative wave vector of the nodes. Th
amplitudes play the role of the effective coupling constan
Physically, the strength of the exchange coupling is de
mined by an overlap integral which decays very quick
Thus, impurities which substitute Cu atomsin the planeare
more strongly coupled than those that substitute Cuout of
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the plane. Also impurities on sites other than Cu sites a
more weakly coupled to the quasiparticles than those on
sites. These observations are important since we will se
Sec. V that the impurities are Kondo screened if their
change coupling constants are large enough.

We now proceed to find the contribution of the impuri
interaction to the effective Hamiltonian. In momentum spa
Eq. ~3.14! becomes

H imp[E d2k

~2p!2 E d2k8

~2p!2 J~kW2kW8!SW •cs
†~kW !tWss8cs8~kW8!.

~3.15!

In terms of the NG spinors it reads

H imp5E
kW ,kW8

(
i , j 51

2

$J~kW2kW8!@S3F i
†~kW !F i~kW8!

1S2e i j F i
†~kW !F j

†~2kW8!1H.c.#%, ~3.16!

whereSj represents the impurity spin,S2[ 1
2 (Sx2 iSy) and

e i j is a 232 skew symmetric tensor.
As before, we expand the NG spinors in their compone

centered around the nodes. Since we have four nodes
impurity Hamiltonian has terms which describe spin-fl
scattering processes involving, in addition, eventual inte
ode scattering processes. The strength of these scatt

processes is determined byJ(QW ) where QW is the relative
wave vector of a pair of nodes. There are four cases of
terest.

~1! QW ;0, corresponding to scattering processes that
not mix nodes~‘‘forward scattering’’!. The corresponding
coupling constant isJ(0)[J0 .

~2! QW ;2k0ê1 , which mixes nodes 1 with 3 and 2 with 4
This coupling constant isJ1 .

~3! QW ;2k0ê2 , which mixes nodes 1 with 4 and 2 with 3
This coupling constant isJ2 . For systems with exact tetrag
onal ~square! symmetryJ15J2 .

~4! QW ;2k0(ê16ê2 , which mixes nodes 1 with 2 and
with 4. These coupling constants areJd

6 . For tetragonal sys-
tems they reduce to just one~diagonal! couplingJd .

For example, consider an impurity seated at the Cu sit
x50. As a crude approximation we may assum

J(xW )' J̄d(xW ). The Fourier transform tells us that all the co
plings will be the same, and equal toJ̄. A more realistic

shape forJ(xW ) would be a Gaussian centered at the impur

sitexW50 and decaying rapidly within a distance of the ord
of a lattice constant l. Thus we take that
J(x)' J̄/(2pl2)e2(1/2l2)xW2

will generate, for a generick
vector @which in our case will be 2k0ê1 , 2k0ê2 ,
2k0(ê11ê2), and 2k0(ê12ê2)],

J~kW !5 J̄e2 l2k2/2. ~3.17!

For the impurity at the origin in a tetragonal~square! lattice,
all the coupling constants are real, withJ0.J15J2.Jd . In
the language of the fields introduced in Eq.~3.7! the impurity
Hamiltonian now becomes
u
in
-

e

ts
the

-
ing

-

o

at

r

H imp5S3 (
a,b51

4

Kab
3 (

i 51

2 E d2p

~2p!2 ca,i
† ~pW !E d2p8

~2p!2 cb,i~pW 8!

1S2 (
a,b51

4

Kab
1 (

i 51

2 E d2p

~2p!2 ca,i
† ~pW !

3~ i t2! i , jE d2p8

~2p!2 cb, j
† ~2p8!1H.c. ~3.18!

In Eq. ~3.18! the indicesa,b are the flavor indices which
label the effective Dirac fermions species associated w
each node. The indicesi , j run through the spinor compo
nents ~two per each NG spinor, i.e., per node! and label
linear combinations of quasiparticles with spin up with ho
with spin down. Also notice thatp and p8 now label small
departures from the appropriate node. Using the fact thati t2
is an antisymmetric matrix, we can rewrite Eq.~3.18! in the
form

H imp5S3 (
a,b51

4

Kab
3 (

i 51

2 E
0

`

p
dp

2p E
0

2p du

2p
ca,i

† ~pW !

3E
0

`

p8
dp8

2p E
0

2p du8

2p
cb,i~pW 8!

1S2 (
a,b51

4

Kab
1 (

i 51

2 E
0

`

p
dp

2p E
0

2p du

2p
ca,1

† ~pW !

3E
0

`

p8
dp8

2p E
0

2p du8

2p
cb,2

† ~2p8!1H.c. ~3.19!

The 434 matricesKab
3 and Kab

1 used in Eqs.~3.18! and
~3.19! are given by

Kab
3 5S J0 Jd J1 J2

Jd J0 J2 J1

J1 J2 J0 Jd

J2 J1 Jd J0

D , Kab
1 5S Jd J0 J2 J1

J0 Jd J1 J2

J2 J1 Jd J0

J1 J2 J0 Jd

D .

~3.20!

The form of Eq. ~3.19! strongly suggests the following
change of variables~particle-hole transformations! per-
formed on the second component of all four flavors:

c1,2~p!→c1,2
† ~2p!, c2,2~p!→c2,2

† ~2p!,

c3,2~p!→c3,2
† ~2p!, c4,2~p!→c4,2

† ~2p! ~3.21!

to express the interaction term as a scalar product of
spin-12 operators.

We can now separate the modes and find an effec
one-dimensional model. After integration over the ang
variableu, the fields involved in Eq.~3.19! become

E
0

2p du

2p
c1a5

1

&

@c01~ upu!1c02~ upu!#a ,

E
0

2p du

2p
c2a5

1

&

@c211~ upu!2c212~ upu!#a . ~3.22!
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Now we define, for each flavora, an effective one-
dimensionalchiral ~right-moving! Fermi field

d1a~p![HAupuc0,1,a~ upu! for p.0,
Aupuc0,2,a~ upu! for p,0,

~3.23!

d2a~p![HAupuc21,1,a~ upu! for p.0,

2Aupuc21,2,a~ upu! for p,0,
~3.24!

and Eq.~3.19! can be recast as

H imp5S3

1

2 (
ab,i

Kab
3 E

2`

` dp

2p
Aupudai

† ~p!

3E
2`

` dp8

2p
Aup8udbi~p8!

1S2(
ab

Kab
1 E

2`

` dp

2p
Aupuda1

† ~p!

3E
2`

` dp8

2p
Aup8udb2

† ~p8!1H.c. ~3.25!

Here we perform the change of variables suggested abov
setting

da2~p!→da2
† ~2p! for a51, . . . ,4, ~3.26!

and thus, in the definition given by Eq.~3.24! we rename
d1a(p) as thed↑a(p) component of an effective spin-1

2 one-
dimensional chiral fermion, andd2a

† (2p) as the d↓a(p)
component. Please notice that this label isnot equivalent to
the spin of the original quasiparticles. In fact, the relati
between these effective one-dimensional chiral fermions
the original quasiparticles is actually quite complicated. T
~flavor! coupling matrices commute with each other@as re-
quired by the SU~2! spin rotation invariance# and can be
diagonalized simultaneously by means of the unitary tra
formation

dai8 5Uabdbi , ~3.27!

wherei 5↑ or ↓, the flavor indicesa andb run from 1 to 4,
and

Uab5
1

2 S 1 1 1 1

21 1 21 1

21 21 1 1

1 21 21 1

D . ~3.28!

This rotation brings the coupling matricesKab
3 and Kab

1 to
the diagonal form

Kab
3 5S J18 0 0 0

0 J28 0 0

0 0 J38 0

0 0 0 J48

D ,
by

d
e

s-

Kab
1 5S J18 0 0 0

0 2J28 0 0

0 0 J38 0

0 0 0 2J48

D , ~3.29!

with

J185J01Jd1J11J2 ,

J285J02Jd1J12J2 ,

J385J01Jd2J12J2 ,

J485J02Jd2J11J2 . ~3.30!

As one can see in Eq.~3.29! flavors 2 and 4 appear to hav
Sx andSy with the sign reversed. However, this can be co
pensated by the following additional rotation in the sp
components:

d2↑~p!→ id2↑~p!, d2↓~p!→2 id2↓~p!,

d4↑~p!→ id4↑~p!, d4↓~p!→2 id4↓~p!. ~3.31!

After all of these manipulations we find that the effecti
one-dimensional theory for this model is

Heff5 (
a51

4

(
s5↑,↓

E
2`

` dp

2p
E~p!das

† ~p!das~p!

1 (
a51

4

(
s,n5↑,↓

~Ja/2!F E
2`

` dp

2p
Aupudas

† ~p!G
3tWsn•SW impF E

2`

` dp8

2p
Aup8udan~p8!G . ~3.32!

In Eq. ~3.32! we dropped the primes in Eq.~3.27! and in the
effective coupling constants. The kinetic energy of the ch
fermions isE(p)5Avv8p.

Equation~3.32! can be recognized to beexactlythe non-
marginal Kondo Hamiltonian that was discussed in Ref.
Hence, the effective Hamiltonian for ad-wave supercon-
ductor coupled to a magnetic impurity is essentially equi
lent to a ~multichannel! generalization of a nonmargina
Kondo problem. There are four channels, one for each no
The channel degeneracy is generally lifted by the intern
scattering. In fact, Eq.~3.30! shows that in the absence o
internode scattering~i.e., J15J25Jd50! the four flavors
couple to the impurity with exactly the same exchange int
action strengthJa85J0 (a51,...,4). For a strictly tetragona
system the couplings are ordered in the seque
J18.J285J48.J38 . Intuitively one expects the channel wit
the largest coupling to dominate the low-energy limit. In t
extreme limit in which all internode and intranode amp
tudes are exactly equal one finds that channels 2, 3, an
decouple and that only the remaining channel 1 couple
the impurity. Thus, in this limit, the physics of the system
that of a single-channel nonmarginal Kondo problem.

Given that these two seemingly different systems are
tually equivalent, most of the results found in Ref. 29 ca
over to this problem almost without change but with a n
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physical meaning and processes, in particular including p
breaking effects. In Ref. 29 we found that there is a criti
value of the exchange coupling constantJc , above which the
impurity spin is screened. We also found there that the c
cal valueJc was of the same order as the energy cuto
which here is the superconducting gapD0 . The reason be-
hind the existence of a finiteJc is that the effective interac
tion between the impurity and the normal excitations is m
mentum dependent and that it vanishes at small mom
@see Eq.~3.32!#. However, the same momentum depende
makes the effective coupling grow arbitrarily large at lar
momenta. This last behavior is unphysical and it results fr
the approximations, which are accurate at small mome
only. This observation motivates a simple redefinition of t
model with a finite, momentum-independent, coupling
momenta larger than a scale of the order ofD0 /(2pAvv8).

In Ref. 29 we showed that a momentum-dependent c
pling is equivalent to a change in the density of states~DOS!
for a theory with a momentum-independent coupling co
stant. The model of Ref. 29 and the model discussed ab
have a DOS vanishing linearly with the energy. We consi
a modified model with the DOS

r~e!5H ueu
2pvv8

for ueu<D0 ,

D0

2pvv8
for D0,ueu,D,

~3.33!

whereD0 is the size of the superconductor gap away fro
the nodes. This change in the DOS is equivalent to a sat
tion of the coupling constant at the momentum sc
D0 /(2pAvv8).

In other words, we are assuming a linear dependenc
the DOS with the energy around the gap nodes, up to
energy scale of the superconductor gap. For energies hi
than the superconducting gapD0 , the normal quasiparticle
are, for all practical purposes, identical to normal electro
In a realistic cuprate superconductor, the band structur
actually rather complicated. Nevetheless, we can take
account the contribution of these states to the physics
considering a flat fermion band characteristic of a continu
spectrum fromD0 up to a bandwidthD, which works as a
high-energy cutoff. As we will see below, the contribution
these states can almost always be ignored but they will e
in our results in two important places:~a! by shifting ~down-
wards! the critical value of the coupling constantJc and ~b!
in the scaling behavior for ‘‘half-filled’’ impurities. The shif
in Jc is quantitatively important and it results in a dow
wards shift ofJc from the nominal value of the supercon
ducting gapD0 . Hence, we will assume thatJc,D0 . This
happens if the scales ofD0 andD are reasonably well sepa
rated.

IV. LARGE- Nc THEORY

In the previous section we constructed a model for a m
netic impurity embedded in ad-wave superconductor an
showed that it is equivalent to a special nonmarginal Kon
problem. In this section we solve this model in the large-Nc
approximation, whereNc is the rank of the symmetry grou
of the impurity spin. In the physically relevant situatio
ir-
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Nc52 ~i.e., spin one-half!. Clearly, in this situationNc is not
large. Nevertheless, we expect the large-Nc theory to give a
qualitatively correct description. We now proceed with
brief summary of the large-Nc theory14 as adapted29 to the
physical situation described by the Hamiltonians of the p
vious section.

In order explore the physics of this system we extend
symmetry from SU~2! ~spin! to SU(Nc) and look at it within
the large-Nc approximation. Notice that, unlike the Coqblin
Schrieffer model,Nc is not related to a magnetic impurity i
a higher-spin representation. Similarly, the four flavors
fermions originate from the nodal structure of the superc
ductor and are not related to an orbital degeneracy as in
multichannel Kondo problem in metals. Thus the proble
we want to study hasNc52 ‘‘colors.’’ The number of ‘‘fla-
vors’’ is Nf51 if there is node mixing andNf54 in the
absence of internode scattering. However, there is a sub
in the treatment of the impurity once symmetry is extend
from SU~2! to SU(Nc). For the group SU~2!, the lowest
representation for an impurity isS51/2. For SU(Nc) many
more representations are allowed. For example, the fun
mental representation, which has dimensionNc , is con-
structed by occupying anNc-fold degenerate multiplet with a
single ‘‘slave’’ fermion.14 For generalNc , with the excep-
tion of Nc52, this representation is not self-conjugate or,
other terms, it is not particle-hole symmetric. Other repres
tations can be constructed26 by occupying the multiplet with
Qf slave fermions. ForQf5Nc/2, which is available forNc
even, particle-hole symmetry is exact. We will see bel
that particle-hole symmetry~self-conjugation! is a case of
special interest. Notice that all choices of representation
in principle, valid extensions from the physical SU~2!-
invariant system. Similar caveats have to be made abou
choice of a particular generator in the algebra of SU(Nc) that
will represent the Zeeman term forNc.2. In fact, in Ref. 26
it was shown that some care has to be taken in this choic
order to describe a smooth weak-to-strong field crossove
any event, we are only interested in the extrapolation of
results atNc.2 down toNc52 where there is no ambigu
ities but they are present for allNc.2.

In Ref. 29 it was shown that, after integrating out t
fermion and impurity degrees of freedom, the impurity co
tribution to the effective action,Seff[bFimp , takes the form

F imp52
1

b (
s51

Nc

Tr lnF ]t1e f1(
l 51

Nf

uf l u2G0~z!G
1E dtFNc

J0
S (

l 51

Nf

ufu2D 2Qfe f G
[F̄ imp1E dtFNc

J0
S (

l 51

Nf

ufu2D 2Qfe f G , ~4.1!

wheref l are the Hubbard-Stratonovich fields introduced
decouple the impurity in the large-N formalism. The proper-
ties of the normal excitations is encoded in the functi
G0(z) ~where the complex numberz5e1 il is the analytic
extension of the energy!. With the new definition of the DOS
of Eq. ~3.33!, the functionG0(z), defined by
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G0~z![2E
2`

` de

2pvv8

r~e!

e2z
, ~4.2!

now takes the form

Re G0~e1 il![H 2
e

pvv8
lnUD0

e U for ueu,D0 ,

0 for ueu.D0 ,
~4.3!

Im G0~e1 il![H 2
ueu

2vv8
sgn~l! for ueu,D0 ,

2
D0

2vv8
sgn~l! for ueu.D0 .

~4.4!
os
nc
cu

id
a

l

e

t.
t

or
u

-

s

We define

D[
( l 51

Nf uf l u2

pvv8
, ~4.5!

whereNf is the number of ‘‘flavors.’’ For the problem of the
d-wave superconductor,Nf in principle is the number of
nodes andNf54. However, we showed above that theinter-
nodecouplings are always different~and smaller! than the
intranodecoupling. This coupling anisotropy reduces toone
the number of effective flavors. Hence, from now on, we w
setNf51.

At finite temperatureT, the effective action of Eq.~4.1!
becomes an~infinite! series running over~imaginary! Mat-
subara frequencies. Using this approach37 the effective free
energy becomes
F̄ imp5
Nc

2p i E2`

`

de
ehe

ebe11
lnF2~e1 il!1e f1~( l ufu2!G0~e1 il!

2~e2 il!1e f1~( l ufu2!G0~e2 il!G[ Nc

p E
2`

`

den~e!d~e!, ~4.6!
dle

-

-

whered~e! is the phase shift39 and n(e) is the Fermi func-
tion,

n~e!5
1

ebe11
. ~4.7!

Explicitly we find

d~e![tan21S l1 pueuD/2

e1eD lnuD0 /eu2e f
D ~l→01!.

~4.8!

G0(z) has a branch cut and the jump of the function acr
this cut is energy dependent. This is an important differe
with the usual Kondo effect in which the jump across the
for the functionG0(z) ~see, for example, Ref. 14! is energy
independent and gives essentially the~constant! width of the
resonance. This will not be the case any longer as the w
of the resonance now becomes energy dependent. This m
an important departure from the ‘‘local Fermi-liquid’’~or the
resonant level model! behavior10,38characteristic of the usua
marginal Kondo systems.

The large-Nc analysis of this problem proceeds in th
usual manner. Given the impurity free energyF imp , a set of
values ofe f andD that minimize this free energy is sough
The extremal values ofe f and D satisfy the saddle poin
equations~SPE’s!

]F imp

]D
50 and

]F imp

]e f
50. ~4.9!

In the next subsection we will write explicit expressions f
the SPE’s and solve them. Thermodynamic magnitudes s
as the impurity entropySimp , the impurity contribution to the
specific heatCimp , and the impurity contribution to the sus
ceptibility x imp as functions of temperature~and magnetic
field! can be computed from the thermodynamic formula
s
e
t

th
rks

ch

Simp52
]F imp

]T
, C̄imp52T

]2F̄ imp

]T2 , x imp52
]2F̄ imp

]H2 ,

~4.10!

where the total impurity contribution to the free energyF imp
is given by

F imp5F̄ imp~D,e f ,H,T!1p
vF

2Nc

J0
D2Qfe f . ~4.11!

Since bothD ande f are also functions ofT andH, care must
be taken to account for their contribution. However, sinceD
ande f satisfy the SPE’s, we get

]F imp

]T
5

]F̄ imp

]T
U

D,e f

and
]F imp

]H
5

]F̄ imp

]H
U

D,e f

. ~4.12!

Thus, only the explicit dependence onT andH matters.

V. SADDLE POINT EQUATIONS

Using the formalism of the previous section, the sad
point equations~SPE’s! take the form

Qf5
1

p E
2D

1D

den~e!
]d

]e f
~e! ~5.1!

and

Nc

pvF
2

J0
52

1

p E
2D

1D

den~e!
]d

]D
~e!, ~5.2!

whereD is the bandwidth cutoff. In general we will be in
terested in the regimeT,H!D0,D. In this regime, the con-
tributions to the SPE’s from energies higher thanD0 can be
well approximated by settingT5H50. This amounts to set
ting the Fermi function to ben(e)'0, for D0<e<D, and
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n(e)'Nc , for 2D<e<2D0 . The SPE’s thus are a sum o
two terms, one coming from energiesueu<D0 and one from
D>ueu>D0 .

A. Impurity occupation

The saddle point equation~5.1! reduces to

Qf5E
2D0

D0 de

p
n~e!

~p/2! ueuD
@~p/2! ueuD#21~e1eD lnuD0 /eu2e f !

2

1
Nc

2 F12
2

p
arctanS D01e f

~p/2! D0D D G . ~5.3!

For the reminder of this paper, we will be interested in t
physics of this system close to the critical coupling consta
In that regime, the singlet amplitudeD becomes very smal
and the asymptotic behavior of the SPE’s in this domain
be evaluated explicitly.

Thus, close enough to the phase transition, whereD is
very small, the contribution from the last term in Eq.~5.3!
becomes

lim
D→0

F12
2

p
arctanS D01e f

~p/2! D0D D G
;S D0

D01e f
DD2

2

3p S ~p/2! D0D

D01e f
D 3

1••• , ~5.4!

providede f1D0.0.
For the remainder of this section we will consider t

saddle point equation in the caseT5H50. In this case, the
SPE takes the form

I 5
Nc

p E
e1/D

` dz

z

pD/2

~pD/2!21~D ln z1ne21/Dz!2 , ~5.5!

wherez[e1/D D0 /e andn[ e f /D0 . It is clear that the inte-
grand in Eq.~5.5! shows a crossover behavior at

D ln z05ne21/Dz0 .

In the regimen!D!1, this equation has a root at largez,
given by

z0'S D

n
e1/DD lnS D

n
e1/DD.e1/D.

Taking into account the change in the behavior of its
nominator, Eq.~5.5! can be re-written in two pieces with th
asymptotic form

I ,'
Nc

2 F12
1

11D ln~D/n!
1

D ln~1/D!

@11D ln~D/n!#2G1•••

~5.6!

and

I .'
Nc

p2D
lnF11

~pD/2!2

@11D ln~D/n!#2G1••• . ~5.7!

Getting everything together, Eq.~5.1! reduces to the expres
sion
e
t.

n

-

Qf'
Nc

2

D

11n
1

Nc

2

D ln~D/n!

11D ln~D/n!
1

Nc

2

D ln~1/D!

@11D ln~D/n!#2

1
Nc

p2D
lnF11

~p D/2!2

@11D ln~D/n!#2G1••• . ~5.8!

It is important to stress that, regardless of the approximati
made in evaluating the integrals, the first SPE, Eq.~5.1!, is a
relation betweenD ~the amplitude of the singlet! and the
impurity Fermi level~in units of the gapD0! n at fixed oc-
cupationQf . This relation is independent of the couplin
constant and it must be solved first. For the problem that
are discussing here, the relation betweenn andD is singular,
as implied by the logarithmic singularities in Eq.~5.8!. We
will see below that, due to the presence of this singular
the impurity Fermi levele f is no longer simply related to the
singlet amplitudeD. This phenomenon does not occur in th
conventional Kondo problem in metals, where the DOS
constant. It occurs for systems with a DOS vanishingfaster
than linear with the energy. In this sense, the case of a lin
DOS is amarginal system.

Let x be the impurity filling fractionx5Qf /Nc . The so-
lution of Eq. ~5.8! takes the form

n~x,D!5Ae expS 2
1

D

2x

122x1D
1

1

122x1D D
3@11O~D,D ln D!#, ~5.9!

wheree52.7172... .
Hence, for generic values ofx5Qf /Nc , the impurity

Fermi leveln depends on the singlet amplitudeD through an
essential singularity of the form exp(2const/D). As

Qf→ Nc/2(x→ 1
2 ), there is a crossover in the functional for

of n which now behaves like exp(2const/D2), which van-
ishes much faster asD approaches zero. It is interesting
note that if the contributions from the states with energ
between2D to 2D0 had been neglected altogether,n would
havevanishedidentically atQf5 Nc/2, for all finite values of
D. Sinceat Qf5 Nc/2 the Hamiltonian has an exact particl
hole symmetry, it may appear thatn5e f /D0 should have to
vanish exactly at this point. In fact, it does not vanish due
states whose DOS violate the strict linear behavior of
DOS at low energies.

B. Equation of state

Let us consider now the second SPE, Eq.~5.2!. This equa-
tion relatesD ~the amplitude of the singlet! to the coupling
constant~once the relation betweene f andD is known!. We
will regard this equation as anequation of state.

At T50 and H50 the second SPE, Eq.~5.2!, can be
written as

p2vF
2

J0
5E

0

D0
de

p

2

e~e1e f !

~peD/2!21@e1e f1eD ln~D0 /e!#2

1E
D0

D

de
p

2
D0

e~e1e f !

~pD0D/2!21~e1e f !
2 . ~5.10!

In the second integral of the right-hand side~RHS! of Eq.
~5.10! it is useful to perform the change of variablesu5e f /e



q.

ta

is
h

vin

u
ip
he
s

ag
in

ite
ap
d

the
se

ld.
e
f-

ne-

iral

pin

s

.

ec-

56 11 257OVERSCREENING OF MAGNETIC IMPURITIES IN . . .
while, in order to treat the first integral or the RHS of E
~5.10! we use againz5e1/D(D0 /e). As above,n5e f /D0 and
nD5e f /D. We can write

1

g0
5

p

2
e1/DE

e1/D

` dz

z2

~11nze21/D!

~D p/2!21~nze21/D1D ln z!2

1
p

2 E
nD

n du

u

11u

~D p/2!21~11u!2 , ~5.11!

where we have defined the dimensionless coupling cons
g0 by

1

g0
5

1

D0

p2vF
2

J0
.

The second integral on the RHS of Eq.~5.11! can be
shown to give the leading contributions

p

2 E
nD

n du

u

11u

~D p/2!21~11u!2 ;
p

2
ln

D

D0

1

11a2

2
p

2
nS 12

D0

D D
3~127a2!1••• , ~5.12!

where a2[(pD/2)2!1 in accordance with the hypothes
thatD is small in the regimes in which we are interested. T
first integral of the RHS of Eq.~5.11! is treated in the Ap-
pendix as an example of the approximations used. Retrie
here the results of Eq.~A8! we write Eq.~5.11! in the form

1

g0
5

p

2
lnS D

D0
D1

p

2

1

11~pD/2!2 2p
D

@11~pD/2!2#2

1O~D2!1••• . ~5.13!

Now we define thecritical coupling constantas the limit for
D→0 of Eq. ~5.13!,

1

gc
5

p

2
lnS D

D0
D1

p

2
. ~5.14!

For smallD we obtain the scaling equation

1

gc
2

1

g0
5pD1

p

4 S pD

2 D 2F32S D0

D D 2G1••• . ~5.15!

VI. IMPURITY MAGNETIC SUSCEPTIBILITY

In order to consider the effect of a magnetic field in o
model it is necessary to proceed with some care. In princ
we need to go back to the original model to look into t
effects of a finiteH. In terms of the Nambu-Gorkov spinor
the ‘‘free Hamiltonian’’ H0 now becomes

H05(
kW

F†~kW !$@e~kW !1m#t32D~kW !t12H%F~kW !.

~6.1!

Here the magnetic fieldH is multiplied by the 232 identity
matrix. The consequence of the introduction of a finite m
netic field is thus, the generation of a finite relative shift
nt

e

g

r
le

-

the zero point for the energy, but not necessarily a fin
density of quasiparticle states within the nodes of the g
~however, see below!. The eigenfunctions remain unchange
but the eigenenergies are shifted byH,

E52H6Ae2~kW !1D2~kW !. ~6.2!

Thus, after the expansion in small momentum around
nodesof the gap, the two-dimensional spinors will disper
with

E52H6Avv8p, ~6.3!

wherep has been defined before, in the model without fie
It is not difficult to convince oneself, by going through th

~several! transformations involved in the reduction to the e
fective one-dimensional model, that, at the level of the o
dimensional Hamiltonian, the magnetic field enters as atrue
magnetic field coupled now to the one-dimensional ch
fermions. Thus,

Heff5 (
l 51

4

(
s5↑,↓

E
2`

` dp

2p
~Avv8p2Ht3!dl s

† ~p!dl s~p!

1 (
l 51

4

(
s,n5↑,↓

Jl F E
2`

` dp

2p
Aupudl s

† ~p!G
3tWsn•SW impF E

2`

` dp8

2p
Aup8udl n~p8!G . ~6.4!

The change in the kinetic energy, depending on the s
polarization, changes the form of the functionG0(v,H),

G0~v,H !5E
2`

` dp

2p

upu

v2Avv8p1Ht3

5
1

2pvv8
E

2`

` ueude

~v1H !2e

1

2
~11t3!

1
1

2pvv8
E

2`

` ueude

~v2H !2e

1

2
~12t3!,

~6.5!

wheret3 represents an SU(Nc) diagonal generator havingr
elements with eigenvalue11 andNc2r elements with ei-
genvalue21. In what follows we will taker 5Nc/2 which
respects theH→2H symmetry of the SU~2! theory. For
generalr , a particle-hole transformationis not equivalent to
H→2H. But for r 5Nc/2 these symmetry transformation
are equivalent. In other terms, for generalr this magnetic
field breaks both theH→2H and particle-hole symmetries
Notice, however, that therepresentationof the impurity is
determined solely by the chargeQf and it is unrelated tor .
In the presence of the field, the impurity level has an eff
tive filling factor 2Qf /Nc . We will see below thatQf5Nc/2
is a special case. For the physical caseNc52 there is only
one possible representation~i.e., spinS51/2! which corre-
sponds toQf515Nc/2. For generalNc these two situations
do not necessarily coincide.
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These changes will be reflected in the phase shift defi
in Sec. IV. In presence of a finite field the impurity fre
energyF̄ imp can be written as

F̄ imp[
Nc

2p E
2`

`

den~e!@d~e1H !1d~e2H !#, ~6.6!

whered~e! is given by Eq.~4.8! andn(e) is the Fermi func-
tion. Equation~6.6! is manifestly invariant under the trans
formationH→2H.

The magnetization and the susceptibility are given,
spectively, by

M imp52
]F̄ imp

]H
, x imp52

]2F̄ imp

]H2 , ~6.7!

which take the form

M imp5
Nc

2p E
2`

1`

deS ]n

]e
~e2H !2

]n

]e
~e1H ! D d~e!.

~6.8!

In the limit T→0, the function]n(e)/]e approaches a nega
tive Dirac d function localized ate50. In this limit we find

M imp~0,H !52
Nc

2p
@d~H !2d~2H !#. ~6.9!

Now we can use Eq.~4.8! to write an explicit expression fo
the magnetization

M ~0,H !52
Nc

2p
tan21S ~p/2! HD

H1HD ln~D0 /H ! 2e f
D

2
Nc

2p
tan21S ~p/2! HD

H1HD ln~D0 /H ! 1e f
D .

~6.10!
a

d

-

It is easy to see that in the limitH!e f(0), one has

M imp;
Nc

2

D~0!

e f
2~0!

H2S 11D~0!ln
D0

H D . ~6.11!

This expression shows that the impurity contribution to t
magnetization vanishes asH2 ln H with H→0. As expected,
the impurity magnetization vanishes as the field goes to z
thus showing that the magnetic impurity has be
screenined. However, in a conventionalmarginalKondo sys-
tem, the magnetization vanisheslinearly with the field. Here
instead we find a faster field dependence.

It can be shown, using similar arguments, that a gen
expression for the impurity contribution to the magnetic s
ceptibility is given by

x imp~T,H !5
Nc

2p E
2`

1` ]n

]e F]d

]e
~e1H !1

]d

]e
~e2H !G

52
Nc

2p E
2`

1`

dx
ex

~ex11!2

3F ]d

]e U
xT1H

1
]d

]e U
xT2H

G . ~6.12!

At zero temperature the susceptibility becomes

x imp~0,H !52
Nc

2p F ]d

]eU
2H

1
]d

]eU
H
G . ~6.13!

Thus, we find that the susceptibility at zero temperature
at low fields@H!e f(0)# is
x imp~0,H !5
NcD~e f

2@H1HD ln~D0 /H !#2 1
2 HD$~pHD/2!21@H1HD ln~D0 /H !#21e f

2%!

$~pHD/2!21@H1HD ln~D0 /H !#21e f
2%224e f

2@H1HD ln~D0 /H !#2 . ~6.14!
-

-
tic

ar-

-
lity
u-

ific
e

It should be noticed that in all of these expressions, the qu
tities e f and D are functions of the fieldH, with a limiting
value e f(0) and D~0! for T5H50 found in Sec. V. The
quantityD~0! should not be confused withD0 . Hereafter we
will set D5D(0) ande f5e f(0). Themagnetic susceptibility
obtained from Eq.~6.11! agrees with the limite f@H of Eq.
~6.14! and gives

x imp;NcS D

e f
D 2

H ln
D0

H
1Nc

D

e f
2 HS 12

D

2 D1••• .

~6.15!

In the opposite regimeH!T!e f , the susceptibility is

x imp~T,0!'2Nc ln 2S D

e f
DT lnS D0

T D . ~6.16!
n-To summarize, we find that in the low-field limit the zero
temperature magnetization vanishes likeH2 ln(D0 /H). How-
ever, in contrast with the conventional ‘‘Fermi-liquid’’ be
havior of the Kondo effect in metals, the magne
susceptibility isalso found to vanish in the low-field limit as
H ln(D/H) and at zero temperature. Hence, in this nonm
ginal Kondo system, the magnetic impurity isoverscreened
even for a single channel of fermions. In the low
temperature, zero-field regime, the impurity susceptibi
has aT ln(D0 /T) behavior which again shows that the imp
rity is overscreened.

VII. IMPURITY ENTROPY AND SPECIFIC HEAT

We can estimate the impurity contribution to the spec
heat in the limitT!H, in the screening regime. Using th
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SPE and some straightforward algebra, the impurity con
bution to the entropy is

Simp52
]F

]T U
e f ,D

5
Nc

2p E
2`

`

de
e

T

]n

]e
@d~e1H !1d~e2H !#.

~7.1!

Using the scalinge5xT this is

Simp52
Nc

2p E
2`

`

dxx
ex

~ex11!2 @d~xT1H !1d~xT2H !#.

~7.2!

In the limit T!H, we may expand the phase shift around t
point x50 to get

Simp5x imp~0,H !TE
2`

`

dxx2
ex

~ex11!2 , ~7.3!

wherex imp(0,H) has been obtained in the previous sectio
The impurity contribution to the specific heat is then equa
the impurity contribution to the entropy in this limit. Ou
result shows that the impurity entropy vanishes atT→0 and
finite field, for T!H.

The general form of the specific heat is

Cimp5
Nc

2pT E
2`

1`

dee2
]n

]e F]d

]e
~e1H !1

]d

]e
~e2H !G

52
NcT

2p E
2`

1`

dxx2
ex

~ex11!2 F ]d

]e U
xT1H

1
]d

]e U
xT2H

G .

~7.4!

In the regimeH!T!e f we find

Cimp~0,T!'9z~3!Nc

D2

e f
2 T2 lnS D0

T D , ~7.5!

where z~3! is the Riemann zeta function at 3 and it is
number of the order of unity.

Using the results of Eq.~6.16! and Eq.~7.5!, we can com-
pute the Wilson ratio for the regimeH!T!e f and find

Cimp~H,T!

Tx imp~H,T!
'

9z~3!

2 ln 2
. ~7.6!

It is interesting that the ratio is still finite in spite of the fa
the both the specific heat and the susceptibility behave v
differently than in a Fermi liquid.

In the high-field limitT!H!e f the impurity specific hea
is

Cimp~H,T!'Nc

p2

3 S D

e f
DTH lnS D0

H D , ~7.7!

which obeys the relation

Cimp~H,T!'
p2

3
Tx imp~0,H !. ~7.8!

This result leads to a new Wilson ratio
i-

e

.
o

ry

W5
Cimp~H,T!

Tx imp~H,0!
5

p2

3
, ~7.9!

which is essentially identical to the Wilson ratio for th
Kondo effect in Fermi liquids.

Hence we found that in the strong-coupling Kondo pha
the impurity specific heat at low temperature and low fie
behaves likeT2 ln(D0 /T) and TH ln(D0 /H) depending on
whetherH!T or T!H. Only for T!H do we find the con-
ventional linearT behavior of the~zero-field! specific heat of
the ~marginal! Kondo effect in Fermi liquids. Notice, how
ever, that the slopeg of the specific heat in this regime i
field dependent and behaves likeH ln(D0 /H). However, in
spite of these differences, we found that the convention
defined Wilson ratio is still finite but it is different in both
regimes.

VIII. DISCUSSION

In this paper we constructed a model for the problem o
magnetic impurity in adx22y2 superconductor. We solve
this problem using the large-Nc approximation and found
that there is a quantum phase transition from a phase
which the impurity is nearly free to a phase in which it
overscreened. We estimated the value of the critical coup
constantJc . We found thatJc could be both smaller or
larger thanD0 , the gap of thed-wave superconductor, but i
is certainly smaller than the bandwidthD of the electrons
that participate in the superconductivity.

This result agrees with recent work by Ingersent28 on a
related system. Ingersent used a Wilsonian numerical
approach and found that the critical coupling runs off to t
cutoff ~strong coupling! unless either particle-hole symmetr
is broken~for the band fermions! or additional high-energy
states with a flat DOS were added. In the problem of
d-wave superconductor the former possibility is excluded
the superconductivity itself but the latter is required sin
such states are always there. In any event there is no re
to require thatJc should be smaller thanD0 . In fact, even if
Jc>D0 , the Kondo scaleTK does not trackJc and it is
almost always smaller thanD0 ~in fact, quite a bit smaller!.
The value of the critical coupling constant is nonuniver
and it depends on details of the high-energy physics of
system. Thus, our approximations have emphasized the
of the nodes and replaced the states aboveD0 by a ‘‘flat
band.’’ Clearly, the solution of the saddle point equatio
with the full band structure of the Hamiltonian of Eq. 2
will yield a different ~possibly smaller! value of Jc . The
same caveats apply to the numerical RG calculation of
geresent, in which a specific discretization of the effect
model is used. In fact, in most of his work, Ingeresent u
Wilson’s logarithmic discretization which is very accura
for the Kondo problem in metals since it is tailored to repr
duce the logarithmic singularities at high energies of the c
ventional ~marginal! Kondo problem. In the case that w
examine here, the system is very far away for its ‘‘low
critical dimension.’’ This approach shouldoverestimate Jc ,
probably by quite a bit. In any event, the actual value oJ
itself depends on microscopic physics of the cuprates
there is no reason to believe that it should be tied toD0 .

We investigated in detail the thermodynamic behav
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~impurity susceptibility and specific heat! in the over-
screened phase where we found that the impurity susc
bility vanishes like H ln(D0 /H) ~for T!H!TK! or
T ln(D0 /T) ~for H!T!TK! with a crossover atT'H. For a
Fermi liquid, the impurity susceptibility approaches a co
stant value atT→0. The specific heat, on the other hand, w
found to vanish like TH ln(D0 /H) ~for T!H!TK! or
T2 ln(D0 /T) ~for H!T!TK!. In a Fermi liquid it vanishes
linearly with T. The change in the power law behavior is
extension of the earlier work by Withoff and Fradkin.26 The
additional logarithmic singularity is an indication thatr 51
is like an upper critical dimension for the Kondo problem29

The interesting quantum critical behavior, accessible
T,H@TK , was not discussed here and will be the subjec
a separate publication.30

There are several important effects that we have not
cluded here. One is the effect ofrandompotential scattering
which, naively may induce a nonzero DOS at the Fermi
ergy EF50. Even if this effect is there, the effective DO
N(E) is very small. In Refs. 17 and 18 it was shown th
N(E)'exp(2const/w) ~wherew is the width of the distribu-
tion! and that the elastic mean free path is exponenti
long, l ;exp(1const/w). Since atJc we have a transition
from a state with adivergentzero-temperature susceptibilit
~Curie like! to an overscreened state withvanishingsuscep-
tibility, the rounding effects of a finite~but very small! DOS
should be a very small correction if the material is clean
more interesting, and perhaps more important, effect
was not included here is the presence of explicit pair bre
ing by the vanishing of the amplitude of thed-wave order
parameter at the impurity site. This effect should give rise
interesting Andreev-like processes which may well alter
physics of this problem. We will discuss this proble
elsewhere.30 Finally, corrections to theNc→` limit remain
to be estimated.
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APPENDIX: ESTIMATION OF INTEGRALS

The integral of Eq.~5.10! is a good representative for th
approximations made in treating the integrals of Sec. V. T
expression given in Eq.~5.12! is easy to obtain. As for the
first integral of the RHS of Eq.~5.11! we have

p

2
e1/DE

e1/D

` dz

z2

~11nze21/D!

~D p/2!21~nze21/D1D ln z!2 [K1I ,

~A1!

where the splitting of the integral corresponds to the1 sign
in the numerator. At the valuez05@(D/n) e1/D# ln z0 there is
a crossover in the behavior of the denominator of the in
grand. Forz,z0 the leading term isD ln z; for z.z0 we can
keep the termnze21/D. Also z0 can be approximated by

z0'S D

n
e1/DD lnS D

n
e1/DD.e1/D.

Then we can split the integrals as

I ,5
p

2

n

D2 E
e1/D

z0 dz

z

1

ln2 z1~p/2!2 . ~A2!

The change of variablest5( 2/p)ln z makes the integration
straightforward to give

I ,5
n

D2 FarctanS 2

p
ln z0D2arctanS 2

pD D G
;n

p

2

ln$~D/n!ln@~D/n! e1/D#%

11D ln$~D/n!ln@~D/n! e1/D#%
. ~A3!

On the other hand,

I .5n
p

2

1

n2e22/D E
z0

` dz

z

1

z21~e1/DpD/2n!2 , ~A4!

which can be integrated by partial fractions to give

I .5n
p

2

1

@11D ln~D/n!#2 . ~A5!

Similarly we have

K,5
p

2
e1/D

1

D2 E
1/D

ln z0
e2t

dt

~p/2!21t2 ~A6!

and

K.5
p

2

e3/D

n2 E
z0

` dz

z2

1

z21@e1/D~pD/2n!#2

,
e1/D

n

1

z0
I .;

p

2
n

1

@11D ln~D/n!#3 . ~A7!

Hence, againK., as was the case withI ., can be neglected
since its contribution is at least of theo(n);o(e21/D)!D.
The leading contribution comes from Eq.~A6! which can be
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recast in terms of an exponential integral function and p
duces a constant contribution and a linear term inD. The
leading contribution for smallD gives

K,;
p

2 F 1

11~pD/2!2 2
2D

@11~pD/2!2#2 1O~n!1••• G .
~A8!
tt

B

-

,

a

in,
-With these results, the equation of state, keeping only
leading order contributions is

1

g0
5

p

2
lnS D

D0
D1

p

2

1

11~pD/2!2 2p
D

@11~pD/2!2#2

1O~D2!1••• . ~A9!
v.
.
a
.
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